Visualization and
Debugging in a
Heterogeneous Environment

Adam Beguelin, Carnegie Mellon University and Pittsburgh Supercomputing Center

Jack Dongarra, Universily of Tennessee and Oak Ridge National Laboratory

Al Geist, Oak Ridge National Laboratory

Vaidy Sunderam, Emory University

A monitoring tool and
a graphical interface
working on top of the

PVM software can help

programmers make
better use of
heterogeneous
networks of computers.

o

he emergence of a wide variety of commercially available parallel com-
l puters has ereated a software dilemma, Will it b possible to design

general-purpose software thal is both efficient and portable across these
pew parallel computers? Morcover, will it be possible to provide pr
environments sophisticated encugh for explicit patallel programming to exploat
the performance of these new machines? For many computational problems, the
rallel alporithms can be
and multple-task

I_1ETI'.I1I 11l ﬂg

design, implementation, and understanding of cfficienl pa
a formidable challenge. Additional issues of synchronization
conrdination make efficient parallel programs more difficult to wrte and un
srand than efficient sequential programs. Paralle] programs are often less portabls
than serial codes because their structure may depend eritically on the hardwaras
LMY BCCEES,

cler-

specific architectural features (such as how it handles data sharing. m
synchronizaticn, and process creation].

The computing requirements of many current and Future applicalions, ranging
from scientific computational problems in the material and physical sciences Lo
simulation, engineering design, and circuit analysis, are best served by eoncurrent
processing. Mulliprocessors can frequently address the cor
ments of these hiph-performance applissiions, bt pther aspects of concurrent
parallel processors

nputational require-

compuling are not adequately pddressed when conventional
are wsed,

For instance, software aspeets, including program development methods, scal-
ahle programs, profiling tools, and support systems, require significant develop-
ment, While hardware and architectural advances in parallelsm have heen rapid,
the software infrastructure has not kept pace, resulting i unsystematic and ad hae
approaches 1o the implementation of concurrent applications. In recent years,
several rosesrch groups have focuzed on various aspects of ths shoriconting,
producing significant developments in programming paradigms, data pat titioning.
algorithms, languages, and scheduling.

Helerogeneous networks of compuiers ranging from workstations Lo supercan:
wmance computing. Lnil recent-

puters are becoming commonplace in high-perh
separile unit, but naw

Ly, each compuling TES0UTEE G0 the network remaingd 2
hundreds of institutions worldwide are using the Parallel Virtual Bachine’ sofi-

COMPUTER

1500 G RINEOG-0082503,00 3 1993 1EEE

PVM: Helerogeneous distributed computing

PYIA (Parallel Vidual Machine) is a soffware package be-
ing developed by Oak Ridge Mational Labaralosy, ke Lai-
varsity of Tennessaa, and Emary Univarsity, It anables a
hetereganaous collaction of Unix computers linked by a nai-
work to function as a single large parallal computes. Thus,
large computational prablems can be sohed by the agore-
gitie power and mamarg of many compulars.

P supglies the funclions to start asks and ks he
compulers communicate and synchronize with gach othar, It
survivas the failure of one or more connacled computans
and suppiies functions lor users 1o make their applicalions
laull taleranl. Lsars can writs applications in Fortran or &
and parallaliza tham by caling simgle FYR messaga-pass-
ing routines such &s pym_sead!) and porn_recn). By Send-
ing and rECeiving messages, application subiasks can coop-
grata o solva & problem in parallal.

FWM lels subdasks exploil he lype ol compiter Basl suits
4l or fineding thair salution, Thus soma subtazks may mwn on
a wector suparcomputer and olhers on a paralsl cormpuler
o powerul workstalian. PYM applicalicons can be mun irans-
parendly across 2 wida variaty of architactures; PYM &ulo-
matizally hendies all messane conversion raguinad il linked
aormputers use diflerant dala represeniations, F"arljn:ipa_ling
computers can ba districuted anyehere in ihe world and
linkad oy a varlaty of networks.

T PV Sowrce code and users guida ars availabla by
alectronic mad, The software is aasy 1o install. The scumce

has been tested on Sun, DEC, IBM, HP, S#con Graphics
Irig, Dt Ganaral, and Maxt workstations, as well as peral-
lal computers by Sequent, Alliant, Intel, Thinking Machings,
BEM., Cray, Caonvesx, 1BM, and KSR, In additign, Cray Fe-
strch, Conves, [BM, Silicon Graphics, and DEC supply
and suppor FYM sodteare optemizad lor their syslems.

#FWM is an enabling fechnology. Hendreds of siles
around the warld already use PV a5 a cost-affaciive way
bo sclve imgorent scientific, industrizl, &nd madical prab-
lems. FYM users include pebroleumn, aercspace, chamical,
pharmacautical, compueier, madical, automotive, and anvi-
ronmantal ceanup companies. Degammeant of Energy and
MASA FAbaratones use PYK lor research, and numerous
univarsilias around tha LIS use i3 for both ressanch and
teaching.

