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ABSTRACT

This paper describes a computational metlwd for dealing with a class of mabrices
which arise in gquantum mechanics involving time reversal and inversion symmetry.
The algorithms presenbed here have greatly reduced the computational effort required
1o sodve this problem and also prodwee a stable, more aecurate solution.

1. INTRODUCTION

An important problem in quantum mechanics involving time reversal and
inversion symmetry is the computation of the cigensvstemn of a 2m =% 2n
complex Hermitian matrix. This problem arises from the wse of relativistic
kinematics in the caleulation of electromic strocture for molecules and solids
containing heavy atoms [4, 5]. The complex Hermitian matrix H is expressible
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in the form

H—[_"‘ﬁ. E]; (1.1)

here and elsewhere the bar denotes the complex conjugate. From the Hermi-
tian property of H we have

A=A¥  B=-BF"=-PB" (1.2)

The first of these implies that A is Hermitian; the second implies that B is
conplex skew symmetric, Notice that B is not skew Hermitian and in general
will nol even be normal.

If & is an eigenvalue of H {necesarily real) and

R HEH! (19
then
Ar+By=Axr and - Bz+ Ay=>Ay. (1.4}
Hence,
AT+ Bg=A% and - BE+ Ag=Af. [1.5)
and
[ - E“f —.1[ ¥ ‘ (1.6)
B A - £

showing that if [£, )" is an eigenvector corresponding to A, then [, — £]7 is
alsn an eigenvector corresponding to A, It is clear that the two veclors are
orthogonal. Hence, the 2n eigenvalues of M consist of n pairs of equal
elgenvalues,

In what follows it is assumed that the reader is familiar with the Givens
and Householder algorithms for the reduction of a Hermitian matrix to a real
svmmetric tridiagonal matrix via clementary similarty transformations based
om plane rofations and elementary Hermitians respectively.

The eigenvalues of H may be found simply by treating it as a complex
2n % 2n Hermitian matrix, ignoring its structure. If this is done by reducing it
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to tridiagonal form with the Houscholder algorithm, then the strecture of B is
immeediately destroved by the first transformation. Since every elgenvalue of
H appears twice, there is a similarity transformation by a unitary matrix of
eigenvectors which reduces H to

n o

o pl (1.7}

|

where [Vis a diagonal matrix containing in general distinet elements.
It follovws that there are also unitary transformations of possibly simpler
form which reduce H to

o | E- D v T 0
H—’@I x| = H "n = (1.8)

where K is Hermitian and T is real tridisgonal,

The transformations which redece H to diagonal form must have elements
from the Galois field of the chamcteristic equation, sinee they solve that
equation. The gquesticn for us is whether reduction to the K or T form can be
dome without access to that Galois field,

Usually in cases where symmetry leads to multiple cigenvalues there are
unitary matrices [T which are elements of a finite group and commute with H.
In these cases the Galois field of cach U is casily accessible, and reduction to
the K form is straightforward from Schur's lemma, But in the case of time
reversal these technigques cannot be used, From a group theoretical point of
view, this paper shows that the T form with T real can be reached from H in
Ecuation (1.1} by the standard numerical technigues of linear algebma,

2. MOTIVATION

The motivation for the algorthm we shall describse sprang from a consid-
eration of the eigenvalue problem for & simple n X n complex Hermitian
matrix X. We may write X =Y + £, where ¥ and £ are the real and
imaginary parts. The Hermitian property of X implies that

Y=YT and Z= =-ZT, (2.1

iz, ¥ is real and symmietric and 2 is real and shew symmetric. The matriz X
may be reduced to real tridiagonal form in n — 2 major steps. Each major step
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conslsts of o minor steps. (We emphasize that we are nob recommending

this as an efficient method of solving the standard Hermitian problem.) If we
write

X=XxX0 (2.2)

then the rth major step may be expressed in the form
X+ 0w plrpirixie pir)t pe, (2.3)
where [ is a complex unitary diagonal matriz and P is & real elementary

Hermitian matrix of the form I — 2o’ u"")". The first step is wholly typical
and is adequately illustrated by considering a matrix of order 4. We have then

vy Wiz tisy W tisg g iz
x| Y2~ Fu Yoz o+ i5g by Fisg, (2.4)
Yy — 15y g i Wos Yay + 1234
Ve = By U~ B Y~ B8y Yas

where we have suppressed the upper suffix in the elements of X' The
dingonal matrix D' is chosen so as to make the first column of 200X QO H
real and hence also the first row real, since the Hermitian property is
ohwviously preserved, Clearly the diagonal elements of D™ must be

Pig TR Wi TG Wig T 5554

1., e — - n I:EE‘]
Tya Fis Fia
where
18 .
ra={uii + 23 (2.8)
and we have
LT T LT Tiq
D':“x“':'[ﬂ“"‘}‘l'l— Tig L LT Moy + iZgy Mgy + g, @7
Tia Moy — i3y Y Uy tizy, |
T W~y Wy iz, LT

where we use y, ;. z,; to denote the new values. This is the first minor step.

