
Parallel Computing 74 (2018) 3–18

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Accelerating the SVD two stage bidiagonal reduction and

divide and conquer using GPUs

Mark Gates a , ∗, Stanimire Tomov

a , Jack Dongarra

a , b , c

a Innovative Computing Laboratory, University of Tenneessee, Knoxville, TN, USA
b Oak Ridge National Laboratory, Oak Ridge, TN, USA
c University of Manchester, Manchester, England, United Kingdom

a r t i c l e i n f o

Article history:

Received 29 December 2016

Revised 19 July 2017

Accepted 24 October 2017

Available online 2 November 2017

Keywords:

Singular value decomposition

SVD

Divide and conquer

GPU

Accelerator

a b s t r a c t

The increasing gap between memory bandwidth and computation speed motivates the

choice of algorithms to take full advantage of today’s high performance computers. For

dense matrices, the classic algorithm for the singular value decomposition (SVD) uses a

one stage reduction to bidiagonal form, which is limited in performance by the memory

bandwidth. To overcome this limitation, a two stage reduction to bidiagonal has been gain-

ing popularity. It first reduces the matrix to band form using high performance Level 3

BLAS, then reduces the band matrix to bidiagonal form. As accelerators such as GPUs

and co-processors are becoming increasingly widespread in high-performance computing,

a question of great interest to many SVD users is how much the employment of a two

stage reduction, as well as other current best practices in GPU computing, can accelerate

this important routine. To fulfill this interest, we have developed an accelerated SVD em-

ploying a two stage reduction to bidiagonal and a number of other algorithms that are

highly optimized for GPUs. Notably, we also parallelize and accelerate the divide and con-

quer algorithm used to solve the subsequent bidiagonal SVD. By accelerating all phases

of the SVD algorithm, we provide a significant speedup compared to existing multi-core

and GPU-based SVD implementations. In particular, using a P100 GPU, we illustrate a per-

formance of up to 804 Gflop/s in double precision arithmetic to compute the full SVD of

a 20k × 20k matrix in 90 seconds, which is 8.9 × faster than MKL on two 10 core Intel

Haswell E5-2650 v3 CPUs, 3.7 × over the multi-core PLASMA two stage version, and 2.6 ×
over the previously accelerated one stage MAGMA version.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The increasing gap between memory bandwidth and computation speed motivates the choice of algorithms to take full

advantage of today’s high performance computers. This gap causes matrix-matrix multiply (gemm) 1 to be 30–40 times

faster than matrix-vector multiply (gemv) on today’s architectures. For dense matrices, the classic algorithm for the singular

value decomposition (SVD) uses a one stage reduction to bidiagonal form that requires matrix-vector multiplies, hence its
∗ Corresponding author.

E-mail addresses: mgates3@icl.utk.edu (M. Gates), tomov@icl.utk.edu (S. Tomov), dongarra@icl.utk.edu (J. Dongarra).
1 Throughout, we have annotated BLAS and LAPACK function names in parenthesis, such as (gemm), so that readers familiar with the nomenclature can

readily identify the operations, without the text requiring such knowledge.

https://doi.org/10.1016/j.parco.2017.10.004

0167-8191/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2017.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2017.10.004&domain=pdf
mailto:mgates3@icl.utk.edu
mailto:tomov@icl.utk.edu
mailto:dongarra@icl.utk.edu
https://doi.org/10.1016/j.parco.2017.10.004

4 M. Gates et al. / Parallel Computing 74 (2018) 3–18

First stage:
full to band

Second stage:
band to bidiagonal

} nb

Fig. 1. Two stage reduction to bidiagonal form.

performance is limited by the memory bandwidth. To overcome this limitation, a two stage reduction to bidiagonal has

been gaining popularity. It first reduces the matrix to band form using high performance Level 3 BLAS, then reduces the

band matrix to bidiagonal form using optimized, cache-friendly kernels with dynamic scheduling. This removes the memory

bandwidth limitation, decreases communication and synchronization overhead, and increases the computational intensity.

As accelerators, such as GPUs and co-processors, are becoming increasingly widespread in high-performance computing, we

have developed an accelerated SVD employing a two stage reduction to bidiagonal. We also parallelize and accelerate the

divide and conquer algorithm used to solve the subsequent bidiagonal SVD.

The SVD of an m × n matrix A is given by

A = U�V

H ,

where U and V are unitary and � is a real diagonal matrix with diagonal elements σ i ≥ 0. The σ i are the singular values

of A and the first min(m, n) columns of U and V are the left and right singular vectors of A , respectively. Without loss of

generality, we assume m ≥ n ; the m < n case is analogous but with operations transposed.

The classic Golub–Kahan–Reinsch algorithm [12,13] computes the SVD in three phases:

1. Reduce A to a bidiagonal matrix B via a unitary similarity transform, A = U 1 BV H
1

.

2. Compute the bidiagonal SVD as B = U 2 �V H 2 . Several algorithms exist for the bidiagonal SVD, the original being QR itera-

tion.

3. If singular vectors are desired, back transform the singular vectors in U 2 and V 2 to yield U = U 1 U 2 and V H = V H
2

V H
1

.

For modern machines with cache hierarchies, Dongarra et al. [10] improved the performance by blocking H ouseholder re-

flectors together. This enabled half of the operations in the bidiagonal reduction to be performed in Level 3 BLAS [8] (matrix-

matrix operations), which benefit from the surface-to-volume effect of having only O (n 2) data to access for O (n 3) operations.

However, this blocking still leaves half of the operations of the bidiagonal reduction in memory-bandwidth-limited Level 2

BLAS [9] (matrix-vector operations), limiting its performance to twice the matrix-vector multiply (gemv) speed. Lahabar and

Narayanan [24] had an early GPU-accelerated version of the one stage bidiagonal reduction and the subsequent bidiagonal

SVD using QR iteration, while the current GPU-accelerated one stage implementation in MAGMA [20] is due to Tomov et al.

[33] . These take advantage of the GPU’s faster memory, but the algorithm remains memory bandwidth limited.

To remove this limitation, Großer and Lang introduced a two stage bidiagonal reduction, first reducing to band form,

A = U a A band V
H
a [14] , then reducing to bidiagonal form, A band = U b BV H

b
[25] , as depicted in Fig. 1 . While this incurs more op-

erations than the one stage algorithm, most of the operations occur in the first stage, which uses high-performance Level 3

BLAS, making it much more efficient than the one stage bidiagonal reduction. Ltaief et al. implemented the first [26] and sec-

ond stages [27] using tile algorithms with dynamic scheduling for multi-core CPUs in PLASMA [21] , with later optimizations

by Haidar et al. [16] , 17]. Two stage algorithms have also been used for the reduction to tridiagonal form in the Hermitian

eigenvalue problem [4] , which have been accelerated with GPUs [3,18,19] , and for the reduction to Hessenberg form in the

non-symmetric eigenvalue problem [23] . In this paper, we accelerate the first stage using a GPU, while using the PLASMA

CPU implementation for the second stage. For the bidiagonal reduction phase alone, this yields up to a 5.5 × improvement

over the accelerated one stage bidiagonal reduction in MAGMA, and up to a 3.2 × improvement over the PLASMA two stage

reduction, as described in Section 4 .

A two stage reduction also requires using two corresponding back transformation steps, first multiplying U b U 2 and V H
2

V H
b

,

then multiplying U a (U b U 2) and (V H
2

V H
b

) V H a . Having a second back transformation adds 4 n 3 operations, which fortunately are

in Level 3 BLAS, but do reduce the potential speedup compared to a one stage algorithm when computing singular vectors.

