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Abstract

The PVM syetem, a soltware [ramework for heterogeneous corcurrent computing in
nctworked environments, has evolved in the past several years into a viable technology for
chistributed and parallel processing inoa vanely of disciplines, PVM supposis a steaighifor-
ward but functionally complets messoge possing model, and 15 capable of hamessing the
combaned resources of typically heterogeneons networked computing platforms o deliver
high levels of performanee and funclionality, In this papor, we describe the archilectore of
FWM system, and discuss itz computing model, te programming interface it suppors.
suxiliary Facilities for process groups and MPF support, and some of the intemal implemen-
tation technigues employved. Pedormance issucs, dealing primarily with communication
overhcivds, are anabyred, and recent findings as well 25 expedmental enhancements arc
presented. In order 0 demonstrate the viabality of PYM for large scale scientilic supersom-
puting, the paper includes representative case studics in matenals seience, environmental
scicnce, amd climate modeling, We conclude with 2 discussion of reluted projects and Teture

directions, and comment on near and lone-erm potential for metwork compueting with the
P aysiem.
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1. Introduction

The past several years has witnessed an ever-increasing acceptance and adop-
tion of parallel processing, both for high-performance scientific computing as weall
ag for more “general purpose’ applications, Furthermore, the message passing
model appears to be gaining predominance as the paradigm of choice, [roan the
perspective of number and variety of multiprocessors (especially massively parallzl
processorsh, and also in terms of applications, languages, and soffware systems for
its support. This paper concerns one such message passing system — P {Parallzl
Wirtual Machine), that 2 o software infrastructure that emulates & generalized
distributed memory multiprocessor in heterogeneous networked eovircnmaents,
Such an approach, which obviates the need to possess & hardware multiprocessor,
has proven to be a vizble and cost-effective technoelogy for concurrent computing
in many application domains, Owing to its ubiguitous nature — a virtual parallel
machine may be constructed wsing PYM with any set of machings ong has aceess (o
- and alse due fo its simple but complete programming interface, the PYM svstem
has gained widespread acceptance in the high-performance scientific computing
community, In this paper, we present the rationale and motreations for this project,
the model supported, mportant design decisions and performance considerations,
and case studies in the use of PVM for scientific supercompuling.

LI Heteropeneouws Hneiwark cormpuiiing

Heterogenoous, network-based, concurrent computing refers 10 an evalving
methodalogy lor general purpose consurrent computing where
& The hardware platform consists of a collection of mullifaceied computer svsrems

of varving architectures, interconnected by one or more network types. A special

case (albeit the most common at pregent) 15 a collection of similar or identical
workstations on a single local arca network, although a more specific term for
such emvironments s “cluster’.

* Applications arc viewed a5 comprising several sub-alpornithms, each of which is
potentially different in terms of its maost appropriate programming model,
implementation language, and resource requirements.

Heteropeneous network computing refers to models, technigues and woalkis (o
match heterogeneous environments on the one hand with complete applications,
consisting of different subtasks, on the other. While explicit atlention o the
heterogeneous aspects and “functionality exploitation” in such scenarics has only
recently received formalized attention, the concept, n some form has been
explored previously, e [2], although vswally with a narrow focus or based on a
specialized architecture. The PYM system was designed o realize a more gencral
and encompassing imterpretation of hetercgengous computing, and had a prag-
matic bias aimed at providing & working system that could be wsed in existing
cnvironments — PYM supports helerogpenecus machines, applications, and nect-
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works. Besearch 15 continuing towards the eventual goals of the project, namely to
propose a heterogencous application development madel and aszocated program-
ming frameworks, o enable optimal mapping betwesn application subtasks and
the best-smited machines, and to provide sdequate infrastrociure for heteroge-
neous debugging, visualization, profiling and monitoring. [n the meantime how-
ever, current realizations of PYM, supporting basic heterogencous features and
robust emulations of heterogeneous concurrent machines, have proven o be
valuable and effective for more traditional applications, especially in high-perfor-
mance scientific computing. The facilitics that are currently available, as well as
recent resulis and ongeing work, are discussed i the [ollowing sections.

