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This paper dizcusses the scalability of Choelesky, LU, and QR
factorization routines on MIMD distriboted memory concurrent
camputers, These routines foron part of the Scal APACK mathe-
matical software library that extends the widely used LAPACK
libeary o run efficiently on scalable concurrent computers. To
cnsute good scalability and perormance, the Scall APACK roo-
tines are based on block-partitioned algorithms that reduce the
:Frl.:qul.:m;_l,' of dada movement between dilferent levels of the mem-
ory hicrarchy, and particularly between processors, The block
cyelic disti distribation, that is used in all three factorization algo-
rithms, is described. An outline of the sequential and parallzl
hlock-partitionaed algorithms is given. Approximate models of al-
gorithms' performance are presented to indicate which fictors in
tlee design of ihe algorithm have an impact wpon scalabilicy. These
models are compared with fimings reselts on a 128-nade Intel
iESC 8] Iyypercube. [t i shown that the routines are highly scal-
able on this machine for problems dhat occwpy more U abaol
25% of the memory on cach processor, and that the measured
timings are consizlent with the performance model. The contribu-
tion of this paper goes boyond reporting our expericnce; our im-
plementations are availalle in twe publie domai.
Frew, Dac.
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I INTROCUCTION

Maszsively parallel, distnibuted memory, concurrent
compulers are plaving an increazingly important role in
large scale scientific computing, and in particular are the
primary targel machines for “Grand Challenge™ applica-
tions. In addition, massively parallel computers are also
beginning o be more widely vsed in produgtion engineer-
ing covironments, and to a somewhal lesser extent i the
business and Anance sectors, A number of keyv software
technologies arc helping 1o accelerate the more wide-
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spread use of massively parallel computers in these ar-
eas. These include the development of parallelizing com-
pilers, parallel languape extensions such as Fortran I
[27] and High Performance Fortran [35], the adoption of a
standard message passing interface [19], support for par-
allel constructs and operations, such as guard layers amd
object migration, and a variety of tools for debugging,
and visualizing/analyzing performance on massively par-
allel computers.

Anather important and active research area 15 the de-
velopment of reusable software for multicomputers in the
Form of libraries and “tool-kits™ [7, 24, 42]. Linear alge-
bra—in particular, the solution of linear systems of cqua-
tions—Iigs at the heart of most caloulations in scientific
computing. We are currenty building a software library
for performing linear algebra computations on multicom-
puters, and this paper deals primarily with the perfor-
mance and scalability of the dense LU, Cholesky, and
QR factorization roulings that form the core of this li-
brary. In addition, we shall discuss how the design goals
for the library, particularly the performance reguire-
ments, influenced the implementation of the core rou-
tines.

The zcalable library we are developing for multicompu-
ters will be fully compatible with the LAPACK library for
vector and shared memory computers [, 2, 13, 18], and
is therefore called Scal APACK. LAPACK was designed
to implement the earlier EISPACK and LINPACK linear
algebra libraries efMiciently on shared memory, vector su-
percompuiers, and to improve the robustness of some of
the algorithms. These tvpes of computer have hicrarchi-
cal memories, and 3 key concept im the design of
LAPACK was o improve performance by minimizing
the movement of data between the different lavers of the
memory. This was done by recasting the algorithms in
block-partitioned form, so that the bulk of the computa-
tion & performed by matrix—matrix operations using the
Lewel 3 Basic Lincar Algebra Subprograms (BLAS) [16,
17]. Thiz approach permits locality of reference to be
preserved.

Scal APACIK also vses block-partitioned algonthms to
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ensure good performance on MIMD distributed memaory
concurrent compuiers, by minimizing the freguency of
data movemenl between different levels of the memory
higrarchy [ 10, 11]. For sech machines the memory hicrar-
chy mmcludes the off-processor memory of other proces-
sors, in addition 1o the hierarchy of registers, cache, and
local memory on each processor, so the block partitiened
approach is particularly vseful in reducing the starup
cosl associated with interprocessor commumnication. This
oplimization is cssential io the scalable performance of
the library routines, The fondamental bulding blocks of
the ScalblAPACK library are distributed memory ver-
sions of the Level 2 and Level 3 BLAS, amd a set of Basic
Linecar Algehra Communication Subprograms (BLACS)
[3, 22] lor perlorming communication tasks thal arise fre-
quently in parallel linear algebra computations, In the
scalAPACK routines all inlerprocessor communicatlion
takes place within the distributed BLAS and the BLACS,
50 the source code of the top seftware laver of
Scall APACK looks very similar 1o that of LAPACE.

