Parallel Computing 5 (1987) 219-246 L]
Marth-Hallznd

Solving banded systems
on a parallel processor *

Jack I, DOMGAREA and Lennarct JOHMS50MN

Mothematios and Congparer Soionce Diviriay Arpose Naroeal Labosanary, drgonne, #5605 30-4504
wad Compurer Scieeer Dapaeeienn, Fiale Undceranty, New Macen, OF 86520, U154

Abstract. In this poper we examing wavs of salving dense, bandad systems on differen: parallel procsssors, W
sart with seme considerations for processors with veclor instrections, then discuss varicns algonihms fos the
salution of large, dense, bonded systems onon parallel processor, We analyze e behavior of the parallel
algorithms g disirbued-sorgs achiteeures sooligured as rings, two-dimensional meshes with end-around
conneslms (fori), boolean s-cube configured architectures, and bas-bassd and switch-hased machines with
shared svarnge. We also pressnt measuremens for two bus-based anchivectures with shared storage, namely, the
Alliam FX A8 amd the Sequenl Balars: 21000

Rapmords, Solving large, dense handed systems, parnllel precessors, disinbated-storage archileciores, perfor
miance measurements, Allinmt FX A8, Sequent Balance 2100,

1. Introduetion

The solution of banded systems of cquations is important in many areas of scientific
compubing. We restrict our atiention here e matrices thal are svmmetnc positive definite or
diagonally dominant, With the coming of parallel processors, algorithms for the solution of
theze problems have been the subject of many stodies [1,5,25,28.32]. In this paper we look at an
implementation that uses a partitioning scheme essentially cquivalent to incomplete nested
dissection. This approach divides the work into sections, reduces the sections independently in
parallel, performs nearest neighbor communication among processors o compute part of the
solution, and carmies out independent operations 1o determing the complete solution o the
ariginal proklem.

2. Sequential cise

LINPACEK [5] includes routines to solve banded systems of linear equations. The maltrices
can be of a general nature or symmetnic positive definite, The algorthms for the banded
problem in LINPACK are based on the vector operation from the BLAS [29] called a SAXDPY,
[¥+ v+ ax) This operation forms the computational kernel in the form of a rank-1 updaie of
a submatrix of sive m” for a banded matrix A of order ¥ and half bandwidth s during the & th
slep of the reduction.

® Work suppartad inopart by the Applied Mathematical Sciences subprogram of e Offee of Energy Research, L&

Department of Energy, onder Coniracy Wo31-105-Eng-38, and in part by the (dfice of Maval Research ander
Contract MOKKIT4-84-K-0043,

Q1ET-B190 87 783,50 0 1987, Elsevier Science Publishers IV (Wonh-Holland)

10 JJ. .ﬂ‘m‘i‘ligﬂl'.l'd. I Sofirrroe ."'i‘.-:-.'.-.-.:.u_n; vrvacte! EPETEIET o rrll\.mrﬂ.'.'ﬂ'lu_rm_“ur

I'akle 1
Terfermance for the CRAY XMP-L (ooder 26K, ssmameims pestiive delinne inatris)

Half bandwidih LIMNPFACK Mfloqs improvad Tenpraviad

Call BLaS FORTEAM MYV CAL MY
& 4 s 11
3 [12 27
b . 17 41
44 12 A} #d
2 1% 54 1108
123 20 ki 141
2UH) 3B 1413 144

Since much data are updated at each step, this algorithm suffers in 1erms of performance on
most sequential compuaters. This effect of poor performance 15 most pronounced on vectos
architectures that have vector registers. On such machines the largest bottleneck is in memory
traffic.

To substantially reduce memory accesses, the algorithm can be reorganized using matrix-vec-
tor multiplication as the computational kernel, instead of rank-1 updates [6,7]. This technigque
reduces the number of storage accesses from Oy N.-?I::l 1 O New)y through vectorization.

Table 1 shows the performance dilfferences lrom this approach.

We can exploit a modest amount of parallelism by performing, say, the malrixc-vector
operations in terms of independent innegr productz, An additonal amount of parallelism can he
exploited by lactorizing the matrix [rom both the top and the bottom simultaneously, When the
lzctorization reaches the middle, & small Dlock manx must be factored. The backsubstinetion
then proceeds from the middle and works toward the top and hottom in parallel. It is
important to nete that the number of Meating-point operations 15 exactly the same in this
approach as in the conventional factenzaton. (This two-way factonzation resurfaces feom ime
to time. Jim Wilkinson describes this as an approach used in the early davs of computing to
reduce overhead associated with the looping [4]. LINPACK wses this algorithm 1o solve
symmetric positive definite tridiagonal systems of equations. Evans and Hatzopolus [10]
describe the algorithm as a falding technigue.)

We consider this algorithm as the best we can do on a sequential computer. The amount of
work, in terms of operations performed, 12 mdm + LN — 2 + 1173 additions and mulipli-
cations [or the factorization of symmetric positive definite matrices and m* (2N — 1) — (dm® —
I3 for an arbitrary banded matnx of saze N oand hall bandwadth s, The number of
addivons Ssubtractions and multplications for cach solve is 22N — s — 1,

X Parallel alporithms

For computer architectures that provide a large number of processors, algorithms can be
employed that exploit the independence of aperations in elminaling single vanahles and the
independence of operations in eliminating different variables [12,14.1%,21,22,30,42,43). For a
narroew banded matrnx the polental concurrency s largely due 10 the independence of
operations in eliminating different varables, whereas for a matrix with a half bandwidth equal
Lix -.-"F or larger the concurrency due o the independence of eperations in the elminalion of a
simgle variable dominares,

I enly the complexity of the parallel arithmetic is considered, as would be reasonable for a
shared-memory machine with very high communication bandwidth which allow conflict-frec
aceess to dati, then the speedup from concurrent climination of single variables is linear. The

LA Dongiere, L Sobnon ¢ Sofving handed syaioees an @ poareds! PraCEsTeT Py

speedup is measured as the time for sequential elimination divided by the time for concurrent
ehmination. On the other hand. the speedup from exploiting the independence of cperations in
eliminating different variables always is sublinear, since more operations are required to find
the solution. The maximum speedup in the latter case is in the range 1208 /) Slogl N /e 10
(NSm)Mop(N Am) for N /m processors, with a minimum efficiency of O(1 /logl ¥ /m). In the
lormer case the maximum speedup is m®, with an cificiency equal 1o 1 [23]

The graph representation of a banded matrix constilules a perfect eliminarion graph [34). and
Craussian elimination withowt piviling constitutes a perfect elimination order. Hence, there is
no fifl-in. Concurrent elimination of different variables, on the other hand, generally does not
censtitute a perfect elimination order; the total number of arithmetic operations performed and
the storage reguired by the concurrent algorithm are higher than for the sequential algorithm.
However, the time to solve the banded system should be greatly reduced Tor sufficiently many
processors, In the case of a tndiagonal system, odd-even cyclic reduction requires approxi-
mately 17N operations compared to 84 for Gaussian climination, but the parallel arithmetic
complexity for eyelic reduclion is 11log & in 2log & steps (or 12log N in log ¥ steps),
Classical Gaussian elimination is a sequential method and required SN operations in 2N steps.
The two-way Gavssian elimination is also a perfect elimination order. The partial arithmetic
complexity i= 48 during & steps.

Unforunately, for many architectures, ignoring the cost of communication and the effects of
vector leatures and storage hierarchy is nel a good approximation of reality, Communication
bandwidth, overhead in communication. routing conflicts, and bank conflicts, as well as
overhead for vector instructions (should such be available), are important factors in choosing
an optimum algorithm. We will focus on the communication issue, We carry oul a simple
analysis for two algorithms exploiting the independence of operations in eliminating a single
variable. and one algorithm exploiting the independence of operations in eliminating different
variables. We discuss ring. mesh, hypercube and shared-memaory architectures,

4, Concurrent elimination of @ single variable
4.0, One-dismensional poriitioning

A ane-dimensional partitioning of the matrix in the column or row direction is feasible in
the case of o ring of processors, as shown in Fig. 1.

The partitioning can be done cither cyelically or consecurively [27]. In cyclic partitioning by
celemng, column j is allocated to processor j med P, where P s the number of processors
labeled from 0 to P =1, In conseculive partilioning, column ; is assigned to proccssor
CiPAm + 1 med P (assuming for simplicity that s+ 1 is a multiple of P} Cyclic and
conseculive partitionings are illustrated in Fig. 2.

Consecutive partitioning is akin to a block-oriented algorthm. It leads to a lower utilization
ol the array, but requires fewer cormmunications in a packet-oriented mode of operation where
& block corvesponds Lo o packet.

F L] - & i ¥ ey P
r ‘I Fig. 1. & ring of procsssors with dustribk-
uled starage.

m L Dowgarsa, L falmssen /2 Selviep handed sieeots om a perallel frocesnos

g 3 Owiclie and conseculive ene-dimen-
CYCLIG COMEECUTIVE stomal pantilioning.