1.2 The evaluiion of PY¥M

The PVM project started in the summer of 1989, and has evolved through three
versions of the software, the latter two of which have heen publicly distributed,
The original version of the systern [3] was ambitious, in that it attempled 1o be
heterogeneous in terms of programming model as well - support for emulated
sharcd memory, in addition f0 message passing, was incorporated, The basic
computing model, which has remained semantically unchanged, views applications
as consisting of components, cach representing a sub-algorithm; cach componeng
is an SPMID program, potentially manifested as muolliple fnstances, cooperaling
internally as well as with other component instances via the supported communics-
tion and synchronization mechanisms, The wnit of concurrency in PYA iz a
process, and dependencies in the process ow graph are implementaed by embed-
ding appropriate PVB primitives for process management and synchronization
within control flow constructs of the host programming language. The implementa-
tion model, also unchanged from the original version, wses the notion of a *host
pool’, a collection of interconnected compuicr aystems that comprises the virtual
machineg, on which daemon processes execote and cooperate to emulate a concur-
rent computing system. Applications request and receive services from the dac-
maons; the facilities supported essentially fall inte the catepones of progess man-
agement and virtual machine confipuration, message passing, synchronization, and
mizscellancous status checking and housekeeping fasks.

PYE 1= the mamstay of the Heterogeneous Metwork Computing research
project, a collaboratiee venture between Emory Unieersity, Oak Ridge Mational
Laboratory, and the University of Tennessee, In addition to the awthors, Reih
Muoore, and Weicheng Jang of UT, and Adam Beguelin of ChMU are co-investiga-
tars. This project is a basic research effort aimed at advancing science, and is
whilly funded by research appropriations from the US Department of Energy, the
Matipnal Scicnce Foundation, and the State of Tennessee. However, owing (o its
experimental nature, the PYM progect produces soltware that 15 of atlity o
rescarchers in the scientific community and to others. This software is, and has
been distrbuted freely in the interest of advancement of science and iz baing wsed
in computational applications around the world.
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1.3, Retated work

A number of projects based on the same principle, namely utilizing a collection
of interconnected machines as a concurrent computing platform, have becn
developed and several enjoy widespread adoption and following. While there is
some commonality with PVM, other similar svstems offer (sometimes radically)
different programming and implementation models, and present varied functional-
ity and performance. The more widely adopted of these systems are described in
detall elzewhers in this volume; in this subsection, we mention 3 few representative
systems and comment on differences in functionality and performance.

Linda [5] is @ concurrent programming model based on the concept of a
‘tuple-space’, a distributed shared memory abstraction via which cooperating
processes communicate, P4 and {its derivative Parmacs) [6] are libraries of macros
and subroutines developed al Argonne Mational Laboratory and GMD, for pro-
gramming a variery of parallel machines. They support hoth the shared-memory
model (hased on monitors) and the distributed-passing). Express iz a collection of
tools, including a message passing interface, for programming distributed memory
multiprocessors, including network clusters [7]. Various other systems with similar
capabilities are also in existence; & reasonably comprehensive listing may be found
in [%].

With the esception of Linda, whose programming medel is not based on
conventional messuge passing, most other svstems support very similar facilities,
the core primitives being system-specific vanants of send and receive. PYM
supports dynamic process and virtual machine management unlike other systems
where the process structure is statically defined, The PVM message passing
primitives are oriented towards heterogencous operation, involving strongly typed
constructs for buffering and transmission; some other systems provide for untyped
data transfer. Compared o other systems, the suite of interface primitives sup-
ported by PVM is small; for example P4 and Express provide global combining
routines, and Parmacs supports process lopologies. These omissions are deliberate
to & certain extent; the PYM philosophy is to support a core Kernel of primitives
above which auxiliary layers may be added (e.g. a PICL [%] port to PVYM [10]),
while ensuring that [acilities that can only be provided at the system level arc
comprehensive and functionally complete.

In terms of performance, most message passing systemns exhibit only marginal
differences, although systematic comparative studies have not been undertaken, In
the context of PVM and similar systems, performance is usually measured by
i1} end-to-end communications speeds delivered by the software system; and
(2} overall execution times of various complete applications as measured by

elapsad wall clock times.
Meither of these parametrizations is very meaningful however, since in typical
networked environments, a number of dynamically varving external influences
continually affect these measures. Given these qualifications, and the fact that
network-based systems for the most part utilize the same underlying transport
mechanisms, performance variations tend to be both insignificant and inconsistent.
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I a later section, we present experimental measurcments of performance for the
W svstem, and propose strategies under investigation o enhance Uhem,

