Scalable Fault Tolerant Protocol for Parallel
Runtime Environments

Thara Angskun®, Graham Fagg!, George Bosilca!, Jelena Pjesivac-Grbovié!,
and Jack Dongarra?

! Department of Computer Science, The University of Tennessee, Knoxville
2 University of Tennessee, Oak Ridge National Lab. and University of Manchester
{angskun, fagg, bosilca, pjesa, dongarra}@cs.utk.edu

Abstract. The number of processors embedded on high performance
computing platforms is growing daily to satisfy users desire for solving
larger and more complex problems. Parallel runtime environments have
to support and adapt to the underlying libraries and hardware which
require a high degree of scalability in dynamic environments. This paper
presents the design of a scalable and fault tolerant protocol for sup-
porting parallel runtime environment communications. The protocol is
designed to support transmission of messages across multiple nodes with
in a self-healing topology to protect against recursive node and pro-
cess failures. A formal protocol verification has validated the protocol
for both the normal and failure cases. We have implemented multiple
routing algorithms for the protocol and concluded that the variant rule-
based routing algorithm yields the best overall results for damaged and
incomplete topologies .

1 Introduction

Recently, several high performance computing platforms have been installed with
more than 10,000 CPUs such as Blue-Gene/L at LLNL, BGW at IBM and
Columbia at NASA [5]. Unfortunately, as the number of components increases,
so does the probability of failure. To satisfy the dynamic requirement of such a
dynamic environment (where the available number of resources is fluctuating) a
scalable and fault-tolerance framework is needed. Many large-scale applications
are implemented on top of message passing systems for which the de-facto stan-
dard is the Message Passing Interface (MPI) [10]. MPI implementations require
support of parallel runtime environments, which are extensions of the active
operating system services, and provide necessary functionalities (such as nam-
ing resolution services) for both the message passing libraries and applications
themselves. However, currently available parallel runtime environments are ei-
ther not scalable or inefficient in dynamic environments. The lack of scalable
and fault-tolerance parallel runtime environments motivates us to design and
implement such a system. A scalable and fault-tolerant communication protocol
that can be used as a basis for constructing higher level fault-tolerant parallel
runtime environment is described in this paper. The basic ability of the designed

protocol is to transfer messages across multiple (multicast and broadcast rather
than unicast) nodes efficiently, while protecting against recursive node or process
failures.

The structure of this paper is as follows. The next section 2 discusses related
work. Section 3 introduces the scalable and fault-tolerant protocol, while the
section 4 presents the formal protocol verification. Experimental results are given
in section 5, followed by conclusions and future work in section 6.

2 Related Work

Although there are several existing parallel runtime environments for different
types of systems, they do not meet some of the major requirements for MPI
implementations: scalability, portability and performance. Typically, distributed
OS and single system image systems are not portable while the nature of Grid
middle-wares has performance problems.

The MPICH implementation [8] uses a parallel runtime environment called
Multi-purposed daemon (MPD) [3] for providing scalability and fault-tolerant
through a ring topology for some operations and a tree topology for others.
Runtime environments of other MPI implementations, such as Harness [1] of
FT-MPI [6], Open RTE [4] of Open MPI [7] and LAM of LAM/MPI [2], do not
currently provide both scalable and fault tolerance solutions for their internal
communications.

The scalability and fault-tolerance issues have been addressed in several net-
working areas. However, those approaches could not be used or they are not
efficient in the parallel runtime environments. Structured peer-to-peer network-
ing based on distributed hash tables such as CAN [11], Chord [14], Pastry [13]
and Tapestry [15] was designed for resource discovery. They are only optimized
for unicast messages. Techniques used in sensor or large scale ad-hoc networking
based on gossiping (or epidemic algorithm) [9] [12] mainly focus on information
aggregation.

3 Scalable and Fault-Tolerant Protocol

The protocol in this paper is not aware of MPI implementation. It aims to sup-
port parallel runtime environments of various message passing implementations.
However, currently work is in progress to integrate it in a fault-tolerance imple-
mentation of message passing interface called FT-MPI as well as in the modular
MPI implementation called Open MPI.

