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The IBM RISC System/6000
and linear algebra operations

This paper discmsses the IBM RISC System G workstation and a set of
experiments wilh bocked algorithms commanly wsed in solving probiems in
nuimerial linear algebra. We describe the perfornsanee of these algorithms
and disoues the fechniques wsed in achieviag high performance on suech an
architecture.

The IBM RISC System/S 000 computer is & superscalar second-generation
RIZC architeciure [1]. The RISC SyswenyBlK) implements a regisser-
oriented instruction seq, the CPU g hasdwired mather than microcadad,
and it feapores a pipelined boplesmentation, The Acating-poitt unit &= in-
regraesd in the CFU, minimizing the overhead assockaed with ssparats
floating-paint coprocessors. The RISC SystemyB000 s the alsility to dis-
patch multiple instiructions and to overlap the execution of the fixed-point,
the Noating-point, and the branch functional units. The 184 instructions
are divided among the functional waits and are desipned o minimize
interaction amang the functicaal unis.

The IEM RISC SysrenH0 is intended o satisfy the requirements of
bath commercial and scienuific applications, Our focus here i8 on e
performance of the RISC SysenytlEi) for scientific applications, which
respuite very high Aoating-point performance as well as specialized pe
ripherals, such as high-quality graphics adopters. These, in wm, require
very high memary bandwidths o the central processing wnit,

In what follows, we give a briel overview of the design of the CPU
amed memory and of some aspects af the O system, In particalar, we
discuss those anchiesciral Features most impenant for desigring and im-
plementing high-performance mathematical software. Mole that specific
details refer o the Model 5300 The specification of ather members of the
RIS SystemSHED family may be different i seme aspects, For a more
cumplets discussion of the hardwine, we refer the interesied reader o

Cendral Processing Unit
The CPU archivscoore i3 based on @ design that explois modern compiler
rechnology, and an implemeniation that exploite VLS and CMOS tech-
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ngdeegy, 10 allow as maoch paralle] insouction execution ns possiBle, The
RISC SystemyB0H) processor consisie of thres separone but inbeprated
functional wnils:

1.

The Instructics Cache &nd Branch Processing Unit fecds o smenm of
instructicms o the fxed-point and floating-peint units. The branch pro-
cessor provides 21l the brancling, inesrupt, and coadition code func-
tions within the system. An imporeant feapare of he branch processing
unin i5 the “wereecycle branch™. A wero-cycle branch s achicved by
exccuting branches simultanecasly with fized- or leaung-point aper-
atbons 5o thar the siream of doto o these unils 135 oo inkermepesd, n
praciice, this configuraton means thor loop boundaries o not iner-
ruplt papelimng.

. The Fixed-Faing Uniat (FHLU is designed 1o execute the fixed-point

arithmetic, the legic instructions, and the data address compuiations
and b schedele the movament of data barween the floating-peint wnic
smd the data cache. Resd ar write translers berwsen the Roadng-poin
unit and the dota coche reguine coe cycle o complee.

. The Fleating-Foint Uiz (FPUT supparts the execation af (he Aoating-

point instructions. The FPU has 3 =21 of tiny-tes ad-bit foating-
polnr registers than access the data ciche directly. It conforms 10 the
ANSIIEEE 745-1985 s@ndard for binory footing-poeint arithmetic
The FPL ig organized for doubde-precizion computarions. Thuas, doca
held in the floating-poing registers are always represenied in double-
precision format Therefore, wien single-precision data are loaded,
I,['lr_:.' e :::-:p:ln:lu-:l 0 cloulle-precision ToemyaL.

In pidition, thers are 3 murmber of feamres in the archiwecmre which
enhianee perfommance.

Register renaming is an impostant feature of the maching. This allows
dara for the next insmaction 1o be leaded into o Aoating-point register
thag i currently being used by an earlier instroction,

In acldition 10 the ususl arthmetde aperations, there ane compound in-
structions that multiply two operands ard sdd (or subiract) the prod-
uct 10 a third operand, Thess Aoating-paint mulliply-and-add (FMA)
insructions take o cvcles o compleds. However, ane FMA instnac-
dom may be izsoed in each clock cycle, provided thal the aperands
are independent. Thus bt is possible o comples two floating-poand
computations i each cyele.