I REQUIREMENTS OF SCALABLE LIBRARIES

In developing a library of high-guality sobroulings for
performing dense lingar algebra computations the design
goals fall mto three broad classes:

= performance goals
+ gase-of-use goals
= range-of-use goals,

These design goals will he discussed in the following
three subsections,

2. Pecformance

Two imporiant performance metrics are concirrent of-
Sicieney and sealabiliny. We seck good performance char-
acteristics in our algorithms by eliminaling, as much as
possible, overhead duc te load imbalance, data move-
ment, and algorithm restructering. The way in which the
data are distributed (or decomposed) over Lhe memory
hierarchy of a computer i= of fundamental importance (o
these lactors. Concurrent efficiency, =, 15 defined as the
concurrent speedup per processor (28], where the con-
currenl speedup is the execution time, T,.. for the hest
sequential algorithm running on ene processor of the con-
current computer, divided by the execution time, T, of
the parallel algorithm running on N, processors. When
dircct methods are uscd, as in LU factorization, the con-
current efficiency depends on the problem size and the
number of processors, o on & given paralle] computer
and for a fixed number of processors the running time
should not vary greatly for problems of the same size,
Thus, we may wrile
ToeglV)
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where N orepresents the problem size. In dense linear
algebra computations most of the computational work
invislves operations on Aoating-point numbers, o the se-
quential execulion tUme s usually proportional 1o the
Hoating-point operation count, Thus, the concurrent effi-
ciency 15 related o the performance, &, measured in
Aoating-point operations per second, by

e | 0
G(N, Np) = - E e(N, N.) (2)

=15

where e 15 the time for one fAoating-point operation.
For routines that ierate, such as elgensolvers, the num-
ber of iterations, and hence the execution tme, depends
nob only on the problem size but alse on other character-
istics of the input data such as condition number, We
shall refer o a parallel algorithm a2z ““highly scalakle™ if
the concurrent efficiency depends on the problem size
and number of processors only through their ratio. This
ratie is simply the memory requirement of the problem
per processor, often referred to as the granulanty. Thas,
for a highly scalable algerithm the concurrent efficiency
15 constant as the number of processors increases while
keeping the granularity fixed. Allernatively, Eq. (2)
shows that this is equivalent to saving that for & highly
scalable algorithm the performance depends lineardy on
the number of processors for fixed granularity.

The degree of scalability may be gauged by the isoeff-
ciency function. g (N,). which is defined to be the prob-
lem size necessary 1o maintain some fixed efficiency, &,
23 the number of processors, N, vares. Thus, if p(N)
depends lincarly on &, then the concurrent efficiency is a
function of the grain size, g = N/NL. Such algorithms are
highly scalable. Algorithms for which p () is a rapidly
increasing function of N, are said 1o scale poorly.

The scalability of & parallel alzorithm can be assessed
by ploting the isoefficiency functien lor different values
of £, that is, by plotting curves in the (M., N) plane on
which g is constant, Oo any particular maching we are
usually mmterested in how an zlgorithm scales within a
Uwindow™ in the (M, AN plane, This is shown schemali-
cally in Fig. | inwhich the window iz bounded to the right
by the number of processors in the parallel machine, be-
low by the siee of the smallest problem of interest, and o
the lefl and above by either the memory size per proces-
s0r or runtime considerations. For some alzorithms there
may alze be an upper bound on the problem size imposed
by considerations of stability and/or accuracy. In Fig. |
we have assumed that the memory requirements scale
linearly with the problem size. The runtime bound turms
over as Ny increases as the concurrent efficiency falls off,

In designing an algorithm for a scalable library we seek
one that is scalable within the windows of inferest of as
large a zel of machines as possible. 1L should be noted
that scalability sindics conducted on small machines are
of Little vse if the problem sizes considered are below the
minimum size of interest, In the ahsence of an accuraie
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FIG, 1. Schematic representation of isaeflicicney curves within Lhe

window of imterest. shown unshided. The salid curves represent isoeffi-
ciency curves lnheled by the eficiency. The dashed lines correspond 1o
high scalability.

performance model i€ 5 not valid e infer that an algo-
rithm that scales well on one machine will also scale well
on another machine, or even on the same maching for a
larger number of processors, 1t is also important 1o note
the distinction between pood scalabiity and bigh effi-
ciency. Suppose we have two algorithms with the same
order of computational complexity that pecform the same
task. Algorithm [ is efficient and scalable for some num-
ber of processors W, = Ne, bt loses scalability as the
number of processors increases further. Algorithm 2 s
less efficient than Algerithm | for a given problem size in
the A, = N regime, but maintains good scalability for all
MN.. In this case it is unclear which algorithm is “hest™
overall. For a sulficiently small number of processors
Alporithm | is preferable, but for a larger machine Algo-
rithm 2 1= better. Such dilemmas raize the possibility of
using polyalgorithms, that iz, applving different algo-
rithms on different machings or for different regions of
the (M, M) plane.