2. VM model and features
21 P compuiing model

Under PWM, a user deflined collection of serial, parallel, and vector computers
cmulates a large distributed-memory computer, Throughout this report the ferm
virfeeed machine will b2 vzed o designate this logical diztributed-memory computer,
and fost will be vsed to designate one of the member computers. Multiple wsers
can configure overlapping virtwal machines, and each wser can execule several
PWM applications simultansously. PYM supplies the functions to automatically
start up tasks on the virtual machine and allows the tasks o communicate and
synchronize with each other. A rosk 15 delined 22 2 unit of computation in PYM
analogous to a3 Unix process. [t 15 often 2 Unix process, but not necessarily so.
Applications, which ¢an be written in Fortran77 or O, can be parallelized by using
Message-passing constructs common 0 most distributed-memory computers, By
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sending and receiving messages, multiple tasks of an application can cooperate o
zalve a problem in parallel. Fig. 1 depicts the PYM computing model as well as an
architectural abstiraction of the system.

The mode] assumes that any task can send a message o any other PVM task,
and that there is no limit o the size or number of such messages. The PVM
communication model provides asynchronous blocking send, asynchronous block-
ing receive, and non-blocking receive functions. In our terminology, a blocking
send returns as soon as the send bulfer is ree for reuse regardless of the state of
the receiver. A non-Iocking receive immediately returns with gither the data or a
flag that the data has not arrived, while a blocking receive returns only when the
data is in the reccive buffer. In addition (o these point-to-point communicalion
functions the model supports multicast to a sel of tazks and broadeast o a user
defined group of tasks. The PVM mode]l guarantces that message order is pre-
served between any pair of communicating entities,

22 Core Jealures

P supplies routines that cnable a user process (o register Aleave a collection
of cooperating processes, routings to add and delete hosts from the virtual
machine, to initiate and terminate PVM tasks, to synchronize with and send signals
to other PVR tazks, and routines oo obtain information about the virtwal machine
configuration and active PYM tasks, Synchronization may be achieved in one of
several wavs, e.g. by sending a Unix signal 1o another task, or hy using barrers.
Another method notifies a set of tasks of an cvent occurrence by sending them a
message with @ user-specified tag that the application can check for. The notifica-
tion events include the exiting of a task, the deletion {or failure) of a host, and the
addition of a host.

PVM provides routines for packing and sending messages berween tasks. The
core communication routines include an asynchronous send to a single task, and a
multicast to a list of tasks, PWM rransmits messages over the underlying network
using the fastest mechanism available e.g. either UDP/TCP on networks based on
the Internet protocols, or other high-speed interconnects available between the
communicating processors. One example of this third option 8 deseribed in
Section 2.3, Messages can be received by fillering on source or message tag (both
of which may be specified as wildcards), with either blocking or non-blocking
receive routines. A routine can be called to return information about received
messages such as the source, tag, and size of the data. Message buffers are
allocated dynamically, thereby permitting messages limited in size only by natiae
machine parameters. There are routines for creating and managing multiple send
and receive buffers, This feature allows the user o write PVM math libraries and
graphical interfaces that can be called inside other PYM applications without
communication conflicts, The user can switch context from one set of buffers (for
cxample wsed by the application) to another set of buffers (for example used inside
a math library call),
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2.3 Awviliary feniures

Dvnamic process groups are lavered above the core PVM routines, A process
can helong to multiple groups, and groups can change dynamically at any tme
during a computation. Boutines are provided for tasks fo join and leave a named
group. Crroup members are uniguely numbered [rom zero 0 the number of group
members minus ong, IF gaps appear in this numbering duc o tasks leaving the
group, VWM attempts to fll these gaps with subsequently joining tasks, Taszks can
alzo query for information about other group members. Functions that logecally
deal with groups of tasks such a2 roadeast and barricr use the user’s explicitly
defined group names as arguments,

WA wersion 3 is designed 50 that native multiprocessor calls can be compiled
into the source. This allows the fast message-passing of a particular system 1o be
realized by the PYM application. Messages between two nodes of o multiprocessaor
use s nalve message-passing routines, while messages destined for an external
host are routed via the user's PWM daemon on the muluprocesser, On shared-
memary systems the data movement can be implemented with & shared bufter poal
and lock primitives. The MPI subsystem of PVM conziztzs of a dacmen thai
manages the allocation and deallocation of nodes on the multiprocessor. This
daemon s implemented in terms of VWM 3 core routines. The sccond part of the
MPP port is a specialized hbpym Llibrary for thig architeciure that contains the fast
rauting calls between nodes of this host.