Section 5 describes our accelerated implementation of both stages of the back transformation.

In addition to improvements in the bidiagonal reduction, the subsequent bidiagonal SVD has also been addressed. The

Golub–Reinsch algorithm used QR iteration. Bidiagonal divide and conquer (D&C) [15] , based on Cuppen’s divide and con-

quer algorithm [6] for the tridiagonal eigenvalue problem, and multiple relatively robust representations (MRRR) [34] were

developed later. D&C improves performance when computing singular vectors in two ways. First, it reduces the bidiagonal

SVD complexity to 8
3 n

3 , or even O (n 2.3) or less [32] , depending on deflation (see Section 7). This reduces the overall SVD op-

eration count, including bidiagonal reduction and back-transformation of singular vectors, from ≈ 17 n 3 with QR iteration to

≈ 9 n 3 with D&C. Second, QR iteration performs ≈ 12 n 3 of its operations in Givens rotations, which are memory-bandwidth-

limited Level 2 BLAS, while D&C performs most of its operations in Level 3 BLAS. MRRR improves performance by lowering

M. Gates et al. / Parallel Computing 74 (2018) 3–18 5

trailing
matrix

panel } nb

Fig. 2. One stage reduction to bidiagonal form brings each panel to bidiagonal form and updates the trailing matrix.

the bidiagonal SVD complexity to O (n 2), reducing the overall SVD operation count to ≈ 7 n 3 . Whether D&C or MRRR is faster

depends on the distribution of singular values [34] . However, a stable version of MRRR for the SVD is not yet publicly

available, e.g., in LAPACK. Therefore, we chose to examine D&C, which we first profiled to find both areas that can be par-

allelized on the CPU, and areas that can be accelerated with a GPU, as discussed in Section 7 . For the D&C bidiagonal SVD

phase alone, this yields a 2 × improvement using only the multi-core CPU, and a 3 × improvement when also using the

GPU. The CPU-only improvements could be made available in LAPACK and PLASMA, without needing accelerators.

We have thus accelerated all phases of the SVD algorithm: bidiagonal reduction, bidiagonal SVD, and back transformation

of singular vectors. In each stage, we chose an algorithm that emphasizes use of Level 3 BLAS to achieve high performance,

and then modified the algorithm to use a GPU accelerator. When computing the complete SVD, including all three phases,

we achieve speedups up to 8.9 × over the LAPACK implementation available in Intel MKL, 3.7 × over the multi-core PLASMA

version, and 2.6 × over the previous accelerated one stage MAGMA version.

2. Test environment

All our tests are in double precision and use all 20 CPU cores. Test matrices have random entries that are uniform on

(0,1), unless otherwise stated. Tests were run with numactl --interleave = all to distribute memory across the CPU

sockets.

We use a machine with two 10 core Intel Haswell E5-2650 v3 CPUs at 2.3 GHz (turbo boost disabled), with 64 GiB mem-

ory and a peak speed of 736 Gflop/s. For matrix sizes up to n = 20 0 0 0 , the measured practical dgemm peak is 675 Gflop/s

and dgemv peak is 19 Gflop/s (76GB/s). The STREAM triad benchmark [28] measured the memory bandwidth as 71GB/s. We

use Intel MKL 11.3.0 [22] for vendor-optimized BLAS and LAPACK, and compile with Intel icc 16.0.

For an accelerator, we use an NVIDIA Pascal P100 GPU at 1.1 GHz, with 16 GiB memory, a peak speed of 4670 Gflop/s,

and a peak memory bandwidth of 732GB/s. For matrix sizes up to n = 20 0 0 0 , the measured practical dgemm peak is

4572 Gflop/s and dgemv peak is 146 Gflop/s (584GB/s). We use NVIDIA cuBLAS 8.0 for GPU-accelerated BLAS, and the CUDA

8.0 compiler [29] .

3. One stage reduction

As a comparison to motivate the two stage reduction, we first briefly sketch the one stage reduction, as implemented in

the LAPACK routine gebrd. It iterates down the diagonal, at each step factoring a panel of width n b that is a block column

and block row, then updating the trailing matrix, as shown in Fig. 2 . Within a panel, it uses a Householder reflector on

the left to annihilate entries below the diagonal in each column, then another reflector on the right to annihilate entries

right of the superdiagonal in each row, bringing that column and row to upper bidiagonal form. Data dependencies with

the trailing matrix require doing a matrix-vector multiply (gemv) with the trailing matrix after factoring each column and

each row, and using those results to update the next column and row prior to factoring. After factoring a panel, the trailing

matrix is updated with two matrix-matrix multiplies (gemm). There are 4
3 n

3 operations in Level 2 BLAS gemv and

4
3 n

3

operations in Level 3 BLAS gemm. Thus, given that gemm performance is significantly faster than gemv performance, the

potential performance is limited to twice the gemv speed. Algorithm 1 gives a high level overview; see Dongarra et al.

[10] for further details.

4. Two stage reduction

4.1. First stage: General to band

The two stage bidiagonal reduction first reduces the matrix to upper band form, with a matrix upper bandwidth n b ,

then reduces to upper bidiagonal form. The choice of n b is discussed later in Section 6 . In the first stage, reducing to band

form eliminates data dependencies with the trailing matrix during the panel factorization, eliminating the matrix-vector

operations during the panel that were a bottleneck. The first stage proceeds by doing a QR panel factorization of a block

column to annihilate entries below the diagonal, updating the trailing matrix, then doing an LQ panel factorization of a

block row to annihilate entries right of the matrix upper bandwidth, and updating the trailing matrix, as depicted in Fig. 3 .

6 M. Gates et al. / Parallel Computing 74 (2018) 3–18

Algorithm 1 Blocked one stage bidiagonal reduction (gebrd). Householder reflectors use LAPACK representation I − τvv H
with scalar τ and vector v .

for i = 1 to n by n b
U = [] ; V = [] ; X = [] ; Y = [] ; � empty matrices

for j = 0 to n b − 1

update column A i + j: m, i + j using Y and X

generate reflector (I − τ j v j v H j
) to eliminate entries in column A i + j: m, i + j below diagonal

y j = A

H
i + j: m, i : n

v j (gemv)

update row A i + j, i + j+1: n using Y and X

generate reflector (I − π j u j u
H
j

) to eliminate entries in row A i + j, i + j+1: n right of superdiagonal

x j = A i + j +1: m, i + j +1: n u j (gemv)

end for

update trailing matrix A i + n b : m, i + n b : n = A i + n b : m, i + n b : n − V Y H − XU

H (gemms)

end for

trailing
matrix

} nb

Q
R

 p
an

el

LQ panellook ahead

lo
ok

 a
he

ad trailing
matrix

Fig. 3. One panel of first stage reduction to band form (gebrd_ge2gb). It does a QR factorization and trailing matrix update, then an LQ factorization and

trailing matrix update, to bring each panel to upper band form.

Notice that the algorithmic block size (width/height of the QR/LQ panels) coincides with the matrix upper bandwidth, n b .

This stage costs 8
3 n

3 operations in Level 3 BLAS gemm.

The GPU accelerated version is outlined in Algorithm 2 . As most of the operations occur in the trailing matrix update, the

accelerated version stores the matrix on the GPU and performs this update on the GPU. At each step, the QR and LQ panels

are copied to the CPU and factored on the CPU. The block Householder reflectors Q (i) and P (i) are represented in compact WY

format [31] as I − V T V H , where T is upper triangular and V is lower trapezoidal. To simplify the application of Q (i) and P (i)
(larfb), zeros are stored explicitly in the upper triangle of the V matrices so that multiplying by V is a single matrix-matrix

multiply (gemm), instead of a triangular matrix-matrix multiply (trmm) and gemm (as in LAPACK). This simplifies the code

and makes it more efficient on the GPU for typical values of n b . The panel, T , and V matrices are communicated between

the CPU and GPU as needed.