The real elementary Hermitian matrix "' may now be chosen so that
POy pOnHPL e tridinponal as far as its first row and first columns
are concerned, exactly as in the standard Hooseholder reduction of a real
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miatrix, This is the second minor step. At the end of the rth step, XY iz of
the form illustrated when n =7, r = 3:

-
ERTR
o

X - (2.5)

W oaE R
Mo e
o e s
HoE e e

where the matrix in the bottom rght hand comer is 8 Hermitian matrix of
order i — r. The r + 1st major step is determined by this matrix of order 0~ ¢
in exactly the same way as the first step was determined by the original
matrix of order n. At the end of the n — 2nd major step X"~ " will be a real
symmietric tridiagonal matrix apart from the last pair of off-diagonal elements,
which will in general be comples. These can he mude real by doing the first
minor step of the n — 1st major step. The second minor step ks ot required.

Let us now relate this somewhat more closely to the problem of Section 1.
The eigenvalues of X may be found via those of the 2n % 20 real symmetric
matrix

(2.49)

[The symmetry of this matrix follows from the relations (2.1).] Notice that the
matrix H of (1.1) would reduce to this form if the matrices A and B were real.
If the cigenvalues (real) of X are A, Ag,....A,, then those of H are
ApAy A Ag,. AL AL Let P be a permutation matrix such that in PHPT
rows 1,23,....8n of :'Ef have become rows Ln+ 12 0 +2 ... 6,20, and
similarly for the columns. We have then tvpically, when n = 4,

H" = PHP

¥ 0 | s 1 Vi3 i Viu  Tua ]

0 Fu | T%n Ws TEy Wis = Fa T

e — & : W 0 ban 331_ Wou =4

_ ¥ WPu | U‘ Ve TEn ' ¥m ~Faa W

" Fa —ZIpm| ¥ =Zgm | Vm o Mo Sy

Tz . N Zga ¥z 0 ¥aa Iy Uy

Wis — 34| Uy =g [ Po - 34| M 0

BT Mg Zo4 g EET Wiy 0 LI

(2.1
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If we compare this with (2.4), then we see that each element a + ihin (2.4) is
represented by the real 2 = 2 matrix

a b
| ki 2.11)
When I is zero (ie. for a real entry) we have
a 0
[D ﬂ] ali (2.12)
We observe that
a/r -h‘f"[ﬂ hl_[r ﬂ]
[.F.a,.-’r r:ft[ -5 a o rl (2.13)

where r={a®+ b*Y% and the first 2x2 matrix in {2.13) is clearly a real
orthogonal matrix

If corresponding to the first minor step in connection with X' we form
DAY DO where D' s a block diagonal matrix with diagonal blocks

oo ﬁml L[ Yia -‘-u] 1] ¥ “'Lq]
B orel =%z Un]' ngl % Wl or,l T3 Wl
(2.14)
we have

Wiy 0 Fig ] Fix 0 Ul o
] LT i Ty 0 L] 0 T
Tia 0 oz 0 Woz g oy T
D] o] = f: il = | 3Fnluie oFin b
Ty 0 | vy —2n L 0 W EET
0 rny| 2y W 0 Un T Iay Uy
T4 0 Wou — &y ¥ — & Wi 0
¥ 0 rny| = Wzq 4 Wy 0 LT

{2.15)
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(where we use g, 2, to denote the current values). Obviously (2.15) is
related to (2.7) in the same way as (2.10) is related to (2.4), and elements
denoted by y;; and z; in (2.15) are the same as those in (2.7} The
permutation of the rows served only as motivation: if we revert to original
ordering we have

Viu Tz Tia e 0 0 0 0

iz WFu V= Vae | 0 0 xSy

Mg Mex  Um W | 0 =2y 0 T

L !iu 0 B, 0 . (2.18)
Q.0 0 0 u  m fa T

0 0 —a3n —#u| M L} P W

0 24 0 =Zn| Tz Vs Mo Uy

0 25 2 0 Pl Uz Mo Y |

This has the same structure as H, but the skew symmetric matrix now has a
mill first row and column. If we now premultiply and postmultiply (2.16)
with the real orthogonal matrix