The FAA instructions aceally prodoce only coe reanding ermor rather
than fwo and are therelose more accurate than requined by the IEEE
siandard, This addificonl aecuracy has been used, for examyple, in
some of the inminsic mathematical functions, However, il sinet ad-
herence 1o the [EEE standard is requined, o compile-time opdion Gin
be wsed o diexble the peneration of compound instructions,

The floating-point divide is implemented by a Newion-Rophsan ap-
procamation algesithem. A division regaires 16w 9 cycles o com-
plete and provides correctly sounded resulis, but is obviowsly expen-
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sive if computed unnecessanly inside & lsog. IF division by a constant
is taken out of te loop and replaced by a mualfiplicatdon with the re-
ciprocal, the code i3 more elfcian, et the resalts are not necessarily
identical. I & & mpartant 1 have exacily equivalent code, the added
precision and speed of the mulfiply-odd instroction can be used 1o
wplernent @ reciprocal multiplization plus cormeetion algosithm o he
oot 0f @ multply and two multiply-adds (5 cveles) This algorithm
is cheaper than o division and sill provides comrectly rounded resalis,
This design hos allvwed the implemematien of a CPU that exscuies up 1o
four instnactions per cycle: one branch instruction, one condition register
instruction, one fixed-point imsmection, and ore lleating-point maliply-
add instruction. A second pipelined instruction can begin on the next
cvele on an independent set of operands, This means that teo independent
foating-point opesations per cycle con be execwted.
OF panicular imzerest is the fact that loads and independent Resisg-point
operaleng can Gocur in parallel. The compiler mkes advamage of this
capability in many cases; with o well-designed algorithm, @ is mssible
L0 execute bwg lloating-point eperations on separate data ieemg and “hics™
caie memory reference oll in the same cycle. A a clock lequency of 25
MHz, this translates into a peak performance of 50 Miaps,

Memory and caches

The RISC System/S0) memory banks implement a four-way interleaved
diesign that provides teen G4-bit words of data every cycle. A system can
Bawe from 16 te 256 Mbyiss of toal memony.

Separabe instroction and data caches provide conflict-free access o dan
and instructions, The insirection cache B organized &= an 8-Khyie, two-
wily set-pssocintive cache, which has a sd-byie (16-instruction) line size.
The data cache is a four-way set-associative 64-Khyie cache, which is
divided i Four identical chips of 16 Kbyies cach. The cache is imple-
mentd as a store-back coche 10 minimize the memory bus w2 daks
are writkan back o memory only when an wpdazed ling in cache is ne-
ploced. The cache-line size is 128 bytes, A synchroneas 128-bit memory
bus allows 400 Mbyies per second 1o be iransfermed 1o or from menmacy:
it takes cight cveles 1w koad a cache line (16 double-precision words)
from memory o cache. A &d-bit data bus connects the floating-peim uni
and the daia caches it tikes ane cycle e oansfer a double-pracision waond
Debwean the dita coche and the floating-poing regisiers,

Fortran technigues for performance on mairix operalions

As mentiened in the preceding section, the RISC Svseay@i can com-
plete & Roating-point multiply-and-add (FMA} instruction every cyole,
s that & Muodel 330 munning ar 25 MHz has a theccetical peak speed
of 50 Milopds, Many factors limic the amount of concormency that con
be effectively wsed., thus lmitng the performance that an algesithm can
achicve. Moat notably, unnecessury memory references can have a se-
vens ampact an the performance attainable, Indecd, the movemem of
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clati belween memory and regigters can be mone cosdy than anicthmetic

gpentions on the dala, This cost provides considerable motivacion 10 ne-

struclhure existing algosithms amd oo devise new algorithens thar minimize
clatn mvement,