The definition of scalability that we have adopled hers
15 based on the performance per processor at fixed sem-
ory per processor, An alternative approach 1 1o measure
scalability in terms of performance per processor al hixed
compriational work per processor [31, 39]. This latter
approach provides a wselul scalability metric when run-
time consirains the problem size [32, 33]. Large, dense
lincar algebra computations mostly arise in three=dimen-
sipnal boundary element problems [26], and for such
problems memory, rather than runtime, vsoally con-
sirains the problem size [45]. As noted by Cwik, Patler-
son, and Scoll, “simulations using integral equation
methods are fundamentally limited by the amount of
available memory,”" which has led them 1o develop an
oui-of-core salver for their electromagnetic scaltering
praoblem [12]. Moreover, the largest dense LU fagioriza-
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tion problems ron in-core on the Intel Delta system are
solved in less than 13 minotes [14]. In Fig, | memory
constrains the problem zize and forms the lefhand
boundary of the window-of-interest. There are, of
course, many problems in which the rontime constrant
lies below the memory constraint, but for the problems
and machines corrently of interest o us we believe this
nid b be the casc, For matnx problems the problem size
5 (LAE)L s0 the memory constraint in the (N, &) plane
is a straight line, The runtime is €N, s0 the rentime
constrainl is a curve of the form N3 [33). Thus, for a
sufficiently large number of processors runtime will con-
sirain the problem. The critical question & at whal num-
ber of processors this crossover ocours. Alternatively,
we could ask whether there are a significant number of
dense linear algebra prohlems whose solution is so impar-
tant that we are prepared o pul up with very long run-
times. We belicve that such a class of problems is of
practical interest, and that for these problems the cross-
over takes place at maching sizes that are significantly
larger than those curcentdy available. Whether this con-
tinues 0 be the case in the fuiure depends on how the
technology advances, Thus, we scale the problem siee
with fixed memory per processor in owr definition of sca-

lability.

2.2, Ease O Use

Ease of use iz concerned with fagiors such as portabil-
iy and the user interface o the library, Portability in its
most inclusive sense means that the code is written in a
standard language, such as Fortran, and that the source
code can be compiled on an arkitrary machine to produce
a program that will run correctly and efficiendy. In our
medular approach (o Scal APACK i is assumed that the
distributed Level 3 BLAS and the BLACS thal form the
building blecks of the library routines are availakle in
optimized form for each target platform, and are linked in
during compilation, Thus, only the upper layvers of the
Scal APACK library are fully portable in the source code
sense. Ease of wse is also related to the user interface,
and 15 enhanced il implementation detals are largely hid-
den from the user, for example, through the use of an
object-based interface o the hbrary. In addition w the
LAPACK-compatible interface, we are alzo experi-
menting with developing interfaces for LAPACK and
ScalLATACK that are compatible with Fortran 20 [10]
and C++ [21].

2.3, Range OF Use

Range of uze may be gavged by how numerically stable
the algorithms are over a range of input problems, and
the range of data struciures the hibrary will support. For
example, LAPACE deals with dense matrices stored ina
rectangular array, packed matrices where only the upper
or lower hall of 4 symmetric matrix is stored, and banded
matrices where only the noenzere bands are stored.
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3. THE ScalAPACK EFFORT
34 Alporithmis to Be Tncluded

Chver the past three vears the LAPACE lingar algebra
library has been designed and implemented for a wide
range of shared memory supcrcomputers, When com-
plete, ScalLAPACK will extend LAPACK o distributed
memory concurrent computers. This section gives an
overview of the functionality provided by LAPACE.
LAPACE, which is based on the successful LINPACK
[15] and EISPACE [29, 44] libraries, is portable and effi-
cienl across the range of large-scale, shared-memory,
general-purpose computers. This portability and  efli-
cleney 15 achieved through the use in LAPACK of a set of
basic lingar algebra subroutines (called the Level 1, 2,
and 3 BLAS) which perform basic operations such as
scalar=vector, matnx—vector, and malnx—malr: mulii-
plication. These subroutines, capecially the matrix—ma-
trix aperaticns, can be aptimized [or cach machine while
the Fortran code that calls them remains identical and
hence portable across all the machines. This approach
lets us extract most of the performance that each ma-
chine has to offer, while restricting machine-dependent
code to the BLAS and a few integer *'tuning parame-
ters,”

