Squeezing the Most out of Elgenvalue
Solvers on High-Performance Computers

Jack J. Dongarra®
Mathematics and Computer Science Division

Argonne National Laboratary
Arponng, Mineis 604530

Lirda Kanfman
AT s T Hell Laboratories
Murvay Hill, New Jersey 07974

and

Sven Hammarling

Nuneerical Algorithms Crowp Lid,
NAG Central Office, Mayficld House
256 Banbuwery Rogd, Orford OX2 FDE, England

Suilsmndtged |‘|:|- :| Adan ey

ABSTRACT

This paper describes modificstions to many of the standard algaitlans wed o
computing cigenvalues and elgenvectors of matrices. Tlese madifications can dramati-
cally increase the pedormasce of the underlving software on higl-performance
compztens withant resorting to assembler language, witheout significantly infloensing
the floating point operation count, and without affecting the roundofi-error properties
of the algorithms. The technigues are applied to a wide varely of wgarithms and are
beneficial in varous architectusal sellings.

ANTRODUCTION

On high-performance vector computers like the crav-1, cray x-we, Fujitsy
VP, Hitachi 5810, and Amdahl 1200, there are thres basic performance:
levels— scalar, vector, and supervector, For example, on the caay-1 [5,7, 10],

* Work supgarted in part Ly the Apgplied Mathematical Seiences suhprogram of the Qffioe of
Energy Research, U5, Department of Energy, ander Contmet WaE1- 108 Eng-38.

LINEAR ALCEBRRA AND TS APPLICATIONS T7:103- 116 (1086)

113
DCER8-ITHE /B /5000

114 JACK J. DONGARRA ET AL.

these levels produce the following execution rates:

Fate of execntion

Performance level {MFLOPS)
Scalar -4
Vieetor 450
Supervechor Sl 1841

Sealar performance is obtained when no advantage s taken of the special
features of the machine architecture. Vector performance i= obtained by using
the vector instructions o eliminate loop everhead and to take full advantage
ol the pipelined hinctional units. Supervector performance is obtained by
using vector registers to redues the number of memory references and thus
avoid letting the paths to and from memory become a bottleneck.

Typically, programs written in PORTRAN min at scalar or vector speeds, so
that one must resort to assembler language (or assembler-langusge kemels) Lo
improve performance, Bul in [2], Dongeers and Eisenstat describe a tech-
nigue for attaining supervector speeds from ForTirAr for certain algorithms in
numerical linear algebra. They notice that many algorithms had the hasic
form

MALCORITHM A

Fori=1 to m
TR e
Fnd
where «, is a scalar and x; and y are vectors. Unfortunately, when this
algorithm is implemented in a straightforward way, the cray, Fujitsu, and
Hitachi rowrsan compliers do not recognize that it is the “same ¢ acted
upon every Hme, and issue a stove vector § and a load vector g command

between each vector additions, Thus the path to and From memory hecomes
the bottleneck. The compliers generate vector code of the generul form

Load veclor

Laowed sovvlar o

Loved vector x1)

Multiply sealar , times pector x01)
Adel result fo vector ¥

Store vesuelt in v

SaaFLors B oan sty lor pillice Fragting-gaint orerations (ackhitions or multiplicalions) per
o]

SQUEEZING THE MOST OUT OF EICENVALUE SOLVERS 115

This gives 2 vector operations to 3 vector memory references. Moreover
Decause of the concept called “chaining” an the cray, Fujitsu angd Hitachi,
the time for the vector multiply and wdd is practically insignificant. In most
circumstances these may be initated scon after the loading of the vectar x(1)
has beogun, and for vectors of significant length the load, multiply, and add
iy be thought of as practically simultaneons operations.

Dongarra and Fisenstal showed that iF one omrelled e loop several
times®, the number of memory references could be reduced and execution
 Limes often decreased by a Bactor of 2 or 3. For example onralling Algorithm
A to a depth of two gives:

Avcomrrrs AL

For i=2 to m in steps of 2
Yo g3, Fagx oy

Fnd

if (m is odd) g0 x +y

The compliers generate vector code of the general form

Loved pectar v

Liweel sealar o,

Laveed vectar x(1—1)

Multiply scolor o, | times cector %1 — 1)
Add result to vectar ¥

Laownl el o

Load vectar xi1)

Muitiply scolar a, Homes vecior %07)

Add result fo vector v

St resull dn v

This gives 4 vector operations to 4 vector memory references, The larger the
ratio of vector operations 1o vector memory references becomes, the better
the performance of the program segment, This is the resalt of vector memory
operations, Le. loads and stores, costing as much as other vector operations.
When the loop is unrelled Lo a deplh of 8 there are 16 vector operations Lo 10
vector memory references. Dongarma and Eisenstat incorporated this idea into
Pwi “kermal” subroubines: ssxey, which added a matrix times a vector to

e boops have been unralled 16 dilleent depths on different machines, depering an the
effect; my thee cnay the depth is 18, and oo the Pugitzn amd Hitachi the depth = 5

118 JACK | DOMNCARRA ET AL

another vector [Ax + g}, and sxaey, which added a vector times a matrix to
another vector (x'A + "). They showed that several linear system solvers
could e rewritten using these kermel subroutines.

