Parallel Computing 9 (1598689 25-35 15
Marth-Halland

Tools to aid in the analysis

of memory access patterns
for FORTRAN programs *

Crrlie BREWER. Jack DOMGARRA and Danny SORENSEN

Martemgeics and Compaarer Sefonce Disinion, Arganne Narooa! Lebaratery, Argange, L 00304800, LS A,
Rgivid June 19ER

Abstract. This paper describes a set of tools (hal can b ased as an anld in the analysiz of memery a0aess patlerms
of FORTRAM programs.

Ravwords, LAPACE, hncar glgebea, wisuahizanon toals, BLAS scutines, parkllel | g NIPLErs,

1. Tsstroehection

The development of efficient alponithms on todays high-performance compuiers can be a
challenging undertaking, with the efficient uze of memory being a critical factor, Memary is
organized in a hicrarchy zccording to access time. High-performance computers rely on
elfective management of memory higrarchy when carrying oul floaling-point compulations.
This hicrarchy takes the form of main memory, cache, local memery, and vector registers. The
basic abjective of this organization s 10 attempt 1o maich the imbalance hetween the fasi
processing speed of the floating-point wnits and the slow latency tme of main memory.
Suceesslul alzonthms muost effectvely utilize the memary hierarchy of the underlying compuer
architeciure on which they are implemented.

Cache memory, local memaory, and vector regizsters are really high-speed buffers [9]. Cache
memoery 15 vsually controlled by hardware, while local memory and vector registers are
controlled by software, The purpose of this hierarchy 5 1o capiure these portions of the main
memory that are currently inowse, amnd 1o reduce the tme lor subseguent accesses, Since thess
high-speed buffers are often 5 to 10 times faster than main memory, they can substantially
reduce the effective memory access tme if they can be wsed. The success of hierarchy iz then
attributed to locality of reference and revse of dala m o wsers program,

Thus, in order o improve the performance of algorithms implemented on high-performance
compulers, we must consider nol only the ol number of memery references, but also the
pattern of memory references [5,6]. We would like our algorithms to observe the principle of
lpcaliy of reference, so that the data can be effectively utilized. Chor new teal provides an aid in
understanding & program’s locality of reference.

* This work was supported in part by the Applied Mathemaiical Scences suhprogram of the Office of Energy
Research, US, Depariment of Encrpy oeder Contract W-31-108Enp-38, &nd in past by the MNatonal Science
Foundation under Conbract M3F ASC-ET157I8. This paper was presenled at the Znd International SUPRENUM
Collogumm, Bean, 1937, and shouold be considered ns supplement lar the special issue of Parelied Comparing (Vol. 7,
Mo 3k

DIET-HI0] ABE AR5 50 60 1965, Elseaer Serds Pubbzhers B (MNerih-Hollarsd)

i £ Hrewer er el / Anafevs of memory goiees pedierns

We have designed and bt two wols that will help in wnderstanding how o specific
FORTEAN program references memory. The first tool, called the Memory Access Patlern
Instrumentation program (MAPD, instruments a user’s program and, when the inslromented
program is run, produces o trace file. The trace Ale 15 a detailed ASCI] file giving the individual
memary relerences that were made 1o the ooe- and two-dimensional arrays in the program. The
second tool, called the Memory Access Pattern Animation program {MAPAL allows the trace
file to be viewed. This programs runs on @ Sun workstation (ronning LINTX and SonView) [8].

In this paper Section 2 examunes the moetvation for efficient vse of memoery hieracchy,
Section 3 discusses the goals for the tools, Section 4 presents a detailed description of the 1ools,
and Bection 3 shows how 10 mstrument a program wsing MAPL and how 1 s ted inle the
BLAS Sections 6, 7, and & discuss the user inlerface o the amimation pari of the tools and give
an example of s wse, Section 9 states the availability of the wols over asefih and Section 10
summarizes our efforts,

I Malivation

The goal of thiz work 12 to azzst in formulating coreect algomthms for logh-performance
computers and to aid as much as possible the process of lranslaling an algorithm into an
cfficicnt implementation on & specific machine, Ower the past five years we have developed
approsches n the design of certain numerical algonthms that allow both elfficiently amd
portability [3]. Ouor current efforis crophasize three areas: environmenis for algorichm develop-
ment, paralle]l programming methedologies, and advanced algorithm development,