[m eyelic partitionng o proceszor [iest computes the pivol column of the left factor L., then
performs iis part of the rank-1 update of the m by s submatnx; in other words, it updates
(= 1P =1 columns of length e Aler the processor stocing the pivel column haz
computed a new column of L, it transmits the column 1o the processor with the next higher
index modulo P (e the nghty, The receiving proceszor [orwards the column o the next
processer, and performs a rank-1 update on (s 4 13AF columns of leagth s, Assuming a time
r, For addivensubieaction and moluplicagen and a wme 5 for division, and oo wvector
features in the processors, the arithmetic complexity s approximately (5, & Zioe 4 137F 4
Lpewd N Tor o noosymmetne matrix, The communication complexity is approsimately (s, +
TiIN, 7 15 the communications overhead {startup) and £ 15 the transmission time for a
floating-point number, We assume that the architecture iz of the MIMD vpe [11] and ol
communication and arithmetis operations are pipelined. The speedup 1= approximately P if
only the arithmetic complexity is considered, but may be poor i the communication complexicy
dominates, That is, if (mt_+ 1IN == (0, + (2w + DAP+ Dend 0N, then P 2w Ame_ + 1)

[0 conseculive partitioning the processor holding the pived Block, factors it and (ransmitz
the factor to the ‘next’ processor inoa way analogous w the ovehic partiviening, The arthmetic
complexity iz approximately (i, & (300 4 1) = PY 2o+ 12PN for an unsymmeinic
matrix and the commumication complexity (o, + (P mdr 1N, Pipelining of arthmetc and
communication operations is assumed for these complexity estimates. The arithmetic complex-
iy 18 approximately 13 umes that of oyelic partitoning for P =2 e, bt the number of startups
in communication 1= reduced by a factor of 2w

4.5 Two-dimensional partitioning

In the case of a rwo-dimensional mesh-configured set of processors, 8 two-dimensional
partitiening of the matnx can be beneficial [25] This partitioning can also be performed
cyclically or conseeutively, We assume for simplicicy that the mainx has the same nomber of
super- and subdiagenals, and that the processor mesh has VP nodes in each coordinate
direction. Figure 3 illustrates the matrix paritionings.

In eyvelic parttoning the processor bolding the pivol element sends o0 in the column
direction {or row direction) o compute a set of elements of L, then procesds to compute the
elements of a colemn of L that it stores ((m 4+ 1744 P = 11. The processor that receives (he
pivot element forwards it and computes (m+ 10/¢F elements of the column of L that
corresponds 1o the pivol element. The communication is confined within columns, As the

LA Dhewparra, L Sohnsion S Selotag bawded esfems on 0 parallel processor 223

)0 |-:|2|I:rn{|:u||-:lzi
F1- o =f -
topin i) i | 1e)
— = -
zolzil22]20 |21 22| 20| 2
_J_JI_|_.|__|._|_-|._

nnI-:u |::-:z|-:r:=-|'u| |z on [o2|

L O 0t £ e

i izhal izl | el

>
o

|
I
freat oy e

|
e S S e T |

__
L=

i e e L B S 20 | 2
2olzi 22l el 21| 22| 2alzi |22 | 2021 |
—-F—I—[—--J-—|—I—J—-.'— + ——
|'-'.HIEIEI I
- oo| o
el |
- i
CYCLIC CUOMSECUTIVE

Fig. 3. Cyvclic and conseeutive owo-dimensional pariiioming,

elements of L are computed, they are sent to the *next’ processor within the row, The mesh of
processors performs a rank-1 uwpdate; each processor updates (me+ 13 /F elements. The
arithmetic complexity for the cvelic partitioning is approximately (fg +(20m + 1 AYP + D
+1)/VP)N for an unsyranelric matrix, and the communication complexity is ((me +
/P + 20N ASSWINING coneurrent communication in the row and column directions, If
communication 1% restricted 1o one direction at a time, then the data transfer time is doulled
and there is a total of N additional starups. The arithmetic complexity is approximately the
same a5 in the one-dimensional cyelic partitioning, but the communication complexity is
different. The numhber of elements transmitted over a channel between a pair of processors 1s
reduced by a factor of P, but the number of Communication startups is doubled,

In the case of two-dimensional congecutive partitioning the processor holding the pivot
block factors it and pusses the left factor to the next processor (right} in the same row, and the
right factor o the next processor (down) in the same column. The receiving processor forwards
the factors and performs a forward solve. Then a Block rank-1 update. a rank {(m+ 1)7F
update, is performed by all processors. The arithmetic complexity of this block alzorithm is
approximately (ry + (11(m+ 1)°/P —Hm+ 1)/¥F + 13,)N and the communication com-
plexity ({3in + 1)/ VF - /20, + 204P fim + L. The arithmetic complexity is approxi-
mastely twice (11,/6) that of cyclic partitioning. The number of startups is reduced by a factor of
(m+13/YF compared to the two-dimensional cyelic partitioning, and by a lactor of F /2
compared Lo the one-dimensional consecutive partitioning. The time for transfer of matrix
elements is approximately 1.5 times that of the two-dimensional cyclic partitioning.

4.3 Boolewn n-cube

In a booclean a-cube muliprocesser [38] the processing nodes [orm the comers of a
n-dimensional boolean cube. Each node has a fanout of n; the diameter is a, the average
dizstance between nodes n/2, the total number of edges a2'"" M and the numhber of diggoint

14 S8 Bowgerra, L definreen 0 Seleiap fawdled rertemiv an g paraitel procersar

pathz betwesn any pair of nodes » [2538]. A boolean cwbe can simulate a ring and
two-dimenzional mesh preserving the nearcst-neighbor connection property by using a binary-
reflected Gray code [35]. as chserved, Tor example, m [26.31). OFf the parlitiomng strategies
discussed above, consecutive two-dimensional partitioning Is preferable if the startup times
dominate the time for arithmetic, whereas evelic two-dimensional partitioning 15 preferable if
stariup tmes can be ignored,

In the w-cube there is also the potential for reducing the dala ransfer tme by vang Lhe
additional communication paths betwesn a pair of nodes [17,24.36]). Moreover, a hoolean
re-cube can simulare many other graphs than rings and meshes with ne for al most o constant)
slowdown. In particular, complete binary trees [2,4.26] can be embedded effectively, and
algorithms based on the divide-and-conguer strategy, such as (block) evelic reduction and
nested dissecnon-based eliminanen schemes, are candulates for efficient boolean a-cube
algorithms. The partitioning algorithm described in the next section belongs in this category of
algorithms,

Since the partfionng method leads o a reduced block mmdiagonal sysiem, we now indicate
how a {block) tridiagonal system can be solved effectively on a boolean s-cube (see [20,26] for
details). The mapping of the block rows uses the binary-reflected Grav code for the initial
assignment of partitions 10 processors, A block cvelic reduction algorithm 15 wsed 1o explail
concurrency. By the Gray cods embedding and the ficst reduction step only implics nearest-
neighhor communication. Tt can he shown that the communication in subsequent sieps is
abways betwsen processors at distance 2 from sach other. This property can be used for an
geepiaes algorithm., 1t s also possible o divide the disiance 2 communication inle two
negrest-neighboer commumications such that after an exchange step the egualions participating
in the next redoction step are in a subcube of half size. Hence, during the reduction process,
subsels of equations are recursively assigned o subcubes such thal any subset 15 mapped Lo a
subcube in 2 binary-reflected Gray code order. The recursive assignment requires a sample
exchange operation belwesn certain adjacent processors. Each processor can determinge whether
it will perform an exchange operation and with what processor from s address and also the
reduction (backsubstitution) step 10 be performed. The same local information suflices Lo
determine the communication for the reduction (backsubstitution) operations themselves. The
exchange algorithm moves even equations [0 even processors (and odd equations 1o odd
processors) The considersd Bit-field 15 reduced by one for cach reduction step. One step of the
exchange algorithm is illustrated for a 3-cube in Fig, 4,

In the g-cube alzorthms based on binary-reflected Gray codes, [ull advantase can be taken
of truncated cvelic reduction. Each reduction step is carried ouwt on all relevant equations
during the same tme step, Hence, truncating the redoction alter » < steps reduces the total
iime proportienally.

E 2 2 a2 Fig. 4. Recarsively assigning eqantions oo
mules throngh exchangs operations pre-
EXCHAMNGE sepving adjadeniy.

AA Bremgerra, Lo dolineren [/ Seleiep handed feareots ow g parailel procesear 25

STORAGE

Fig. 3. Global-sworage architeciure with a
b

The block cyclic reduction algorithm as outlined above exploits 1he independence of
operalions in the elimination of variables corvesponding 1o dilferent blocks. 1t s also possible
to exploit the independence of operations for the elimination of a single variable if additional
processors are available, A owo-dimensional mesh iz sutable for the latter form of concurrency,
By assigning log 3m® dimensions of the boolean cube for the embedding of o= w0 meshes
and log £ dimensions for the partitions, hoth forms of concurrency can be maximally
cxploited.