Im thiz paper we Iry o apply the same concept Lo algorthuns used in
sodving the eigenvalue problem. Normally these problems are solved in several
shaspes:

(13 Reduce the problem to a simpler problem (e, a tridiagonal mateix i
the matrix was ymmelric),

(2 Solve the eigenproblem for the simpler problem,

(30 IF esgenvectors are requested, transform the eigenvectors of the sim-
plificd problem be those of the originad probdem.

For symmetrie problems, step (23 usoally has the fewest Noating-point oper-
ations, while for nonsymmetrc matrices step (2] has the most foating-point
operstions, Because steps (17 and (3) often imvolve transformations thal can
be forced into the form of Algorithm A, we will concentrate our efforts on
these steps. In cerlain cases speeding up these steps will ot slgnificantly
affeet the overall Sme required to sobve the cigenproblem, but in other cases,
such as the symmetrne generalized sigenvaloe problem, we will be speading
up the most me-consuming portion of the whole operation. Sometimes part
of the algovithm simply has a matrix-by-vector multiplication; then application
of Dongarra and Eizenstat's idea is straightforsand, AL olher lHmes, the code
will need to be radically transformed to fit the form of Algorithm A

Im Section 2 we deserbe some underlving fdeas thal can be used 1o
decrease memory references in various subroutines in the matrix eigenvalue
pickage E1spack [6, 11, 13]. In Section 3 we apply the concepts of Section 2 1o
specific subroutines in mseack and provide execution-timing information on
the crav-1, the current version of Empace [3]. The appendix contains
execuliontiming information on the Hitachi 381020 and Fujitsn VP20
cAmdahl 12000, (In [4] we presented reprogramming of selected subroutines
that are radically different from the oviginal or representative of a class of
changes that might be applied to several subrootines,)

2 UNDERLYING IDEAS

Im this seclion we ootline some of the underlyving methods that cecur
throughout the algorithms used in the gsrack package. We also discuss how
they can b implemented to decrease vector memory references, without
significantly incressing the number of floating-point operations,

SOUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 117

21, Transformalions
Many of the algorithms implemented in Bseack have the following form:

ALGorTis H.

For i,...

Crenerate matrix T,

Perform transformation &, « TA T
Enid

Becanse we are applying similanty transformations, the eigenvalues of A,
arc those of AL In this section we examine varous types of transformation
malrices T,

211, Stubilized Elementory Transformations, Stabilized elementary
transformation matrices have the form T = PL, where P i= a permutation
matrix, required to mauintain numerdcal stability [12], and L has the form

‘1

The inverse of T has the same stroctore as T, When To0 s applied on the
right of & matrix, one has a subalgorithm with the exact form of Algorithm A,
which can be implemented nsing sweeey, Unfortunately, when applyving L on
the left as in Algorithm B, one docs not get the same situation, The vector
changes, but the vector © remains the some. However, in the sequence of
transformations in Algorithm B, T, consists of & matrix L, whose off-diagonals
are nonzero, only in the ith column, and at the ith step, one might apply
tramsformations T through T, only o the ith row of the matn Subsequent
row transformations from the left will not affect this row, and one can
implement this part of the algorithm using sxmpy.

This ides was incorporated in the subroutine Evwames, which will he
discussed in Section 3.

115 JACK . DONGARRA ET AL

2.1.2. Homecholder Transformations. In most of the algorithms the
transformation matrices T are Howseholder matces of the form

O=1=puu", where fuu=2

so that (2 s orthogonal. Toe apply € from the Jeft te o matriz A, one would
proceed as [ollows:

Arcarmis O

1. o' =w'A

2. Replace A by A — fup”

Maturally the first step in Algorithm C can be implemented using sxwey, bt
the secoml step, the rank-one update, does not fall into the form of Algorithm
A However, when applying a sequence of Householder transformations, one
may mitigate the cireumstances somewhat by comldning more than one
transformation and thus performing a higher than rank-one uwpdate on A,
This is someawhat akin to the techoigque of Toop uneelling discossed earlier. We
cive two illusteative examples.

Firstly suppose that we wish to form (T — mwe” 1A — S’), where for a
simiilarity teansformation &= 2 and e = w2 This is nomally formed by first
applving the left-hand trandformation as in Algorithm C, and then similady
applving the right-hand transformation. But we may replace the two rank-one
updates by a single rank-beeo update using Lthe following algosithm:

Anconrrae DL

. o'=wA
2 x=Au
¢ T TR L o T 3 T

4. BReplace A by A = fixu” = oy’

As second ecxample suppose that we wish to form (T — e’ (T — Buee™ A
then as with Algosithm 1.1 we might proceed as follows:

Avcomrris D2,
1.:-"'_'= w'A
- B I-"‘.
gy’ =o' — ST
Heplaice A by A = Bux” = mwy”

= L 1

SQUEEZING THE MOST QUT OF EIGENVALUE SOLVERS 114

In both cases we can see that steps 1 and 2 can be achieved by calls to sxaary
and swxpy. Step 5 is a simple vector operation and step 4 is now a rank-two
comrection, and one gets 4 vector memory references for each 4 wvector
floating-point operations (rather than the 3 vector memory relerences for
every 2 vector foating-point operations, as in step 2 Algporithm C), The
increased saving s not as much as is realized with the initial substitution of
sxmey for the inner products in step 1 of Algorithm C, but it more than pays
for the additional 2n operations incurred al step 3 and exemplifies a tech-
nigque that might pay off in certain situations, This techniquee was used to
speed up a number of routines that require Honseholder transformations.