For most computational problems, the design and implementation of an efficient parallel
selution are formidable challenges. Since parallel computation is sl in s infancy, we often do
nod understand what algorithms to use, much less how 1o implement them efficently on
specific architectures. With existing technology, the constmuction of a parallel program is a
laboricus, largely manual enterprize that lorces the programmer 1o asseme responsibilily for
determining a suitable mathematical algorithm and translating it into an intricately coordinates
sel of mstructions wned 10 3 partcelar paralle]l machine,

Efficicnt parallel programs are much more difficull to wrile than efficient sequential
programs, because the behavior of parallel programs i nondeterminiztic, They are alse much
lzss portable, because the structure critically depends on specific architectural features of the
underlying hardware {zuch az the stiructure of the memary hierarchy), To wse parcallel machines
cfficiently in scientific research, we must develop high-level languages and environments for
producing efflicient parallel selutions o scientific problems,

The key 1o using a high-performance computer effectvely is to avoid unnecessary memaory
reflerences, In most computers, data flows from memaory into and ot of registers and from
registers into and out of funclional units, which perform the given instructions on the data.
Algorithm performance can be dominated by the amoum of memery traffic rather than by the
number of Aeating-point operations involved. The movement of data belwesn memory and
registers can be as costly as arithmetic operations on the data.

Thiz zivation provides considerable motivation o restructere exsting alzocithms: and (o
device new algorithms that minimize data movement. A number of researchers have demon-
strated the effectivensss of block algorithms on a vanety of modem computer architectures
with vector-processing or parallel-processing capabilities [1], on which potentally high perfor-
mance ¢am easily be degraded by excessive transfer of data between different levels of memory
{vector regisiers, cache, local memory, main memaory, or solid-staie disks).

In partcolar, (or computers with memory higrarchy or for troe parallel processing com-
pulers, it is often preferable to partition the matrix or matrices into blocks and 1o perform the

L Brewes o ., 5 Aralyvsts af REEEON) et patierns 27

computation by matrx-matrix operations on the blocks. This approach provides for full reuse
of data while the block is held in ¢ache or local memory. Tt avoids excessive movement of data
to and from memory and gives a surface-to-volume effect for the ratio of amthmetic operations
to data movement, Le., O a*) arithmetic operations to (s data movement. In addition, on
architeciures that provide for parallel processing, parallelism can be explodted in two ways:

(1) operations on distingt blocks may he perfarmed in parallel; and

{2) within the operations on each block, scalar or veclor operations may be performed in
parallel

The performance of these block algorithms depends on the dimensions chosen for the
blocks. It is important Lo select the blocking strategy for each of cur largel machines, and then
develep o mechanism whereby the routines can determine good block dimensions automati-
cally.

Since most memory accesses for data in scientific programs are for matrix elements. which
i usually stored in two-dimensional arrays (column-major in FORTRAM). knowing the arder
of array references is important in determining the amount of memory traffic, Te gel an ides of
how arrays are accessed for a particular implementation of an algorithm and for a particular
data se1, we could add instructions to our code 1o cutput the name of the arra v and the indices,
whenever an array element is aroessed. However, the coding would be edicus and ercor prone,
and looking at page after page of indices is a difficult way of visualizing the MEMGry §Ceess
patterns, Notice the use of the word *visualizing’, We would like to take an arbitrary linear
algebra program, have ils matrices mapped 1o a graphics screen, and have a matrix element
flash on the screen whenever s correspending areay element was accessed in memory. This
tvpe would of tool would be beneficial in many wiays:

{1} It would help show that the implementation of the algorithm is correct, or al least doing
what the developer thinks the algorithm should be doing.