The softwane described in this aricks is frealy disinbuted
i researchars and aducaiors, allowing tham o herness
their distnicuted compulation povear inld comprebengive v
lual machings, PV and Hence arg available by sanding
electronic mail to netizd@oml.gov conlaining the ling “send
index fram pemd” or “send index lnam hesce,” Insluctions
o how g receive Ihe various parls of tha PV and Henca
systams will -2 2ant by retum mail.

#ab iz alze available from nedlib. The indix ram purm e
plaing how o oblain this solteare, P problems or guas-
fions can e =ani o pym & merepmooml.goy [or & quick
and lrandly reply.

ware package 1o develop truly hetero-
FENLGUE PToRrms |,:I:i'|1:-'i||_|1 |1||_||1i|'|||:.
compuicr systems to solve applications
(zee sulebar). We designad PVA with
heterogencity and portability as prima-
oy @oals. I lers rmeachines wiath chflerent
architectures and fleating-point repre-
sentatons work ogether on i :ﬂngll:
computational task,

In the development of heteroge-
neous concurrent applications for
heterogeneons largel envirommenls,
coarse-griained subtask partitioning
and proceseor allocation are crateal. Acd-
dhilionally, prroapriam madule constric-
tion, specification of interde pendencies
and svnchroneention, and manigemeni
of multiple objects for different archi-
Lechures are ledions, error-prone activ-
ities. To address these issucs and 1o
_'.|'r|l'.'i-:lu al least |1:'.rli:|I solubions, we
developed Xaband Henee, two packag-
3 Lhast work om top of PV R toaad in the
usg, programming, and analysis of par-
ille]l compulers,

Hob X Window Analysis and Debug-
ping] 15 a Lol Tor reatinee moniloring of
FWM progroms. Using Xah, program-
miers can easily nsirument and monior
FVA programs by simply relinking 1o
the Xab librares, Xal is wself o FYs
progrim, 5o if iz very portoble. Howev-

Tune 1993

er, making 11 Fx:.'lr\-.:full}' coincicle with
the programs it monitors is problematic.

Hence (Heternpenesons Maelwork
Computing Environment) is an cnvi-
rofnment for the development of lnph
level progruomming techniques for the
typc ol concuwrrent virtwal machines pro-
vided b PV, s goal is to simplity the
task Cand thus reduce the chanee of
|_'|'r-::-r:|-:'-I"|'-|'-:_'||__l|r.;|111r|1:-ng.;| |i.L'|.L-‘I'i'I':'.-=\.'Ii:.'-:.'I|.I‘1'
network of eomputers, while sull gao-
'-'il::.il'.t[1he PR CATmImer with access o
the high performance available from
such n'_'||1|I|_|_'_|:r:|Ii-:'|n:1. There are several
systems with goals similar o those of
Henee, The Code system?’ and Paralex?
biih allow graph-based high-level spec-
ihcatons of parallel progroms. Code
includes tools that can map the specifi-
catton intoseveral different parallel in-
punges or libraries such as Ada or C
witly slared-memory extensions, Mara
lex directly maps its specifications inio
Cowith ealls o the 18 hbrary,?!

PVM

Witk PYWDh, uwsers can :_':-:|'|'Ir:-i| the
aggregate power of distribuied work-
shalions andd sppercompulers 1o sl
the computational Grand Challenges.

Llzers vigw PV as a loosely coupled
digtributed-memaory compular pro
prammed in C or Fortran with mes-
sage-passing extensions. The hardware
Tt comstiludes o user’s |1¢.'u_'|r|.g|'l Pl
mav he any Unix-based nerwork-
accessible machine on which the user
haz a valid login.

W have testaedd the softwiime with com-
binations of the following machines:
Suna, Sparcstation, Microv s, DEC-
station, IBM BS/G000, HP-9000, Silicon
Giraphics s, Next, Sequent Symme
iy, Alliont FX, TEM 3000, Intel iFSCH
g0, Thinking Machines Ch-2 and O
5, K5R-1, Convex, Cray ¥-MP, Fujitsu
V-2, DEC Alpha, Tntel Paragon,
and Cray C90, In pddition, wsers can
port PV 1o new architectures by sim-
5:-I_1_.' |'.|-:'u_|'if_1.".ng.;| _u{:|:|_'rir;"|11i|k|:.|'||.;-"$u|-..
plicd witl the source and recompaling,.

Lizing BV users can configure their
own parallel virtual compurers, which
ciin -::-'.--:_:'ri:||1 with other users” virtoal
compuicrs. Configuring a personal par-
allel vartual compuler vl ves ki1|1'!:-l1.'
lizting the names of the machines in a
file that 15 read when PV M s started,
Several different physical networks can
coexisl inside a virtual machine. Foo
cxample, alocal Ethernet, a Hippi (High-
Performance Parallel Tnterface), and a

20

e T

[=](B][]

[0 shoiogoe: 492186 |

)@ |

[:]{::h-nlhnst., 0): betty tpullds row, Type 16003 : —|
I?I;w{uhnlmde. 1%z Ehud Cnullds getnflesk, Serisl 2. Count d. R O _-l
[E:ulmln-ndn. 031 ullma (nullds revodone _],

H{dmlnn-dn, 23r bethy Gnullds putnflosab, Serisl 3. Count B, B O _]

Figure 1. Xab display while monitering the PYM Cholesky demo.