The protocol is based on a k-ary sibling tree topology used to develop a self
healing tree topology. The k-ary sibling tree topology is a k-ary tree, where k
is number of fan-out (k > 2), and the nodes on the same level (same depth on
the tree) are linked together using a ring topology. The tree is primary designed
to allow scalability for broadcast and multicast operations that are typically
required during MPI application startup, input redirection, control signals and
termination. The ring is used to provide a well understood secondary path for

——» Broadcast

............... » Unicast / Multicast

Fig. 1. (a) Binary sibling tree topology. (b) Message rerouting in case of failure.

transmission when the tree is damaged during failure conditions (simplest multi-
path extension). In addition, typical k-ary tree only needs a single link or node
failure to become bisectional, while the k-ary sibling tree can tolerate up to k
failures. Fig. 1(a) illustrates an example of the binary (k=2) sibling tree. Each
node needs to know the contact information of at most k+3 neighbors (i.e.
parent, left, right and their children). The number of neighbors is kept to a
minimum to reduce the state management load on each node. Both the tree
and the ring topologies allow for neighbors addressing to be computed locally.
Usually, we expect the k parameter to remain constant for the lifetime of the
topology. The contact information of each node in some cases can be calculated
locally for some tightly coupled systems or may be stored in an external directory
service such as a name service of FT-MPI, a general purpose registry (GPR) of
Open MPI or even a LDAP server for loosely coupled systems. The tree will
automatically repair itself depending on an external recovery policy (i.e. when
and how to repair it) specified by the user. The details of protocol is specified
in section 3.1. The routing control of the protocol is discussed in section 3.2

3.1 Protocol Specification

Service Specification: The goal of the protocol is to deliver messages across
multiple nodes while protecting against different types of node and/or process
failures. The protocol currently provides two kinds of message delivery service,
which are broadcast (1 to n) and multicast (1 to m, where m < n 3). The
broadcast service uses the k-ary tree to send messages in normal circumstance.
It will use the neighbor nodes to reroute the messages in the failure cases as
shown in Fig. 1(b). The multicast service treats the k-ary sibling tree as a graph.
It uses best effort to deliver messages with the shortest path from a source to
destinations in both normal and failure situations.

Environment Assumption: The protocol assumes that any failures are Fail-
stop rather than Byzantine i.e. if a process or a node crashes, it should be

3 A unicast message is a special case of multicast where m=1

unreachable rather than pretend that it is still alive. After each failure, at least
one neighbor of each node should be alive. Otherwise the k-ary tree will become
bisectional, and no routing of messages between the two section of the tree will
be possible. This assumption can be removed, if we allow each node to contact
a directory service (considered as a stable resource) to overcome the orphan
situation. The protocol also assumes that the transmission channel in which the
protocol is executed can detect and recover from transmission errors (e.g. based
on TCP and/or reliable UDP).

Protocol Vocabulary: There are 3 distinct kinds of messages: hello for the
initialize message, which constructs the k-ary sibling tree; mcast for the multicast
messages and bcast for the broadcast messages.

Message Format: The general message format of the protocol starts with a
version number followed by a message type (i.e. the control fields hello, mcast
and bcast). The hello message format consists of the above fields followed by
an originator of the message indicated by SrcID. The bcast message format
also contains data with the size DataSz. The mcast message consists of above
mentioned fields followed by #Dest, Destind, DestList and TranList. The #Dest
is the number of destinations. The DestInd is an index, which points to the
current destination in the DestList. The TranList is a transit list which contains
the list of IDs of all the transit nodes in the tree to prevent looping and for
back-tracking purposes.

Procedure Rules: The procedure rules can be separated into two steps: ini-
tialization and routing.

The initialization step of the procedure rules was described as follows: “Each
node will register itself to the directory service (DS) and get its logical ID. It
builds a logical topology and asks for the contact information of its neighbors
from the DS. Once ready, it will start sending hello packet to its parent and its
left neighbor. If the node is the right most in its level, it will also send hello to
the left most node of the same level”. After exchanging these hello messages,
the communication channel between them will be established.