{2 T would provide insight inta the algorithm®s behavier,

(33 It would enable the programmer o compare the memory access patterns of different
algorithms,

(4} Being easy 1o vse, 11 would be used more often than a tedious method such as examining
pazes of indices,

3. Goals

The MAP 10cls are intended to provide an “animated’ view of the memory activity during
exccution, Our objective in providing these wols was threefold:

(1} we wished o eazly play back 2 previous execution trace over and over again 1o study
how an algenthm wses memary,

(2} we would wished 1o experiment with different memory hicrarchy schemes and ohserve
thear effects on the program’s flow of informalion: and

{3) we wished to use what was available from Sun Microsvstems in the wiy of creating a
SunView application,

4. Dieseription of tools

There are two basic aspects o accomplishing our goals; preprocessor instrumentation and
postprocessing display graphics. Our first teal, MAPL, 15 applied to the user's program befare it
15 exccuted, This teol instruments the program so that trace information can be produced.
MATPA is a postprocessing ool which displays the output of the instrumented prCRram,
permitling a user to visualize the oulput of the instrumented program and study how the
program 15 referencing memory,

P £ Frewer ot all 5 Anclyrs of keerany Qo006 paneos

We have developed a simple preprocessor (written in C) that analyzes a FORTRAM moduls
and, for each reference to a matrix clemeat, generates 3 FORTRAN statement that calls a
MAPT routing which in turn records the reference to matrix clement. [n addition, i calls are
made 1o Level 1, 2, or 3 BLAS [73,2], MATPD tranzlaies those calls imto calls 10 MAPI routines
which understand the BLAS operations and record the appropriate array references, The
cutput of this tocls s a FORTRAN module that, when compilsd and linked with a MAPI
library, executes the original code and produces a trace file. This trace file is vsed as input 10
MAPA in order to display the memory accesses on the arravs in the FORTREAN code.

By default, the preprocessor looks for references to array 4 and assumes that all arravs that
are parameters in calls to the BLAS subroutines are array A, However, it alse has a ron-time
option 1o search for up to three different arravs, Thus, il can be directed to look for references
o arrays A, 8, and O,

An example of how the program is instrumented is as follows. The original code iz

DO K =111
DOXWI=K+1. H
AL T) = AL, Ty + A{L K) = A(K, T}
n CONTINUE
W CONTINUE

which is transformed into
DOSKE=1,1-1
DOWI=K+1, N
CALLR(LIL LI I
CALL Ri1, L. L K. K)
CALL R{1, K, K, I, I}
CALL Wil L 1L I
AL D= AL T+ AT, Ky AL D
20 CONTINUE
i CONTINUE
Subroutines & and W record access to storage. The calling sequence has the following
meAning:
Ri{array id}, {starl of row), {end of row), {start of column’, {end of calurmn}),
M array id}, {start of row’), Jend of row’, {siart of column’, Jend of column’)

where {array id} is the number given to reference the array, ({start of row), (start of column’})
is the starting point in the array for the operation, and ({end of row), {end of column?) is the
ending poant in the array for the operation.

Each call to subroutine & records the element of the arruy. In this case, array 4 has been
given the identifier 1, the first argument to subroutines & and W, Arguments 2 and 3 give the
ringe of row accesses, and arguments 4 and § give the range of column accesses, Thus “CALL
R(L I T, T 0 wranslates to a read of array 4 for element £, . In addition to s infarmalion,
subroutines & and W also time stamp the event

The subroutines & and W record the information in a trace file. MAPA can then read the
information in the trace file and produce a simple animation simulating the memory accesses.
Frgure 1 displavs the output of MAPA for 4 view of LU decomposition.

5 MAPL The preprocessor

The preprocessor is very simple and makes many assumptions about the FORTRAN code.
Most are assumplions about sivles that, although syntacticly correct, are noet in common wsage.

L0 Hrewer er all /5 Anclynis of meernory arcees podferns i

Argonne Memory Access Fatlerns
Fireciergs SuerSaiesi 4o/ or rede SEEHEEY HAF

Hemors 1078: memary, bay The file i open and ready for processing.

Wpale speed [UE@] P i i M) v Ll i L O mater: G4
Loctution apeed (000 0 IR O P S) 14

Aeace: ASES Faaii | L Ruadc: L] Fasgs: k]
Mriten: TEER Trileg: B Mralesr ® Brizes: ®
EI-.' | [+ | EEET) FLOFS: i FILEFE: L] FLars H
s

Z;ZZZ

Figg: 1. MAPA outpat for L1 decomposition.