fiber-optic network can all be part of &
user’s virtual machine. Each wser can
have only ong virtual machine active at
a fime: however, since FYM = multi-
tasking. several applications can Tun si-
multaneously on a parallel virtual ma-
chine,

The PVM package is small (approxi-
mately 1 Mbyie) and easy 1o insiall. [t
needs 1o be installed only onee on cach
maching 1o be agcessible 1o all users,
Moreoyver, installation does nol requires
special privileges on any machines, so
any user cun do it

Application programs thal use P
are composed of subtazks al a moder-
melv coarse level of granularity. The
subiasks can be genene serial codes or
specifictoa particular machine. [Py,
the wser may access computational re-
sources at three different levels:

o 1l rensparent mode, in which sub-
tosks are automatically located at
the most appropriate sikes,

» the erefdrectare-dependens mode, in
which the user can indicate specilic
architectures on which particular
subtasks are to sxecute, and

* Lhe piachine-spect e mode, in which
the uwser can specify a particular
machine,

Such Mexibility lets different subtasks
of a heterogeneous application explnt
particular strengihs of individual ma-
chings on the network,

The PVM programming interfaes re-
quires that programmers explicitly Lype
all message data. PYM performs ma-
chine-independent data conversions
when required, thus letting machines
with differentinteger and floating-point
representations pass data. Applications

il

access PWM resources via a library of
stamdard interface routines. These rou-
{imes ollow the initiatos and termina-
tion of processes across 1he network, as
well as communication and synchroni-
2alion nmong processes,

Application progeams under 'V M can
possess arbatrary control and dependen-
cy structures, In other words, al any
point in the execution of a concurrent
appheation, tha exisling processcs cim
lave arbiteary relationships with each
ather and, further, any process Cam corm:
umicate of synchronize with any other.

While PYVM is a very popualar syslem
for progeamming helerogenenus nei-
works of computers, it 15 mot the only
system of this type. The pd syslem” from
Arponne National Lahoratory, Express®
from Parasoft, and Linda® from Scien-
ific Computing Associates provide func-
tionality similar 1o that of FYM.

Monitoring, debugging,
and performance
tuning

Tools should help programmers write
and debug applications and twne ther
performance. With small-scale changes
based on analvsis of execution profiles,
communication patterns, and load im-
halances, programmers ¢an improve
concurrent application performance by
anorder of magnitude, Previous research
in viswalization focused on homogensous
parallel processing for both shared- and
distributed-memory machines.” Cuar
work foeuscs on visualization and de-
bagging for networks of helerogeneoes
computers. Xaband Hence provide tocls

to help users with the complex task of
pnckerstanding s program’s hehavior for
both correctness and performance.

Nah, While PVM provides a solid
programming base. it does not give us-
ers many oplions for analyzing or de-
hugging PV M programs. To help in the
development of PVM programs, Xab. a
puntime monitoring tool, gives users
direct feedhack about the PV Tune-
tions their programs are performing.
Xab las thres pacts: an Xab library o
which the user links applications,a PV
process called afion thil quictly re-
eeives lracing messages from the library
routines, and a display process called
wah that is a graphical X Window dis-
play of the lrace evenls.

Real-time monitoring is particularly
apropos in a heteropeneous multipro-
grimming environment where differ-
ences in computation and communica-
tion speeds result from both belerege
neity and external CPU and network
loads. Monitoring gives the wser insight
into program hehavior in such an envi-
T,

Mok monitors a PWA progran by in-
steumenting calls 1o the FWR Jibrary.
The imstrumenied calls generate cvents
displayed during program cxecution.

A Foriran program normally access
£z the PYM user routines via the libd-
pven library that comess with PV AL For-
tran programs use Xab by simply linking
to libxpvm in place of libfpym. With L,
the procedure is slightly more compli-
eated, The programmer must acd the
include file xab.h tosource files that call
PVM routines and then recompile the
maodificd source files. This mclude file
containg macros that replace the nor-
mial Y M routines with calls o the Xab
library. Both Fortran and O programs
musl be hinked with the Xab library,
lled b

Fvesrpiessagpes. The Xab hbraries call
the normial PV functions for the user,
bt they also send PYM messages 102
specinl monitoring process called afuo.

¥ab event messages generally cons
tain an evenl type, a time stamp (in
microseoonds), and event-specific n-
formation. The event type indicates
which PVM call is being invoked. In
some cases, & P call may generale
{wo events, For instines, the PW M bir
rier function generates an event befors
and after the barrier call. This l¢1s the
pser see when barriers are iniliaied ard

COMPUTER

completed, The time stamp in the event
message 15 e lime of day on the ma-
chime executing the FY M call The clocks
an variows machines involved in a com-
putation may not be synchronized, so
Xub docs pot rely en synchronized
clocks, Eventz are simply displaved as
they arrive.