The procedure rules for routing a packet of the protocol were described as
follows: “A node uses best effort to deliver messages following the shortest pos-
sible path. Sending a message procedure is dependent on the message type. If
the message type is bcast, the node will send the message to all of its children.
If a child died, it will reroute the message to all children of the child. This is
done using an encapsulation technique. The node will encapsulate the broadcast
message into a multicast message and send to its grandchildren. The grandchil-
dren will decapsulate the multicast packet and continue to forward the broadcast
message. However, if the message type is mcast, the next hop is chosen from a
valid neighbor node which has the highest priority. ¢ A node is said to be valid
if and only if the node is not in the transit list and it is still alive. If there is no
possible next hop, the message will be sent back to the previous sender (i.e. back-

4 An implementation of the protocol may use a dynamic programming technique to
improve performance by keeping the priority of neighbors for each destination in a
look-up table.

tracking). When a node receives a message, it will first determine the header. If
the message type is hello, it will do the initialization step. If the message type is
beast, it will forward to its children and handle node failure as mentioned above.
If the message type is mcast and the node is not one of the destinations, it will
add itself to the transit list and send it on to the next node. If the node is one of
the destinations, but not the last one, it will remove itself from the destination
list (DestList), decrease the destination count (#Dest), choose the next desti-
nation and update the destination index (DestInd), add itself to the transit list
and send it to the next node.”

Algorithm 1 Compute estimated cost

Procedure : Compute cost

1: cost <= 0 ; nextHop <« srclD

2: while nextHop # destID do

3: if myLevel = destLevel then

4: Choose left or right

5: else if myLevel > destLevel then

6: nextHop < myParentID

7: else

8: if ChildID; is an ancestor of destID then

9: nextHop < ChildI D;

10: else

11: Choose left or right, which one is closer to an ancestor of destID in myLevel
12: end if

13: end if

14: cost < cost +1

15: end while

16: return cost

Procedure : Choose left or right

if (hopLeft < hopRight) A (destID # myRightID) then
nextHop < myLeftID

else
nextHop < myRightID

end if

3.2 Routing algorithm

This section discusses the routing technique used for multicast messages (which is
also used by broadcast routing during failures). The goal of the routing algorithm
is to find the shortest possible route in both normal and failure situations with
only local knowledge stored at each node. The next hop is chosen from the
highest priority node of its valid neighbors. The first algorithm (as shown in
Algorithm 1) uses a rule based method to estimate a cost from the current node
to the destination. The highest priority node is a neighbor which has the lowest

cost (hop count). The rule is specified in such a way that a message will always
go in a direction toward the destination. The second algorithm is a variant of
the first algorithm, where it allows to go in a direction that does not directly
route towards the destination if there is a shorter path to the destination from
the current node. For example, instead of routing from left to right, it could
be faster to go up a few levels, then go right and go down to the destination.
The complexity of both algorithms is O(log, n), where n is number of nodes and
k is number of fan-outs. Routing with the shortest path may not be the best
solution in a failure situation. The direction of the message may be changed too
often such that the message is moving further from the destination. The third
algorithm intends to prevent this situation by using knowledge of previously
detected dead nodes from the header to compute the cost. The third method
uses a graph-coloring technique of breath first search, which explores only alive
neighbor nodes. However, this algorithm requires complexity O(n + (k + 3)),
where n is number of nodes and k is number of fan-outs.

4 Protocol Verification

The main reason for the verification is to ensure that the design of the protocol
did not exhibit any potential problems. The protocol has been modeled with
the PROMELA [16] specification language, which is the input of the SPIN [17]
verification tools. PROMELA (Process Meta Language) is a non-deterministic
language, which provides a method for making abstractions of distributed sys-
tem protocols. It supports dynamic creation of concurrent processes, both syn-
chronous and asynchronous message passing via communication channels, mes-
sage loss and duplicate simulation and several other features. SPIN is a model
checker for asynchronous systems using an automata-theoretical. It checks for
deadlocks, livelock (non-progress cycles) and non-reachable states in the entire
state space. It can verify and simulate several correctness properties. If an error
is found, SPIN will provide a counterexample to show a circumstance that can
generate the erroneous state.