The idea here was not 10 spend a great deal of time producing a complete FORTRAN lexical
analyzer 1o cover every possible statement, but o produce something quick and easy Lhat
would recognize common FORTRAN statements and pick out the array references. Others
assumplions are so the preprocessor is aware of certain information such as array size and array
names. In addition, there two types of array references that the preprocessor does not yet catch.
These are valid array references but not as common. They should be added as needed in the
future. All of the assumptions and exceptions are listed below.

Al the moment, the preprocessor makes the following assumptions about the input FOR-
TEAN file:

(1} It 3z svatactically correct and compiles,

(2} Statemnents do not extend beyond column 72; in fact, nothing shauld be beyond column
72, such as old dusty decks that used columns 73-80 as ordering information for the cards.

(3} A single parameter is not split across lines in a call to a BLAS routine:

CALL SUE (nl, n2, ai,
3 [T
3 {j1),...,nlast)

(4) A single term is not split across lines in an assignment statement:

AL =T = A(],
5 11,/ ALT,
§ D+ B, I

| k. Brewer o @l S Amalysic of mesary aroess padferss

(51 Comments are not intervoven with centinuation lines:

CALL SUR (nl, n2, ...,
O comment
5o, my,..., nlast)

(61 There are no variable names like DR300 (e DOS00 = 1.2 Y5 D030 = 1,53) or function
names like [F.

(7)1 There is a variahle names & in the file being preprocessed which is set to the array size.

(B} The designed arravs are global thraughout the file, Tn other words, there should not be
two subroutines cach with local arravs using the same vanable name; the preprocessor would
nol know the difference. Also, the main driver program should be in a separate file so that
arcay references, such as array initialization, are not bated o the trace file,

(9} In calls 1o subroutine, the sequence “CALL SUB {parameter 1, ..., "should be on the
samng hine,

The preprocessor does not yet catch the following relerences:

(1) IFQ. AL Ty o0 array eeference im0 logical expreszion of IF,
(2 coomAL Db .. accay reference vied as an array index.
To use the MAPI program one merely 1ypes

evpr s fon v oedfo

at the UMNIX shell level. The MAP] program will take as input a FORTEAN program and
generate 3 new program on slandard culpel contaimng the instrumented version, When
compiling and loading ourfoof, the wser should reference the Sfasnapia [ile 1o resolve calls 1o
MAPI rovtines,

50 Coulls to the BEAS

since the BLAS form such an impartant part of software for linear algebra problems, we
have provided an interface for them 1o our package. Duning the preprocessing phase, 10 8 call
Level 1, 2, or 3 BLAS is present, it is replaced by a call 10 one of our MAPL routines. The
replaced routine wall record the memory access 10 be made, as well az the number of
ficating-point operations o be performed, and then call the Level 1, 2, or 3 BLAS originally
imlended,

For example, a call such as

CALL 3GEMY...)
will be replaced by a call 1o
CALL MESGEMY(. ..},
The call will be modified by additional parameters wo resolve the two-dimensional arcay
references in the call.
The next cxample shows how calls 10 the BLAS are translated. The original code looks like

* Compaie superdiagonal bBlock of LI

CALL STREM(' Left', * Lower”, ' Mo transpose’, " Unit’, T =1, 1B, A, LA, Al 1),
L)

* Update diagonal and subdiagonal blocks.

] e, L Rl 7 3
£ Brewer er al. /0 Anglinls of Iecry @ooess patianes 3

CALL 5GEMMC Mo transpose’, "MNao transpose’, M — T4+ 1, JB, T -1, —OMNE,
5 AL 1), LA, A(LL T, LDA, ONE, AL I, LDA)

Adter the preprocessor execuies, i is transformed 1o

- Compute superdiagonal block of L,

CALL METREM(Lefr’, ' Lower”, * Mo transpaose’, *Unic®, 1= 1, B, A, LA, A, T,

= DA 1,1, 1,0, 1.1
- Update diagonal and subdiagonal hlocks,
CALL MEGEMMC Mo transpose’, "Mao transpose’, M —J+ 1, JE, T -1, —0OHE,
] AL 1, LDA, AL, I, LDA, ONE, AT, T, LDAC1, T, 1,1, 1. 1, 1,
3 LI