Several optimizations can be made. An LQ factorization computes a Householder reflector of each row of the panel. As

the matrices are stored in column-major order, this accesses a row of non-contiguous memory locations, reducing cache

efficiency and causing the LQ panel factorization to be 1.5 × –2.5 × slower than the QR panel factorization in our tests. To

optimize this, we compute the LQ factorization by transposing the panel, performing a QR factorization, then transposing

the result back.

In a one-sided factorization such as QR, where Q is applied on only the left side of A , a common optimization when

updating the trailing matrix is to first update the next panel, called the look-ahead panel , then factor that panel in parallel

with updating the remainder of the trailing matrix. In contrast, the SVD is a two-sided factorization, where Q is applied on

the left and and P is applied on the right of A . This two-sided nature introduces data dependencies that restrict a look-ahead

panel. In applying the trailing matrix update, Q

H A = (I − V T V H) H A, the routine larfb first computes W

H = T H (V H A) using a

matrix-matrix (gemm) and a triangular matrix (trmm) multiply. Because the next LQ panel is a block row, instead of a block

column as in QR factorization, W

H must be computed for the entire trailing matrix before updating the look-ahead panel. It

then updates A = A − V W

H using another matrix-matrix multiply (gemm). For a look-ahead panel, we split this last multiply

into two gemms by partitioning

A =

[
A 1

A 2

]
, V =

[
V 1

V 2

]
,

where A 1 is the look-ahead panel as shown in Fig. 3 , yielding A 1 = A 1 − V 1 W

H and A 2 = A 2 − V 2 W

H . These correspond to

gemm (1) and gemm (2) in Algorithm 2 . The application of P on the right can be split similarly, corresponding to gemm (3)

and gemm (4) in Algorithm 2 . This look-ahead allows a partial overlap of the trailing matrix update (on the GPU) with the

next QR or LQ panel factorization (on the CPU).

M. Gates et al. / Parallel Computing 74 (2018) 3–18 7

Algorithm 2 First stage: reduction to band form (gebrd_ge2gb). In block Householder representation, each V overwrites its

panel in A ; subscripts on V refer to location in A .

Input: Matrix A of size m × n , with m ≥ n , in CPU memory

Output: V s representing Qs and P s, and resulting band matrix A band in CPU memory (overwriting A)

� W is workspace on accelerator of size max (m, n) × n b
copy A 1: m, n b : n

from CPU → accelerator

for i = 1 to n by n b
� simultaneous with above copy or gemm (4) from previous iteration

QR factorization of block column on CPU: Q (i) R (i) = A i : m, i : i + n b −1 (geqrf)

if i + n b < n then

copy T and V that define Q (i) from CPU → accelerator

� Trailing matrix update A := Q

H
(i)

A = (I − V T V H) H A (larfb)

[on accelerator]: W

H = T H (V H
i : m, i : i + n b −1

A i : m, i + n b : n) (gemm, trmm)

[on accelerator]: A i : i + n b −1 , i + n b : n −= V i : i + n b −1 , i : i + n b −1 W

H (gemm (1); look-ahead panel)

[on accelerator]: A i + n b : m, i + n b : n −= V i + n b : m, i : i + n b −1 W

H (gemm (2))

� simultaneous with gemm (2) above

� LQ factorization done by transpose of panel, QR factorization, then transpose back

copy block row A i : i + n b −1 , i + n b : n for LQ panel from accelerator → CPU

LQ factorization of block row on CPU: L (i) P (i) = A i : i + n b −1 , i + n b : n (gelqf)

copy T and V that define P (i) from CPU → accelerator

� Trailing matrix update A := AP (i) = A (I − V H T V)

[on accelerator]: W = (A i + n b : m, i + n b : n V
H
i : i + n b −1 , i + n b : n) T (gemm, trmm)

[on accelerator]: A i + n b : m, i + n b : i +2 n b −1 −= W V i : i + n b −1 , i + n b : i +2 n b −1 (gemm (3); look-ahead panel)

[on accelerator]: A i + n b : m, i +2 n b : n
−= W V i : i + n b −1 , i +2 n b : n

(gemm (4))

� simultaneous with gemm (4) above

copy block column A i + n b : m, i + n b : i +2 n b −1 for QR panel from accelerator → CPU

end if

end for

Fig. 4. One sweep of second stage: band to bidiagonal form (gebrd_gb2bd), with matrix upper bandwidth n b = 4 . Sweep i reduces row i to bidiagonal, then

chases the resulting bulge down the matrix. ‘o’ indicates an annihilated entry, ‘+’ indicates fill, and a shaded band indicates application of a reflector.

Alternatively to using look-ahead panels, if efficient native GPU-only QR and LQ factorizations are developed, the panels

could be moved to the GPU. Otherwise, the panels are not wide enough to benefit from a hybrid CPU–GPU implementation.

(For the current MAGMA hybrid QR factorization, at n = 10 0 0 0 a panel of size n b ≥ 1024 would be required to be competitive

with the CPU QR factorization, far larger than the optimal n b found in Section 6 .)

4.2. Second stage: Band to bidiagonal

The second stage reduces the upper band matrix to upper bidiagonal form. For this stage, we use the implementation by

Haidar et al. [17] , available in PLASMA 2.8 [21] . As this stage has limited parallelism, is close to memory bandwidth limited,

and is already optimized for the CPU caches, it would not benefit much, if any, from an accelerator-based implementation.

It proceeds in n − 2 sweeps, where sweep i reduces row i to bidiagonal, as illustrated in Fig. 4 . In a sweep, we first apply

a Householder reflector on the right to annihilate elements right of the superdiagonal in row i , which also introduces fill

below the diagonal in columns i + 1 to i + n b − 1 , known as a bulge (see Fig. 4). Applying a Householder reflector on the

left annihilates entries below the diagonal in column i + 1 , which in turn creates a bulge above the superdiagonal in rows

i + 1 to i + n b − 1 . This pattern continues until the bulge disappears off the bottom-right of the matrix, hence the process is

8 M. Gates et al. / Parallel Computing 74 (2018) 3–18

termed “bulge chasing.” The next sweep repeats this pattern, shifted down one row and right one column, to bring the next

row to bidiagonal. The PLASMA implementation pays particular attention to doing this in parallel and keeping data cache

resident for an efficient implementation.

This stage adds O (n 2 n b) more operations that did not occur in the original one stage reduction to bidiagonal. However,

this is more than offset by the increased performance of the first stage compared to the one stage algorithm. Tuning is

important, though, to balance the cost of the first and second stages. Section 6 will investigate tuning the matrix bandwidth.

5. Computation of singular vectors

As the back-transformation of singular vectors is closely related to the bidiagonal reduction, we will cover it first, and

cover divide and conquer later in Section 7 . The bidiagonal SVD computes the n × n matrices U 2 and V 2 , which are the

singular vectors of the bidiagonal matrix B . With the one stage bidiagonal reduction, the computation of singular vectors

involves back transforming those to be singular vectors of A by multiplying with the unitary matrices U 1 and V 1 from the

bidiagonal reduction:

A = U 1 BV

H
1 = U 1 (U 2 �V

H
2) V

H
1 = U�V

H ,

U = U 1 U 2 ,

V

H = V

H
2 V

H
1 .