In this section we describe 3 mede] W predict he performance of simple

Forran loops and 1o serve ns a guids to writing efficient Forimn qode for

ihe RISC SyseemGHER (We obseree that the Forrn compiler asoally

1akes advantzge of all the parallelizm of which the CPU is copable.) Car
medde] ig hased on the following nales:

1, Each FMA insruction reqoires two cycles w compleie. Two FiiAs
that operae oo independent data will be scheduled on consccurive
cwgles, and tharefore two lleating-point operations will be execued
sirmulneouesly,

2, Loads from cache 10 floating-poant reislers equire ane cvela i com-
FI||::1I;!. They will be orveslapped with FRMAS (hat were scheduled earler,
pwen if I:i1|,:.:.' Gpenige om rugist-:r.x that the earlier FiA @ snll usang
(register renaming).,

3. Brores do no overlap with FiMAs.

Loop bpandasies dp not inerrupe pipelining {zero-cycle branch).

5, Whean a cache migs pocurs, e floating-poan unit must wain 11 eveles
before the whiole cache line is avalable. The laency (oo memory
ty cache nocouants for l:ig'hl: cycles, In gur model we adld o thns an
additional lalency of three cycles, which s closaly he experimen-
tal data wor collecied, The deiils of 1he &2 ransker may e mare
camplicaied in reality, bug this is the average effec) thal 3 Forizan
programmer might expect o see,

I the Following thres subssctions we use this model e explain the daffer
cnt levels of performance thar can be achieved by using differsnt leveks
of Basie Linear Algebra Subprograme (BLAS} kemels [2-4], and we de-
scribe spowe Fomran wchnbgoes 10 implement the BLAS efficiently. High
'|,:¢1'|'|_'|1'|ni|n-t_:¢ wits achieved by ﬂd:CISIn.II'.“IiI'IE the codles o such o way thal
the compiler can casily penerate cede that maiches the architsciune of
the machine. The echniques used were blecking (or sirip-mining}, loop
unrolling, and loop jamming — all fairly swrdard wechnigues used by
compiler wriers, We hope thar some of these wchnigues will be incor-
pireted inee sebsequent versions of the compiler, so thar even bess work
willl he r::qui.m{! 10 axploif the machine.

-

Laevel I BLAS
The two Level 1 BLAS cperanons thar cocur most frequently in linear
algeibm are the DOT:

DOl T =1, H
TEMP = TEME + X (I)*¥(I]
10 CONTINUE

angl the AXFY:
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DO 10 I =1, ®
(I} = Y(I} + ALPHA*X(I}
10 CONTINUE

W bepin by examining the performance of these operatdons when wang
datn storedd in coche,

For the COT operation, cach FMA insruction requires two loads, one
for X411 and for ¥4 I). Loading the dara requises vao cpcles, and per-
forming the FMA also requires two cycles. There is no possibility of
re-using 2, 5o the best we can expect is that the leading of the next
tewn aperands is gverlapped with an FMA, This comesponds w a theo-
reticdl gpeed ol 25 MAOpS; in practice, we measomed 245 Mﬂu:lp.l':,' (soe
Fignare 17,

noT AXFY

Type of memory ucoess Predicted  Measured  Fredicted  Measursl
all dasa in cache 25 245 16,67 16,4
all daca from memony:
r and y with onir siride 1481 L4 11.43 11,2
x with soride 16 145 3 S 3.2
r and g with seride 16 208 14 yd 1.4

Far the AXPY operadon, cach FMA instnecton requires two bpads and
one store. Ajain, there is no possibiliey of reusing daca, 50 the best we
can hope for in this case i one FMA insmoeton every thees cycles. This
cormespands 1 1667 Mfops; in pracdce, we measured 1od Milopds (e
Figuee 1.