A Tnipderneniation

The PVM system is composed of two parts. The frst i a daemon, called pend?
Csometimes simply posrd ), that exeoutes on all the computers making up the virtwal
machine. Pymd3 s designed so any wser with a valid login can install this daemon
on a maching, A user wishing to use PYM first configures a virtual machine by
specifving a host-pool List the daemons are started on each, and cooperate o
emidlate a virtual machine. The PYM application can then be started from a shell
command line prompt on any of these computers,

The sccond part of the swstem 15 a library of VM imterface routings
(Lispwm3d.al This library contains wuser callable routines for message passing,
spawning processes, coordinating tasks, and medifving the vicowal machine. Appli-
cation programs must be linked with this hbracy to use PYWAML

The PV svstem components bave been compiled and tested on the architee-
tures shown in Table 1. This table includes hosis ranging from 386 laptop
computers o Cray C90 and MPFP computers. In addition several vendors are
supplving and supporting optimized versions of PVM for their multiprocessar
svstems including: Cray Fesearch, 1BM, Convex, Intel, 5G1, and DEC,

3, Performance considerations

PWM and similar systems normally operate in general purpose netwarked
environments, where neither the CPU's of the individual machines nor the inter-
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connection network s dedicated, As a result, raw performance or speedup of a
given application s hard (o measure, Even in a dedicated networked environmenl,
with no external use, the above i5 true since operating svstem activity, window and
filesystem overheads, and administrative network traffic can contribute Lo deviated
measurcments. [f these factors are ignored, network computing systems behave in
a manner that is reasonably predictable [11] In such a scenario, most of the foous
is on communications averhead; CPU optimizations can be approsched indsepen-
dently wsing traditional methods, since parallelism greanularity is at the process
level.

A1 Raw communication performance

Given the shove factors, performance evaluation of PVM and similar systems
pormally beging with an analysis of data transfer costz, The fime required for
processes 10 exchange messages is dependent on several factors, including the host
machines, network speeds, and most predominantly, the message size. In Table 2
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Table 2
Dala transfer fimes Cnulliseconds)
Miztwork Mle=sape Length
T

2B i 128 512 1K aK T3 K ITx
Elhemmet 1.2 15 21 3.2 1.2 M5 ®I3 12112
FoD 12 1.5 1.4 2.5 5.5 ({9 [ a7

below, we show message passing Omes in milliseconds for PYM, for varving
message lengths and two differcnt network types; these cxperiments were con-
ducted on unloaded workstations rated at 40-50 MIPS,

Two important observations pertain te Table 2 The frst concerns latency, or
the minimal time reguoired o send a zero-length message, Trrespective of nerwork
tvpez, this measure 5 of the order of a milbgecond, and depends lacgely on the
speed of the host machines, &s a significant fraction of this overhead is incurred in
within=host protocol processing. The zecond [actor 15 throughput, As the table
shows, the Ethernet network could be driven at near theoretical peak capacity for
large messages; similar ratics are conjectured to be possible for fast networks with
increases in host speeds and protocol oplimizations,

Apart from poini-to-point data fransfer, group communication facilitics are also
an important measuce of communications pecformance, Table 3 shows times in
milliszconds for barrier synchronization and broadeasting (1K messages) using the
release version of PWM that vses naive but robust algorithms, as yet untuned for
optimality. Also shown in Table 2 @5 an experimental multicast (1K messages)
Facility that exploits the broadeast medivm of networks such as Ethernet,

3.2 Tmproving commninicaifons performance

Ax shown in the previous section, communication throughput approaching the
medinm capacity can be achieved in PVM, provided large messages arc trans-
ferved, This has also been demonsteated m situations mvolving muoltiple, simulia-
neoUus message passing; Le. i high percentage of the apmeezare bandwidth of the
medivm is utilizable by PVM application processes, The factor that is difficult 1o
oplimize however, 15 latency, implving poor efficiency and speedup when message
cxchanges arc short and intermitient.