The U 1 and V 1 matrices are stored implicitly as a collection of vectors in compact WY format. Application of these is per-

formed in 4 n 3 flops using the LAPACK routine ormbr.

The two stage bidiagonal reduction introduces an extra back transformation step:

A = U a A band V

H
a = U a (U b BV

H
b) V

H
a = U a U b (U 2 �V

H
2) V

H
b V

H
a = U�V

H ,

U = U a U b U 2 ,

V

H = V

H
2 V

H
b V

H
a ,

requiring multiplication by both U a and U b for U , and by V a and V b for V , costing 8 n 3 operations total. We introduce two new

routines: ormbr_ge2gb to multiply by U a and V a , the unitary matrices from the first stage; and ormbr_gb2bd to multiply by

U b and V b , the unitary matrices from the second stage.

For the first stage back transformation, U a = Q (1) . . . Q (n/n b)
and V a = P (1) . . . P (n/n b)

with Q (i) and P (i) from Algorithm 2 .

Multiplying a matrix by U a is exactly the same as multiplying by Q from a QR factorization—we simply call the existing

routine ormqr. Multiplying by V a is the same as multiplying by Q from an LQ factorization, except shifted to the right by

n b columns, so we call the existing routine ormlq with the appropriate submatrix. Both ormqr and ormlq have existing

accelerated versions in MAGMA. They operate by looping over the Q (i) or P (i) and applying them as block Householder

reflectors (larfb) on the GPU.

For the second stage back transformation, we update the scheme from Haidar et al. [19] for the two stage tridiagonal

reduction, by extending it to the bidiagonal reduction, which requires applying V H
b

on the right. The updated scheme is

given in Algorithm 3 . The Householder vectors that define U b and V b are shown in Fig. 5 (a) and (e). For instance, the three

Householder reflectors applied on the left in sweep 1 (see Fig. 4) are represented by vectors in column 1 of Fig. 5 (a), while

the three reflectors applied on the right in sweep 1 are in row 1 of Fig. 5 (e). We block j b vectors together into V (k) matrices

defining block Householder reflectors, forming lozenge shapes shown in Fig. 5 (b) and (f). Application of these lozenge shapes

overlap—for instance, block reflectors 3 and 4 modify two overlapping rows in Fig. 5 (c). This creates the dependencies shown

in Fig. 5 (b) and (f). The reflectors can be applied in any order that respects these dependencies. Currently, we loop over the

block columns, from right to left, and then over the lozenges from top to bottom within a block column, shown by the

numbering in Fig. 5 (b) and (f). We modified the PLASMA code for the second stage reduction to store the lozenges in the

order to be applied, rather than the order they are created, as shown in Fig. 5 (d) and (h). This allows us to send a set of

lozenges together to the GPU in one data transfer, then loop over them to apply them. We use double buffering to overlap

data transfers and applications of the reflectors. As with the previous V matrices, the lozenges are stored with explicit zeros,

to use a single matrix-matrix multiply (gemm) instead of two triangular matrix multiplies (trmm) and a matrix-matrix

multiply (gemm).

6. Tuning

Selecting the optimal matrix bandwidth n b for a particular hardware platform is an import aspect of achieving good

performance with the two stage algorithm. The first stage reduction and both the first and second stage back transformations

favor larger n b , because the matrix multiplies become larger and more efficient. This is shown in Fig. 6 (a) and (c) for the

GPU accelerated version, and Fig. 7 (a) and (c) for the PLASMA CPU version, where each line is a different problem size

solved with varying n b . In contrast, since the second stage (band to bidiagonal) must do O (n 2 n b) work, it favors a small

n b to reduce the amount of computation, as shown in Figs. 6 (b) and 7 (b). The optimal n b is a compromise between these

competing factors.

M. Gates et al. / Parallel Computing 74 (2018) 3–18 9

Algorithm 3 Second stage back transformation (ormbr_gb2bd).

� Sends set of n s V (k) matrices at a time

s = 0 � index of set

k = n s + 1 � index within set; force sending first set

for j =

⌈

n −2
j b

− 1

⌉

j b + 1 down to 1 by j b

for i = j to n − 1 by n b
if k > n s then

for k = 1 to n s
Compute T (sn s + k) for V (sn s + k) (larft)

end for

copy set s of T (sn s +1:(s +1) n s) from CPU → dK (1: n s) on accelerator

copy set s of V (sn s +1:(s +1) n s) from CPU → dV (1: n s) on accelerator

k = 1

s = s + 1

end if

if applying U b then

Apply reflectors defined by d T (k) and d V (k) to block row C i : i + n b + j b −1 , 1: n on accelerator (larfb)

else

Apply reflectors defined by d T (k) and d V (k) to block col C 1: n, i : i + n b + j b −1 on accelerator (larfb)

end if

k = k + 1

end for

end for

W

The overall SVD time for the singular values only (no vectors) case is shown in Figs. 6 (d) and 7 (d) for various problem

sizes. This is dominated by the time for the bidiagonal reduction, since the bidiagonal SVD using QR iteration is of lesser

order, O (n 2), in this case. The large marker on each line indicates the optimal n b for that problem size. As expected, smaller

problem sizes tend to have smaller optimal n b . For the accelerated version, n b = 32 is optimal for n ≤ 10 0 0 0, and n b = 64 is

optimal for larger sizes. Because PLASMA’s first stage is more expensive, it has a larger optimal n b : 96 for small problems,

and up to 160 for n ≥ 80 0 0. Small n b ≤ 64 are particularly slow for PLASMA due to its first stage reduction to band. In many

cases, near optimal n b are within 20% of the optimal time, as shown in Figs. 6 (f) and 7 (f), with a notable exception for

PLASMA of n = 20 0 0 , which has a sharply defined optimum at n b = 96 .

When singular vectors are also computed, the first and second stage back transformations contribute. As they favor large

n b , the optimal n b in Figs. 6 (e) and 7 (e) increases compared to the no-vectors case, for both the accelerated version and

for PLASMA. The accelerated version has an optimal n b of 96 for small problem sizes and 128 for large problems. PLASMA’s

optimal n b ranges from 96 to 288, with 224 being a good all-around size. More so than in the no-vectors case, the time is

not sensitive to the optimal n b , with many sub-optimal n b still within 5% or 10% of the optimal time, as shown in Figs. 6 (g)

and 7 (g). For instance, with PLASMA at n = 140 0 0 , the times for n b = 160 to 288 are all within 2.4% of the optimal time,

explaining why its empirically optimal n b is randomly larger than the optimal n b for nearby values of n . However, the

sensitivity of the optimal n b is implementation and platform dependent, as is clear from the differences between tuning the

accelerated and PLASMA versions.

7. Divide and conquer

After reducing to bidiagonal form, the divide and conquer procedure computes the SVD of the bidiagonal matrix B .

Gu and Eisenstat [15] derived a stable procedure; we will review the salient features following their derivation, except

transposed to match the code and our assumption that m ≥ n . Let B be an n × (n + 1) upper bidiagonal matrix. To solve an

n × n bidiagonal matrix, simply append a zero column. Partition the matrix B as

B =

⎡

⎣

B 1 0

αe T k βe T 1
0 B 2

⎤

⎦ ,

where B 1 and B 2 are upper bidiagonal matrices of size (k − 1) × k and (n − k) × (n − k + 1) , respectively, typically with

k = � n/ 2 � , and e k is the k th column of an identity matrix. The SVDs of B 1 and B 2 are computed recursively as B i =
 i

[
D i 0

][
Q i q i

]T
. For the base case, when B i is small enough (n ≤ 25), its SVD is computed by QR iteration. To com-

pute the SVD of B from that of B 1 and B 2 , first, singular values that have already converged are separated to reduce the

problem size, a process known as deflation, yielding a matrix of the form

B =

[
˜ W W d

][M 0 0

0 �d 0

][
˜ Q Q d q

]T
, (1)

10 M. Gates et al. / Parallel Computing 74 (2018) 3–18

1

1

1

2

2

2

3

3

4

4

5

5

6

6

7
8 9 10

(a) Ub Householder
vectors, numbered by
sweep.