For dara that muost ke accessed from IMermary, we s ks aecount
ol the fame ken for data to ammive in the regiseers, Bach time a cache
miss ogccurs (every 16 clements for siride-one access), the processing
i5 inpermepicd, amd the CPLU musr walc for e cache ling 10 become
awailable. In our model, the CPU muuse wai for 11 machine cycles, Thus,
the cost of moving contigeous &z from memary ke repisters is, on the
iveniga, 189 cycles per element (e, 11 ¢ycles io move o cache line from
memary o cache plus 1 eycle 1o mansfer cach of the L6 elements from
ciche wo register ((114160716) cycles per clemen). Inoa DOT opesaion,
on the average 2 Aoaing-poin operations (1 FMA) are sclwedoled every
338 machine cycles, giving 1481 Mlop's in theory and 14,4 3 liops in
pEaCICE. IF 1the vectors are accessed wath siride 16 (tha I-::u:_zl;h of o cache
lotzh, each element will be available afer o delay of 12 -;:_'!.'-;:Ii:.s (=11 +
1) giving 2513 = 2,08 MAop® in theory ond 1.8 Miops in pracice.
Figure 1 shows the measured performance and the predicion esing the
madel for some other memory acoess panerms.

Levid 2 BELAS
Here we consider the Level 2 BLAS DEEMY aperations

14



0 Canlrbulicns

SUFERCOMSUITER JULY 1891

y—y+ ds and y-—;r—.#l.l:

The: basic operation in Foriran i3 given in Figure 2, where 5{I, J} must
be replaced by A 07, 1) For the operation with A ' Depending on the
arder ng af ihe :ICI-||:H_'|]}E| 1he inner Mo 1% either a T o an AXPY. We
have seen from the discossion af the twe Leval 1 BLAS aperations that,
hecaase the RISC S';'EIBFDIE{H}D S¥ElEm Can perhorn an FAMA arcineclion
with all it operands in registers, it is bedter suited o DOT aperations
than 1o AXTY operatons. (Mooe thar this conmss with the situation on
verior machines such ag the Cray Y-MP, whese the two wecror loads and
e vector store medquired match the architeciune well, Also, by unrolling,
it is possible bo keep the vector ¥ [ In a vecwor register for longer, thus
increasing the ratio of leating-point operadons 0 memory references.)
Wi have alse @een From Figure 1 thar when accessing data from memory,
it is very 'irni,ll:lrlam: Igp eeess the data wilh sinde one, 5o that all the
clemenss in & cache ling are used whan that line 15 Inaded. For these two
reEs0ns, wie consider the operation

¥— =+ ATr,
which can be exprassed as o INIT operation with A accessed with ik
stride.

e
iln}
LIy = Y(I) + AL, J)*X{J)
CORTINDE
CONTIRUE

Figure 1. {ieneric
recrlyi x-vector mulliply
i

For this aperacion, the peak speed is again 25 MAop's — exactly the same
i for the DOT. However, in this case we can unrall the dot product o
reyse gach & (.20 a number of does. As the depah of unrolling increasce,
ihe ratio of |:|p|_':raﬁ|_'|ns 0 loads increases (rom e and weds wowands rwo.
For example, for unrolling 1o depihs 2, 3, and £, the ragio of aperations 0
londs is 4¢3, &4, and &5, with a thearetical peak spead of 333, 37.5, and
A0 Milapds, respectively. The code for this eperotion unmalled to depth £
is shown in Bigane 3.

In practice, there 1s linde benefin in unrolling w very large depehs, as there
arg only a finie number of floatng-point regissers, and the performance
repches o plateay, The code in Figere 3 performs a1 36.3 Miopds, and a
speed of 4003 MAEopS has been measured For unralling o Gepth B
Figure 4 lists the gpecd of the varions DEEMY operations amd also inclixles
speeds for da accessed from memory, This Figure shows that for data
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DO 20 T =1, M, 4
TEMP1 = ZERO
TEMP2 = ZERD
TEMP3 = ZERO
TEMP4 = ZERD
Do 10 J = 1, M
TEMPL = TEMP1 + A{J, I )*X{J)
TEMPZ = TEMP2 + ALT, I+1h =X (J)
TEMPY = TEMP2 + A(J, I+2)*X(J)
TEMP4 = TEMP4 + A(J, I+3}*X(J)
10 CONTINUE
¥(I } = ¥(I ) + TEMP1
¥(I+1) = ¥{I+1]} + TEMPZ
¥(I+2) = ¥{I+2) + TEME3
¥(I+3) = ¥{I+3] + TEMP4
20 CONTINUE