Adthough future versions of Xak may
use bhe lime stamps, 10 i not alwavs
nccessary W synchronize machine clocks,
For instance, it may be informative o
ko Jrow lomyp processes wait al & par-
ticelar program barsier. Xab could use
the time stamps from barrier events o
display this information, independaent
of relative machine clock synchroniza-
tion. The event-specific information in
am Xah message vanes lordifferent PV
routmnes, For the event generated at the
start of a barrier, 1t 15 the nume of the
Barrier and the number of processes
thirl must reach the barrier before con-
tinuing. Other event messages conlain
simlar event-specific informalion

Bezides the event messages, Xab also
inseris ome additional piece of informa-
lion inte user messapges. Each message
i given a zerial number, prepended to
the wser's message bulfer so thatl every
message can be uniquely identifed by
s source process and serial number.
Currently, we are exploring the wselul-
ness of adding pscudo tme stamps 1o
Xab. Prewde tme stamps combine real
clocks and logical clocks.

Moniiering proceszes. The ahmon
process Feccives evenl messages from
the instrumented PYM calls and lor-
mits them into human-readable form.
The abrmon program must be running
before the user's program lars, since it
needs (o receive event messages from
the instrumented calls. The (ormatied
event Mossapes can be either written o
a file or sent 1o the Xab display pro-
pram. Jusi as an astronomer on Earth
observes evenls that have traveled var-
wus distances, the abmon process ob-
aerves events relative (o its position in
the virtual machine. When abmon for-
mats events, il also adds its own per-
spective within the virtual maching by
placing local time stamps into the even
recand, To discern its perspective. ah-
Mk ity use e additional Gime stamps
Lo ascertiin how long it takes events o
propagate from a user process o the
MIOnIEGE PIToaess,

The display process lakes events for-
matted by shmon and displays them in

Jume 1905

a window, a5 shown in Figure 1, Xab
supports twao miodes of event plavback:
conbinuous play or single step. When
Uhe wser presses the play button, the
cvents are displaved in real time. The
slider contrels the plavback speed in
continuewsplay mode. Users can stop
plavback at any time by pressing the
stop button. The single-step button will
show only the next event.

The following command line execunes
Xab, displaying the events in real time
and znving them in o Ble for later re-
TR

% abmon | tee eviile | xal

Tlee abmon program reads event mes-
sages and weiles them te standard ol
prut. The Unix command teg copies the
evenls 1o the Nile evfile and also passes
them 1o xab via the pipe. The Xab pro-
gram actually opens a window and dis-
plays the evenis,

Thmelinesy versys message Iraffic,
Every wser call to the PYM library uses
the method for sending Xab momtor
messages described in the previous see-
tion. This approach generates an inor-
dimately large number of mezsages.
There is a trade-olf between the nwm-
Per ol messages and the timeliness of
theevent display. [N events are buffered
and senl 1o the monitor after every n
events, then the event display becomes
more asynchronogs as g grows. In fact,

wlen e reaches the number of eventsin
the program. the monitor provides post-
mariem cather than real-tinee todarm:a

i, Since the display lags hehind the
program state, nsers canned detect cer-
tain problemsin program behavior, {We
I_.'.i‘-'n.‘: an cxample m the next secficn.)
Ancther igtor thot must be constdered
15 the memory regquirad 10 store events
before sending them 1o the monior

Kb immediately dispatches esvents, As
a result, ot adds livtle, in terms of mam-
TV TEUITGEmcnis, o the FY proCess-
es it monilors, We are exploving the
pessility of allowing the wser 1o dy-
namically aleer the event fow, This ex-
tenston regquires the addition of bidirec-
tional data exchanges 1o the onc-way
dataflow currently wsed for Xab's mon-
moring,

An exemple. An example program
that comes with PV 2.4 is a distrilou -
cd-minlrix decomposition propriom based
on a Cholesky Tactorizntion of the na-
trix. The window in Figure 1 i= the Xab
dizsploy in progress [or this program.
The host process, (chollost, 0], i blocked
ana recgive. Process (cholnode, 0 has
Just received o message, The node pro-
cess (cholnode, 1) 15 exiracting data
from amessage buffer, while {cholnode,
) is plasing cight floas into s MEssIge
buffer.

Agshownin Figure 2, an advaniage of
Xab's real-time display is its ability 1o

& b e ey) 31]

(][]

(@ o0z 36: 130320 |

Eo] -

|Iﬁ.'.:l:ha1hn-:r_, r}s

HHILLYDN {null?: rev, Typs L60d0 |

[=+ ¢cholnade, 01:

carignan (null?: and, Tape 16004, Serial 0, Counk 14

| =% (cholnnde, 20

BURGUNDY {null}: snd, Twpe 16004, Serial 0, Count 10

P T

HALCYON {nulld: and, Tupe 16004, Serial 0, Count 16)

| = Ccholnnde,
£ H

CONCORD (null): snd, Tupe 1600d, Serial 0, Count 16)

| = tchalnades,
A3z

MZ (nulld; and, Typs 16004, Serial 0, Count 16, Rc

[=k {cholnods:,
5}

bual ¢nulld; snd, Tupe 16004, Serial 0, Count 16, Rd

| =+ <chalnode,
B): tokay (rulld;

snd, Typs 16004, Serdal 0, Counl 16, F

[= {cholnme,
A3 pimot Snulld:

snd, Tupe 16004, Serial 0, Count 16, R

|I-I' Cehiolnode,
His

ganay tnulld: sed, Tupe 16004, Serial 0, Count 16, R

| = Ceholnode,
| = Cehodnode, 952

chenin {null}: snd. Type 16004, Serial 0, Count 16, |

Figure 2, Xab displays an error in a Cholesky program,

h—

E

B e n T o g T B

deteet errors inoa dynan- [
i enviconment. The same
Cholesky example coniains 4
celiberately introduced error. £
The host is waiting for a mes-
sage of Lype 16040, while all
the cholnode processes arg 4
sending messages of 1vpe