1

1

1

2

2

2

3

3

4

4

5

5

6

6

7
8 9 101

2
4

3

5

6

7

(b) Arrows indicate
dependencies between
blocks of Ub vectors,
numbered by
application order.

3

4

(c) Application of
block reflectors 3 and 4
to U overlaps.

1
2 43 5 6

7

(d) Blocks of Ub vectors, stored in
application order.

1 1 1
2 2 2

3 3
4 4

5 5
6 6

7
8
9
10

(e) Vb Householder
vectors, numbered by
sweep.

1 1 1
2 2 2

3 3
4 4

5 5
6 6

7
8
9
10

1

2

3 4

5 6 7

(f) Arrows indicate
dependencies between
blocks of Vb vectors,
numbered by
application order.

3 4

(g) Application of
block reflectors 3 and 4
to V overlaps.

1
2 3 4 5 6

7

(h) Blocks of Vb vectors, stored
transposed in application order.

Fig. 5. Second stage back transformation, with V block size j b = 3 vectors. Block reflector 3 is highlighted to show overlap.

where

˜ W =

[

0

˜ W 0 , 1
˜ W 1 0

1 0 0 0

0

˜ W 0 , 2 0

˜ W 2

]

, ˜ Q =

[
˜ Q 0 , 1

˜ Q 1 0

˜ Q 0 , 2 0

˜ Q 2

]
, (2)

˜ W i , ˜ W 0 ,i , ˜ Q i , and

˜ Q 0 ,i are derived from W i , Q i , and q i by the deflation process, �d are deflated singular values, and W d , Q d ,

are deflated singular vectors; see Gu and Eisenstat [15] for details. Compute the SVD of M = U�V T , as described below in

Section 7.1 , and substitute into (1) to yield the SVD of B :

B =

[
˜ W U W d

][� 0 0

0 �d 0

][
˜ Q V Q d q

]T
.

Taking advantage of the block structure in (2) , compute the updated singular vectors ˜ W U and

˜ Q V with three matrix-matrix

multiplies (gemm) each:

˜ W U =

[

˜ W 0 , 1 U 0 +

˜ W 1 U 1

u

T
0

˜ W 0 , 2 U 0 +

˜ W 2 U 2

]

, where U =

⎡

⎢ ⎣

u

T
0

U 0

U 1

U 2

⎤

⎥ ⎦

; (3)

˜ Q V =

[
˜ Q 0 , 1 V 0 +

˜ Q 1 V 1

˜ Q 0 , 2 V 0 +

˜ Q 2 V 2

]
, where V =

[

V 0

V 1

V 2

]

. (4)

7.1. SVD of M

The matrix M has the special structure:

M =

⎡

⎢ ⎢ ⎣

z 1 z 2 . . . z m

d 2
. . .

d m

⎤

⎥ ⎥ ⎦

,

M. Gates et al. / Parallel Computing 74 (2018) 3–18 11

(a) 1st stage: full to band (b) 2nd stage: band to bidiag (c) 1st & 2nd stage back transform

(d) SVD, no vectors. Includes time from (a,b),
plus bidiagonal SVD solve (no vectors).

(e) SVD, with singular vectors. Includes time from (a,b,c),
plus bidiagonal SVD solve (D&C with vectors).

(f) Time from (d) divided by best time for each size. (g) Time from (e) divided by best time for each size.

Fig. 6. Tuning of GPU-accelerated 2-stage algorithm with varying n b . Each line is a different problem size, with the optimal time highlighted by large

marker. The bidiagonal SVD solve is independent of n b .

where m is the number of non-deflated singular values. The singular values ω i of M are the roots of the secular equation,

f (ω i) = 1 +

m ∑

k =1

z 2
k

d 2
k

− ω

2
i

= 0 . (5)

While the computed singular values, ˜ ω i , have high relative accuracy, the small approximation error incurred would cause

the computed singular vectors to lose orthogonality. Instead, to ensure stability and orthogonality of the singular vectors,

Gu and Eisenstat [15] compute a new matrix ˜ M in the same form as M , for which the computed ˜ ω i are the exact singular

values, with

| ̃ z i | =

√ √ √ √ (̃ ω

2
m

− d 2
i
)

i −1 ∏

j=1

˜ ω

2
j
− d 2

i

d 2
j
− d 2

i

m −1 ∏

j= i

˜ ω

2
j
− d 2

i

d 2
j+1

− d 2
i

. (6)

12 M. Gates et al. / Parallel Computing 74 (2018) 3–18

(a) 1st stage: full to band (b) 2nd stage: band to bidiag (c) 1st & 2nd stage back transform

(d) SVD, no vectors. Includes time from (a,b),
plus bidiagonal SVD solve (no vectors).

(e) SVD, with singular vectors. Includes time from (a,b,c),
plus bidiagonal SVD solve (D&C with vectors).

(f) Time from (d) divided by best time for each size. (g) Time from (e) divided by best time for each size.

Fig. 7. Tuning of PLASMA multi-core implementation of 2-stage algorithm. Tests with n b = 32 were very slow and clearly not optimal, so were excluded.

The left and right singular vectors of ˜ M are then computed as

u i =

[
−1 ,

d 2 ̃ z 2

d 2
2

− ˜ ω

2
i

, . . . ,
d m ̃

 z m

d 2 m

− ˜ ω

2
i

]T

, (7)

v i =

[
˜ z 1

d 2
1

− ˜ ω

2
i

, . . . ,
˜ z m

d 2 m

− ˜ ω

2
i

]T

, (8)

and normalized so ‖ u i ‖ 2 = 1 and ‖ v i ‖ 2 = 1 .

7.2. Accelerated version

There are several potential sources of parallelism in the D&C algorithm. For instance, in the recursion tree, each sub-

problem is independent. We profiled it in Fig. 8 to identify areas for optimization. Most of the time is spent in the merge

step, in particular, in the matrix multiplies ˜ W U and

˜ Q V . Further, most time is spent in the top couple levels of the recursion

tree, near the root, rather than in the leaf nodes. Therefore, we focus on the merge step, which is performed in the LAPACK

routine lasd3.

M. Gates et al. / Parallel Computing 74 (2018) 3–18 13

Fig. 8. Profile of divide and conquer for n = 20 0 0 0 , showing time spent at each level of the recursion tree, for three different implementations.

Algorithm 4 Merge step of divide and conquer algorithm (lasd3).

[on accelerator]: copy Q from CPU → accelerator

[on accelerator]: copy W from CPU → accelerator

� simultaneous with above copies

parallel for i = 1 to m

compute ω i by solving (5)

end for

parallel for i = 1 to m

compute z i by (6)

end for

parallel for i = 1 to m

compute v i by (8)

compute u i from v i by (7)

normalize u i
end for

[on accelerator]: copy U from CPU → accelerator

[on accelerator]: U = W U as 3 gemms by (3)

[on accelerator]: copy U from accelerator → CPU

� simultaneous with above accelerator gemms

parallel for i = 1 to m

normalize v i
end for

[on accelerator]: copy V from CPU → accelerator

[on accelerator]: V = QV as 3 gemms by (4)

[on accelerator]: copy V from accelerator → CPU

For our implementation, given in Algorithm 4 , it is noted that Eqs. (5) –(8) are each loops over m independent values,

which can thus be implemented as parallel for loops with OpenMP. Synchronizations are needed after (5) and (6) . For j > 1,

u i j = d j v i j , so the loops to compute u i and v i are merged. After computing U by (7) , we finish normalizing V on the CPU, in

parallel with multiplying ˜ W U (3) on the accelerator, then multiply ˜ Q V (4) on the accelerator. Care is taken to overlap CPU

computation with accelerator–CPU communication and accelerator computation where possible.