LAPACK provides approximately the same functions
as LINPACK and EISPACK wogether, namely, solution
of systems of simultancous linear eguations, least-
squares solution of overdetermined svstems of egua-
tons, and solution of matrix cigenvalue problems {sian-
dard  and  generalized).  The associated  matrix
factorizations (LU, Cholesky, QR, SV, Schur, general-
ized Schur) are alze provided, as are related computa-
tens such as reordering of the factorizations and condi-
tien numbers (or estimates thereol). Dense and band
matrices are provided for, but not general sparse matri-
ces, Inall areas, similar functionality s provided lor real
and complex matrices.

LAPACK includes routings for solving systems of lin-
ear equations for different types of matrices. In addition
to general solvers for dense, banded, and tridiagonal ma-
trices, special solve routines exist for symmetric/ Hermi-
tian indefinite and positive definite matrices, complex
symmelric matrices, and positive definite banded and 1ri-
diagonal matrices, For the symmetric and Hermitian
cases, versions exisl Lthat assume packed storage,
thereby halving the memery required o store the matrix,

In addition o the linear system solvers, LAFPACE in-
cludes routines for solving linear lesst squarcs problems,
for computing the singular value decomposition, and for
the eigenvalue problem (general, symmetric, and gencral-
ized problem).

3.2, Targer Archilecinves

The EISPACEK and LINPACEK software hbranes were
designed for supercomputers in use in the 1970°s and
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early 19805, such as the CDHC-Teld, Cyber 205, and
Cray-1 computers |38]. These machines featured multiple
funciional units that were pipelined o get good perfor-
mance. The CRDOC-T000 was basically a high-performance
sealar computer, while the Cyber 203 and Cray-1 were
early vector computcrs.

The development of LAPACK in the late 1980°s was
intended to make the EISPACK and LINPACK libraries
run efficiently on shared memory, veclor supercompu-
ters. The ScaLAPACK software library extends the use
of LAPACK 1o dizstributed memory concurrenl super-
computers. The development of Scal APACK hepan in
1991 and is expected o be completed by the end of 1994,

The underlying concept of both the LAPACEK and Sca-
LAPACK libraries is the vse of block-partitioned algo-
rithms 1o minimize data movement between different lev-
els in bierarchical memory, Thus, the wdeas dizcussed in
Lthis paper for developing a library for performing dense
lingar algebra computations are applicable w any com-
puter with a hierarchical memaory that (1) imposes a suffi-
ciently large startup cost on the movement of data be-
tween different levels in the hicrarchy, and for which (2)
the cost of a context swilch is oo preal o make fine
grainsize multithreading worthwhile. Our target ma-
chines are, therefore, medium and large grainsiee ad-
vanced-architecture compuiers, These include ““iradi-
tiomal’” shared memory, veclor supercomputers, such as
the Cray Y-MEP and 90, and MIMD distributed memory
concurrent supercompulers, such as the Intel Paragon,
Thinking Machines™ CM-5 [47], and the more recently
announced IBM 5PI and Cray T3D concurrent systems.
Since these machines have only very recently become
available most of the ongoing development of the
Scall APACE library is being performed on a 128-node
Intel iPSC/ERD hypercube and on the 512-node Intel
Touchstone Delta svstem.

Future advances in compiler and hardware technolo-
pies n the mid o late 199k are cxpected to make the
multithreading paradigm a vialle approach for masking
communication costs. Since the blocks in a block-parti-
tioned algorithm can be regarded as separate threads our
approach will stll be applicable on machines that exploit
medium and coarse grainsize multithreading.

J.30 Dave Desieibeetion Schenes

The fundamental data object used in the ScalL APACK
library iz the block-partitioned matrix. In this section, we
describe the block-cvelic method for distributing such a
matrix over a two-dimensional mesh of processes, or
lemplate. In general, each process bas an independent
thread of control, and with each process is associated
some local memory directly accessible only by that pro-
cess, The assipgnment of these processes o physical pro-
cessors 15 8 machine-dependent oplimization issue.