213 Flane Rototions, Some of the most time-consuming subroulings
in EISPACK, & HOE2, QZIT, IMTOLE ToLe, spend most of thelr Hme applying
teansformations in 2 or 3 planes to rows or eolumns of matrices, We have
been able to speed up the application of these trunsformations by only about
15%. but if one is spending 0% of one’s computation time here, the total
effect is greater than that of improving the part which oaly contributes 10%
of the totul compulation time.

First of all we should mention that on the cray-1 the time required by a
S-multiply Honseholder transformation in 2 planes is hardly less than that
required by a 4multiply Givens transformation [12]. Thus once again the
computation time s influenced more by the number of vector memory
references than by the number of floating-point operations. We were able Lo
eliminate several vector loads and stores by noticing that one of the planes
used in one transformation i usually present in the next. Thus a Dypical
Civens code which originally looked like

Fori=lton—1
Compute ¢, and &,
For j=1ton
t+—hy,
by = ot +5h 00
o= st =l
End
Firul

wonld hecome

Forj=1ton
L .ft“

End

Fori=lton—1

1] JACK] DONCGARRA ET AL

Compute o and s,
For j=1ton
R oyt sk
r_] ‘_'El't_l i II':||I|r'.i‘":|
Encl
End
For j=1ltom
hin =t
End

and a tvpical Householder code which looked like

Fori=1ltpn—1
Compute q,,x, and g,
For j=1ton

[T h 1 + IT‘ihj.l—l.
h_,': =y Xy
h_].l prh = hr'.|'+ 1 + P
End
End

wionild besome

Fori=1tos n—2in steps of 2
Compute .2, 804 12X and ¥4
Far j=ltom

pehytail

Ly hr'_i—l T s l‘F‘J.nE i
by by + px

I -:—.riJ_HIJ.-puI e,

jri+1
Byiaa ™= Mast i
End
End

Notice that for the Householder transformations we have actually increased
the number of multiplications in total but still the amount of time has
decreased, For a dplane Householder transformation, like that found in none,
unrolling the loop twice causes about a 0% drop in execution time,

Inserting the modified Givens into a code like ToLz is an easy task,
Changing codes like monz to use the unrolled Householders is rather un-
pleasant.

SQUEEZING THE MOST OUT OF EIGENVALUE 5OLVERS 121

2.2 Trangular Solvers
Asoume one has an 7 n nonsingular lower trangular matrix Loand an
o= om matrix, B, and wishes to solve

LY=E. (2.1)
If me =1 one might normally proceed as follows:

Avcommis E.

g b

Fori=1ton
Mt AT
For j=i+1ton

=y

=

¥ [2.2]
]:2nr.1l
End

Equation (2.2} almost looks like Algorithm A, bot the length of the vector o
decreases. Uneolling the § loop once decteases the number of vector memary
references from 3 for every 2 vector floaling-point eperations to 4 lor every 4
vector loating-point operations. The unrolled code would be of the following
Fryrmm:

Avcosrres F

iy b

For i=1to n—1 in steps of 2
= w s
iag =y — rl—l_l'yi]r"rjla-l i+1
For fef48,-,mn

Myl y]'rfl _il'la-."!.].r |

End

End

Hinmod2 =0y, —u, A,

O the crav-1 the mbio of execution tmes of Alsorithm F to Alsorithm E is
1.3, as Table 1 indicates,

However, when @t is sulfficiently large that it makes computational sense
bor treat vectors of length m, one can do much, moch better by computing ¥
by rows rather than repeating either Algorithm E or Algorithm F for each
column, Let ¥, denote the first j rows of the matrix ¥, g} denote its jth row,

L JACK] DONCATRRA ET AL

TAEBELE 1
cnay-1 mnms (i D 4 SECENIIE] FOILCTIIANGULARL SOLYVERS
n m Algorithim E Algorithm F Algorithm G
10K 1 BN 540 T
a5 125 3 G032
106D 455 ik 14.4
KD L 1.35 L 178
25 JHG 255 24.1
10 151 10% SEE
20} JE 201 HET
$1 1 A5 ARG 358
23 TH3 al.l GlB
150 ATE 06 L

LY 4l £13 5]

and .!';!r denote the jth row of L. Then ene might proceed as follows:

ArconTas G,
YR
For j=1ton
"’{i ok J,-L— Y (2.3)
=/ !.:J

F!u-t.jl

The step (£3) can be implemented using soury. Obviously, waorking by
rows s superior if o is sufficiently large. Since Algorithm G owses vectors of
length e, when meois small one should wse Algorithm F. We have discussed
triangular solvers using a lower triangular matrix. One can implement the last
thres algorithms for an wpper tangular matrix, and Algorithm G would
determine the last row first aond work backwards, Trangular solvers oocur in
the risrack subroutines nepuc and pepax used in the solution of the
symmetric generalized eigenvalue problem Ax = & Hr. Inserting calls to sxuey
and sxxey decreases the me reguired by these subroulinegs o such an extent
that the time required for the generalized eigenvalue problem is not apprecia-
bly morve than that required for the standard eigenvalue problem on the
high-pedormance computers under discussion.

2.3, Mutriz Multiplication with Symemelvic Packed Sarage
The algorithms in eispack that deal with symmelric matrices peanit the
user bo specify only the lower trangular part of the matrix. There are routines

SOUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 123

reqpuiring that a two-dimensional array be provided, using only the informa-
tion in the lower portion and routines aceommodaling the matrix packed into
a one-imensional areay. The normal scheme for doing this mutris-vector
product waould be

ArcoriTHM H.