We wall analyee the complexity of the partitioning methed in some detal in Section 5. For
further details sce [23,26].

4.4, Glohal storage architectiures

Far global storage architectures there are two basic approaches: the vse of & common bus
for provessor-to-storage communication (Fig. 51, and switch-bazed architectures (Fig. &)

The bus type of global-storage archilecture is typical when the number of progessing
elements in few, as in the CRAYs, Sequent Balance 21000, Encors Multimax, and Alliant

SIWITCH

Fig. i {ilehal-storape architectune with a
swalch,

214 A Dongaere, Lo Fobnsvon 5 Solving bangded svsterms an g paeede) processoe

Table 2

Faritioning Rel. time for Rel. time far Rel vime for
arithimsetic COMIM, BIAMIERS dntz tronsfer

Ovelic 1.d L0 m ST Y&

Cwelic 2-d L0 w1 AT 1

Comszentive 1-d 1.3 VP22 ¥yF

Consecutive 2-d4 1 | (=P st

Gilabal szorage, hus 1.0 .2.'l|_-"p"!"" E‘-'lll.-"n“

Cilabal sorage, switch 1 T 2_-||__-'.‘-T°"

FX /8 computers. The switch tvpe of global storage architectures is typleal for architectures
conceived as highly parallel, 2z in the WY LU Uliracompuier [13,37], the RP3 by 1EM [33], and
ihe BEN Butiertly [3].

[m an architecture wath glebal storage and limited local storage the computations lor
gxploting the independence of operations in the elimination of a single variable can he
organtzed such that the proceszors ficst share in the computation of a new column of L, then
share the computztion for the rank-1 update. The anthmetic complexily is (5 +{2m +
l]'-'i‘lf_'l""q,"-:"'"- The communication complexity for the bus architecture is {max(im - 1]:;:'Fa,:r,{.r:-r
+ 105)+ S P 1T IEN, where £ a2 the Lime 1o transfer ane floating-point aum-
ber 1o or from a processor and i, the same time for the storage. For the switch-based
architecture the communication time iz ({m + 177/ P 272N, More accurate models of the
Alliant FX serics are presented by Jalby and Meier [12], who also describe efficient dense
matrix routines for that architecture, Sovensen [40] has devised effective matrix routines for the
HEF [9], which is a switch-based architecture with local storage.

4.5 Complexity anglysic for the concurrend elimination of & single variabie

The complexity estimates for the concurrent elimination of a single variable on different
archilectures can he summarized as in Table 2

The conclusien from the analysis so far 15 that for the distobuted swerage architeciures the
cvelic partitioning vields the lowest arithmetic complexity because of less idle time. “The total
number of arithmetic operations s independent of the partitioning, Cyelic two-dimensional
partitioning has the smallest time for data transfer because of the highest degree of pipelining.
Howsever, cyelic partittemng sulfers from a large number of communication startups, and with
significant startup times consecutive partitioning may yield a lower total complexity.

The algorithms have been described for a consistent vuse of the cyelic and the consecutive
storage schemes. For a given set of architectural parameters the minimum time 1= likely to be
achieved by a combination of the two stralegies,

S, Coneurrent elimination of variahles

For the concurrent shmination of different vanables the algorithm in [21] partitions the
system of eguations inte scts of consecutive equations (see Fig. 7). The computations in
different sets can be performed independently woa very large extent. The algorvithom is a varianm
of suhstruciured elimination or incomplete nested discussion.

J Dangarra, L Jokessan & Sobung beesded sparares an @ parllel progessar 227

LN
!
i
b
i,
'z | 8
L‘I‘i’l
‘H Fig. 7, Parninioning of the malris.

The algorithm proceeds in four phases:
Fhase 1 Factor each partivtened matrix.
Phage 20 Apply factors 1o pieces of the matnis o decowple the seluton.
Phase 32 Form a redoced matnx, and solve this matnx problem forming part of the solution,
Fhase 4: Backsubstitute 1o determine the remaining paris of the seletion,
Each of these phases is discussed in deiail in the following subsections.

S0 Phase |

[n Phase 1, each section of the matrix (Wlock A,) is decomposed. This phase can be carried
aut on each section oElly mdependently of the other sections: there is no communication
between sections. Al the end of this phase cach section haz the LU decompaosition as part of the
matrix, The amount of work for each section 15 wmim + 1)0& — {2m = 133 addition and
multiplications [or symmetnic positive definite matrices and me? (28 = 1) = (de® — 1)m 43 for an
arbitrary banded matrix of size & and hall bandwidils m, where & 1% the order of the matmx
A

X2 Phase 2

In Phase 2, the factors generated in Phase 1 are applied to the matrix. This can be viewed as
premulliplying each section of the matrix in Fig. 7 by diagf ,-1|-|__l~ I,). The resulting matrix has
fill-in from (7 o= A, O and Fe A A, . The fill-in is diagrammed i Fig. 8. Again in this stage
there is no communication between sections. The operation count for this phase is 2m({2k —m
= 12w+ #) For p right-hand sides,

32 Phase 3

Phase 3 has two parts. First, the svstem is decoupled and a reduced svsiem is solved, forming
part of the original solution, This part of Phase 3 involves zeroing submatnix A, . Zercing can
be accompbshed by ample block elimination with the Block above A, . This resulis in some
fill-in below G, of the form G/ < G — A, G, and a modification of A, such that A, — A, —
A, F. These operations are independent lor each § and can proceed in parallel for all sections.
Mo communication is required.

The zecond part of Fhase 3 invalves reroing 8 using the block frem below. This resulis in a
full-in above F,, of the form Fl,« FL1,— B F_; and modification of A4, such that

228 S0 Mogieee, Lo Jokossen J Sofieg Banded Sysieets an a preall! proverror

o

22 | By

@

Fig. & Mainx aler Phase 2

A, A, — 8G,, . Here interpartition communication must take place to perform the update
of block A, and forming of blecks & .

Al this point the matrix has the form shown in Fig. 9

The last set of m rows of each partition together form a systern of mP equations in the last
m variables of each partition. The matrix has heen decoupled, and a reduced block tridiagonal
matrix can be formed, When thiz Block tndisgonal system is solved, the partial solution 1o the
criginal matris problem at these positions are formed,

The amount of wark for this portion of the algorthm depends on the size of the block
indiagonal svstem and the method vsed to solve the svstem, The blocks are of stze m 2 s, and
there will be P block rows, where P 15 the number of partitions made in the original matrix, If
we fix the order of the originel matrix and look at what happens as we increase the numhber of
partitions, we see that more effort will go into 2olving the reduced system.

The commumication complexity and the parallel arithmetic complexity for the solution of the
block tridiagonal system depend on the architectore [28]. The number of Block row comumunm-
cations in sequence depends on the method chosen and the architecture, I varies from a log P,

R
i
|
&
a’ i
. -+
il
Fig. & Morrix after the firs past of Phicse

Fobl Donparra, [Sedimeran S Aol baweded fparener an @ parile pracessar 220

where o falls in the interval 1-8 for block cvelic reduction and suitahle architesiures such as
binary tree, shuffle-cxchange, and boolean cube interconnected processors, For shared-memory
architectures it is necessary that Lhe bus/swilch /storage handwidih is proportional to 2P 10
realize 1 log I communication start-ups, For twoe-way block Gaussian climination the number
of Mock row communications is P for a linear array and 27 for a shared-memary architecture.
The parallel arithmetic complexity of Block cyelic reduction is {26m? /3 + Bmiriflog P—2) =
Vom® /3 + lower order terme and for twa-way Gaussian climination (8m’ /3 + 3m*r)(F — 1) +
fenver order terms, rois the number of right-hand sides. The parallel arithmeic complexity of
block cyclic reduction is always lower than that of two-way block Caussian elimination. On
most architectures the number of communication startups in sequence is also less for block
cvolic reduction.

Detailed complexily estimates for both block Gaussian elimination and hlock eyclic reduc-
tion are given in [21] for a variety of architectures,

54 Phase 4

Giiven the solution to the block iridiagonal system, the complete solution to the criginal
matrix can be found by a simple backsubstitution, Phase 4 can be done without communication
of information from one section to another. This phase requires dmkr operations, where » is (he
number of mght-hand sides.