Table 3
Gledhal operaiion times (milliseconds)

Ciperation Mo of Procs

Lype z 4 5 15 32
Barrier 22 s Z5.10 532 1N7.2
Broadenst 3.2 5.4 154 285 05,9
Opd, Beast 1.2

32 11.5 14.2 35l
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One approsch that is under investigation is 1o enable PVM operation directly
above the data link laver (rather than the transport layer); a feasible option when
pperating in a local network environment. An experimental version of PVYM that
operales in this fashion has been designed, and latency improvements of the order
of 50% have been observed., Work is in progress to integrate this imta the release
version of PVM, incorporating intelligence 1o determing on & send-hy-send basis
when it is appropriate (o utilize this data transfer mechanism.

4. Rrientific supercomputing

PVM i= being increasingly adopted at numerous institutions worldwide [or
distributed scientific computing. Many sctentific, industrial, and medical applica-
tions are being deploved under PVM in clustered workstation networks, An
impartant motivation (for the wse of PYAM and other cluster computing systems) is
price performance - generally, clusters are about 10 times as cost- effective as
supercomputers for a given performance capability, for several classes of applica-
tions. COther motvations for the increasing use of PYM include a ligh degree of
portability and a straightforward, robust interface that is well suited for scientific
application development,

Three computational grand challenges heing addressed by ORNL as well as
several other applications important 1o DOE's mission have been comverted to
PYM, The srand challenges arc in groundwater transport [0 assisl in wasie site
clean up, first principles materials calculations to assist in the design of new alloys
and ceramics, and global climate modeling to predict the effects of things such as
peone depletion, and global warming. In the next sections we briefly describe these
three applications and the effort mvelved in converting them to PYM.

.00 Crrovnawater

ORNL is parl of a consortium of groundwater rescarchers whose goal is 1o
develop state of the art parallel models for high performance parallel computers.
These computer madels will enable rescarchers to model flow with higher resolu-
tion and greater accuracy than previously possible, As a first step rescarchers at
ORML have developed a parzllel 2-I finite element code called PFEM that
models water flow through saturated-unsaturated media, PFEM zalbves the svstem
of cuations

itfe
i S [ KK (Th+¥z)] +q,
o

where /i is the pressure head, ¢ is time, K, 15 the saturated hydraulic conductivity
tensor, K, is the relative hydraulic conductivity or relative permeability, z is the
potential head, 7 is the source Szink and F 15 the water capacity (F = J8 /dh, with
& the moisture content) after neglecting the compressibility of the water and of the
meclia,
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FFEM was parallelized by partiioning the physical domain into p picocs and
slatically assigning one subdomain to cach of p tasks. The present version uses
only static Ioad-balancing and relies on the vser o define the partittoning, but
ather consortium members are working on ways to automate these operations, Al
eiach timestep, cach task solves the above equaticn for its subdomain and then
exchanges its boundary region with itz neighboring regions. Originally developed
on an Intel (P3C 860 multiprocessor, a FYM version of PFEM waz straightfoe-
ward o create requiring an undergraduate student less than 3 weeks to complete.
Presently, the PYAM version of PFEM has been delivercd oo members of the
groundwater consortivm for validation testing vzing networks of workstations while
they await the availability of paralle] supercomputers. Mo performance tests had
been done at the time of this writing.

4.2 Muserials

ORENL material scientists are developing algorithms for studyving the phyzical
properiics of complex substitutionally dizordered matenals. A few important
examples of phyzical svstems and situations in which substitutional disorder plays a
critical role in determining material properties include: high-strength alloys, high-
temperature superconductors, magnelic phase transitions, and metal Sinsulator
trangitions, One of the algorithms being developed is an implementation of the
Korringa, Keohn and Restoker coherent potential approximation (KEBE-CPA)
method for calculating the electronic properties, energetics and other ground state
properties of substitutionally disordered allovs. The KER-CPA method extends
the wsual implementation of density [unctional theory to substitutionally disor-
dered materials. In this sense it 5 a completely first principles theory of the
propertics of substitutionally disordered materials requiring as input only the
atomic mumbers of the species making up the solid.

Starting with the original 20,060 ling serizl KER-CPA code, it required about
three months (o produce a PYM version of the code, After profiling the code and
studving the potential =sites for coarse-grain parallelism, a master Sslave paradigm
wis chosen for implementation. The master task performs all the 170 and
coordinates all the slaves. The slave tasks perform the majority of the computa-
tional work, This split reduced the amount of memory any one task required and
also allowed the master tazsk o do dynamic load balancing. Several megabytes of
data is transferred between master and slaves, but no data is shared between
slaves. Moreover the data transfers are crganized as a few large messages rather
than many small ones to reduce message latency overhead.