For j=1tan
[l 'F
Fori=j+lton

ot it A,
L Tl T

I|| 1
End
' t +-:r”:vrJ
End

Certainly one might consider stepping the outer loop by 2, doing two inner
products followed by o rank-two correction. Another alternative in the same
vein, which unfortunately would not be amenable to o subroutine that packed
the symmetric mates inlo a one-<limensional array, is the [ollowing:

Arcorimims 1,

For i =1 to n—1 in steps of 2
For j=1toi-1
T 5"5 +r:|'lli.'f_-+ :.I;_,__IJ.'l_ |
Enril

For j=i+]1llon

W W Ty Ty Tl Ty
End
PRt T P P P

End

A less obvious technique is a divide-and-conguer approach. 1F we consider
referencing a symmetric malrix in a matris-vector product whees the matns =
specified in the lower triangular matrix, we have

ey e[¥
.y,-l_ g,r,-|+|rl BT HIIL"
Ve LWl VBT [’

where T, and T, are symmetric matrices stored in the lower portion and # is

124 JACK]. DONGARRA ET AL

TAEBLE 2
COMPARISON OF EXERCUTION TRMES ON THE CERA-1
FOR STMMETRIC MATRLX MULTIPLY

Ratio of exerubion Hmes

Orcer Alg, H/Alg, T Alg. H/ale HJ Alg, H/Alg 1]
1iK3 214 1244 213
2K .47 1.43 L I

300 LTa L33 204

full, This can be written as

ALCORITHEM |

Set y,=T,x, + B'x,
Set y. = By + Tox,

In writing the matrix multiply this way, teo things shoould be noted. There
are two square (n/2) %00 2) full matrix-vector multplications, amd fwie
symmetrix matrix-vector products,

Tahble 2 gives a comparison on the ciav-l of Algorithm H (a standare
approach) with Algorithm I, Algorithm H] (where Tyx, and T,z. of Al-
gorithm | are done according to Algorithm H), and Algorithm I {where these
are done according to Algorithm T).

When the matrix is packed in a one-dimensional array stored by column,
the same divide-and-conquer approach can be applied,

3. SUBROUTIMES TN giseack

1. The Unsymeneiric Eigenvalie Problem
In this section we investigate methads for the efficient implementation of
the algorithms that deal with the standard eigenvalue problem

Ax=lx,

where A ts a real general matrix. The algorithms for dealing with this problem
follow the form:

(1} Beduce A to upper Hessenberg form (ELsBES or oRTHES),

(2) Find the eigensystem of the upper Hessenberg matrix,

(3} I eigenvectors are requested, back-transtorm the eigenvectors of the
Hessenberg matrix to form the eigenvectors of the original system (ELmpag or
CETEAK).

SOUEEZING THE MOST OUT OF EICENYALLE S0LVERS 125

For this particular problem, most of the time is spent in the second step, bt
as was discussed in Section 2,13, this part is nob easy to vectorize, s we
concentrate our discussion on steps (1) and (3]

J0.1. evmmes and oprees. In the subroutine eraames, which reduces 2
matrix to wpper Hessenberg form while preserving the eipenvalues of the
original matriz, a sequence of stabilized elementary transformations are used,
The transformations are of the form

T, - AT L o

This set of translormations has the effect of reducing the first & eolumns of A
ber upper Hessenbarg form,

The transformations can be applied in such a way hal malriz-vector
operations are used in the tmeconsuming part. At the kth stage of the
risduction we apply the previous & — 1 transformations on Dhe lefl side of the
recluced A o the last n— E elements of the &+ Lst vow. Then, on the sight
the inverse of the kth transformation is applied 10 the reduced matrix A,
Followed by the application on the left of all k transformations to the elements
below the disgonal of the Ath column. Becsuse of the structure of
the transformations (see Section 2.1.1), both these steps are simple matrix-
veetor multiplication. The application of transformations from the lefl follows
essentially the algorithm given in Dongarra and Eisenstat [2] for the LU
decomposition of a matrix. In the original ElsPack codes, at the kth stage
permutations from the left are applied to only the last n — k + 1 columns of
the matnz. In our new code, in order to use saxey and sxaey, we must apply
these permutations to the whole matriz. Thus the elements below the
subdiagonal of the matrix A which are necessary for finding the eigenvectors
miight be slightly scrambled and hence the user must uwse the modified
ELMBAK Eiven in Section 3.1.3.

The subroutine cnrues uses Houscholder orthogonal similacity transfor-
mations to reduce A to upper Hessenberg form, AL the kth stage we perform
the operbion

0, AQ7,

where), =T — Buu’. As shown in Algerithm D 1, the usual two rank-one
updates may be replaced by a rank-one update to the first ©& rows of A
followed by o reok-dwo wpdate to rows E-+1 through n, In this case

104 JACK | DONCARRA ET AL,

TABLE 3
COMPARIEON OF EXECUTION 0N THE CEaY-1
FOR ROUTINE ELMHES AND ONTHES
BaTio 0F EXECUTION TIMES:
IEISPACK S BV

arthes
Cirder ELAFHES Tiank 1 onby rank 3
5 1.5 an a3
10y T2 1.4 a5
150 g | 1.5 a4

Algorithm 2] becomes

ol = uTA

= A

! =o' — (fuTzhu”

Replace A by A — Broe! 4 uyt)