Figure 3. Model code

aceessed from cache, the speed of the operation

_%'_— = Ar based an

fir y—g+A 7. [OT iz the same as thart for the operation with A7 -t i no penalty
for accessing with soride from cache,
[rala :i-l'.t cache Biata in memsory

vyt Az yeytATs y—ytdr y—y+4Tz

Depth  DOT  AXPY DOT AXPY DOT  AXPY DOT  AXPY

1° X7 158 226 1535 7 90 110 13

2 Mps 235 304 134 104 100 112 9.5

3 oMl M40 32z 133 106 123 114 9.7

4 363 M0 364 254 113 9% 113 103
Figare 4. Spead in First, we notios that for data sccessed from memary, for th.;_!,.T_-;J:
pafloprt,of Ll Ax aperation it is slightly better 10 wse the AXPY operation. which

acoesses the matriz with onit stride, rather than tee BOT wersion, which
accesscs the mamix with swride equal o s leading dimension, Secend,
we see thar althaugh the speed of the y — g+ Az operation based on
AXPY (9.0 Milogy's) and the y — y + ATz operation based on DOT
(1L MlEogss) are slower than the corresponding Level 1 BLAS speeds
busesd o unit sride (1.3 Milopss and 146 MAops, respectively — e
Figare: 1} the spesids for accessing the mamrix across a row are much
fuster for the Level 2 BLAS than for the comesponding Level 1 BLAS,
This is because when clenems of & row of @ marss are accessed, all
the elemems in the comesponding cache lise are loaded ino cache, amd
some will be fmmediaely available when the mec rgw is aooessed
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Lovel § BLAS
In performing the matrix-maims multiply operation

o= OO AL,

where we assume that all thres amays are in cache, it iz possible o
incrense the mtie of eperations fo loads e 2:1 by onrolling the C2-lopps
in two directions and thereby re-using each loaded clemen ralce. Mo
theat this ratio is opiimal, in the sense that i is precisely whar the kardwase
suppons. The code fragment in Frpare 5 illustraces this techniges,

O 30 Fo=e 1, 10,2
Do 20 I =1, M, 2

T1l = ZERD
TZ1 = ZERD

T12 = ZERD

TZ2 = ZERO

DO 10 K = 1, L

Tl = T11 + AL, Ki*BIK,J )
T21 = T21

+ ALI+1 K} FE{X,J |
T12 = Ti2 + A(I, K)*B(K;J+1}
T22 = T22 + A(I+1,K] *B{xX,J+1)
10 COHNTINUE
L{I, J F = CIL; J ) # TIil
CiIfl,J ]| = C{I+1l,d ] + TZL
C{I, J+1) = C{I, J*l)] + T1Z
C{I+l,J+1l) = C(I+1,TJ%1} + T22
20 CONTINUE
A0 CONTINUE

Figure §, Codc
lragmenl for near-
opimal perfoerance ol
e U AR

In theory, this approach would result in o speed close o the theorerical
maximum of 50 MAop's on a 25 MHz machine. In practce, we have
measured 475 Miops - see Flgore 6. Mpe that a prodoction version
wiald be complicad by the need w inclede code Tor the cases when M
aml M oame ndr a malliple ol ta,

In genzml, the amoys A, 0 ond O will be peo large w fit ino cache
iopether; in any case, they need 1o be Jogded from memory initally. T
is still possible w arronge for the operations 0 be performed with damn
largely in cache by dividing the marrix inwe blocks. as shown in Figure
T.We may then fix the block A of the mamix A ad perfonm every
aparation myvolving this block belpme moving oo o ancdbar block of A,
In afluer weomcls, we compate the prodects £ — 0 + .--'1.|'|!-|1 iy
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Cenditivns before operation Speed in Miop's

Al armays initially in coche 471.5
A or #initially in cache 454
 initially in cache 425
I armys initially in cache 41.5
Figere 6. Spead of Cy o+ ABly,..., U5 = Cg + ABg. In this way the block A can be kept

L e A T T

RISC Syitemyb000-530. in ¢ache and the data reused many cdoes.