In the instrumentation the name of the subroutine has been changed, REoutings METREM
and MEGEMM are MAT routines that record the memory reflerences and call the correspond-
ing Level 3 BLAS The calling scquence has been avgmented to add the stanling point of cach
array reference. Since internally the BLAS do not know what part of the original areay the
calling program has actwally passed, we nesd o supply the starting imdex W correctly record
cach array reference. Therefore, in the call o MSTRSM, the last six arguments describe the
starting point of the two arravs invelved in the operation, The st argument 1 involves the
array A; the mext two arguments, 1, 1, provide the row and column index for the starting point
af the first array; the last three arguments 1, 1, J follow the zame form. Within subroutineg
METRESM the approprate calls to B and W oare made w record the events, and then the call o
the Level 3 BLAS takes place,

52 Exvewtion of the instrementoted progrom

As the mstrumentated propram execules, 10 generates 3 race fle named memory srace. The
trace file is a readable ASCI file which contains an encoded description of how the arrays in
the program have been referenced. There are basically three iypes of trace lines generated;
array definition, read access, and wnte access. For compaciness nod every element reference
generates & trace ling, 1T a call (o one of the BLAS has been made, the trace ling may contain
the information about a row or column access or both, In addition, the events are time
stamped, allowing the MAPA program 1o merge information with other trace files and have the
relative order of operations preserved, We alzo record the amount of Meating-point work that
has taken place for a given memory reference. The name of the BLAR is recorded, and during
plavback the name of the BLAS executed will be displayed,

The trace file has the following format:

- Matrix definition:

array id}y{number of rows){number of columns’
- Read access:

1{array id}{start of row){end of row}{start of column}{end of column}{time}
~ Write access:

2array il start of rowhJend of rowddstart of columnJend of column’ Jome)

32 {2 Beewer er al 2 Anahsls off MeiGry @ecess Serneees

— Arithmetlic operations and BLAS called:
Sarray Wy Mopsd(BLAS subrouting name?
An example of the trace file sutput 15 displayed below:

| A0 di

1 0 strsm

I 12% zirsm
1151 1 005000
1156 10 005K
1156 10 (LOA0D
252 20050
256 10 (LS00
256 10 005030
5% 3005000
35 6 10 (LA
I 356 10 (uOsi
1454 4 0058000
1456 10 (050N
1456 10 L0668T
1555 5 (L0GHET
1556 10 r066aT

L
3
B
1
|
.
11
11
21
11
11
2
1
1
2
1
1
215 56 10 06667

&, MAPA; The control panel

The MAPA program iz written in O, vsing SunView, and run: on monochrome and color
monitors. It displavs the memory access patterns of the arcavs by mapping the arcavs to the
graphics sereen and highlighting the elements of the arrays when they are aceessed.

The graphics window takes up most of the screen. I mitially looks for race Dles named
sevewroe ¥ e, where {mee . distinguishes the different trace files. 1 it does not lind any., it
prinis an informational message 1o that elffect.

The program can display up o four different arrays al one time. The top row displays the
read accesses to the arravs, and the bottom displavs the writes, The read accesses flash in bluee,
and the write acoeszes flash in red on a color monitor, Ona menochrome monitor, the accesses
flash in klack.

The panel subwandow {see Fig. 2} s MAPA™S main user control interface and contains
several [eatures:

Direciory: The vser can siep through various dirccteries o locate the desired trace file. If the

cursor is placed over the end of the directory string and the right mouse button is pressed, a

menu listing of other directories will appear. To change to one of these directones, the user

simply uses the curser 1o highbizht the directory and releases the right mouse button. Cne of
the direciorics in the listing will have 2 check next to it (mesl probably the =7 dicectory),

Depressing amd releazing the lelt mouse bution while the cursor iz positioned on the

directory siring will cause a change 1o the checked directory. The vser should remember,

however, that while directory changes are supported o assist in lecating trace files, this is
fragile featurs

ok Srever er el Asadeis af semiary covers patferny 33

Argonne Memory Access Folterns
Directary: Foordaloni oo euer SHOE DR 2w

Himeryp 11 b mimiry, Tl The Lile iz cpan and ready for processing.
(s3] () (EF)