4.1 Specifying the Protocol in PROMELA

Due to the fact that the PROMELA language is based on point to point com-
munication, there must be as many channels as nodes in order to model the
broadcast system. Each node will exclusively receive messages only through this
channel. They will use corresponding channel associated with the node to send
messages. All the nodes will wait in a loop with the do repetition construct. The
root node starts sending the initial messages. If a node gets a message, it will
check the message type and execute portions of code corresponding to procedure
rules in Section. 3.1. For simplicity reason, we use a new feature of SPIN ver-
sion 4 which can include embedded C code fragments (with PROMELA’s c_code
construct) to compute node depth, neighbor IDs etc. The link failure is simu-
lated with non-deterministic selection capability of the if selection construct.

The SPIN verifier and simulator will randomly choose the status (up or down)
of links between a node and its neighbors while the node is trying to send a
message on to the next hop. In order to speed up the verification process, we
reduce the size of state space by using an atomic construct to atomically exe-
cute its code section which represents internal computation without interleaved
execution with other processes.

4.2 Verification Results

The results were conducted on a PentiumlIII 550MHz, with Spin 4.2.6 on Linux.
The search depth bound was 10,000 and the memory limit was 512 MB. A
deadlock was discovered from the original modeling. However, after closer exam-
ination, it turns out that TCP buffer size of the communication channel in the
modeling was too small. When the deadlock problem was solved, no deadlock,
livelock, invalid end state, unreachable codes and assertion violation were found
during verification.

5 Experimental Results

The protocol performance was evaluated in both normal and failure modes. In
the case of no failure, it is obvious that the average number of hops for multicast
messages decreases when the number of fan-outs increases (i.e. closer to a flat
tree). On the other hand, the average number of steps to complete the message
transfer for broadcast increases when the number of fan-outs increases (except
that 3-ary is better than 2-ary due to more parallelism).

During the failure mode, the dead nodes (D) are obtained from combinations
of all possible nodes (N) i.e. (g), where source node ¢ D. Fig 2(a) illustrates
that both variant rule-based and dead node aware algorithms are scalable with
unicast messages (multicast to one destination). The higher values of fan-out
yields the worst performance, especially with the basic rule-based algorithm,
because it has more chances to go in a direction toward a dead node. Fig 2(b)
depicts that a dead node has only a small effect on the performance of a broad-
cast message. The results show that the basic and variant rule-based algorithms
produce performance close to the dead node aware algorithm, but the rule-based
algorithms are much simpler to the model e.g. a broadcast ® with a single dead
node on an AMD 2GHz machine, the simulation time of dead node aware is 15
minutes, while the basic and variant rule-based took only about 30 seconds.

6 Conclusions and Future Works

The scalable and fault tolerant protocol for parallel runtime environments was
designed and developed to support runtime environments of MPI implementa-
tions. The design of the protocol has been formally proven to work under both

5 16K bcast, we model 16383 different network topologies

Unicast Messages (with a Single Dead Node) Broadcast Messages (with a Single Dead Node)

150 T T T T 45 T T
2ary-basic —+— o 2ary-basic —+—
3ary-basic ---X---- L 3ary-basic ---x---- i
4ary-basic % ¥ 40 Jary-basic %)N;,eSary
125 L 8ary-basic & i -basic & L
2ary-variant - - i¥ 2ary-variant -—-- 7
3ary-variant --©-- i 35 | Bay-variant --©-- E4 1
Jary-variant e~ dary-variant e~ B
Bary-variant -4 : 8ary-variant -~ 2ary
2ary-awaredead -4 i 2ary-awaredead -4~
o 100 3ary-awaredead —v— S o 30 r3ary-awaredead —v— 4ary o
g Aary-awaredead -—--v--— B o3 dary-awaredead - 3ary
T 8ary-awaredead ¢ 4] 8ary-awaredead -
H S]
2 j:
5 1 £
=) =1
z c
& o 20 i
2 2
o} 9]
> >
<] < g |
10 2]
5F 4
0
16 32 64 128 256 512 1024 16 64 256 1024 4096 16384 65536
Numbers of Nodes Numbers of Nodes
(a) (b)

Fig. 2. Message transmission during failure situations. (a) Unicast (b) Broadcast

normal and failure modes. The performance results indicate that the variant rule-
based algorithm is the best choice in terms of the shortest path (and simulation
computation time as well).