16004; thus the program has i

plocked indefinitely, In this

zataoa in o parallel prograo.
Hence gives the program-
micr & higher level environ-
miznk loresing helerogeneos
nerworks. The Henes philos-
ophy of parallel program:
ming is o have the program-
mer explicithy specify the
parallelism of a compuiation
and 1o automite, as mush as
possible, the tasks of writing.
compiling, executing. debug-

l ging. snd analyzing the par-
allel computation, Centralto

.] Hencs isan X Window inger-

MOWwEmOaXDnT

FMEIST

LIS, PROSLIATLE L RO ring b

wornld notwork: The program L
would nol complete and]
therelure would never flush Lk i
the cvents For display, q"

Several researcl projecis

TLRE

a1

face that the programmer

focus on displaving events
penerated by distributed-
memory parallel programs,
nertably ParaGiraph.” Pablo,' Upsho,!
and Bee ! Currently, Mab evenls arc
stored in Xah's own ASCH-based for-
mut. Because of ParaGraph’s wide
availability, we provide a program that
converls Xabevent files toa ParaCiraph-
compatible [ormat. The ParaGraph teol
provides a vich se1 of displays for visual-
izing message-passing parallel pro-
prams. Figure 3 shows a Paralicaph vi-
sualization of the FVM Cholesky
prodra with one hiost process and 1w
sy processes,

There are several differences betwean
the ParaGiraph and the Xab displays.
ParaGraph provides o variety of views
hut i limited to postmortem visualiza-
tiomn, Xak currently hws s hioited display
fugility but can operate inreal time. The
ParaCiraph trace events must be in tam-
porai order. Xab simply displays cvenls
as they arrve. ParaGiraph was devel-
oped originally for reulticempurers that
did not support nusltitasking.

Hence. 1n developing software, 1he
programmer often designs the inilial
definitions and specifications graphical-
Iy, flowchierrs and dependency graphs
are well-known examples, Designers can
visualize the problem's overall struc-
pure Far moTe easily from these graphi-
cal representations than from fextual
specilications, Such a representation
enhances the guality of the resulting
solvware, However. to be exzcuted, these
descriptions must be converied to pro-
gram form. typically manifested as
source code; that is, the graphical repre-
seatations must be franslated 1o opera-
tional programs. The graphical depic-
tign of @ concurrent application and
strategies for its suwecessful execution

i

Figure 3. FarnGraph views afl ihe Cholesky program.

on & heterogencous network ane the
pwer fundamental inputs 1o the Henee
cavironmenl.

With ihe Hence graphics mnterfoce
implemented on a workstation, # uscr
can develop @ paraliel program s o
computational graph: the nodes in the
graph represent the computalions Lo be
perforoied and the arcs represent the
dependencies between the computa-
tions. From this graphical representa-
tion, Hence can generale a lower level
portable program, which when execut-
od will perform the computations spec-
ilfied by the grph in an order consistent
with the dependencies specified. This
programming environment allows for
high-level description of the pacalicl
algorithm and, when the high-level de-
seriplion is translated into & common
programming langunge. permits porta-
ble program execution, Thus the algo-
rathm devetoper has an abstract model
af computation that can bind effeetive-
Iy to a wide variety of paraliel proces-
surs. We confined spegific machine in-
irinsics 1o the tool's inlernal workings
1o provide a common wser interface to
varios parallel processors,

Another problem facing the develop-
ers of algorithms and software for par-
alle]l computers is performance analysis
of the resulting progeams. Performanoe
bugs are often far more difficult o
detect and overcome than the syn-
chronization and data-dependency bugs
nurmally associated with parallei pro-
arams, We have developed a fairly so-
phisticated postprocessing perfor-
mance-analysis tool for the Hence
graphics programming interface. This
100l is quite useful in understanding
the execution flow and processor utili-

uses 1o perform these func
tions (see Figure 4).

Fhe Hence eovieonmsl
containg @ compose ool that lets the
user cxplicitly specify parallelism Ty
drawing & graph of the parallel applica-
tion. {1f an X Window imcrface 15 not
prnilable, the vser can inpat texiual
graph descriptions,)

Each node in a Hence graph repre
sents i procedure written in either For-
tran or O, The proceduns can be a sub-
routing from an established libracy ora
special-purpose sukroutme suppliccd by
the user. Arcs belwesn nodes represcn
data dependency and control flow, &
dependoncy are from one node W 8n-
other represents the fact that the ares
(il node must Tun before its head. Data
issent toa node from (s ancestors in the
praph (uenally it parenis).