The profile in Fig. 8 shows that the OpenMP version shrinks the parallel loops noticeably, leaving just the deflation and

gemms as major contributors. The accelerated version improves the speed of the gemms, leaving the deflation process as

the dominant factor for further optimization. The D&C performance is shown in Fig. 9 . Here we assume D&C takes 8
3 n

3

operations; the actual operation count may be lower due to deflation. D&C is 2–3 times faster than the QR iteration algo-

rithm for sizes n ≥ 50 0 0. Using OpenMP to parallelize Eqs. (5) –(8) almost doubles the D&C performance, from 220 Gflop/s to

426 Gflop/s at n = 20 0 0 0 . These OpenMP improvements of course do not depend on an accelerator, so could be incorporated

into existing CPU libraries such as LAPACK. Performing the ˜ W U and

˜ Q V products on the accelerator yields an additional 1.6 ×

14 M. Gates et al. / Parallel Computing 74 (2018) 3–18

Fig. 9. Divide and conquer performance, using 8
3

n 3 estimate for operation count in all cases.

Fig. 10. Divide and conquer performance for various test matrices of size n = 10 0 0 0 . Percentage of singular values that were deflated at the root level is

annotated above each set of bars.

speedup of D&C, up to 670 Gflop/s. For sizes n ≤ 50 0 0, the speedup of the GPU version over the OpenMP version is generally

less, about 15%, while it gradually increases for larger sizes.

7.3. Additional test matrices

The performance of divide and conquer depends on the amount of deflation that occurs, which increases with clustered

singular values. We tested five matrices for differences in performance:

random: matrix entries are random uniform on (0, 1); default test case in this paper.

arithmetic: singular values are arithmetically distributed: σi = 1 − i −1
n −1 (1 − ε) .

arithmetic(5): like arithmetic, but repeats each value 5 times: σi = 1 − � (i −1) / 5 �
� (n −1) / 5 � (1 − ε) .

geometric: singular values are geometrically distributed: σi =

(
1
ε

)−(i −1) / (n −1)
.

log random: singular values are random in (ε, 1) such that their logarithms are random uniform.

The random matrix is generated by the LAPACK routine larnv; its singular values and condition number are unknown a

priori . The other matrices are generated by the LAPACK testing routine latms, which multiplies a prescribed set of singular

values by random orthogonal matrices on the left and right to generate a test matrix. The condition number is set to 1
ε ,

where ε = 2 . 22 × 10 −16 is machine precision. The D&C times for these five matrices are shown in Fig. 10 , with the percentage

of deflated singular values annotated. For the LAPACK results, we see that the arithmetic test has slightly less deflation and

is slightly slower (5%) than the random test. Clusters of repeated singular values in the arithmetic(5) test causes significant

deflation and is 26% faster than the random test, while the geometric and log random tests had even more deflation and

are 47% and 50% faster, respectively, than the random test. Compared to LAPACK, the accelerated MAGMA version achieves

speedups in all cases. However, it benefits much less from deflation, with the random, arithmetic, and arithmetic(5) cases

being nearly identical, and the geometric and log random cases being 11% faster than the random test. While the merge step

(Algorithm 4 and bottom blue tier in Fig. 10) does benefit from deflation, the deflation step itself now dominates the time,

so future work should focus on optimizing that step. Despite deflation, the arithmetic(5) case is about the same time as

the random case because, while arithmetic(5) has a shorter merge step, it has a longer deflation step, so there is no overall

savings compared to the random test.

M. Gates et al. / Parallel Computing 74 (2018) 3–18 15

(a) Singular values only (no vectors), using 8
3
n3 for

operation count in all cases. Compares to CPU + GPU
gemm peak of 5247 Gflop/s.

(b) With singular vectors, using 9n3 for operation count
in all cases.

(c) Zoom of (a) to show crossovers at small sizes. (d) Zoom of (b) to show crossovers at small sizes.

(e) % of CPU gemm peak (675 Gflop/s) for PLASMA
and LAPACK from (a).

(f) % of CPU peak for PLASMA and LAPACK from (b).

Fig. 11. SVD performance using optimal n b from Section 6 for each problem size.

8. Combined results

We have now accelerated all three phases of the SVD algorithm:

1. reduction to bidiagonal, using a two stage algorithm;

2. bidiagonal SVD, using divide and conquer;

3. back transformation of singular vectors.

In Fig. 11 we compare the performance of the one stage algorithm in LAPACK, the previously accelerated one stage

algorithm in MAGMA, the two stage algorithm in PLASMA, and the newly developed accelerated two stage algorithm, which

will be released in an upcoming version of MAGMA. The PLASMA and MAGMA two stage algorithms use the optimal n b
determined in Section 6 for each size. Fig. 11 (a) is the singular values only (no vectors) case, which is predominantly the

bidiagonal reduction. To compute Gflop/s, we use 8
3 n

3 operations for all cases, though the two stage algorithms perform

an additional O (n 2 n) operations. The one stage MAGMA has a speedup over LAPACK up to 4.8 × , reflecting the increased
b

16 M. Gates et al. / Parallel Computing 74 (2018) 3–18

Fig. 12. Profile of SVD implementations showing each phase, for n = 20 0 0 0 . With QR iteration, it first explicitly generates U 1 and V 1 , then multiplies

them by U 2 and V 2 during QR iteration, whereas D&C explicitly generates U 2 and V 2 , and subsequently multiplies them by implicit U 1 and V 1 in back

transformation.

memory bandwidth of the GPU. PLASMA has a speedup over LAPACK up to 8 × , showing the superiority the two stage

algorithm gains by using Level 3 BLAS. The new two stage MAGMA implementation has a speedup up to 26 × over LAPACK,

3.2 × over PLASMA’s performance, showing the advantage we gain by using an accelerator for the first stage, and 5.4 × over

the one stage MAGMA version.

Performance for the complete SVD, including singular vectors, is shown in Fig. 11 (b), which combines the two stage re-

duction, divide and conquer, and back transformation algorithms. We use 9 n 3 operations to compute Gflop/s in all cases for

comparison; in actuality, the two stage algorithms perform an additional 4 n 3 operations for the second back transformation.

Here, the one stage MAGMA has a speedup over LAPACK up to 3.4 × . Because PLASMA must do a second back transfor-

mation, its speedup is significantly less than in the no-vectors case, but it still achieves up to 2.3 × , showing that the fast

two stage reduction can compensate for the extra cost of the back transformation. The two stage MAGMA implementation is

much more efficient at this extra back transformation, attaining a speedup of up to 8.9 × over LAPACK, 3.7 × over PLASMA’s

performance, and 2.6 × that of the one stage MAGMA.

Fig. 11 (c) and (d) zoom in to show performance for small matrices. LAPACK is faster for matrices with n ≤ 800, which

easily fit in the L2 cache and so run at much higher speeds. The release version of MAGMA will have a threshold to call

LAPACK for these small sizes.