Using PVM the KKE-CPA code is able to achicve over 200 Mflops utilizing a
network of ten [EM RS 0000 (6 model 530°% + 4 model 220%) workstations;
catimated o be about 32% of the maximum achievable for this code. Given this
capability, the KKR-CPA application is being uwsed as a research code (o solve
important materials science problems. Since s development the KER-CPA code
has been wsed o compare the clectronic structure of two high emperature
superconductors, Ba(Big ;Pby )0, and (Ba, K, B0, o explain anomalous
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experimental results from a high strength alloy, NiAl and to study the effect of
magnetic multilayvers in CrVoand Criio alloys for their possible use in magnetic
storage devices.

The PVM KER-CPA code has also been used to test concepts in distributed
computing. For example, with help from Cray Rescarch the KER-CPA code was
run on a network of C90 and YMP multiprocessors, Using 27 processors scattered
across several sites, the Cray-bazed PVM was able to achieve an average aggregate
performance of over 9 Gflops while calculating superconductor properties. In a
test of the portability of PVM, the KKR-CPA code was run across a virtual
machine composed of two Intel Paragons, a CM-3, an Intel 860, and IBM
workstations, These hosts are geographically distributed an several sites. [n this test
the master task ran on one of the IBM workstations and slave tazks ran on nodes
of the various MPP hosts. The performance of this rest was consistent with the
small number of nodes vsed on each host.

4.3 Climerie

A collaboration of researchers from ORNL, Argonne Mational Lab, and the
Mational Center for Atmospheric Kesearch (NCARY was formed o address
atmospheric modeling. Their first task has been to develop parallel algorithms and
implement the recently developed wversion of the NCAR Community Climate
Model (CCM2Y in a message passing version for Intel parallel supercomputers.
This will be one of the frst codes to run on the Intel Paragon and ORNL will
support its use by the climate research community using the Paragon. Work now in
progress seeks 1o improve on the paralle]l efficiency of the code and o develop
mare comprehensive models with improved capabilities.

The climate mode] solves the nonlinear PDE's for mass, momentem and energy
which govern the general circulation of the armosphere. Horizontal advection
couples colurmns of the atmosphere while in the vertical direction & large number
of processes are coupled. On the shortest time scales the imteraction of radiation
with the earth’s surface, clouds and abzorption by the atmosphere couples 2
vertical column. Surface moisture, latent heat exchange, convective overturning
and precipitation processes are also represented within cach vertical column, The
ocean surface temperature and the ability of the ocean surface layer o store heat
during a diurnal cvele are represented without including general ocean circulation.

Since a large portion of the calculations (radiation, ahsorption, clouds, ete.) in a
vertical column of atmosphere are independent, the parallelization sirategy used in
the climate code 15 across columns, The columns of atmosphere are divided into
adjacent patches and distributed among the processors of an MPP. These indepen-
dent calculations comprise about 30% of the parallel execution time of the code
but cxhibit some load imbalance, The coupling in the horiontal dicection, the
solution of the Aow couations, uses o parallel specieal transform algorithm for the
approximation of horizontal derivatives and a semi-Lagrangian treatment of the
advective term for the molsture egualion.

The PYM version was created from g working parallel message passing code
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running on the Intel iPSCA200 m a couple of weeks, The message passing calls
were replaced with eguivalent PYM calls. Some special functions that take
advantage hypercube or mesh conmectivity were replaced with simpler PYM
routines. For example, a global maximum iz caleulated on a single process.
similarly, all the 100 is performed by a single process, The climale researchers
report that PYR has offered an excellent debugging and development tool as well
as portability across machines and networks,

E, Discussion

In this paper, we have attempted to present overview descriptions of some of
the more interesting and important faeets of the PYM system, including the design
philosophy, computing model, performance issues, and application experiences,
Dretailed expositions as well a2 pedagogical material on varous aspects of the PYM
svstem may be found, for example, in [12-14], in addition to the papers already
cited. At the time of writing, FVYM continues o be a popular and wadely wsed
swstem for concurrent computbing, and iU 15 expected that the project will mature
and evolve even further in the future. In this section we briefly discuss ongoing
auxiliary projects, future plans, and comment on the long term pelential and scope
af PWA and similar technology.