In paddition tosimple nodes, four Lypes
of control constrocts are available m
the Hence graph language. ‘The st
represents lnoping, the second conadi-
tonil dependency, the third a fan-out
1o & variable number of weatical sub-
araphs, and the fourth pipeliming. Fhe
graph con contain loops around sub-
praphs that execule a varinhie number
of v con e beasis of He expressaonan
the toop construct. Using @ conditional
constrect, Henee can execute or hypass
a section of the graph on the basis of an
pxpression evaluated al runtime, A YTl
able fan-oot (and subseqguent fan-in}
construet is availoble while composing
thi graph, The fan-out’s width is L
fied gz an exprossion evalupted abrun-
paene. This construct is similac o a prral-
Jet-efes construct found in several parallel
Fortrans, In pipelined sections, when &
poce lnishes with one set of imput date,
it reruns with the next picce of pipe-
tined data.

Omee usersapecily the dynanne graph.

COMPUTER

thew use aconfiguration tool inthe Henee
environment Lo specily the configura-
tion of machines that will compose the
parallel virtoal machine. The configu-
ration tool alse helps wsers set up a cosl
matrix that determines which machine
can parform which tusk and gives prior-
ity Lo certain machines. Henee uses this
et msinx al rentime fo determimse Lhe
rosl effective machine on which to ex-
.,-.-;ul_c:_L|'|:_|r|i|:|||:_:r|1n|_'||,:m,:||.|n,: in thi tl;rarlil.

Tlee Heneo cnvironment also contains
abanilel ol o pertorm three tasks. Firse,
by analvzing the graph. Hence aoto-
mtically penerates the paralle]l program
using FYA calls for all the communica-
ton ad synchronization requircd by
the application, Second, by knowing the
desined PYM configuration, Henee au-
tomatically compiles the node proce-
dures for the variows heieroge neous ar-
chutectures, l"in.;lil_1_,'._lh¢ bl Lol instal s

the executable modules on the partica-
lar machines i the PYM configuration.

The execute tool in the Hence envi-
ronment stars the requested viroual
machine and begins applicalion execn-
tion. During exccution, Hence automat-
il,:all:.' maips '|:-n|_1|.:.:n:|||.r{::i 1o michines in
the heterogeneous network on the basis
ol The cost matnx amd the Hence j_'_Til[rh.
Traceand scheduling information =aved
during execution can be displayed in
real time or replayed later,

The Henes environment has a trace
tool that enables visualization of the
prarallel run, The trace tool is X Window
Faised saind consists of thres windows,
Oine window shows a represcntation of
fthe network sind machines |.||||_I;:r|:."il|J_;
PWhL This display illuminates icons of
the sictive machines with dhiflerent <ol-
ors, depending onwhether they arg com-
pruling or -::|||:|1|:|1l.|||.in'.':|.|||1g. Lhscler zach

HeMLE ool w1200 ifor pam 2.x)

LTI T
Peche 1 na erears,

current directory is mow "Smpsoranch®

icon is o list of the node procedures
mapped o this maching ar any given
instant. The second window displays
the user's graph of the application, which
changes dvnamically 1o show the actaal
paths and parameters iaken during a
rin. The nodes in the gr:l.|1i| L'|iiI.I1EL'
colors to indicate the various activities
i each procedure, The third winadow
shows a histogram of processor utilizn-
ton. Figere 3 on the next page shows a
snapshot of the trace tool in action,
Tpaddiion e discovenng mistakes in
the graph specification, this representa-
tion helps cxposc more subile aspects of
Lhe EXECUlIng prodram, such as load
balancing and network specds. For ex-
:||r|'|:l|-e:. Lhe |:|:r.'|'|:l|1 |1:I'I.I-:|.I.1L'L'|:| by Hence
shows noticeable differences from the
;li:-:ﬂ'r:l.-:ll|5ur-:cp-uL-ll'w_--:lll_r:=|1h.'J'I1|:]'I|.'||.;.'|.'
graph may expose inherent serinl bot-
tlenecks o the algorthm or a prablem

|-_‘|iru¢»:|ur:,l-. ;run;hj:_n.r;_r.li'l: ||-|;q|1|'|.n:|llrr_|-|_rr|h- hrica. b | hl:'un;ﬂl

| conbig |[busid || brace |

|atart pym || execute || pring || legend |

[awit

[foad] [store | [cienr | [oritic] [cleanup | [redraw | [GETE]

| O | o o Y e PN B Y

I_"iglln,: 4, ﬂumpming i |'u|'rul|1.'!l prigriom in the Hewee enyirgmoeni.

June 1993

Bl
moEe hiibon
ket myidsdte
L ROfE add node draw e
ctrl | deletenode | delen arc hdefined
=hirft nLove node [LOVE 0IG el Fouro:
e
5
[®] fusptegpihan psee &)
BCoE [400 S04] 1
KEW <> float al50000];
HEW <> flaat bi50000]:
3 HEW < LiL <
inftla, b, oh:
16 Vit 5

l\._|;!,

with varicus networks vacd by the com-
PuLation.