To see the proportion of time spent in each phase, we show a profile of the SVD time for n = 20 0 0 0 in Fig. 12 . For

the LAPACK algorithms, the bidiagonal reduction dominates the time. LAPACK with D&C is only 25% faster than with QR

iteration, but clearly if QR iteration were used instead of D&C with MAGMA or PLASMA, its time would dominate. The one

stage MAGMA algorithm improved both the bidiagonal reduction and the back transformation. PLASMA’s two stage reduction

is even smaller, but it more than doubles the back transformation time, due to the extra 4 n 3 operations and that the small

gemms in PLASMA’s back transformations are not as efficient as the large gemms in LAPACK’s back transformation. Similarly,

the MAGMA two stage back transformation is larger than the MAGMA one stage back transformation. Note that the same

second stage routine is faster in the context of the MAGMA two stage version than for PLASMA, because the optimal n b is

smaller for MAGMA (see Section 6). The new two stage MAGMA shows improvements across all three phases, yielding a

significant overall improvement. Failure to accelerate any one of the stages would substantially reduce the performance.

9. Conclusions

In accelerating the SVD, we have seen that choosing the right algorithm is important to achieving the best performance.

While traditional performance analysis has focused on minimizing floating point operations, more important on today’s ar-

chitectures is minimizing memory accesses, even at the expense of more operations. The two stage bidiagonal reduction

accomplishes this by shifting operations from Level 2 to Level 3 BLAS, adding a small number of operations in the second

stage, and adding a significant 4 n 3 number of operations in the back transformation. Even with the extra operations, it

achieves significant speedups compared to the one stage version. The divide and conquer algorithm both reduces the num-

M. Gates et al. / Parallel Computing 74 (2018) 3–18 17

ber of floating point operations and uses Level 3 BLAS instead of the Level 2 BLAS used in QR iteration, making it 2–3 times

faster than QR iteration.

With an appropriate algorithm, rich in Level 3 BLAS, we can then develop a hybrid version that best utilizes the high per-

formance available in today’s accelerators. To develop an efficient accelerated version, we concentrate on the strengths of the

CPU and accelerator by moving compute intensive Level 3 BLAS operations to the accelerator, leaving on the CPU portions

with less parallelism and more complex control flow, such as the second stage band to bidiagonal reduction. Though data

dependencies in the SVD often prevent overlapping operations, we overlap CPU computation, accelerator computation, and

CPU–accelerator communication where possible. Overall, we achieve 2.6–5.4 times speedup over existing implementations,

both the two stage multi-core implementation in PLASMA and the accelerated one stage implementation in MAGMA.

So far, we have focused on computing all singular values and optionally all singular vectors of a square (or nearly square)

matrix. For a tall matrix with m
 n , a QR factorization of A is used to reduce the problem to an SVD of the square R matrix,

an optimization analyzed by Chan [5] . (A wide rectangular matrix is handled analogously by the transpose operations.)

This QR factorization and subsequent additional back-transformation by Q are also accelerated in both the one and two

stage MAGMA SVD implementations. Many applications such as least squares need only min (m, n) columns of U and V ,

the so-called “economy size” SVD or “some vectors” case in LAPACK. The code differences between the some vectors and

all vectors cases are minor modifications to whether a portion or all of Q is generated; the difference in computational

complexity is significant: O (mn 2) for some vectors vs. O (m

2 n) for all vectors, assuming m ≥ n . If a subset of the min (m, n)

vectors is needed, the computation could be optimized by including only the desired vectors in the root level of D&C and in

the back-transformation, as done for the symmetric eigenvalue problem [19] . If only a few vectors are needed, using inverse

iteration such as in the LAPACK routine gesvdx is probably more efficient than using D&C. This would still benefit from our

accelerated two stage bidiagonal reduction and back-transformation. Alternatively, a randomized SVD algorithm [30] may be

appropriate.

As a concluding thought, we also note the existence of the Jacobi method as an alternative to the bidiagonalization

methods. Jacobi iteratively reduces the matrix directly from full to diagonal, without ever reducing to bidiagonal. While the

basic Jacobi algorithm is slow, its advantages are being very parallel [1] and attaining higher accuracy than bidiagonalization

methods [7] . Blocking and preprocessing can improve the performance to be competitive with other methods [2,11] . Due to

its inherent parallelism, Jacobi may be another good candidate for acceleration.

Acknowledgments

We thank the anonymous reviewers for their questions and suggestions that helped us to improve the algorithm and its

presentation. This work was supported by the National Science Foundation under grant 1339822 , MathWorks, and NVIDIA.

References

[1] M. Be ̌cka, G. Okša, M. Vajteršic, Parallel block-Jacobi SVD methods, in: High-Performance Scientific Computing, Springer, 2012, pp. 185–197 . URL https:
//doi.org/10.1007/978- 1- 4471- 2437- 5 _ 9 .

[2] M. Be ̌cka, G. Okša, M. Vajteršic, L. Grigori, On iterative QR pre-processing in the parallel block-Jacobi SVD algorithm, Parallel Comput. 36 (5) (2010)
297–307 . URL https://doi.org/10.1016/j.parco.2009.12.013 .

[3] P. Bientinesi, F.D. Igual, D. Kressner, E.S. Quintana-Ortí, Reduction to condensed forms for symmetric eigenvalue problems on multi-core archi-
tectures, in: International Conference on Parallel Processing and Applied Mathematics, Springer, 2009, pp. 387–395 . URL https://doi.org/10.1007/

978- 3- 642- 14390- 8 _ 40 .

[4] C.H. Bischof, B. Lang, X. Sun, Algorithm 807: The SBR Toolbox – software for successive band reduction, ACM Trans. Math. Softw. 26 (4) (20 0 0) 602–616 .
URL https://doi.org/10.1145/365723.365736 .

[5] T.F. Chan, An improved algorithm for computing the singular value decomposition, ACM Trans. Math. Softw. 8 (1) (1982) 72–83 . URL https://doi.org/
10.1145/355984.355990 .

[6] J.J.M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem, Numer. Math. 36 (2) (1980) 177–195 . URL https://doi.org/10.
1007/BF01396757 .

[7] J. Demmel, K. Veselic, Jacobi’S method is more accurate than QR, SIAM J. Matrix Anal. Appl. 13 (4) (1992) 1204–1245 . URL https://doi.org/10.1137/

0613074 .
[8] J.J. Dongarra, J. Du Croz, S. Hammarling, I.S. Duff, A set of level 3 basic linear algebra subprograms, ACM Trans. Math. Softw. 16 (1) (1990) 1–17 . URL

https://doi.org/10.1145/77626.79170 .
[9] J.J. Dongarra, J. Du Croz, S. Hammarling, R.J. Hanson, An extended set of FORTRAN basic linear algebra subprograms, ACM Trans. Math. Softw. 14 (1)

(1988) 1–17 . URL https://doi.org/10.1145/42288.42291 .
[10] J.J. Dongarra, D.C. Sorensen, S.J. Hammarling, Block reduction of matrices to condensed forms for eigenvalue computations, J. Comput. Appl. Math. 27

(1) (1989) 215–227 . Special Issue on Parallel Algorithms for Numerical Linear Algebra. URL https://doi.org/10.1016/0377- 0427(89)90367- 1 .

[11] Z. Drmac, K. Veselic, New fast and accurate Jacobi SVD algorithm, I, SIAM J. Matrix Anal. Appl. 29 (4) (2008) 1322–1342 . URL https://doi.org/10.1137/
050639193 .

[12] G. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal. 2 (2) (1965) 205–224 . URL https://doi.org/
10.1137/0702016 .