A% Complexity of concurvent slimination af different variobles through partitioning

The parallel arithmetic complexity corresponding 1o the above partitioning stralegy is given
below:
Phase 1: mim -+ D N/P = m— (2m + 13,/3) for a symmetric matrix,
nr'z{El:."'r'l,r"P' m)— 11— {dm* — D /3 otherwise:;
Phase 2: m(2{ NP —m)—m - L 3m + 2r)
Phase 3: 2m(m + 1 m + r) £ block trid, golve for a SVIIUMELric malrix,
Zea{m + 12m +) + bleck trid. solve for an unsyvmmetric malrix;
Fhase 4: 4m({N/F —m);
where

F =number of partitions,

M =orderof the matrix,

s = hall bandwidil,

¢ =number of nghi-hand sides,
F = Nim,

For the above complexily estimates it is assumed that there is one [rOCessor per parlition.
The complexity of Phases 1, 2, and 4 has terms inversely proportional to the numhber of
partitions, whereas the complexity of Phase 3 has terms that increnss as a function of P, Hence,
there exisls a trade-offl between time for the solution of the reducad system and the time
required in the substructured elimination. The optimum number of partitions for linear arrays
and shared-memary systems with @ bandwidih independent of £ is of arder VN m, whereas
for boolean cubes, binary trees, shuffl e-exchunge networks and shared-memory systems with a
bandwidth preportional 10 £ the optimum number of partitions is of order N /m [30],

The paralle]l arithmetic complexitics can be reduced further by performing operations on
blocks eoncurrently, ie., by parallelizing dense matrix factorization, solve and multiplication
along the lines described for banded syitems in Section 4. Sech parallelization leads 1o
increased communication complexiry.

X LL hoveperra, L. Sofneron S Soletep banded renems aw g parailel procesior
S Algorithm properiies

The parttioning strategy vields algorithms that have two significant properties:

(1) If the onginal matnx s symmetric, then the reduced block mdiagonal matnx 1=
symmetric [Z1]. This is not the caze with the partitionng employed by [8.28]. {Also if the
original 1z diagonally deminant, =0 15 the reduced system.)

{20 1f the macrix is symmetric, then the condition number of partitioned matrices, (A, b is
never worse than that of the original matrix. This follows from the cigenvalue interacting
properiies of symmetric matrices.

The reduced sysiem can be solved using block cyclic reduction. The advantage is that this
phuse can easily he parallelized.

The partiticming algorthm described here wses an elimination order that can be obiained
through incomplete nesied dissection [13]. A handed marnx wath half bandwadih m corre-
sponds oo graph in which each node 15 connected 1o all its preceding m nodes as well as o all
vz succeeding s nodes, except for the first and Tast sets of m nodes, Separators are of size m.
The block matrices A, correspond to the edges between the nodes of a separator and the
adjacent left and top triangular hlocks 1o edges 10 one sel of o/ — o nodes, Choosing
separators as bisectors recursively vields 3 complete binary tree as an elimination tree (Fig. 100,

The elimination crder of the algorithm corresponds o the elimination of the leal variables
prior o the climination of any variables of the mternal nodes of the eliminaton tree. Mo
pacticular order 12 imphed lor the ehmination of variables in different leaf nodes, bt the
variables within a leaf node of the elimination tree are eliminated in order of increasing (or

Fig. 100 Elimination iree generated by
recursive hissction (incomplers nested dis-
CUSSHL

LA Bongarea, L. Jolnsson 0 Snfvimg banded systews on a2 pureerlivl provessor 211

decreazing) labels, The elimination of the variahlas corresponding (o the internal nodes from
the leaves owards the root corresponds to the climination order of block eyelic reduction,
wheres an elimination in inorder yields hlock Gaussian elimination [27].

f. Complexity of the different strategies for concurrent elimination

The number of communication startups for the paritioning methed descnibed in Section 5 s
potentially a factor of am log PAZNYFP) less than that of the consecutive two-dimensional
partitioning, which has the fewest startups of the algorithms exploiting the independence of
aperations for the elimination of a single variable. The data transfer may be a factor of
e log PA NP) times that of the consecutive two-dimensional partitioning, To Fully realize
thiz potential, the communication handwidih of the architeeture must be proportional 1o £, 4
configuration most easily sccomplished in o network architecture.

We conclude that with respect to the communication complexity, algorithms exploiting the
independence of operations for eliminating different variables offers substantial reductions
compared o algorithms exploiting the independence of operations for climinating single
variables [or most banded matrces.

The comparizson with respect to the arithmetic complexity is nod so favorable. The substruc-
tured climination causes substantial fill-in, Indeed, the arithmetic complexity of Phases 1 and 2
alone is approximately 4 tmes that of the sequential algorithm for the general case (for
N/P = equations), and 7 tmes for the svmmetric case. Hence the efficiency
(speedup/(number of processors)) is limited, and the number of processing elements regquired
o achieve any speedup iz expected o ke al least 5 1o 10 i communication complexity and the
time for the reduced system sclve are included, A very modest speedup can be cxpected on
current global storage wath bus architectures because of the number of processars availahle,
The situation for distributed storage architectures is more Favorable in that they offer a larger
nurnber of processing elements.

Baoth kinds of concurrency can clearly be exploited simullanecusly. The arthmetic complex-
iy 1% reduced and the communication complexity increased. Exploiting both forms of concur-
rency may, however, represent a problem with respect 1o available compilers on some machinegs
unless some other deviee is used 1o gain access 1o the parallel features [9] {such as the Alliant).

7. Experimicnts

The partitioning algorithm has been implemented on twe shared-memory systems. the
sequent Balance Z1000 (with 10 processors) and an Alliant FX /% iwith & VECLOT-RIOCe350rs,
with a vector register size of 32 elements) !, Results from the methods described in Section 4
are presented in the following two subsections.

P4 Concurreny efiminonion of varighles

LI Phase Ir Factorization

For Phase 1, a LINPACK routine is called. The [<ak performance of the band algarithm
from LINPACK on the Alliant FX /% is about 3 Mflops [15], which is also achieved [or some
phases of the algorithm. The vector Teatures and the cache of the architecture have interesting,
effects on the performance, as indicated by the data for one processor as siven in Table 3.

! For the case m=1 {inidizgonal systems) also oo the Tntel (PSCAdT and the Consection Machine (1]

23

Tahle 3

Exciution e for factorization {in seconds) on Alliam FX A8 ane prosessor used

A

2 N =100
N o= HHH)
&= 40K]
&= B

F N=100
N o= K]
= U]
N = BN

L A = 1000
= 200
W= 4
I = BiWH}

31 N =10
N o= 2000
o= i
M = B

S Bongareg, L falwssen [/ Sedving banded e an o pevaliel provessor

F=1 FP=2 F=4 iy [T
0g 1% 30 018 D18
141 038 0.5 {1,400 40
077 077 0.77 .78 080
1.53 1.55 1.55 1,35 160
D42 0,42 {140 .40 0,37
0.3 021 083 083 083
1.67 1.68 170 170 1.75
1,17 1,40 3,43 3.47 362
.50 080 077 0.64 0.5
162 158 1.57 1.52 .45
1,30 318 322 1,23 1,30
6.47 647 650 b.63 6.97
1.72 1.6 1.40 0,58 0,33
3,47 342 117 2,70 1.50
7,05 6.85 6.77 5.0 5,38

14,55 14,68 14,65 14,62 15,54

For a small bandwidth the effect on the execution tme due o an increased number of
partitions is small. The total number of arithmetic operations is approximately Zm (N — (P —
L), The overhead in managing loop iteraticns seems to dominate. But, for a hall bandwidth
of 32, the number of arithmetic operations is reduced significantly, The reduced number of
arithmetic operations is part of the explanation for the reduced execution time for increasing P
even if only one processor 15 used for the factorization. However, the reduction is much larger
than predicted from the number of arithmetic operations alone as seen from Table 4. The
runming time is normalized 1o the ome for P =1 for cach & and s, The measored relative time

5 given first, the predicied (1~ (P — Tim /N) second.

Felative execution time (measwral: predicled) for Tctadzation on Alliant FX 2 ane procssser weed

Tahle 4
E] P=2 =
TN =100 {11} (L11:1)
N = T Y0As-1) (095:1)
N = 200 (1) (1:1}
N = B0 {1.01:1) (1.01:1)
BN =100 (1 (0.55:0.48)
N = B (1:1) (1.00am
N = 00 RIBY (L0084
N = B0 (L01:1) (1.02:13
I A = L0 (12055 (56095
N o= 2000 S0y (570098
N = A0 (L5913 (R EHER Y
N = S0 (1:1 (1055
32N = 1HH [.55:0.97) (LA 10
N o= 2000 (I RHIEY [.41:0.95)
A = 4000 (.97 0,95} R
N = B [101:1) {10008

F=g [T
{108 {1:0.87)
(1:0.98) {1:0,58)
{101: 1) {10605
(101:1) (105213
(A5 0,04) (LR85
(10T (1:0.0d)
(L02:0.08) (L0505
030,00 (1B
(OLES:0LEE) (i1,)
(1,510,404 (A B
(L0107 (L0054
(L0200 (108,57
(LT 0LTH) (L9052
(L TE0ED (05500, 705
A5 (0L T)
(1.03:0.97) (L0, 54

o 30 nogaung TSt aeseoed Suo un ONEIUOIRG 30 Sur aanEEy Cpl Sy

suc1}1idod jo Jegunu
'8t 051 0%T 0Kl 0@ 011 o'or 0% 0'g 04 09 0's 0¥ o'e 02

1 1 1 1 i 1 1 L 1 []