30 Degoing and fafuee work

As mentioned, PVYM s an ongoing experimental research project, and continu-
ally evolving new ideas are investigated both by the project team and at external
institutions; successful cxperimental enhancements or subsyslems eventually be-
come part of the sofltware distribulion. One example of a relatively concise
enhancement that is undergoing investigation concerns system level opfimizations
for operating in shared memory envirenments, Small-scale SMM's are re- emerg-
g, and a version of PYM that utilizes physical shared memory for inferaction
between the daemon and all user processes on such machinegs 15 being developed.
Ancther project 18 aimed at providing fail-safe capabilities in P¥2 [13]. This
enhanced version uses checkpointing and rollback to recover from single-node
failures in an application-transparent manner, provided the application is not
dependent on real-time events. Several other enhancements are also in progress,
including Ioad balancing extenzions, integrating debugging support, and task queue
management [16].

One somewhat different and more extensive subsystem under development is a
generalized distributed computing (G layver for PYM. While scientific applica-
tions have provided the technical impetus for the PYM project, more general and
commercially oriented wses are now evolving, In order 1o supporl such applica-
tions, the GIMT laver is being designed, and will support
(1} parallel input- output with cohanced filesystem semantics for shadowing,

interleaved access, and rolllrack;
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(23 aecess control and authentication, and abstract mutual exclusion mechansms;

(3} support for the client-server model of distnbuled computing, with facilities for
the transparent exporting and invocation of services; and

(40 distributed transaction processing primitives,

Early resulis indicate that these facilities can be provided at high levels of

efficiency, and that the enhanced functionality will prove beneficial for many new

classes of application domains.

52 Anxilinry profecis

Apart Trom the experimental work deseribed in the previous section, a numbser
of other projects related o PYA are in various stages of progress; by nature, these
are less intertwined with the internals of the core system, and to a large extent, are
auxiliary tools or external subsysiems, A few are mentioned below:

# HoMOCE is a graphical programming svstem for PV, this wolkit generates PWM
programs, from depictions of parallelism dependencies as directed graphs, and
provides an interactive administrative mterface for virtual machine configura-
tion, apication cxecution, and animated visualization.

 Xab [1] 15 a graphical tocl for the run time monitoring of PYA programs. 1L
gathers monitoring events from applications, and displavs thiz information,
which can be useful for profiling, error detection, and optimization.

# The DoPWh subsystem [17] 5 aimed at supporting the “shared object” paradigm
in Pk, By writing C + 4 programs in which objects derived from bailt-in
classes can be declared, this PYM extension permits a shared address space
concurrent computing model, thersby alleviating the inherent complexity of
explicll message pagsing Programming,

a8 Long-rerm onlook

It is important o realize that PYM Gand other similar svstems) iz not merely a
software framework for network-based concurrent computing: it is an integrated
mcthodology for concurrent, distribuled, and parcallel processing, and maore impEor-
tantly, it is an interface definition for portable application development. From the
portability point of view, PVYM applications may be migrated not just from one
machine {parallel or serial) to another bul acress dilferent collections of machines.
Given that PWM can operate within a parzllel machine, across networks, and
combinations thereol, significant generality and fexibility exists, and it is hard o
imagine & computing environment where such a model would not be appropriate.
From the point of view of performance, PYM delivers a significant proportion (of
the order of 30-90%) of the capacity available [rom the underlyving hardware,
operating system, network, and protocols — and we expect to retain this character-
pstie as petwork and CPU speeds inceease, and as protocol and O5 software
becomes more efficient. [t should be pointed out, while on this topie, that in
measuring the worth of systems sech as PWVM, comparizons of clusters vs, MPFs
are inappropriate; rather, a meaninglul metrie 5 the value added by PYM 1o a
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piven hardware environment, whether this s a multiprocessor or a2 collection of
workstations. In ferms of functionality, the WM svstem currently supports an
adequate suite of features, and with the mtepration of extensions described carlicer,
will be 1 a position to cater to 3 much larger realm of distributed and concurrent
applications, Heterogeneous network- based concurrent computing svstems like
WA are therefore likely to remain viable technologics for concurrent and ois-
tributcd computing.
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