There are several improvements that we plan for the near future. Making the
protocol aware about the underlying network topology (in both LAN and WAN
environments) will greatly improve the overall performance for both broadcast
and multicast message distribution. This is equivalent to adding a function cost
on each possible path and integrating this function cost to the computation of the
shortest path. A faster and more accurate re-routing algorithm is in development.
At a longer term, we expect this protocol to be the basic message distribution of
the runtime environment within the FT-MPI and Open MPI runtime systems.

Acknowledgement. This material is based upon work supported by Los “Alamos
Computer Science Institute (LACSI)”, funded by Rice University Subcontract
No. R7B127 under Regents of the University Subcontract No. 12783-001-05 49
and “Open MPI Derived Data Type Engine Enhance and Optimization”, funded
by the Regents of the University of California (LANL) Subcontract No. 13877-
001-05 under DoE/NNSA Prime Contract No. W-7405-ENG-36

References

1. M. Beck, J. J. Dongarra, G. E. Fagg, G. A. Geist, P. Gray, J. Kohl, M. Migliardi,
K. Moore, T. Moore, P. Papadopoulous, S. L. Scott, and V. Sunderam. HARNESS:

10.
11.

12.

13.

14.

15.

16.
17.

A next generation distributed virtual machine. Future Generation Computer Sys-
tems, 15(5-6):571-582, 1999.

G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster Environment for MPI.
In Proceedings Supercomputing Symposium, pages 379-386, 1994.

R. Butler, W. Gropp, and E. L. Lusk. A scalable process-management environment
for parallel program. In Proceedings of the 7th European PVM/MPI User’s Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing
Interface, pages 168-175, London, UK, 2000. Springer-Verlag.

R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres, B. Barrett, and
G. E. Fagg. The open run-time environment (openrte): A transparent multi-
cluster environment for high-performance computing. In Proceedings 12th FEu-
ropean PVM/MPI User’s Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface, Sorrento(Naples), Italy, September 2005.
Springer-Verlag.

J. J. Dongarra, H. Meuer, and E. Strohmaier. TOP500 supercomputer sites. Su-
percomputer, 13(1):89-120, 1997.

G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-Grbovic,
K. London, and J. Dongarra. Extending the mpi specification for process fault
tolerance on high performance computing systems. In Proceedings of the Inter-
national Supercomputer Conference (ICS) 2004, Heidelberg, Germany, June 2006.
Primeur.

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and design of a next
generation MPI implementation. In Proceedings 11th European PVM/MPI User’s
Group Meeting on Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, pages 97-104, Budapest, Hungary, September 2004. Springer-Verlag.
W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high - performance, portable
implementation of MPI message passing interface standard. Parallel Computing,
22(6):789-828, 1996.

I. Gupta, R. van Renesse, and K. Birman. Scalable fault-tolerant aggregation in
large process groups. In Proceedings of The International Conference on Depend-
able Systems and Networks (DSN), pages 433-442, 2001.

MPI Forum. MPI: A message-passing interface standard. Technical report, 1994.
S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content
addressable network. Technical Report TR-00-010, Berkeley, CA, 2000.

R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service.
Technical Report TR98-1687, 28, 1998.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science,
2218:329-350, 2001.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proceedings of
the 2001 ACM SIGCOMM Conference, pages 149-160, 2001.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-
1141, UC Berkeley, April 2001.

Holzmann, G.J.: Design and validation of computer protocols. Prentice Hall (1991)
Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23 (1997) 279-295