A Bhowgarrn, L Jeinrren O Selming bowded syerems on g parailiel proceeeor

=]
2 QOD8-N'ZE-&" 5 | “
o) =il
~ N
. OO0T=H"7e=ti_ g | ™=
5 DOOT=N‘Zr=0_ o
.rr.r.r:. _”__Uah .q.nu =l 2
oo DOOP=H'G1=0_a_ |e
iy O002-H79T-% "o _ | @
S5 oD I-H GT=4 O
S O00S-H"B=-9 % |
o D00F=HTE<9_ O
e AONE=NTH=T A
S QO0T-H g-4 o
& H _O00B=N"g-% % I
et e TO00b-N'E~ 1
P] 0008 Z~M Y
e A 0001~ e=" B Le
—— - HAOWI e

"1

1

o't
pejapsad

PRINEDSE [8E7) UDIYNOBES BAD S

] LA Brewmgerra, L Joiinrrer [/ Selvlog hoaded sestems om a poraiiel pracesear

Tahle 5
Fleating-poanl operativns per second {kflops} for facionzavon on Alliant FX /8, ans precessor used
e o1 F=2 T Pmd Pt F =16
N =100 &4 a4 al 44 T
N = 20 40 a1 42 = i
= A 42 421 42 41 40
M EOH 42 41 41 4] 40
B A = THH) 303 M 313 £] 4
N = NN J0E T ek] 104
N o= HHHY I 3 e IR 2136
N o= B Ja K| AR 3 279
16 A = 1K} 1 620 &35 s i
N = 2HH) 519 4] [oR B 643
N o= S0} %1 Gl G239 [} 53
M= B 631 H31 &37 511 573
32 N = 10K 1164 1202 1215 1735 413
N = 3K 1162 172 1335 1731 177%
o = 4000 11506 1153 11584 124 13

M= BlHHy 1123 1110 110 1074 pLL A

The effect on performance of an increased value of P is most dramatic Tor m = 32, but
significant even for m = 16, For large values of N (N =8000 in our experiments) the
performance degrades with an increased number of partitions, but for fewer than N = 4000
wquations the improvement s markedly better than predicted from arithmetic work alone.
Figure 11 illustrales this point.

The execution rate, number of loating-point operations per second, increases with decreas-
ing N for all values of P and m, see Table 3. The largest dependence on N is measured for
m=731 and P =16 On the Alliant FX/8 using onlv FORTRAMN the maximum observed
floating-point rate was 4 Mflops for 1 processor, and the lowest was 40 kflops a difference of a
lctor of 0. For & processors the maximum fleating-peint speed for [actorization using
LINPACE wvaned from 193 kflops (s =2} 10 161 Bfops (& = 2080, = 323, The peelor-
manee can be improved considerably by careful data management and assembly coding [185].

The rate of floating-point operations is shown in Fig, 12,

The minimum execution time lor factorization on 2, 4 and § processors is given in Table 6.
The numbers within parentheses gives the number of partiticns for which the minimum time
wias achieved,

The speedup is summarized 1n Table 7. Though the execution times are repeatable the total
excoution times lor ¥ and me small is cause of some imprecision in the specdup figures, The
elficiency for P =4 is in the range 75-90%. For P = § the efficiency is rather unzatisfactary,
55-R5%,

For the Sequent Balance 21000, which does not have wveclor features. the measured
performance increase for Phase 1 as a function of the hall bandwidth was & Factor of & for
mi =2 10 # = 32 The actual Meating-point performance increased from about 5 kflops to about
30 kflops per processor. The execution time was proporticnal to the size of a partition,

The speedup as a function of the number of partitions for Phase 1 was propoertional to P for
all values of mr and N for the Alliant, except for N =8k and m =2, which produced
ancimaleus data, probably because of the cache conflicts. The speedup for the Sequent Balance
21000 was superlinear for s = 32, The speedup increased with decreasing system size. The
speadup for s = 2 was slightly sublinear for & = 2& and strongly sublinear for smaller systems.
We cannot account for this phenomenaon,

255

A8 Ehwparra, L definrren /& Selclag banded feaems ow g poratlel procesror

‘womrueag Fuunp sossasmd sue ee peads wmod -Suneop) pessnyay 71 S
i.r_..u.._..._..._._-_L-u_n_ 4o Jagqunu
a-z1 a1t ool o' 0'g 0'd 0'g 0's Q

F 0°E o2 a

L 1 1 1 - | 1

-~
0'D0S 00

B

L e T T——— = i
e e e — e e . r— e e o i =
= . —— e e
— == = R
P = m—— —' =T
Lt
o =
-
o I ek = Hun...ll..
o
=
-
L
-
=
--
-~
-
-
=,
i
..
-~
-~
L
~
o
..|..||._
-
-
e
-
-
o~
o=
-
-
-~
o
=
-

fong-p =
00nE- r i
000Z-pes-%"rm
() e
000B=H"O1=" @
000F=H"01=0 C
;rum:_amﬁrﬁ a

: Ol=H"G1-u Ao

S e i

_O0E-H g0

B0 =1 “H=lTTn

- -

s T
TOO0B-N"g=W %
I
O00Z=N"z-wW %

“000T-N"E=% a
X30M1I

00062 0°0051 0°0001

[oes sedo) pucass Jad susqipiade quied.Buqipoqy

07005 O OOoE I:I'EIEEI. 0000 0°00ST

236 S Bongareg, Lo Jokessan 2 Salving banded sysieets on @ paealied pracesiee

Tabde &

FExecuiinon time for faciorizaiion {in secondz) on Alliang FX o8

™ I s i proc. .:!-p:v.'r_ .

I N=1lW 00k (4 (05 (16 (033 (LE)
M= 10 18 4 13 110) CLOES (16]
LT 03 (2.4.8146) 025 (16) T (e
N = RIHH} 077 (2,4} A2 1 033 (16

a0 W= 1 0.2 (816} 010 d, 2 18% 00467 (B1&)
N o= 2000 042 (d.8) 0 (4.8} (0% A A 1)
M= 40K 085 (245 (2% 4.8} 0y
M= BIWNY 1.7 (2] 092 (=) 052 (3}

ls N = 1A 02ale) 013 116) CLORS (6]
N = 2000 0,75 (16 038 (1) 0E5 Qe
Mo AU 142 (2] 0EE (.3} 057 (B1&)
N = R} TR (N 1R (4) 1L.1E i

37 N=100d LR (6] GLla 16 QOB (1)
Mo 2000 1L AT (1) D3R (6]
M= Al LRI 165 FLE) 118 (16}
= B{RHY TED (2] 4.72 [16] 147 (8}

-

202 Phase 2: Loced seluiion

The essential computation in Phase 2 15 a solve operation in each partiticn. Fill-in iz
generated, and the omal amount of werk increazes with P oapproximately as Gm N(1 — Lo,
Tahle 3 shows the measured running times for Phase 2 with relative running fimes normalized
i P =2 aiven within parenthesis.

Mg seen Iromm the table the growth rate predicied from the anthmets complexity alone is
Fairly accurate, except for & < 20K and M =& The approximate rate of floating-poin
aperations vanmes az shown i Table 9,

Takle T
Specdup on Alliant FX /2
s =21 F=4y1.3) Fo=5{1.73) =15 {1.E75)
I N=l0m 0131} 0LIE (1.38) 18 11.38) 0 [I.F.d-i.
&= JXK 0,27 (1} (KR e [0 11,48) a2 (1.56)
A = K] .55 (1) 072 (131} 02 [1.45) 0E3 (150
Mo B0 1oLy 147 11.324) 162 11.47) LAT (LA
5N =K 501 [LaE [1.36) 073 (1.4E) 0.73 1 1.46)
W= 2000 1.05 (1} 143 (1.36) 1.57 (1.5 LAR(L30)
A =] 2121y 195 1141) 3.2k (1.53) I33(LET)
N = RIHHD 43301} cL0(1.41) AT [1.59) TA2CLGE
Lk A =1000 1.23 (1} L.&2 (1.32) 163 (1.33) L3 (110
MW= 20 2EE(1) 5140 3T (1.45) AT (1.36)
M= Al 200 TE0(144) 232 (1.5%) TAE1.5D)
W = R} 1057 (1) 15.45 (1.4 1738 [1.5y 1T 58 (156
3N =10 362 ill 4.40(1.22) 1aT (L) LTE (49
N = 2000 TEE1) TLET 1.4 1007 [1.33) TAS 1,040y
M= A L5370 22104144 24,37 (1.5%) 212E (135