Orar goals here are simple: 10 be able
o achedule and trace the execution flow
within at appliciion and to pnderstand
where hotllenecks occur. D the past,
users have momtored pertofmance as-
ing o liming routine. This approach las
i mummber of limitations in the parallel
sctting, We want an anination of run-
vimie behavior that visualizes the paral-
lel parts in cxecution as the application
s running, We would like to know what
performance issues arisc during uxedu-
non and what bottlenecks develop, and
1o see whers !'.-n::-y_l‘a-m]mi_ng ETTOS CAlse:

a paralicl program to gel inko tranbde,
A main advaniage of sequential de-
bugeers is thal they show The pvint ol
failure, D fact, many proOCTAMmmens fo-
soft 1o debuggers only when they are
mystified about the point of failure, for
example, dividing by zero or derefer-
encing null pointer. In a parallel pro-
gram there may be multiple failures: or,
parhaps more perplexing, one parl aof
the program may-crash whileother parts
conlinue executing for some ine, An
advantage of the Henoe trace display i
that its twosdimensionl display can in-
form the progrommer of such probleos.
If part of 3 Hence program fails and

e

other partscontinue toexecute. the trace
tool displays the program node Tailure
bt continiees 1o display 1he progress of
other program nodes as they execuic.
The trace animation s also importan
in performance tining. Almost all the
machines used with Henoe are multi-
tasking. and this leads to unpredictable
execulioo-time profiles. The trage ani-
maion provided by Hence shows the
programmer in resl lime how the pro-
pram is progressing. From this anima
fi, @ PrOSrRmImET cant analyee & pro-
gram’s behavior and tone it to beler
|'|1.|'I1»:_'|"| ihe l_."'xl_'.i;l:l'lii:ll] |_"|'|'|.'i|'\l;'ll1ll1|.'fl'|. Fﬂr
instance, i seientist using a notwork of

| cZ 067 678 DOML F O 0
DUcPd 071 Gf8 DEAD FO O
L 2dLE LG AR DONE FOO
D00 240 B TR DONE P LEE K]

i[;ilrﬂtan-. crinch | [mraph: lmrl.-r.'e.E:lhq_-E“tuﬂl'ih: R ce.broce || b guage 4]

Feompose][contia] e I

[stnrt pm;:hmuh-"irprmm |k

! _..-ﬂ"--—- //
. [crumch) & t@@_@u{%%lj Sin gl

e A

- E ""-.
ﬁ:;:ﬁ;;;.nr,mn
B T,

e 8 __.-" L
5
—— ;-_,:-"__d_. -
-
i @

<7 Not Peady

Ponds S b ol
Funcition Leecuting
Funcithon Uompheted

Mode Exibed

i DHIEation graph

@

e o e o i i P e s i R P e

wWarnimg in Graph Frogram

Error i Graph Frogram

g

Figure 5, Tracing a parallel program in Hence.

warkatalions :|I-::-|1__5-: wilth a {'ru:.' SUpEr-
computer may realize that during cer-
tain periods of the day it 15 more pro-
ductive 1o map fewer processes (o e
Cray becawse at is heavily loaded, The
Henee trace tools make this kind of
information intwitively obwions. More-
over, Hencs mapping is easily adjusted
vin the cost matrix. The user's program
need ot he r-.:|.'-::-|1||1i|-:_:u;] r_I|,|.ri|1|:l. |:|,||'|i_|'|g_
The Hence ool evalved naturally as
we programmed various parallel ma-
chines, We were motivared primarily by
the lack of usiformity and the limited
capabilities offered by vendors for ox-
plizit parallel programming. Owr expe-
fienee with Hence has been encourag-
ing. We do nod view it as 2 “goleion ™ 1o
the snflware r:n::-l'-l{:ln we face in |_'|.;|:';|_II|_'-|_
programming. However, we think ot will
b useful in the short term, and pe rh:||'_|_q
it will have some influcnce on the devel
oprmenl al a I-::-|13-'.-.:'rrn solutiomn,

lhe Focus of our work is o pro-

vide o paradigm and graphical

suppert Wels for programming
i heteropengons netwoerk of conpuaters
asasingle resource. FYh and it auxil-
ey Loels Xab and Hence help the user
cffcetively use a heteropensous com-
pruter netwaork 1o solve scientific appli-
cations,

Y0, Xab, and Flence are netive re-
search projects and continue to evolve.
Many of Hence s features will find their
way inte tools like Xab that eventually
will fir direcily into the PYM frome-
wark, We have already buill prototype
syeiems Tl are im use oy,

There s a criticnl need for standards
and toals for teday's ngh-performance
compeler svslems, By building proto-
type tools as outlined here and hstening
b vgers” lecdbick, we hope to provide
an gasy-to-use, portable system for het-
EIRENE S L'\-::-|1||1|.|Ii||J_1. Milli_'_-' :-ij|__l.|'|if|5-
cant resgarch issues about this approach
10 |:|:||;.1||-cl |:lr||;-=_r:||r||r|i:|J_; remsin, [l

Acknowledgments

W thank Rebert Manchek, Keith Moore,
and James Flank Tor their contribulions to
PV, Xab, and Hence, This work was sup-
poried i part by the Applicd Mathemaltical
Seiendos subprogram of the Oifice af Encrpy
Research, 15 |.:‘\-q,:|'|.'||'|."|1ull1 ol |_'|||_'|l__l_'_..'_ under
contract DE-ACOS-BIORI1400, and in part
by the Mational Science Foundation Scicnee