In pddition, if we assume thar the leading dimension of & is such thar
all glemenis of block B can be conained in cache, the overhend of
leading H; from memory §s not 100 greal. Moreover, each column of 8;
is aceessed a numbers of toses, Thos, we nay perform the momis-marx
product of these blocks a1 close 1o the peak spesd of the machine.

eppbe

— o + A ®
= i
Matriz-matrix product of individoal blecks e
(Block A remains in cache)
23 ‘ e " 3
Deubly woeslled dof prodacts far
“pptimal” performance cn sub-hlocks

Figure 7. Blocked To illusmate the overhead of cache loading, we show in ﬁg;m:. & the

memx-maris muliipls specd of the operation
{CGEMML o
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e O o A

where &7 is 24 I:|:|r 24, andd A is 32 by 128, and whare differant amays
ame forced to ke accessed either from cache or fmom memdry, Thase
dimensions were chosen so thar all three arroys con comfarmbly A ingo
cache wgether, and the lengih of the dot products is sufficienily long so
that they reach their asympiotic speed.

Ong ather imporiant detail of the Blocking stregy menis discossion.
Suppose that the marix A is declared with a very unfavorable leading
dimension. Then it is peasible thar only a few columns of the marrix A
will fit inte cache belore new columns begin o Aush the old oalumis.
For exarmple, il the leading diension of A I8 5012, and A I8 32 by 32 0t
terns out that only 16 calumng of A will fit in cache. To overcomse this
];ln_1b'||,-:rn.. W Gy 1he blosck _.-1. imbee 1 wark @iy and then perform adl the
aperations with the waork array, rather than addressing o part of the array
A. This ppproach requines s e actess A with a bad lesding dimension
only once, rather than 16 times, for the mooix dimensions menticned
above,

A Forran version of the Level 3 BLAS routine CSERS using these wech-
niques is available from medih (send mail o neclibfornl . gov) in
the mal mestage fype: send dmre from mise).

Summary of BLAY performance

Figurz & shows a graph of the speed of the three BLAS rpatines DDOT,
DEEMY, and CEEMH for increasing mamix dimensions. The operations
performed by DEEMY and DGEMM are chosen so Ln:u dit produects are
perfarmed on contiguaus elements, Le, o — ¥ + A'r for DEEMY and
€ 4 ATH for DGEMM,

This graph cleary shows the benefit of increasing the mtio of Aoating-
point gperutions {0 memary references achiewved by uslng the Level 3
BL&S For marrix-marrix muliply we are doing ©(n”) operatons on
€2(r?) dats, representing a lavosable surface-doovolume ellecr Hence
maici-matris muliply offers muech greaer oppoona iy for explodting
the memory hierarchy tan the wer-level BLAY routinges, All the ex-
periments descrited here were parformed anoa IR RISC System GO0
Medzl 330 running ar 25 MHz, wsing the ATX XL compiler version
0101 (R KD weith the =2 option, The BLAS shown in Figare 8 were
implermemed in scandard Fororan 77,

Mock algorithms and LAFACK

Experience with machines having a mermoey hierarchy [3, 6] indicawes thac
it iz ofien preferable w paniton the matrix or macrecs ino blocks and
e perfonm the computation by matrx-matis apersiions oo the Blocks.
By argamizing the compuelation in thas fshion, one can provide for Tll
e OF daty while 3 given block is beld in the cache or local memaory,
Thiz approach avokls excessive movement of data te and from memaory,
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Lewel 1, 2 amd 3 and its baseics on the BI150 System S0 in particalar are glear from the
RLAS o e RISC ]‘:':E‘.'i.-:‘:-uﬁ e liom
Systerny 000 33U T =