N = BKH VR Y| A6, 15 {1.44) LA5(1.70 FLOT (e

JA Donparen, L dedwrson J Salving baeded systems on o parailel processar N

Tabde: 4
Muasured running times {in seeonads) Far solve on Alliam FX 5 ane processar ussd
mw F=20l) P =d(L5) Fo=%(1.75) Pelnil&7s)
TN = 0131 015 (1,38 0LE (1.38) (.30 {1.5d)
i = D LR D57 (1.37) (040 1.4%) 042 [1.56)
M == AN A5 (1) 072 (1.31) (50 {1.45) A2 (1.41)
A= B L10{1y 147 (1,324} LEX{1.4T L.ET{1.52]
&N = 1 A0 {1} LER [1.36) 0,73 {145 M1LT3 {1 .40
N o= ey 105 (1) 143 {1.56) 137 {150 135 {1.500
A= S 212 (1) LRE {141 P28 (155 33300ET
= MO 45301} . 10{1.41) 487 {150 T LA
16 N = 10K 1.23 (1} L1523 LA (L33 13710
N o= TK] A EREY)] 3LA5) 3470135
&= 3K 520141 50 {1 B2A201EE) TR (1.5
W = BN 05T 15.45 (1.46) 1738 (L.e4) V758 (1.65)
3N =000 IA201) 4132 AT (L0 176 (.45
N = 2000 TAS 10L57 (1.400) 1007 (1.33) 55 (1.0
= A 1537413 FR A4 3T (.59 21.Z8 (1.38)
N = EHE) RINTERRN] 4615 (149 JLA5 (170 20T {1.68)

The Hoating-poiag rate generally increases with s and P, and decreazes as a function of &,
For me=2 the rate is about 3 omes higher than the faclorzalion rate, appreximately 0%
higher for s = 8, about the same for o= 16, and only 63% of the e for faclomization for
m =31 The rate varies by a factor of & {compared 10 a vadation by a factor 90 for the
factorization). The floating-point rate is shown in Fig. 13,

The speedup for the solve routine if the number of partitions matches the number of
processing elements is expected 0 he 1.5, 3. 7, and 15 for P=32, P=4, FP=%, and P =16,
respectively, compared o the one-processor case (with the corresponding value of P). Mot
that the total work increases with P, The speedup with £ being equal 10 the number of

Table 9
Floating-point operations per second (kMeps) For selve on Allianl FX /2, one processar used
m F=2 F=d = F=16
3N = 10 122 131 151 142
N o= HKK) 114 120 138 139
& = 30K 116 133 13 143
N o= RO 116 130 13§ 143
i N =10 Al 434 444 427
N o= 00 ki 425 441 444
I KT) 416 413 245
N = BN} B3 47 419 433
1 N =100 &14 [elis el &hb
M o= 2D &12 61% 3 a5
M= A 11 4 T kS [
M = AN I ald 2% £l
32 N = 1000 TEZ Al uls T
N T Al R7g Q53
N o= LK) T 41 513 9]

RS LY e T TH3 B3 LS

F. Demparra, L. defirrran 0 Salving beeded spsrems an @ paralsd prosessar

“sosanond Ao up as)os pUTANITG pur prTalof jo sel amed-funwog o g

suo13132od jo Jegunu
:.m_ o ._.= 0’8 o

0" iy 05

ot
L 1 1 1 1 i

=
i
=
o,

s ey

= —

T T T

LpNOe ==
OO0 TN R=E
O00B=N"Z=%%_
_Q00F=NTE-H_O_
_O00Z=N"Z=% ¥
O00T=N‘E=" 0O

—_— _ e

i G H]

i

[osssedo) pucoss Jsad suoqipiade juqed_Buqyooqy

00 00k

0ol 0o

0o0e O'008

00001

Tl 10

Execution times {in seconds) fog salve an Alliant FX 8

Hf Bhemperra, L. Soiineren ¢ Selelag handed sestens on o parallel processar

£3U

n 1 proe, 4 prodc. & proc. .
2N =000 010 {16) 0067 (16) 04133 (16)
N = 2000 2L {8, 16) 015 (16D 00 (L)
= A0 (.47 (18) 01,30 (1&) 020 (16}
M= B 093 {14) 42 (16) 0016}
BN = 1K (A0 {16) 02 (1) .12 918)
N = M .88 {1&) 047 (18} .30 (8,16}
N o= S LAT {15 102 (L&) O (8, 1)
N = HINK] 157 (16 213016} 1.27 (516}
16 A =100 0,78 (16) 042 (16} 025 (16
M = B0 152 (16) 107 (16} 070 (16
N = &) 447 (L&) TAYLG) 15K (16]
W = 3000 0,73 (16) 527 (16) LIT (16
32N =100 058 (16) 053 (16 .32 (16)
N = 2000 4,27 (16} 245 (16) L&S (16)
N = 40K 12.25 (16) EET (16) 458 (18]
W = B0 R385 (16} 1552 (18] 1045 {16

pirtitions is £/ 3m) compared 1o the sequental algorithm, which amounts 1o a slow-down for
the cases reporied here, The fgeres in parenthesiz in Takle 10 for the execulion time for the
different number of processors give the numer of partitions for which the minimum execution
tmee was achieved. The fact that P = 18 ssemungly always is the best of the consdered values is
in part due 1o the fact that the compiler failed 10 properly parallelized one loop. The speedup is

summanzed in Table 11,

The speedup for 2 processors 15 80-100% of the theoretical value.for 4 processars G60- 1005,
and for & processors 40-280%. Part of the reason for the discrepancy between the expected
speedup and the measured speedup for the solve phase is due to the characteristics of the

Tahle 11
Eperdup of solve an Adliant FX /5
i 2 proc. 4 Tros, B prec,
2 N =100 130 194 383
W = SN 117 L&D 2.0
N o= HH LIT 153 275
N = 800 L.1% 1.77 275
BN =101 1.25 A 417
N = 30 Li% 113 550
N = S 113 10 a2
N o= 2000 104 FARES 341
G A= 10K 1.5 191 242
N o= HEE] 1.31 L3 344
N o= K] 11E 11 326
& = B0 Lus L0b ENE
12 N=1000 183 136 550
N o= HHE) 1n ER L 458
& = i 1,25 21 33
N = B 104 204 am

2dik J Dangareg, Lo Joknssan [/ Sofung banded spstevs on @ parelie! processer

compiler for the Alliant FXAB It parallelizes one loop level (outermost unless instracted
ciherwise), It failz o parallelize the solve code for two partitions, sioce the code handles the
fill-in corresponding to o distinet set of solution varables in each Meration. Writing the code
such that each loop iteration containg anly the operation for one partiton lorces the introduc-
ton either of conditionals 1w handle the Orst and last partition which are special cases, or
sequential code outside the loop for these partitions. In either case the compiler either fails
completely 1w parallelize, or has w be “tricked’ into parallelizing the code properly. For
subficiently large values of # this problem should be of minoer influcnce.

A second reason for the discrepancy is due 1o data transfer rates belwesn main memory and
ciache memory, and between cache memory 1o the vector registers. The data transfer rate from
the cache memory 10 the processor's registers iz 376 Mbyoes /5 and from main memary 10 cache
memory 15 188 Mbwiesss The cache itsell can hold 128 kbvies of data (16k words) The
maching architeciure is balanced between the execution rate of the 8 proceszors and the
transfer rate from cache, however if the data reguest iz not in cache and a2 ‘real’ memory
reference s required there iz an imbalance, When & processors are active, each requesting one
operand of o vector operation from memory and the operand 15 in the cache, the cache can
supply the processors with data ac 376 Mbyies /s 1o achieve the peak performance of about 3%
Milops per processor (46,4 Mbytes Ss Sprocessor). When a data reference 15 not in the cache
memory and thus the requested data must come from main memory, the transfer rale is cul in
hall 1o LEE Mbvies s, With four or less processors active the rate from memory can keep up
with the execution rate from the aclive processors, however as more processors arg active and
request data rom memory the mismatch between the transfer rates and execution speed
becomes apparent and the execution rate drops.