PY 0 a 17
l 0 P”':':|1 (2.1T)
we are left with
(2 £ % 0 0 0 0
T ih
I:':' 'rl;il I:':' zlfl
i :
L {2.18)
0 o O [T (R T T | L]
] T
{,:' — i ﬂ it
K 0

Dwiously the reduction of the 2n % 2n real matrix proceeds exactly as did
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that of the n = n complex matrix, and in fact the same arithmetic is involved
in the two methods. The 2n % 2n matrx retains the same strocture throughoot
and is finally of the double tridiagonal form

I X
x X x
x I I
x ¥
e . (2.19)
x x X
X i x
I r Il

the two tridiagonal matrices being the same, At the beginning of the rth
stage, the ¥ and £ matrices are of the forms illustrated when n =7, r = 4 by

£ T
Ty
£ 3 x
Yt e T 8 S B (2.20)
o sy
i
T EERnG
and
" =
1]
0
AR D r r =x
x U =z ax
e R |
| r = =T N

The current Y still is real and symmetric, and the Z'' is real and skew
symmetric. The rth minor step effectively operates on the matrices of order
i = r 41 in the bottom right hand comer of ¥'' and Z°. In the first minor
step of this rth step the elements of the first row and column of the remaining
matrix in Z'"" are annihilated; in the second minor step ¥ is reduced to
tridiagonal form as far as its rth row and column are concerned via a
similarity transformation with a real elementary Hermitian matrix. This step is
exactly the same as the rth minor step in the classical Householder tridi-
agonalization of a real symmetric matrix. When this real similarity transforma-
tion is applied te Z'"', none of the previcusly induced zeros are affected.
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The elementary similarity transformations in the Householder tridiagonali-
zation of & real symmetrie matrx ¥ are usoally coded via the relations
(1= 2eou” )¥(T = 20" ) =¥ — 200" ¥ ) — 2( Yo )u" + 40l 0" Y )"
=Y - 2up” - 2pu” + daun’
=Y — 2ng” - 2qu’, (2.21)
where
p=Yu, a=u'p, q=p—ay, [2.22)

The analogous relations for a real skew symmetric matriz £ are

(I —2ua™)Z(] - 2uu™ )= Z = Zul(w"Z) = 2( Zu e’ + ol w"Zu)u’
=Z+2up” - 2pu”, {2.23)
where

p=7u, WwWi=-uZT=-p" uwTZu=0, {2.24)

the last two results following from the skew symmetry of Z. Equation (2.21)
shows the obvious symmetry of the transformed ¥, while Equation (2.23)
shows the obvious skew symmetry of the transformed 2. These results are of
great importance in connection with the problem defined in (1.3

The volume of computation involved in processing the 2n = 2n real matrix
is identical with that in the processing of the n % n complex matrix described
earlier; even the rounding errors are the same.

We emphasize once again that we are not recommending that the
standard eigenvalue problem for a complex Hermitian matrix should be solved
in this way: it is most efficiently done by tridiagonalization of X using the
vomplex equivalent of the usual Householder tridiagonalization.

3. THE Zn x2Zn COMPLEX PROBLEM

We turn now to the problem defined by Equation (1.3} and shall show
that the matrix can be reduced to the form

T 0
[n - (3.1)
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where T is a real symmetnc n = n tridiagonal matrix. There are 5 — 2 major
steps, each of which consists of two minor steps. These steps have a great deal
in eommon with those for the real 2n % 20 matrix, as can be seen from the
following description of the first major step, If we reorder the rows and
columns of the 2n * 2n matrix as in the previous section, we obtain a matrix
of the form

ay 0 dyz b dya by i @y by
0 L] by Ay ~byy Ay | b M
d —by| agp 0 L by dy by
by ay 0 23g ~by iy — by g (3.2)
dy —by| Ay by | 6y o gy by
by g by, L 0 gy ~by iy
ay —by| ay —by | @y —by | a4 0
_i:-“ a,, b, . | ag, i 84

where the a, and b, are complex and the a,, are real. We observe that

l:: bl x !-I']_ ar—by  bitay _[ ¥ 0] g
-b all-¥ %| |-bx-a§ az-by = BBl e
whiere
u=ar—bj, o=bi+ay, (3.4)
s that the product of matrices of the form
a b 5
]—E a (3.5)