An important property of the class of data distributicn
we shall use is that independent decompositions are ap-
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plied over rows and columns. We shall, therelore, begin
by considering the distribution of & vector of M data ob-
jects over P processes. This can be described by a map-
ping of the global index, m, of a data ohjcct to an index
pair {, i1, where pspecifies the process o which the data
object 1= assigned, and ¢ specifies the location in the local
memoery of poat which i€ 5 stored. We shall azsume 0 =
m=Mandd=p = P,

Two common decompositions are the bMlock and the
cyelic decompositions [28, 49]. The block decomposition
assigns contiguous entries in the global vector 1o the pro-
cesses in blocks,

o = (el m o mod L, (3}
where I = [M/P], The cyvelic decomposition {also known
a5 the wrapped or scatlered decomposilion) assigns con-
seculive entries in the global vector to successive dilfer-
el processes,

o= Dpomod B, e/ P (4
Examples of the block and covelic decompositions are
shown in Fig, 2.

The block cyche decomposition s a generalization of
the block and cyelic decompaositions in which klocks of
consccutive data objects are distributed cyclically over
the processes. In the block cvelic decomposition the
mapping of the global index, m, can be expressed as m—
(p. b, i), where p is the process number, # is the block
number in process g, and © 5 the index within block & 1o
which o is mapped, Thuos, if the number of data objects in
a block 1= r, the block cvelic decomposition may be wrif-
len

L v v r}.

J‘?!'—!‘L\.

where T = #P. 1t should be noeted that this reverts 1o the
evelic decompasition when » = 1, with local index 1 = 1)
for all Blocks. A block decomposition is recovered when
r = L, in which case there 15 a single block in each pro-
cess with block number & = 0, The inverse mapping of
the triplet (p, &, i) to a global index is given by

e 0 T'I
r L)

m
™ {3}
!" ke

(p. b, )= Br+i=pr+ b1 +1, (]

where & = p + b is the global block number. The block
cvelic decomposition 1= one of the data disiributions sup-

1 % & 1 & 0|
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FIG. 2. Examples of block amd cyelic decempesitions of M = 1
dala abjects over = 3 progesses,
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FIG. 3. An example of the block cyclic decomposition of M = 23
daln ghjects over & = 3 processes fora block size of » = F, (o) shows the
mapping frem global index, w2, 1o the tnpbel (o, b 0h, and (1) shows the
INVErse Mappng.

ported by High Performance Fortran (HPF) [35], and has
been previously used, in onc form or ancther, by several
rescarchers (see [4-6, 9, 20, 23, 34, 40, 41, 43, 48] for
examples of its use). The block cyclic decomposition is
illstrated with an example in Fig, 3.

In decomposing an A = & malrx we apply indepen-
dent block cyelic decompositions in the row and column
directions, Thus, suppose the matnx rows are distributed
with block size r over P processes by the block eyclic
mapping p, e, and the matrix columns are distributed
with hlock size 5 over {0 processes by the block cyclic
mapping #,g. Then the matrix clement indexed globally
by O, &) s mapped as follows:

m = (b ) o
i = (g, o, ). :

The decomposition of the matrix can be regarded as the
tensor product of the row and column decompositions,
and we can wrile

[, o) = (g, gdy OBy d) 00 000 (8}

The block cvelic matrix decomposition given by Eqs.
(71 and (#) distributes blocks of size r % 5 toa mesh of P x
() processes, We shall refer to this mesh as the process
remplare, and refer to processes by their position in the
template. Equation (8) says that global index (m. n) 1=
mapped to process (p, g), where it is stored in the block
at location (6. &) in 2 two-dimensionzl ammay of hlocks.
Within this Black it is stored al location (¢, 7). The decom-
position i1s completely specified by the parameters r, 5, P,
and . In Fig. 4 an cxample is given of the block cyclic
decomposition of a 36 » 80 matrix for block size 3 = 5
and a process template 3 =0 4.