P b b0

Seeing the transformations applicd in this way leads to a straightforward
matriz-vector implementation. Table 3 reports the comparison between the
EisPack implementations and the ones just described. Significanl speedups
are accomplished using these constructs,

3.1.2. evtrRam and ortrad. If all the eigenvectors are requested, one
mighl chooss to use either ELTRax or onTian (depending on whether one
used Erames or opTaes) [ollowed by a call to sors, rather than finding the
eigenvecton using TsviT and then back transforming using ELMEAK 07 GRTRAK,
ELTRAN Toquires no floating-point operations, but because of the use of
stalulized elementary transformations in ELMHES, it may require swapping of
varicus rows of the partial eigenvector matrix being constructed, Because
ELMHES has changed, the swapping in ELTRAN is slightly different, onrman
appliss the Housdholder transformations determined in oprHes to the identity
matrix. By combining two Householder transformations we can perform a
rank-two update to T using the technigue deseribed in Section 2,12, and this
realizes a cut in the execution time for this routine by a factor of two.

203 Bramax and ontTesk. Bolh BErsibax and onrsax compute the
cigenvectors of the ordginal matrdx given the eigenvectors of the upper
Hessenberg matrix and the transformations used to redoce the asiginal matrix,
This regquires that & set of transformations be applied on the left o the matrix
of eigenvectors in reverse order. The reduction is of the form TAT 'TX = ATX,

SQOUEELIMG THE MOST OUT OF EICENVALUE SOLVERS 127

where T =T, — .7, The cigenvectors, say T, of the reduced mateix & are
found using

H=TAT ! and HY=AY;
then the cigenvectors for the original problem are computed as
X=T1Ym il ol

The original E1srack subroutines vse T as o product of transformations as
given above, For ersasae we use a slightly different approach. Az in Section
211, each T may be written as L.F, where P is a permutstion matrix and
L is o lower triangular matriz. On output from the new zrseres, let B be the
(n—11xin =13 lower trangular matrix below the subdingonal of the re-

duced A, Let O be the onit lower thangular matrix

| 1 |
0 1
SR

|0 1]

Then one can show that T°'= P P, I T

Sinee oRTEAK invalves a product of Householder transformations, reducing
the number of vector memory references i again a stralghtforsand Lask,
Dramatic improvements are seen in these Dack-transformation routines, as
shoswn in Table 4, Originally grapag was 2.4 times faster than orteax; in the
siv version it only enjoys an advantage of 1.9 over orTRak using (n — 1)/2
rank-2 changes,

TABLLE 4
COMPARIEGN OF EXECUTION GN THE Crays]
FOI EISPACK NOUTINES ONTIAE ANT ELMBAK

BaTio oF EXRECUTION TIMES

(ETSFACE /RV]
i RS ETE&I
Chrgler ELMEAK Bamk 1 Rank &
T 22 Zh 36
100 2.8 25 33

150 2.3 L a0

125 JACK] DONCGARRA ET AL

3.2, The Symmetric Eigenoalue Froblem
In this section we look at the methods for efficient implementation of the
algorithms that deal with the symmeteic elgenvalue problem

Az =Mz,

where A 5 a real symometric malrix, The algorithms for dealing with this
problem have two possible paths:

Paru 1,

{11 Teansform A to tridiagonal foom (TREDD),

{2) Find the eigenvalues of the todiagonal mateix (eerory).

{3} If the eigenvectors are requested, find the eigenvectors of the tridiago-
nal matrx by inversse iteration (Tiwver).

{4) If cigenvectors are requested, back-transform the vectoss of the treidi-
agonal matrx to form the sigenvectors of the erginal system (TREAKL),

Farin 2.

(13 Transform A to tridiagonal form, accomulating the teansformalions
{TRED2)

(2) Fined the eigenvalues of the tridiagona] matrix and accumulate the
transformations to give the eigenvectors of the orginal matvix (1MTOL2).

Om conventional sevial machines, Path 2 typically requires nearly twice as
muel Lime as Path 1 On vector machines however we do not see this
relationship. For eisracs, Path 2 i slightly faster and alter the modification
deseribed below reguires roughly the same ameunt of tme. This is the result
of two problems in routine Tz, Fiest, TinaT has not heen modified 1o
indoce vectonzation al any level. One can achieve an increase in performance
by vectorizing across the eigenvectors being computed. We have not pre-
sented an algorithm of this form, since il requires a different technique o
achisve performanee and cannot mun at supervector rates. The time spent in
TIRVIT an serial machines s inconsequential witl respect o the total time to
exceote Path 1. However, on vector machines misvr becomes a significant
contributor o the total execution time of the path, The second factor
influencing performance for Fath 1 is that the current version of Tovvir has a
call to an auxiliary routine, FYTHAG, in an inner loop of the algorithm. Py
is nsel oo safely and podably compute the square root of the sum of squares.
If rimvir is modified to replace the call to FyTaac by a simple square roat, the
time for TiswiT becomes more attractive by alwoal 205,

SQUEEZING THE MOST OUT OF EICENVALUE SOLVERS 128

We note that the advantage of path 2 is that near-orthogonality of the
eigenvectors is guarunteed, while with Path 1 one may see some degradation
in this property for eigenvectors corresponding to close cigenvalues. Both
paths give excellent sigensystems in the sense that they are elgensystems of a
profalem close to the original problem [12, 13).