To overcame this limitation the algorithm muozt b2 reorganized 1o gel more revse of the data
which in thiz case means matrix-matris operations. The net effect for our program is o have
poor performance relative oo the speedup measurements,

The efficiency of the partiiening method 15 critcally dependent on the time for the solve
routine comparcd 1o the factorization rowtine for small values of P. Most of the time spent in
the solve routing 18 Jue o Ollan, that s the poce paid lor the partitioning strategy {or the

Takle 12
Salve Mactanzaven (ume in seconds) Allann FX B one procssses wed
SRR F=2(15) P=4{2.15 F =3 {2.625)
AN =100 125 1.3 [HEK
i o= 20 1.23 115 1.20
o= I 1.24 1.3 1.1%
N = B 1.2 114 1,21
A N=1MH0 .00 1 1.7a
N = A 210 .14 1E]
N o= A0 .10 Iz7 1487
M = K 114 152 144
16 N = 1000 3.0 .23 101
Mo 2000 154 2R2 1]
N o= AL 1T 8 Fao
W = B{Ky 197 203 185
32 N=1000 54 5.5 ¥
Mo 000 417 4% 4.354
IR R KT 4 414 1ER

M = R} L& 38 10l

S Ponparra, L Jokeesan 0 Salung besded spsremee an o parals! PrOOERERT 41

Takls: 12
Fhase 2/phase 1 on Sequent Balance 21000
p N = 2045 N=1024 N=3512 N =256
2 R 145 15 TR
3 4,13 4.3 40 4.1
& w460 4.4 44 4.7
iz 241 4.0 a5 =

nested dizzection elimination order). For all parctitions kot the first and last the ratio of the
anthmetic complexity for the solve w that of laclemzation 15 approximately 3, For one
processor the ratio iz 31— 1/FL

Az can he seen from Table 12 the relative solve lime is lower than expected for s = 2, higher
than expected for m=8 and F =2, and slightly lower than expected for m=8, £ > 2. For
m = & the relative solve time s higher than expected, and significantly so for m = 32
Conseguently, the LINPACK-based parallel algorithm performing concurrent elimination of
variables is less time-consuming than predieted for small bandwidths. With the exception of the
N =&k case Phase 2 on the Alliant requires less time than predicted, if overhead is jgnored.
Mote that the ratio is relatively independent of ¥, as expected, and also (approximately)
independent of m. It is also inleresting 10 note that the ratio is approximately the same for
=1 and pr =32, but is higher for intermediate values (hy 30-50%), For the Sequent Balance
Z10040 the ratio is generally higher than expected. and increases as a function of m, with a
relatively small increase for m > &, soe Table 13,

A3 Fhase 30 Boletion of the rediecd Mook riciagonal sysiem

For block Gavssian elimination the expected solution time is proportional 1o £ and s, The
measured performance is approximately linear in £, but doubling the bandwidth onlv quadre-
ples the solution time on the Alliant, see Table 14. Being inherently sequential, with the
exceplion for the possibility to perform two-way elimination, the execution time should be
independent of the number of processing elements, since no parallelization of block matrix
(LINPACEK]) operations 15 performed. The measurements oecur with the predicted hehavior,

The Mock evclic reduction solver requires the same numhber of arithmetic operations for
P=3and £=4. The total number of arithmetic operations for £ =8 is higher. The block
cyclic reduction solver requires approsimately 126 Lmes as many operations as the block
Gaussian elimination solver, but the parallel arithmetic complexity is lower. However, the
Alliant compiler did not manage 1o parallelize our cyelic reduction code. The running time for
P =4 was approzimately 1,15 umes that of the Gaussian elimination eode, and for P = 8 it was
approximately 1.52 for 1 processor, 1.42 for 2 processors, and 1.40 for 4 or more processors,

For the Sequent Balance Z1000 the dependence is approximately linear in P and approxi-
muittely cubic in &, sec Table 15,

Table 14
Time for bleck Goussinn aliminatian on Alliany Fx 8
= TG FAEi P=d FEY: P =15
1] i 1] I
b] 003 L H k13
16 0ol IUEIH] 0.2z 30
b

EARES 0.3 0.4 FALE

243 LA Bongareg, L Falwgon ¢ Solvig banded svateme on o pareliel provessor

Tahle 1%

Trome for Block Gaussian elimination on Sequent Balarcs 21000

At =4 2 T Fo=3
2 S 0075
] .583 1,25

14 ek 165

32 25,25 5163

T Phage @ Back subsiiietion
The time for Phase 4 15 small relative o the time for the other phases and offers no
particular insight.

25 Tored time Jor the pariivioning methad

The total tme required o zolve the different bandsd svstems uwsing bBlock Gaussian
climination for the redweced system 15 given in Table 16

Our implementation of the partitioning strategy on the Alliant FX /% yields 2 speadup for
Pl m=2 for P=4, m=38 and for = 8, m = 16. For half bandwidth 32 there is a slight
speedup for N = 4000, and a slight slowdown [or smaller svstems. The total time for (he
partitioning method on the Alliant 15 shown as a function of P with ¥ as a parameter in Fig.
14 for m=2 and m = 32

T2 One-dimensional pariiioning

As an alternative 1o the concurrent elimination of different variables, 3 one-dimensional
partiticning can be used for the concurrent elimination of a single variable. Table 17 gives the
result from performing column operations in parallel.

For a small bandwidth the parallelism for the column partitioning 15 very limited, and as
seen for the case m = 2 the execution time does not decrease beyond the time for 2 processors.

Tahle 16
Toal vme {in seconids) 10 solve usang bleck Gaussion eliminziion on Alliang FX &
e P=1 Fm Ped Fm=g
2 N =100 07 025 018 T E
A = HHE 05z 048 032 023
N MM 1.3 042 L] [l
N o= B 1.wE LE3 1.3 [LE0
E N =]1HH A0 075 42 130
N o= 2HH) 1.00 147 52 A
L] 2140 197 152 LE
N o= B 4,03 348 1.3 1.51
I& N = 1K .53 (5 o8 .75
e I 1.87 145 1.5 1.33
R (KT 367 [381 .54
N = B} 7,38 13,55 71,55 au
31 N = A 192 4,25 2467 212
o= 2N IE? b33 5,35 47
NN o= AHHY R 18.41 16,73 Th3

N B 1608 .43 203 15.55

243

N VIR AT U0 S uonnpos [Feg g A
suossedold jo Jegunu
0°s m,.-_ 0¥

....... TP T T S PTP F rre
e i it A o
et LT
P r— - e e
b ——— i

——
L

. — i
el ™ E —— e -~ I
= —— g - =

F Halving bawded syerems on @ paraiiel procyeear

S0 Pomgparen, L ol

DR0C=N B=% &
OO0[=H"
_0opg-
_000¥=N'2=% O
OROE=N"Z=li "%
DOOT=-H"Z2-4" o
XN

——

[e—

|JI|J.H.|1”1...\......
- -

T
0o

oBE UY am

E]

244 LI Dongerera, Lo Jolnssen [/ Scivieg Banded Seaeeols aw a peealied froceior

Tahls 17
Chg-dimensicoal pariveang (imme i seeands) oo Alban FX 8
m—_"“— _F'_.l Fal .F'.—.Ii T P=i
I N=l0m .24 .25 03 13
&= 2000 055 .43 [42
W= U 1407 .57 LS k3T
W = B{HH} z.12 1.87 1.7 1.70
 N= 0 0,55 .41 (31 L3
= A 1.13 ALHD 063 (B
A= O .23 1.53 1.25 .15
W e B{HHD 4242 312 48 200
1& & =100 1.08 067 08 42
o= 2000 208 1,30 Ay {350
R KT 4.17 2.6 1.8 .55
N = B{HH} 537 5,41 T3 kAR
32 N =100 207 1.1 07TE &Z
o= 20 4,11 2 .55 (]
AL B4 SHD 1:Z3 24=
W = BN 19.77 11.45 TR .97
Tahle 18
A e I, o X2 o SCKHE, w105 .I\.I—El,:ll:l:l_ml-.&
1 1 4 R 1 2 4 ey | 2 4 F
Factor 113 a4] 13 k1] 15 21 4.7 LA} b 2.7 1.3
Holve 533 268 1Z8 54 147 T5 37 1% 42 21 1.3 8.3
Fedoge {L5 4 11 25 106 04 1. T (AR 11 0,27 Ik
Hacksalve k! 3 ik 24 1. Zh 1.2 1 (LR 1.4 0.4 .1
Tustal G55 M3 La0 112 181 97 51 1 54 30 1% 13

For m =2 the time decreases for up to 4 processars; the spoedup is a factor of 1.8, For g half
bandwidth of p: = 32, the speedup is 2.4,

Companng the sxecotion tmes [or our implementations of the partitioning method with the
onc-dimensional partitioning, we conclude that for a small bandwidth the concurrent ehimina-
ton of multiple vamables vields a lower execution time for any number of processors, whereas
for a half bandwidih of £ it has a lower execution time first for & proceszors (the maximum on
the Allant FX /33 For a larger bandwidih the one-dimenzional partitioning always gave a
lovwver excoution time.