Many algorithmns can be blocked, For example, rescarchers have wsed
blocking o rerarite codes for the solution of pamial differencial equea-
tions. Such codes mike efficient use of supsrcompuiers with small main
memory andf Larpe selid-siae disks [7]. All experience wilh 1hese eche
niques has shown them o be cnormously effective an squessing tha bes
piasible parformance outl of advanced archiseciunas,

Becem work by mumeric] analysis has shown that the most jrn];k:.r[.am
computations for denss mamices are also blockoble, A major softwans
development project dealing with Blocked algorithms for linear algebea,
called LAPACK (sharthand for Lincar Algelbra Package), is based on this
idea [E].

The LAPACK libzary wall provide rowtines for solving syslems of si-
multangons linear equations, leasl-sguares solutions of overdetcrmingd
systems of equotions, ond cigenvalue problems. The library is inoended
ta be efficient and wransportable acress aowide range of compuing envi-
rommenis, with special emphasis on modern hgh-pesloemanes compualers.
To achieve high efficiency, LAPACK developers are restructuring most
of the algarithms from LINFACK and EISFACK in enmns of calls 10 2
amall number of extended BLAS, each of which implements o Block ma-
irix pperaticn sech s mairiz multiplicadon, rank-E marrix updaces, and
ihe solution of miangular systems. These block eperatbons can be opti-
rized for esch architccrune, bur the pumerdcal algorithms that call 1tham
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will be portable.

Performance of Wocked algorithms oo the BIEC System/diE

Wi used three blocked varianes from LAPACK o compans the perioe-
msance of LU facorizaton for & general mamix. These blocked wari-
ants &re shown in Figare 9. The lightdy shaded pars indicaie the mairix
elements accessad in fonning a bock row or ooluonn, and the darker
shaimg imebicages the block row or colomn being compuied. The figf-
Inokimg vanznt compules a Wock column &l a ime asing pr:'-'in:_u,'_s'l:,'
mrn;lu.l:d columng, The righd-loaking variant {the familiar recursive al-
gorithm) compuies a block row and column at ench siep and uses them
o updaie the mailing submaoimis, The Crowr variont is a hvbrid algoriche
in which o Bleck row ond ¢olomn ore compused o cach siep wsing pre-
visusly compured rows and previously computed columns,

Left-lcoking LU

Figure % Varaers ol
LU femorizaion on the
RIS Sysiemtoli0-530,

Right-looking LU Crout LU

All af tee computational wark for the LU variants is conizinad in three
ronfmes: the wmabrix-magris 1n|,|'|l;i5||3,I DEEMM, the ITi:_|11|_:;uIiL.' =clve with
multiple right-hand sides CTRSM, and the unblocked LU faciorizacion
for wperations within a black colamn,

Each variant calls s oon unblecked variant and the row inerchanges

A1 Mlopds for all theee variants, bl he Avenig specd of DTRESM de-
pends an the s of the Imangular matrices, For the Iv‘l'l-!m:-king wariang,
he triangular matrices at each =ep range in size from & ot e — b where
bis the blocksize ond e the order of the originol momix, and the average
performance is 38 Mfopt, For the right-leoking and Crout varianes, on
ihe oiher hand, the wiangular mamices are always of order &, and the
average specd is only 2% MAop's. Clearly the average performance of
1 Level 3 BLAS rownimes in a blocked routine 15 a5 impoctant as the
percentage of Level 3 BLAS work.
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Despise the differences in the performance raes of heir cconpenents,
he Block varians of the LU factorizaion el o show similar overoll
performance, with a slight advamage w the nghe-looking and Crous vari-
ante because mare of the operations arg in DGEMM, Figure 10 shows the
performance rates in Milopd of thess thres variants for different marrix
siees onoan [BM REGHO-53), aleng with the performance of the LIN-
PACE routing DGEFR, The eptimal blocksize on the RISC Sysiemy G000
compulers i 31 for most matrix sizes, but the performance varies less
than 10% over a wide range of blocksizes.