We will now deseribe the implementation of routines ThED: and TRED:
wsing matrix-vector operations,

321 TREMM, TREp:, and TeEARL, Boutine Thest o TREDS reduces 3 real
symmetric triciagonal malrix using orthogonal similarity transformations. An
i il requires v — 2 transformations, cach of which introdoces seros
into & particular row and column of the matrix, while preserving symmetry
and preserving the ceros introduced by previous transformations, TRED) is
wsed o just compute the tridiagonal matrix, while TRED2, in addition te
computing the tridingonal matrix. also retums the orthogonal matriz which
wild transform the original matrix to this tridiagonal matric TResx forms
the cigenvectors of the real symmetric matrix from the eigenvectors of the
symumetric tridiagonal matrix determined by tnecw This orthogonal matrix
will later be used in computing the cigenvectors of the original matrix. These
subroutines deal with the real symmetrie malrix as stored in the lower trisngle
of an array.,

The sequence of transformations applied to the matrix A is of the form

A=Ak, i=12. - n=-28,

where (1 is a Householder matrix of the form described in Section 2.1.2. Fach
of the similarity transformations s applied as in Algorithm D.1 with the
simplification that w and & are the same, so that application becomes

1. x=Au
2 ;rr =T (B’ .
3. Replace A by A — fru™ = Buy”

Since the matrix A is symmetric and stored in the lower triangle of the array,
the matrix-vector operation in step 1 follows the form described in Section 2.3
as implemented in Algorithm 7.

TheD? differs from TnED: in that the trnsformation matrices are peeu-
mulated in an array Z. The sequence of transformations applied to the matrix
£ s of the form

";"II-£='I?II—E'
A T (R E T

130 JACK |. DONGARRA ET AL,

This can be implemented in a straightforward manner as in Algorithm C of
Section 212 using matri-vector multiply and o rank-one update, Since all
transformations are available st the time they are to be accumulated, more
than one transformation can be accumulated at a time, sav twe al a lime, thus
wiving & rank-two opdate. This then gives an implementation that has the
form of Algorithm D2 in Section 2.1.2,

When trEm and TrED: are implemented as deseribed, significant im-
provements in the execution time can be realized on vector machines, Talile 5
displays the execution time for the correnl Eizpack versions of TREDL and
TEDR: as well as the modified matrix vector implementations, referved bo as
ThEDY and TEEDV,

THEAKL applies the transformations used by TREDI Lo reduce the matrix to
tridiagonal form. This can be organized as in mhepz, by matris-vector multipli-

TABLE S
cray-1 TIMES (1M 10~ s60) FOR THE SYMMETRIC
GEMIZHRALLSICD KIGENVALUE PFIORLEA

Subroutine ap = 10K} r = HH
RO 16.9 5.0
REDLCE 455 250G
REOICY %63 1595
REDICH 00 141
TREL] 6.04 WRa
TREDTY 485 0.7
TREDE 14.3 LE
TREDV E.31 51.3
TEH. .58 g]
TS 14.4 117
REBAE 0.7 S35
NERAKY 2,00 15.3
Mo veckars:

tatal ald 3282 1654

tatal oew 16.15 8.3
Vectors:

gatnl old 1A LG

total pow a%n 4031

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 131

calion amnd & rank-2 wpdate, The table below shows the improvement in
performance when this is implemented:

COMTARISON OF EXECUTION 0N THE Ciaay-1
FOH EISPACK BPOUTINE THEAK]

Fatine of execution times

Cirder {EISFACK A3V versinn)
o 4.20
100 J6G

33 The Symmnetnic Generalized Eigenoalue Problem
In thiz section we consider methads for increasing the efliciency of the
subwoutines in E1sFack for solving the genemlized eigenvalue problem

Ax =3 Bx,

where A amd B are symmetric matrices and B is positive definite. In Brspacs
thiz problem is solved in the following steps with the name of the corespond-
ing subrrouline in the package given in parenthesis:

{1) Factor B into LLT, and form C = L'AL T {rEDuc),

(2] Solve the svmmetric sigenvalue problem Cy = Ay.

{3) If eigenvectors are requested, transform the eigenvectors of © into those
of the original system (nesax),

[general the majorty of the execation tme is spent in necuc and geBax,
and it will be these rontines on which we will coneentrate.

200 meove, nepuc has three main sections:

1. Find the Chobesky factors of B, e, find lower triangular . such that
B=LL"

2, Find the upper triangle of E=L~'4

3. Find the lower trianghe of C= L™1ET

Step 1, the Cholesky factorization, was disenssed in Dongarm and Eisen-
stat [2]: its inner loop can be replaced by the call to spexey. Step 2 is a lower
triangular solve. The original eode in mspack follows the suggestion in
Section 2.2 and computes E by rows, Thus it is a simple matter to replace the
inner loop by a call to ssoecey. Step 3 i another lower triangular solve. The
gisrack encoding computes © by columns and uses the fact that O is

132 JACK [DONGAREA ET AL

symmetric. Thus the first § = 1 alements of the §th columm of C are already
known before the eode commences to work on the ith column. For the ith
column rEpve has two inner loops. The first updates the last n — i elements
with the previous known @ — 1 elements, The second does a lower briangulae
solve with an {(n — 1) {n — 1) matrix as in Algorithm E of Section 2.2, The
first loop can be easily implemented using a ssaxey; the only hkope for easily
increasing the efficiency of the second loop is wsing Algorithm I of
Lection 2.2,