The results of the expeniments are hzted m Table 13,

B, Conclusion

We have described and analyzed algarithms for the concurrent sclution of banded svaiems
of equations A concwrrent alzorithm based on a pariboning steategy equivalent o elimination
by nested dizzection has been implemented on two shared-memary machines with limited
parallelizm, The partitioniog method offers o low communication complexity compared 1o
concurrent elimination of single variables, and has numerical advantages over some previowsly
implemented partitioning methods,

LI Prawgerre, Lo Sofinsren [/ Solvieg banded systeow on o porailel processor 245

The arithmetic complexity of the parallel algorithm is higher than han of standard direct
solvers for bamd matnix problems. At least § processors are nesded for the parallel arithmetic
complexity o be lower than thar of standard Savssian elimination,

Because the computation of the fill-in is relatively more efficient than the factorization fos
smill bandwidths the measured running time shows that cur LINPACK-based implementation
of the partitioning algorithm on the Alliant FX A8 has a lower execution tume than the
sequential algonthm {using LINPACK) for any number of processors. However, for band-
widths approaching the length of the wvector registers, the factorization routine uses the
architeciure more efficiently than the solve routineg, and the computation of the fill-in is
relatively more expensive than predicted, moving the break-cven point for the partitioning
method 10 a higher number of processors than predicted. Indeed, for m = 32 the hreak-even
point occurs at & processors in our implementation. Part of the reason for the higher than
predigted break-even point is the fact that the compiler failed 1o parallelize some computations
that can be done in parallel. Another reason 15 the mismatch between the transfer rate to the
processors [rom the cache memory and the main memory. IF several loop levels could be
parallelized, then a higher processor ulilization and lower execution time are likely. (The
current Alliant compiler allows parallelization only of one loop level)

The one-dimensional partitioning vields a speedup that is insignificant Tor a half bandwidth
of m=2, bul is 3.4 for & processors and a hall bandwidth of m = 32 Consequently, the
concurrent elimination of multiple variables vields o lower execution time for any number of
processars for a hall bandwidth of 2, for ® processors a1 a hall bandwidth of 3. Since the
Alliant 35 limited to ¥ processors we were unable 10 establish a break-cven poini for larger
bandwidths.

Acknowledgment

We would like (o thank Tom Hewitt from Cray Research lor hiz assistance with the CRAY
dava,

Referenees

[1] . Ashoraft, Parallel reduction metheds far i solution of banded systens of squations,

[2] .M. Bhatw and LOF Ipsen, How 1o embed irees in hypercubes, Deparionent of Computer Science, Yale
Limverainy, Beporl YALEL ACSD R R-443, 1985,

3] W. Croether,). Goodhae, B Siare, B Thamas, W, Milliken and T. Blackndor, Performianes messarements on o
L3.npde buser(ly preallel processor, Prac, J985 TEEE furermavional Conference an FParailel Proceesing (1585)
FH-54

[4] 5.R. Desphonde and B, Jenevin, Scalability of a binary dree on 2 hypercube, University of Texas at Austin,
Repar TR-B0-01, 1536

13 1. Domgarra, I Bunch, C. Moler ond G Stewan, PAVPACK Urers’ Guide (1AM, Philndelphin, 1976,

[6] 1. Dorgarrn and 5.0, Eisensial, Squeeding the mest car of an algesithin in Cray Forlran, ACM Trans, Mark
Softwne 10 (30 (196 221200

171 12, Drongarra, F.G, Gustavsen and AL Karp, Doplementing linear zlgehea algorithms for dense matrices on 2
veciof papshne machine, STAM Reoo 26 (1) (1982 91-1120

[#] 11 Drongarra and A Sameh, On seme pacallel anded svstem solvers, Farafed Compue, 103 (1984) 223235,

[5] J. Dangarrs and 3 Sorensen, On eovircnment for implementing explicies parallel proseszing in Fortran, AML
MATE, T T, 1984

[14] [Evans and M. Hotzopaoubas, The soluten of oortain banded sysiems of linenr equaticns wing te Folding
zlgeaithim, Comiprer 19 (1976) 1842187,

[11] M1 Flynn, Very high-spesd compuiing svsiems, Peoc FEFEE 12 (19567 1901- 1904,

[12] MW Gentlernan, Implemsating oested dissection, Department of Compuoter Seience, University of Waterloo,
Fgearch Keport C5-E2-03, 1531

216 LA Brangerrs, B Sohngn ¢ Sedeing banded miencenws on a pasalled feoceisoe

T3] As George, Mested disseciion of a regular finie dlemen mesh, STAM 0. Nomer, Aral 10 {19773 345353,

[14] A George, M. Fleach, 1. Liv arad B, N, Spasss Chedesky factorization on 2 local-menary maltiprosessar, SE4A S
Sl S Cosmpa, 10 appear.

I13] A Gottliek, R Grisheoon, CF. Kroskal, K2 MeAuliffe, L. Rudelph and M. Snir, The YU
Ultrscompuier— Designing an MIMD shared memory parallel compuier, (EEE Trans, Compur. 32 (19583)
135-1549,

[16] "W.E Hillis, The Coesecrion Machine (MIT Press, Cambridge, MA, 1985),

[17] C-T. He gnd 5L Johsson, Tros eonbeddings and optimal roatine in hvpercobes, Yale University, Depariment of
Lanmpuler Science, Feport in preparntion,

[18] W. Jalby and UL Meier, Opumazing malris operations on a paralld meliprossser with & memory kierarchy,
Cerner For Supereompuier Ressarch and Develapment, University of Hlinois, 1956,

[19] 5.1 Juhnsson. Gaussion elimination an sparse matnees and concurrency, Caltech Camparsr Science Deparunent,
2087, TR &0, 1980,

[3H 5.0, Jahnssan, Okdd-even oyclic reducizan on ensemble archieciores and he salalieon of iridizgonal sysems af
eguations, Department of Computer Seicnce, Yale Universily, Report Y ALEL /CSDARE-239, 1984,

[21] 5.1 Johossom, Fast banded systems solvers for ensemble architecierss, Deparument of Computer Science, Yale
University, Report YALEL ACSDRR-3T9, 1985

[22] 5.1 Jobnsson, Dense matns operations on o s and o boclean cube, Proc, Marvoss! Congparer Conferonce
[AFIPS, Chicaga 1963).

[23] E.L. Johrssom, Commvanization efficient basic Hncar algebra computations on hypercube architectunes, Depart-
rgnt of Compaler Saoce, Yale University, Beport YALELACSD/BRR-361, 1985,

(3] 5L, Johnszscn, Hand matrin systems solvers on o ensemble archileclures, Yale University, Report
YALEU A ACSDRR-332, 1955,

[25] 5L, Johsnszon, Solving narrew banded systems on ensemble architeoturs, ACM Trons Mark Safwaee T8 (1935)

126] 5.L. Johnsson, Salving iridingonsl sysiems an ensemble architectures, SPAM L Sei Swanien, Compnr, (19561

[27] &L, Johnsson, Data permutations and basic lnear algebrn compataions on ensemble architeciures, Deportment
of Compubar 3@mos, Tale University, Repont YA LEL ACSD B R-I6T, 1985,

[28] [x Lawrie and A. Someh, The computation and communication complexity of parallel bandsd system salves,
AL Teons, Mark, Sefnware (1983).

[28] €. Lamzon, I Hansor, 1. Bincaid and F, Rrogh, Basic linear algebra subprograms far Fonran usage, AOM
Trawer, M, Sofnwass (1970 38-323

[#0] LW H, Lin, Compuatational medels and sk schedaling for parallel sparse Cholesky lactorizaiion, Depariment of
Computer Science, Yock University, Downsvicw, Onlass, Technical Beport C5-8501, 1535

[31) @A, MeBran amd EF, ¥an de Vielde, Hypercube zlgecithms ordd imgplementations, Courant Instituce af
Matbermatical Scicnoes, New York Universany, 19835,

[32] L. Meier, A parallel porzizion mehed for sodving bandad systems of Lnear egantions, Paralls! Comonr, 2 [1985)
dE-as,

133] G.F. Plister, W.C. Traniley, Tha. George 500 Harvesw, WL Klanfeldsr, BLP. Meaulifis A Mellan, VA,
Horon ond 1. Wedss, The IBM sescarch parallel processor protaype (RE3: Tnircdisction and architecture, Prae
TRE5 VEEE Imternationa Confleronce an Paralle! Proceasioeg (1983 764-771.

[34] B Read and [e). Bese, firepl Vheory ewd Compureions (Academic Press, Mew York, 1973) 153-217.

[35] EM. Reinpgold. 1, Mievergell and ™, Deo, Combimarerial Afgaridines (Prentice-Hall, Engleweond CHffs, MI, 19770

1361 ¥. Saad and MUH. Schuliz, Dota communieaibon o hypercubes, Dipartment of Compuatsr Sclense, Yals
University, Beport YALEL A0S HE-424, 1985,

[37] LT, Selveanz, Ulracomputers, ACM Trans Programeeing fesgunges Spstems 2 {19801 484-521.

[33] C.L. Seitz, The cosmic cubs, Cermet. ACA 28 (15 (1535 22-33.

[3%] BD Smich, Architecture and applications of the HOEP muliprocessor computer svstem, SealTore Sipoal
Frocemming IV, Froc of EPIE [1981) 241-245,

[40] [Serensen, Buffering for seowor perfonmance on s pipelined MIMD nwchine, Feraffel Compar, 1 {1984)
143-114.

[41] 1. Wilkinson, Private commuznication, 1976,

[42] O Wing and LW, Huang, A computational model of porallel sehution of lincar cquations, JEEE Troen Compi,
IV (1950) 632-635.

[43] P.H. Woarley and R, Schreiber, Mesvad dissection on g mesh-connecied processer array, Stanford University,
Cener For Large Soale Saennlis Computation, CLaSSIC-85-08, 19835,