Vpdmie zaeed Dldl § RS R (N 144 FLEF metar: Zard
Coacubiae caeed (193] & R e T e R B Py 154

Fada Lot H Feads: a Fkadsg] H Beaaa: K
TEihes: IRER Wridme: ® ¥rifes: @ wWiileg: B
FLars: FL=r41] FuliFa: k] TLars: L] FLOPS: L]
agaTE

Fig. 2 MAFA contral panel.

— Memory fites: When files exist in the current directory that begin with the letters “sremony”,
the first of these will appear in the memory file string. Positioning the cursor on the string
and depressing the right mouse hutton will cavse a menu of memory files 1o appear, Files
can he selected from the menu by highlighting the file name and releasing the right mouse
button, Depressing and releasing the left mousze button will cause the next file in the meny
o e selected.

- Update speed: This slhider controls the length of time the memory reference is held on the
screen before fading away. The defaull value of the slider iz set at 100% and can be easily
changed by clicking the left button in the slider at the desired value (current value is
displaved in bracketz, see Fig, 2},

Exveution speed: This slider controls the speed in which events are processed when *GO" has

been chosen. The speed control slider expresses the event display speed as @ percentuge of

the fastest possible speed. The default value of the slider is set at 100% and can be easily
changed by clicking the left button in the zhder at the desired value {current valus is

displayed in brackets, see Fig. 2.

‘The ovals in the panel act as buttons. All of the buttons on the panel are activated by
clicking the left butlon within the boundaries of the button, The button will remain grav as
lomg as the action started by the hution continues,

Load: Initialize and reset MAPA for ancther trace file, Onee a trace file has been chosen it

must ke loaded in before the animation can be started,

- Go Process events from the trace file consecutively without stopping. The screen and
counters in the control panel are updated appropriately, The only way the event process is
halted is for you to hit the left mouse button while the mouse cursor is in the contrel panel
cr the end of the trace file 15 reached.

- Srop: Stops the tracing of events once the program realizes the button has been pressed. It
sommelimes requires a heavy finger. The activity can be restarted by hitting the *GO° button,

— itz This will completely exic the MAPA 1ool, first asking for confirmation,

FLOF meser: This meter shows graphically the aumber of floating-point operations over

Lime.

T. Execution of MATA

The canvas subwindow occupies the lower two-thirds of the window. Graphics information
i5 displaved here. The canvas is divided into two rows of four squares. The first row displavs
the load activities, and the second row displayvs the store activity,

Each of the four columns of squares across the canvas can be used 10 display an array. When
the trace file is started, a load of a matrix element is denoted by a blackening of an arca of the
block wsed to represent the areay, (With a color monitor, the arca will wen dack blue) As tme

L2 L Breswes g, Anelpeis of meemiory aocery parierns

evalves and if no further reference is made o that specific matnx element, the aren will
gradually become Lighter, uniil al some Gme alter the orgimal access, i will return to its
original color. If a subsequent refercnce to that element is made, the area representing the
clement will again become darken, In this way a wser can observe the locality of reference the
program 15 able to achieve.

The same situation 15 true for slore operalions. As 8 slore 15 mads, the area representing the
element affected i= darkened {on a color monitor, the arca will torn dack red), and aller tme
the area will return o iz erginal color,

If the BLAZS have been used, the whole arca affected by the operation is changed al once,
This results in considerable saving in terms of display time and in the amount of space the trace
lile cocupies.

8. Example

We have been experimenting with three different organizations for the algorithm w factor a
matrix in preparation o solving a system of hnear eguations via Gauossian elimination. Each
methad performs the sume number of floating-paint operations: the alzorithms differ only in
the way in which the data is accessed. The three methods are block jki, bleck Crout, and block
rank update (see [4,1] for more detadls),

Tahle 1 was generated on a mairix of order 100 and a blocksize 64

As can be seen in this case, algonithm 1 (block jki) has fewer store operations over all and
slightly more load operations, We would expect this algorithm 1o perform better than algonthm
3 (bleck rank update) and marginally faster than algorithm 2 (block Crouwc). The row marked
Diag Dominant reflects the Fact that the matex s diagonally dominant; thus, no pivoling is
performed during the factorieation resulting in lewer memory references. (For these results, it
wag assumed that the data would be held in the memory hicrarchy once it was fetched for the
operation, e, felched once for each block operation,)

When MAPA displays the trace file produced by merging the trace files from the execution
of the instrumented versions of the three different programs, we abtain the picture at shown in
Fig. 3.