Thus it is straightforward to replace three of the four inner loops of rEpre
by saaxey, and this is accomplished by REDUC listed in Table 5. The decrease
in execution time of REDUC from rEpUC s guite surprising, considering that
the changes being made affect only how the malrix is aecessed, gEnrov
replaces the fourtl loop of aepuc by Alporithm 17 of Section 2.2, It produces a
further modest saving,

rEDUCH replices the two inner loops of step 3 of nepve by & modification
of Algorithm © which computes only the ficst © elements of the ith row of O
rather than the whole row. Because O s svmmelric, these first § elements are
also the first 1 elements of the ith column of C Thus by the end af the ith
stuge of step 3 of REDUC, the top § 2 ¢ submatrix of C has been computed
while at the same stage of nEpvC and RECUCS, the first § columns of C have
been computed. neoucs, as Table 5 indicates, is the least expensive of the
subroutines, hat it has one major drowback, sEove, REDUCE, sod neEpucy
overwrite only the lowertriangular portions of the mateices A and B while
forming L, E, and C. REDUCS overwrites the whole matrix A,

232 BEEax. The subroutine nesax tukes the cigenvectors ¥ ool the
stamland symmetric sigenproblern and forms those of the orginal problem X
by multiplving ¥ by L7 Thus it is an vpperdriangolar solve with many
right-hand sides. The orgingl sEsax computes X one column at a time wsing
inmer products. RERAEY wses the upper-triangular version of Algorithm G to
compute X, The difference is computation times given in Table 3 for negax
and nesaxy = really remarkable considering that they reguire the same
number of foatingpoinl operabions.

Fod The Singuwlar-Value Decomposition
The singular-value decomposition (SVIF of an m X 5 matrdx A is given
by

A=UEVT

where U is an M % n orthegenal matrix, V is an n % n orthogonal matrix,
andl Z s an oe 2 on disgonal matrix containing the singular valees of A, which

SOUEEZING THE MOST OUT OF EICENVALUL SOLVERS (K&

arc the nonnegative square roots or the eigenvalues of A'A. Amongst the
many applications of the VI algorithm is the solution of least-squares
problems and the determination of the condition mumber of matrix

The algorithm implemented in Esrack’s SVD is nsually considered to
have Two stages:

(1) Determine O and & such that [=047 is bidiagonal.
(23 Neratively redoce J to a disgonal matrix.

[bypacal applications where m = n the fimst stage of the 3VD caleulation
is the most time consuming The matrices @ and X are the product of
Henseholder transformations, and, a3 deseribed in Section 2.1, the nurmber of
viector memory references can be reduced by replacing all vector malrix
multiplications by calls to sxuey, as is done in the subroutine svor given in
Table 6 Moreover, since cach Householder transformation from the left s
followed by Householder transformation from the rght, one may use Al-
gorithm Tr1, and this is implemented in subroutine svow in Table G, The
spcond stage of the SVD ecalenlation invelves plane rotations which, when
only the singular values are regquested, do not involve any operations.

When the singular vectors are requested, the Housshalder transformations
which form ¢ and & are aceomulated in reverse order, Here again we can
use the technigues deseribed earlier. In the second stage, plane satations are
applied to vectors, and it is nob easy o decrease the number of vector
memaory references as was discussed in Section 3,105,

Chan [1] has described a modilication of SV} which, when m =,
recuires up to S0% fewer floating-point operations, Chan suggests first
applving Houscholder transformations from the left to redoce A to triangular

TAELE#
enay-1 TIMES (16 102 sec) FOR THE SINGULALVALUE DECOMPOSITION
o= 10K .EJ:H:I i
"= 10 50 010 50 100
N;:-"t-'irlﬁl:lhtr weihnrs:
5V 102 1ik5 aha 1.9% 154 4.7
A% o1 057 T.87 2%l .54 1.5 ara
svnw 034 i1 194 055 12 250
With singular vectars:
ST 131 198 Th.1 L4l LG 115
LwnL i 16.5 GlE 1.43 256 L

SVTIV 68 135 Sl LA g THE

154 JACK |. DONGARRA ET AL

form before applying the traditional SVD algorithm. Thus the Howseholder
trunsformations applied from the right, which are designed to annihilate
elements ahove the superdiagonal, would be applicd to vectors of length n
rather than to vectors of length m. Unfortunately, an the crav-l Chan's
suggestion seems to produce at most a 10% speedup in execution time. When
the inner product loops in all Householder transformation applications are
replaced by calls to ssory, the execotion Hmes are still about the same as for
FVIIV.

4, CONCLUSIONS

In this paper we have shown how to make some of the subroutines in
espace more efficient on vector machines such as the caav-1. We have
comcentrated our efforts on specding up programs that alveady rom at veclor
speed but because of bottlenecks cansed by referencing vectors in memorny do
not men ab supervector speeds. We have not considered subroutines which
currently run at scalar speeds. like panps [8] on smallbandwidth problems,
TisvrT, and wiseEcT, which can all be veotorzed,

Our technigues for speeding up the elgenvalue solvers do not significantly
change the number of Roating-poinl eperations, only the number of vector
leqls and stores, Sinee we have been able to obtain speedups in the range of 2
to 5, vector loads and stores seem to be the dominant factor in determining
the ime required by an algorithm, Thus the teaditional meril function, the
mumber of floating-point operations, seems to be oot as relevant for these
miachines as for the scalar machines.