=0 ! - : .
|
a0k ].ﬂ't'l!m_:".ﬂ e
40 ;
Leovel 2 BLAS
£ 3} 4
= i mam
A At Level 1 BLAS
ik -.r-"-‘- by R T e e
AT
1o o
|:| |

V] 10K 00 30D A0 500 GO0 T By Kl 1000
M amder
Figure 10 Speed of

LU varigans on g
Bl Sys e oo00. 53100,

Summary and conclusions

The abn of this work bas besn e examing the performance ol block

alporithms on the IBM RISC workswaton. Based on our experimeants, we

draw the following conclusions,

1. Meither the memory bandwidih nore tee cyele tims for the TRAM RISC
Systemya0 is an the level of current-generation vecior supercompal-
ers. These ig, bewever, ne iechnical reason why this siuation conld
i b pmproned,

2, The IRM RISC processor is close o matching the perfonnance leval
of vecior processors with mached evele times [9). Becanse of the
regulariny of vector lpops and e ability of the BI1SC archiecre
0 iszue one foating-point insmuctiens every cyele and compleis twp
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floating-point operations per oycle we expect thar the RISC super-
sealar machines will perforo ar the same raes &8 the vecis machines
for vecuor operatong with similar cycle tmes. Moreoyver, the RIS
maciines will excesd the performance of those veclor processors on
non-vector prablens.

3. The LAPACE soffware based om bocked operiticons performs ot neor-
apnnal perlommance wath manirmal effot, Cne shoold nove, however,
that the woarkstation dees not maich the D performonee and the
rumber of users pccommedated on larper compusers.

4. Essendal vo high perfoomance is the use of opimized versions of
the Level 1, 2, and 3 BLAS. The techniques and bdeas used here o
gain performance on the TBM BISC SysremSHH should work on all
BISC-based machines. To a large exeent, the swocess will deperdt on
the Fomran compiler's abiline i generate efficien: code, (We baligvs
thar thiz high performance i3 dwe, a1 least in part, w0 the Cace that
compiber writers wene involved m the early desagn shyges, rahar thim
afver the harchaarse desigrers il complated moch of their work,)
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noT ANPY
Tvpe of memory access  Predicted  Mexsursd  Predicled  Mensiured

all dkany in cache 416 4115 2132 274

all data from meEmory:
rand g with unit stride 26,62 250 M7 1953
r with srile 16 T.20 540 G52 29
r and g with stridle 16 4,18 340 3490 2.60

Appendix: The Modd 250

Since this report wis first prepared, [BM has annownced a new model
in the B15C SystemyS0 family — the Model 550, This modal has ex-
acily the =ame orchitecture as the Model 530 wed n e experimenis
reported earlier, but has a faseer CPU, running at 416 MHz {compared
with 25 MHz for the Madel 5300, and a fasier memory, In this appendix
we reproduce versions of Figures 1, 4, & and 8, with data gathered from
the Mocdel 350, We also reproduce Figure 8 which demaossizaies the
performance aitninable with the thres levels of BLAS

Data in Cache i Data in memory
y—y+Adz y—y+A's g—yg+Ar y—y+ ATz
Depth DOT  AXPY DOT  AXPY DOT  AXPY DOT  AXPyY

I 330 242 WO 2063 161 155 188 134
1 5l 392 510 0 302 17.9 174 192 164
3 575 400 578 400 190 212 197 7.1
4 610 400 817 402 196 172 198 172

aperations. In this cxe the predictions ane based on the cleck speed of
4L.6 MHz, and & time of ¥ cycles 10 lead 3 cache Jine from memary o
ciche. This walue fits the oheerved data beter than the 11 eveles wsed
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All arrays initially in cache
A or M oinitizlly in cache
7 imdtially in cache

Mo arriys initizlly in cache
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Conditions before operation Spoeed in Milop's

T3
5.6
0D
2

Flgure 13 Sgeod of for the Meodal 530 The other Fipares comespond exacily o thosg in the
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