Jume 1993

and Techrelogy Center Coopertive Agree-
ment Mo, OCR-BRIEGES,

References

1, Goa,Geistand V.5 Sunderam, * Experi-
cnees with Metwork-Based Concurrent
Computing on the FVY M Sysiom,” Cone
crerreweey: Prociice ard Experiercr, Vol
4, Ma. 4, June 1992, pp. 203311

L Browne, M. Azam. and 5. Sohek,
“CODE: A Unificd Approach o Paral-
lel Programming.” FEEE Soffsare, Vol
in Mo, 4 July 1989, pp. 10-18,

bt

Fo00 Babaogle et al., "Parales: An Envi-
renneent for Parallel Programming in
Cristribuied Swarems,” Froc, 1907 lerd
Canf. Supercompaiieg, &CM Pross, Now
York, laly 1592, po. 178-187.

4, K.F. Barman and T.A Joseph, " Relinhle
Communication in the Presence of Fail-
ures, . AW s, O 'r.llr.llr.lh.l.'r .‘E.']'_:rrm_rl
Yol 5, Moo L Feb, 1987, pp. 47-Th.

5. E. Lusk et al., Poruabie Fragrard for
Parallel Propessars, Holl, Rireharl, and
Winalon, Mew York, 1957,

&, 1. Flovwer, A, Kolnwa, and S, Bliaradas).
“Ihe Express Way to Distributed Pro.
pessing.” Supercompiaing Sevilew, iy
1591, pp. 32-5%

Ao M Carmsera and D Gelernter, "How 10
Wrile Parallel Programs: A Guide 1o the
I:'::rpl-:'::-:ﬁl_" AL M {'r:lr.l\.l_r.l|r.l|'.l|g' .'ir.'r'.'\e-'_r_l:_
Sepl. 1989, pp. 323-357.

K. MoSimmoans and R, Easkela, Pecformaaned
FHATF e Rt onied Visand i zarion. SO
FPress, Mew York, 1490,

9. M. Heath and). Etheridpe, "'-'iwah_n"_g
the Performancs of Farallel Programs.”
FEEE Software, Wal. 8, Mo, 5, Sepi, 1991,
PP 293,

LIS

LA Beed gral, “Scalable Performance
Environmentsfor Paralle] Svsiens, ™ Pros,
Bixrls |r.:'ll'r.l|.'I.'J|'|'.e|'-|1-_|':'|r.'|.lr_|.' {'l'.ln'.'ll'.lﬂfl'.'l_ﬁ'
el QL Stoel and M. Woelfe. eds. . IEEE
C% Press, Los Alnmiios, Calif,, Ovder
Mo, 2200, 11, pp. S62-565.

L1 %, Herrarte and E. Lusk, “$tudying Par-
allel Propram Behavior with Upshil,”
Tech, Report ANL-ALE, Argonne Mat’l
Latoratery, Mathematics nnd Campiie
Reience Division, Auap, 1091,

1L B Brsepge, “A Portable Flatform for
Dizstribuled: Event Envirgnmenis,” AC
SIGPlan Mordees, Vaol, 36, No. 12, Dec.
1S, P 184-1493,

Adlam Beguelin haolds o
joint appeiniment o
Carnegie Mellon Uni-
wizrsaly's school of come.
puler scignce nnd [he
Farsburgh supercom-
puling Center. His pri-
miary inferesls are the
dsign and development
of programming 1oals
andenviron n|-.':|||:-;I'r-rI':i:lh-pn_-_-'l.,n.-|||._1||...-._-|:.:1|-
allel and distriboted computing.

Beguelin received his PhEX in computer
science from the Univeraily ol Colorada.

Jack Drongarrn holds 2
IDINE ApEsinLmEnl as
profezsor of computer
goience al the niversi-
iy af Temnessee and as
dislinguished scientistin
the Mathematical Sci-
EnCEE Beclon al Oak
. Ridge Mational Labora-
| : tory. He specializes in
numerical algerithms o lingar algebr, par-
allel comgating, use of advanced compuier
architectures, programming methedalogy,
and teds for parallel computers. He was
invadviel in Lhe design and implementadion
of the software packapes Espack, Linprack,
Elas. Lapack. and PV M/ Hence.

Al st leads the com-
puler science group in
the Mathematical Sci-
enegs sechion al Oak
Ridge Mational Labara-
tory, His rescarch inter-
AL an: parallel and dis-
tributed processing,
!a.llil!rllil'll,! L'-c:-ll'||,'|;|||||E_
and high-performance

Vaidy Sunderam s a
professor in the Depart-
ment af Mathematics
and Compuler Science
il Emary University. His
rescarch inlcresis in-
clude parallel and dis
tribuied processing, par-
ticularly Bigh-perior-
MEANE CONCUrTenRl com-
puting in helemgensous networked envi-
rommEnls,

sunderam received a PAD in compuier
science from the University of Bent in Can-
terbury, England, in 1956,

Cruestions regarding this amicle can b
cirgered 10 Al Geist sl Oak Ridge Mational
Labwaratary, PO LHox DHE, Oak Bidge, T
ATREL-ISE Infermet, peof®msncpnornml

12 1

A