For the most part we have been able 1o isolate computationally intense
sections of codes into welldefined modules. This has made some of the
progeeams shorter and has made theie mathematical function elearer. Some of
the technigues used te gain better performance could be done by an
extremely clever vectorization compiler. However, this is not usually the case,
Certainly a clever compiler would not know that one conld delay transforma-
tions as s donge in Lhe new ELAMBES,

Our technigues will always produce faster code, even on machines with
conventional architecture. We have never resorted to assembly langoage.
Thus cur programs sre transportable. Moveover there = still room for some
improvement by using some assemblv-language modoles in critical places.,

APPEMNDIX

Talle T contains timing informations in the form of ratios of increpsed
performance cver cxisting Eispack roattines on the Fujilsu VE-200 and [itachi

SQUEEZIMNG THE MOST OUT OF EICENVALUE S0LVERS

TABLE T
EIEFACK /0¥ BATICS
RLEHRE
Hinsechi 5610430 Fujitsa VP20

f rakin rakio
50 LI L.l
LKl 16 LE
150 14 LE
1 20 15
=i 2l 1=

A ae 18

OOTIEY ORTEAR"

Hrragmn 551020 Fuprrsu WP-400
rr— CETEAK CATIOS OFTBAE
n riti rakis ralie Ealin
i 15 LB 1.3 32
141 21 4.6 25 32
L%l 22 4.5 a5 Ak
B 3 405 L) a4
a5l 28 410 B} 44
0 an Ak a8 4.4
FIDUE
Hitacka 5-51000 Frajitan VP20

[Talis ki

oy 1.7 15

10 @l a2

150y 23 24

i i x4 25

250 L5 96

k] i a4

SV, Hitachi S500,20"

m o= 100 = WK1
n =5 n o= 1 n_—.a:l a0 i = L7
novect L7 LE 20 LY 1LE
el a4 LT an 5 2T
AV, Fughsn VE-EN"
i = (K] my = IO}
= El p= 100 m= 5 n = LKl =15 wo= K
e LG L5 1.8 15 1.7
veck LB 14 Ay 24 a1

“ Routing oxrses and o®Taak here are implemented nsing ramk-1 vpdates soly,
" nawect™ refers bo compating st the sogalar values sl " wect” refers 19 onmget -
ing it el sdngulas walis and ledl and sight singular vectors. mois the number of

rows gnil 0 the mamber of colamns & the matrix

135

136 JACE | DONCARRA ET Al

1020 as they exsted in September 1984, The matrixvector multiply
roastines, saxPy and sxwary, have been unrolled to a depth of eight for both
the Fujitsu and Hitachi machines. A depth of eight gives the best perfor-
mance on these machines. Subsequent hardware and software changes made
affect the timing information to some extent. n refers to the order of the
matrix; “ratio” is the execution time for the eurrent version of the Eseack
pouting chivided by the time for the modificd version.

REFEREMES

I T. Chan, An improved algorithm for compating the singalar values decomposi-
tion, ACM Treos, Math, Soflesere BT3-80 (1952

2] I Doogacra and 3. O Eisenstat, Squeezing the most sut of an almorithm in
chay Fortran, ACM Trens, Math, Soffware (30221- 230 (1584),

G J- J- Deongarra and . B, Meler, zisracz—A package for salving mntrix eigen-
valse problems. in Sowrces angd Development of Mathematicel Softeware (W, B,
Cowell, Ed.), Prentice-Hall, {1954).

4]. |. Bomgarra, Linda Kaufman, and Sven Hammarling, Squeezing the mass out of

eigenvalue salvers on high-perfommance computers, ANLMOSDUTM /46, Argonne

Mutional Lab. Jan, 1985,

Kirby Fong and Thomas L. Jordan, Some linear algeboa algoritms and their

performance on the ciay-1, Report UC32, Los Alamos Scientifie Lab. June 1977,

G B 5 Carbow, | M. Bayle, |. . Dongarra, and C. B, Molee, Mairiz Eigeesysten

fHowtines —emsracE Guide Extenion, Lecture Motes in Compiter Science, Val

51, Springer, Berdin, 1807,

R. W. Hockney and C. H. Jesshope, Paralle! Computers, | W, Arrowsmith,

Bristed, Great Britain, 1981,

£ L Kaufman, Basded eigenvalue solvers on vector mackines, ACMW Trams. Meth.
Epftreare 101)73-50 (1984),

B Lawson, B Hanson, D, Kineaid, and F. Kragh, Basic linear alpebra subpea-
grams for Fortran wage, ACM Trans, Math, Soflware 5308371 (1679,

10 R. M. Hussell, The crar-l compater system, Comm. ACM 21{1:63-T2 Jan.
1978,

Ll B T Smith, . M. Goyle, [.]. Dongarea, B 5. Gacbaw, Y. Tkebe, ¥, C. Klema, and
. B Moler, Madrix Eigensgatemn Routines —empack Cuide, Leclure Motes in
Comnpoter Science, Yol 8§, 2nd ed., Springer, Berlis, 1576,

12] H. Wilkinson, The Algelvaie Eigemeaiwe Profdem, Oxdand 17, P, Lendon, 1965,

13 | H Wilkinson and C. Eeinsch (Eds) Handbook for Autamstic Comprtetion,
Vol. M. Lineer Algebre, Springer, New York, 1971

=l

Revedveed 15 Dvvervcber 1599, remdseed 23 Sepdembior T955