9, Availability of the tools
The soltware described in this report 15 available electronically via sedlib. To retrieve a copy,
one should send clectronic mail to netlibgZanl-mesarpa. In the mal message type:
send map from anl-tools

A UNIEX shor file will be sent back. To build the parts, one need only zh the mail file (afies

Takle |
LU LLZ 5 LU3
Random Loads 102 530 i 105415 0 UGS
Stares 13150 37455 150
Diag Lasands 24100 BI85 1535

Diominamnt Srares 14730 1A% T1750

() Brewee o anl, F Aripaid af mpaniry aoedsy panterny K

S -

AR e
pREh FE
AR A
o) .
B T R e R R T
EEEE AR R
| R T
| JE2] FITi R
| Ferd e
| SRR
s 1 et e
AR RR R
e e e
R R F R P T
Ll b 1 -4

Frg. 3. Dhaplay of FORTHRAN execotion matris of soder 40 blecksioe of 5.

removing the mal header) inte an empty directory and tvpe “make”™. Twe separate directories
will he created, one with the MAPI (ools and the other with ihe MAPA toals.

1. Sumimary

We have discussed a sel of 1ools for the graphical analysiz of memory accesses within g
FORTEAM program, Thess tools allow vsers o vew trace Oles penerated by alponthms ron on
any compiiler.

Using such a tool provides insight inte potential bettlenscks resulting from memory
accesses. While these ideas are stll in the formative stages, we believe approaches along these
lines will greatly enhance the performance of proprams and the underlying alzornthm on
shared-memory, high-performance computers.

References

[1] 1. Demueel. J. Dongarsa, Jo Dha Oroee A, Gressibdoem, 5 Hamamarkmg asd D, Sorensen, Prospectous for the
development of a linear algebra library for high-performance compaters, Argenne Mational Laboratery Report,
A M L-MCE-TM-57, 1957,

[2] LI, Daongarra, J. DaCrae, 1L Dol and 5. Haminarling, A proposal for a sel of level 3 basic linear algehm
subprograms, Argeone Maiienal Laboratory Report, AN LMOS-P-RR, 1585

[3] AJ. Dwagarca, Jo DuCreg, 5 Hammarting ardd B, Hanson, An exiendsd so0 of Fortran basse hinear alpelia
subprograms, ACM Trane Mark, Soffware 14 (13 (1988) 1-17.

[4] 11, Dongarea, F. Gustavson and A, Barp, Implementing linear algebra algorithms for dense matrices on o vectar
pipelice maching, SEAM Rew 26 (1) (10243 V1-1121,

[4] 1), Diengarra and D.C. Sorensen, Linear algebra on high-performance compuiers, inz M. Feilmeier, G. Joubert anid
LI Seberdel, eds,, Maealle) Corrpuriig X I'\‘\. prth-Holland, Amsterdarn, 1985 1-32,

[6] K. Gallivan, W Jalby amad UL Meier, The wse of BLASS in linear algebra on g paralle]l processor with a hieranchical
memary, SLAM 5 Sed Suwiw Cempur 8 (6] (1987 1079- 11184,

[T €. Lavwsem, B Hanson, I Boancod and B Kroph, Basie lonear algebea sebprograns for Fortoan wage, A0 Trans,
Mearh, Sofneare 5 1970y MOE-310,

[8] Sun Micresyvaterns, SunView Programmer's Reference Mananl, Part Mo, 8E-1345032, Sun Microsysiems Ine, 2240
Giarcia Awe, Mountain Viee, CA 54043,

[4] A Smith, Cache memary design: An evolving art, FEEE Specrrvan {December 1687