is a matrix of the same form. Matrices of this tyvpe do not, in general,
commute, though they do so if all of the elements are real. Fortunately we do
nod meed this property. Applications of the above show that

g =g Al oat b ool
[l';ff a/sr l[—E E] [ﬂ r]’ )

r={la®+ |b2)"", (3.7)
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while

asr =b/ell afe bie] (1 O]
[E;"r a/r ][—E,fr a,fr]_[ﬂ !]_:2' ol

s0 that the first matrix in (3.6) is unitary. In the first minor step we perform a

unitary similarity transformation on (3.2) with the 2 % 2 hlock diagonal matrix
defined by

diuutlf L[ iy bya R "-"'L_a by 1] %u !"u]
" =by 8| fa|—by Gy ne]| —by _I

[3.9)
From (3.3}, (3.6}, and (3.8} the transformed matrix is of the form
I ﬂ“ ':' LT ﬂ Fu ] fu ] |
0 gy, O Fig i fis i r
LT 0 | ag 0 3 by, gy by,
0 rny 0 5 _I‘ﬂ (o — by, @y
- — = . (3.10)
ey 0| 8n =y 3, 0 iy by,
0 Fiq | 1 e 0 oy — by, Ay
T 0| Sy =By | 83 —by| ay, 0
| O Uny | T b, [ 0 gy |

where as usual o, b, now denote values after the transformations. These
new vilues are derived via relations of the type exemplified in Equation (3.3,
The reordering was performed only for convenience; retuming to the original

ardering, we have

-“u fis " g 0 0 o 0
Mis Efy S &4 0 0 by, by
fia Ay g T34 0 =by 0 by
Tia g g 244 0 -by by O
0 0 i 0. | &y .a l:|_3 fia (3.11)
0. 0 —by =Byt  Sm g Oy
0 I’m 0 e Eu Tis £y L T3
| 0 By, . By, ] Mgt bl B3y By |
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This matrix has the sanse structure as the original, but the first row amd
column of the A part are now real, amd the first row and column of the B part
are null, We have now completed the first minor step of the first major step.
In the second minor step we perform a real orthogonal similarity with the
malrix

L
[F{'r’ P‘:“‘. (3.12)

where P s the real elementary Hermitian (e, a matrix of the form
I = 2uu™) which annihiliates elements (1, 3), (1, 4),....(1, n) and
(3 004,10, ..,0n, 1) of the A matrix. This is determined from the r, exactly
as in the first major step of the classical Householder tridiagonalization
algorithm. The null first row and column in the B part are obwviowsly
preserved, After ¢ steps the configuration is of the form illustrated when
=25 r=32 by

PRE S 0.} 0 0} 0 0 o
B oyl By 0 0 n o 0 0 i
D ol e S IO 0] .0 by, Do
0 0| a, a, gy | 0 0] —by, 0 b
0 0| B Bt ng Ul B wlh| el clb D
o 0| 0 O 0 |a B| O 0 o
o 0 00 o o |l &l & 0 0 0
0| 0 By -bu| 0 B| ay Ay Oy
0|8, 0 -Bg|o PR
0| by By 0 i 4 45  Ogs |
(3.13)

The Hermitian form of the A part is still preserved, and so is the complex
skew symmetric form of the B part. The A part is already tridiagonal in the
first r rows and columns, while the B part is null in its first r rows and
colummns.

The first major step is wholly typical. In major step r + 1 we first make the
elements in rows and columns ¢+ 1 of the A part real, and the elements in
rows and columns ¢ 4+ 1 of the B part are annihilated, We then construct a real
elementary Hermitian P! which will annihilate elements (r+ 1,7 +2),
(r+1r4+3),--ir+Ln), and (r+2r+1%ir+3r+1)---inr+1) of
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the A part and apply the real crthogonal similarity based on the matns

Py g .

ter thee full 2n 20 array. On completion of the n — Znd major step, the A
parts will be tridiagonal and the B parts will be completely null. A will be real
except for elements (n — 1. a) and {n, n — 1), but they can be made real by
doing what is in effect the firt minor step of an n — 15t major step.