[13] G.H. Golub, C. Reinsch, Singular value decomposition and least squares solutions, Numer. Math. 14 (5) (1970) 403–420 . URL https://doi.org/10.1007/
BF02163027 .

[14] B. Großer, B. Lang, Efficient parallel reduction to bidiagonal form, Parallel Comput. 25 (8) (1999) 969–986 . URL https://doi.org/10.1016/S0167-8191(99)

0 0 041-1 .
[15] M. Gu, S.C. Eisenstat, A divide-and-conquer algorithm for the bidiagonal SVD, SIAM J. Matrix Anal. Appl. 16 (1) (1995) 79–92 . URL https://doi.org/10.

1137/S0895479892242232 .
[16] A. Haidar, J. Kurzak, P. Luszczek, An improved parallel singular value algorithm and its implementation for multicore hardware, in: Proceedings of the

International Conference on High Performance Computing, Networking, Storage and Analysis (SC’13), ACM, 2013a, p. 90 . URL https://doi.org/10.1145/
2503210.2503292 .

https://doi.org/10.13039/100000001
https://doi.org/10.1007/978-1-4471-2437-5_9
https://doi.org/10.1016/j.parco.2009.12.013
https://doi.org/10.1007/978-3-642-14390-8_40
https://doi.org/10.1145/365723.365736
https://doi.org/10.1145/355984.355990
https://doi.org/10.1007/BF01396757
https://doi.org/10.1137/0613074
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/42288.42291
https://doi.org/10.1016/0377-0427(89)90367-1
https://doi.org/10.1137/050639193
https://doi.org/10.1137/0702016
https://doi.org/10.1007/BF02163027
https://doi.org/10.1016/S0167-8191(99)00041-1
https://doi.org/10.1137/S0895479892242232
https://doi.org/10.1145/2503210.2503292

18 M. Gates et al. / Parallel Computing 74 (2018) 3–18

[17] A. Haidar, H. Ltaief, P. Luszczek, J. Dongarra, A comprehensive study of task coalescing for selecting parallelism granularity in a two-stage bidiagonal
reduction, in: 2012 IEEE 26th International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2012, pp. 25–35 . URL https://doi.org/10.1109/

IPDPS.2012.13 .
[18] A. Haidar, R. Solcà, M. Gates, S. Tomov, T. Schulthess, J. Dongarra, Leading edge hybrid multi-GPU algorithms for generalized eigenprob-

lems in electronic structure calculations, in: International Supercomputing Conference, Springer, 2013b, pp. 67–80 . URL https://doi.org/10.1007/
978- 3- 642- 38750- 0 .

[19] A. Haidar, S. Tomov, J. Dongarra, R. Solca, T. Schulthess, A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on

fine-grained memory aware tasks, Int. J. High Perform. Comput. Appl. 28 (2) (2014) 196–209 . URL https://doi.org/10.1177/1094342013502097 .
[20] MAGMA 2.2.0, Innovative Computing Laboratory, 2016. URL http://icl.utk.edu/magma/ .

[21] PLASMA 2.8.0, Innovative Computing Laboratory, 2016. URL http://icl.utk.edu/plasma/ .
[22] User’s Guide for Intel Math Kernel Library for Linux OS, Intel Corporation, 2015. URL http://software.intel.com/en- us/mkl- for- linux- userguide .

[23] L. Karlsson, B. Kågström, Parallel two-stage reduction to Hessenberg form using dynamic scheduling on shared-memory architectures, Parallel Comput.
37 (12) (2011) 771–782 . URL https://doi.org/10.1016/j.parco.2011.05.001 .

[24] S. Lahabar, P. Narayanan, Singular value decomposition on GPU using CUDA, in: IEEE International Symposium on Parallel & Distributed Processing,
2009. IPDPS 2009., IEEE, 2009, pp. 1–10 . URL https://doi.org/10.1109/IPDPS.2009.5161058 .

[25] B. Lang, Parallel reduction of banded matrices to bidiagonal form, Parallel Comput. 22 (1) (1996) 1–18 . URL https://doi.org/10.1016/0167-8191(95)

0 0 064-X .
[26] H. Ltaief, J. Kurzak, J. Dongarra, Parallel two-sided matrix reduction to band bidiagonal form on multicore architectures, IEEE Trans. Parallel Distrib.

Syst. 21 (4) (2010) 417–423 . URL https://doi.org/10.1109/TPDS.2009.79 .
[27] H. Ltaief, P. Luszczek, J. Dongarra, High-performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures, ACM Trans.

Math. Softw. 39 (3) (2013) 16:1–16:22 . URL https://doi.org/10.1145/2450153.2450154 .
[28] J.D. McCalpin, A survey of memory bandwidth and machine balance in current high performance computers, IEEE Comput. Soc. Tech. Committee

Comput. Archit. Newslett. (1995) 19–25 . URL http://tab.computer.org/tcca/NEWS/DEC95/dec95 _ mccalpin.ps .

[29] CUDA Toolkit v8.0, NVIDIA Corporation, 2016.
[30] V. Rokhlin, A. Szlam, M. Tygert, A randomized algorithm for principal component analysis, SIAM J. Matrix Anal. Appl. 31 (3) (20 09) 110 0–1124 . URL

https://doi.org/10.1137/080736417 .
[31] R. Schreiber, C. Van Loan, A storage-efficient WY representation for products of Householder transformations, SIAM J. Sci. Stat. Comput. 10 (1) (1989)

53–57 . URL https://doi.org/10.1137/0910 0 05 .
[32] F. Tisseur, J. Dongarra, A parallel divide and conquer algorithm for the symmetric eigenvalue problem on distributed memory architectures, SIAM J.

Sci. Comput. 20 (6) (1999) 2223–2236 . URL https://doi.org/10.1137/S1064827598336951 .

[33] S. Tomov, R. Nath, J. Dongarra, Accelerating the reduction to upper Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based computing,
Parallel Comput. 36 (12) (2010) 645–654 . URL https://doi.org/10.1016/j.parco.2010.06.001 .

[34] P.R. Willems, B. Lang, C. Vömel, Computing the bidiagonal SVD using multiple relatively robust representations, SIAM J. Matrix Anal. Appl. 28 (4)
(2006) 907–926 . URL https://doi.org/10.1137/050628301 .

https://doi.org/10.1109/IPDPS.2012.13
https://doi.org/10.1007/978-3-642-38750-0
https://doi.org/10.1177/1094342013502097
http://icl.utk.edu/magma/
http://icl.utk.edu/plasma/
http://software.intel.com/en-us/mkl-for-linux-userguide
https://doi.org/10.1016/j.parco.2011.05.001
https://doi.org/10.1109/IPDPS.2009.5161058
https://doi.org/10.1016/0167-8191(95)00064-X
https://doi.org/10.1109/TPDS.2009.79
https://doi.org/10.1145/2450153.2450154
http://tab.computer.org/tcca/NEWS/DEC95/dec95_mccalpin.ps
https://doi.org/10.1137/080736417
https://doi.org/10.1137/0910005
https://doi.org/10.1137/S1064827598336951
https://doi.org/10.1016/j.parco.2010.06.001
https://doi.org/10.1137/050628301

	Accelerating the SVD two stage bidiagonal reduction and divide and conquer using GPUs
	1 Introduction
	2 Test environment
	3 One stage reduction
	4 Two stage reduction
	4.1 First stage: General to band
	4.2 Second stage: Band to bidiagonal

	5 Computation of singular vectors
	6 Tuning
	7 Divide and conquer
	7.1 SVD of M
	7.2 Accelerated version
	7.3 Additional test matrices

	8 Combined results
	9 Conclusions
	 Acknowledgments
	 References