Dhwiously we do not need to have the full 2n % 2n array; we need store
anly the eurrent A army and the current B armay, and in storing them we can
take advantage of the symmetry and skew symmetry respectively, It is even
more convenient to think of the A and B matrices as separated into their real
and imaginary parts, Thus we write

Ay e [0T) 4 AT B X7 4 gTI7) (3.15)

for each stage, where U7, ¥ X0 and ¥ are real, U being symimetric
and V', X' and ¥'"! being skew symmetric. In the first minor step of each
magor step the formula for the elements of the transformed U V. X, and ¥
matrices are derved from their original values by thinking in terms of the
complex A" and B, The transformation P! is then determined entirely
from rows r jor columns r) of U7, and we compute PO plryrinpies
Pirtxtmipinl gpd PUUYUIIPYY Notice that three of the four transformations
are of skew symmetric matrices and involve mther less work then the
transformation of the real symmetric matrix. On completion, V. X, and T are
completely annihilated and [7 is a real symmetnic trdiagonal matrix.

4. THE GEMERALIZED FROBLEM

The standard problem {1.3) has been presented first for convenience, buot

in practice the problem commonly arises in the form
H,z = AH,z, (4.1)

where both H, and H, have the same structure as If in (1.1) and 1, is positive
definite. The generalized problem can be reduced to the standard problem i
we can determine the matrix 5 such that

SH,S"=1. (4.2)

We have then
SH S S~y = ASH,SM( 5"z ). (4.3)
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Obviously for economy of computation it is desirable to determine 5 in a
Factorized form

BB, B (4.4)
and in such a way that

5, H\ 8", S, HS/,

5,5, H,5'Sy', 5,5, H,S'Sy, (4.5)

have the same structure as H at every stage.

This can be done in n — 1 major steps, each step being determined by the
current H, matrix. The first major step is wholly typical. It consists of two
minor steps. The first minor step is exactly that applied to H as described in
Section 3 and is best motivated by thinking in terms of the permuted form of
H,. This reduces H, to the form dlustrated in (3.11) (with the original
ordering). In the second minor step we premultiply by the real matrix

L i
o

and postrudtiply by the transpose of this, where L, is typically of the form

1 > 0 0
_Flg_u"lﬂu I ﬂ' 'D o
it e Bl 0 [4:)
—ngfay 00 ]

when i = 4, This annihilates the off-diagonal elements in the first rows and
columns of the A part. The B part is unaffected, since its first row and column
are null. The stroecture of H,; is obviously preserved, If we think in terms of
the real and the imaginary parts of the A and B matrices of H,, the second

minor step obviously affects only the real part of A.
After n — 1 steps of this kind, }, is reduced to the form

L o

[ 0 D (4.5)

where [J is a real positive diagonal matrix. This can be reduced to the identity
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mitrix by premuliication and postmultication with

l n! ] 0 I:".Ig}

| e

All transformations applied to H; must also be applied to Hy, The structure of
H, is obviously presoved, though, of course, it remains a full matrix (i.e. no
zeros are induced). More work is involved in the transformation of H| than of
H,, both for this reason and also because all off-diagonal elements of H,
remain complex throughont.

3, RELATIVE PERFORMANCE

The pedformance of the algorithms presented in this paper is best de-
seribed by comparing them against standard methods as implemented in the
EIsFACK [3] collection of software. In Espace there are roubines for dealing
with Hermitian matrices, which is the closest we can get to the matrix
descrilsed in Eguation (1.1). The routine in ErsPack to handle this case is oo,
Thiz wses o sequence of Howssholder trandformations to reduce the full
In ¥ En complex Hermitian matrix to real tridiagonal form; then the 2R
algorithm is vsed on this 2n ® 2n tridisgonal matrix to find the cigenvaboes,
For the generalized problem, the matrix H, can be decomposed using a
Cholesky decomiposition, say from wiseack [1], This would then be applied to
the matrix H |, transforming the generalized problem into a standard one. The
table below gives the matios of execution time for the bao approaches:

A A and z

Standard problem
Hz=Az
EISPACK: OUTS 2.5 3
Ceneralized problem
Hz=M\H,z
LINPACK and
EISPACK: OUTS 295 2.75

Thus, the procedures developed here are over twice as fast as standard
available techniques. These ratios hold troe for large order problems as well as
smiall problems,

For the standard problem, if just the eigenvalues are desired, the reguire-
mient for storage using the eispack routines is the same as our approach. For
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the case where the cigenvalues and eigenvectors are required, our approach
needs an additional n®/2 real locations to save information of the transforma-
tions. In the generalized problem, if just the cigenvalues are computed, the
storage requirements are the same. For computing both the eigenvalues and
eigenvectors an additional n® real locations are necessary for our procedure.
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