The block cyvelie decomposition can reproduce most of
the data distributions commaonly vsed in lingar algebra
compulations on parallel computers. For cxample, if (=
1and r= [M/Pl the ock row decomposition is obiained,
Similarly, # = 1 and 5 = [N/Q] gives a block column
decomposition,
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one process, wnd is lnbeled with the corresparding glebal block indices. In both fgures, the black reciangbes indicare the blocks assigned fo process
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4. CORE Scal APACK BROUTINES

Im thiz section we descrbe sequential, block-parti-
tioned versions of the dense Cholesky, LU, and QR fac-
torization routines that form the core of the ScalLAPACK
library. The parallel algorithms for these routines will
also be described.

d.0, LU Factorization

We seck s factorization A LU where A and Loare
M = W matrices, and U515 an N = N matnx. L is lower
trigngular with ['s on the main dizgonal, and 7 is upper
triangular, Suppose the svstem s partitioned as follows,

'r-"1-l:-:l | Ay
'._."1.|:| | _-'||_._.

Uy
'L'I 1 .':I

(ol 88 ] [U (@)

I\Lm [ Luf V0

where Ag s F X r, Apisr s (N =, Apis{d —rl xr,
and Ay 15 (M — r} 2 (N — rh Ly and Ly are lower
trangular matrices with 1's on the main diagonal, and L
and Uy are upper triangular matrices. Then we may write

Agy = LUl (1]
A = Liplin (1)
Am = Ll (12)
Ap = Ll + Laly. (13

Equations (100 and (11} taken together perform an LIS
factorization on the Arst M = r panel of A {i.e., Ay and
Ak, Onee this is completed the matrices Lo, Die. and
Ll are known, and the lower tnangular svstem in Eq.

(12} can be salved to give LYy, Finally, we rearrange Eg.
(13} az

Ap = Ay — Ll = L Lh. (14
From this equation we see that the problem of finding £,
and LMy reduces o finding the LU factorzation of the
(M — r) = (N — r) matrix Aj;. This can be done by
applying the steps outlined above w A instead of A,
Bepeating these steps K times, where

K = muni[M/r], [N/, {15)

we obtain the LU fctorization of the onginal M = &
matrix A. For an in-place algorithm, A is overwritien by
Loand U'—the 1's on the diagonal of L do nol need 1o be
stored explicitly. Similarly, when A is updated by Eqg.
(14} thiz may also be done in place.

Alter & of these K steps the first & columns of £ and
the first Ar rows of L have been evaluated, and matnix A
fas been updated to the form shewn in Fig, 5, in which
panel B iz (M — &) % rand O s e = (N — 0k — 1IF]. Step
& + 1 then procecds as follows:

l. Factor # 1o form the next panel of L., performing
partial pivoling over rows if necessary. This evaluates
the matrices Ly, Ly, and L in Fig. 5.

2. Solve the triangular svstem Lo = C to get the next
row of blocks of (.

3. Do a rank-r update on the trailing submatrix £, re-
placing it with £' = E — L, L.

The LAPACE implementation of this form of LU fac-
torization uses the Level 3 BLAS routines xXTRSM and
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FIG. 5. Stage & + 1 af the block LU Getorizsoon algonithn shdawing
how the pancle & and O and the drailing submairix £ are updated. The
trepezaidal submatrces Loand & have alrssdy been Gactored i [ R T
steps, L has &F columns, and £ has & rowes, In the step shown another -
calums ol L and r rows ol L arg gvaluated

xGEMM o perlform the triangular solve and rank-r up-
date, We can regard the algorithm as acling on matrices
that have been partitioned inte blocks of » % r elements.

The parallel implementaton of the block partitioned
LU factorization proceeds as follows: assume Lthat A is
distribuied over a P ® £ process lemplate with a hlock
cyelic distribution and a block size of r = r. Assume that
& pancls of width r have been factored, and the remainder
of the matrix has been updated accordingly, as illustrated
in Fig. 5.

Step £ + | then proceeds as follows:

[. The process in the process template that holds the
column block & + [, i.e., panel B in Fig. 5, performs an
LU factorization of this pancl, performing pivoting if nec-
essary, and overwriling the correspending entries of A
with Ly, Ly, and L.

2. The panel (Ly and L) is communicated to all other
columns of the process template by broadeasting the ap-
propriate pleces of the panel aleng rows of the template.

3, Processes in columns of the template collaborate (o
apply pivoling 1o the portion of the matrix outside the
factored panel, thereby affecting regions &, £, and L.

4. Appropriate portions of LY are broadeast along
columns of the process templale.

5. The rank-r update E' = E = L LY is performed.

4.2, Cholesky Factorizarion

Cholesky factorization factors a svmmeiris, posifive-
definition matrix A intoe the prodoct of a lower tnangular
matrix, L, and its transpose, i.e., A = LL7. We partition
the M = M matrices A, L, and LY, and write the system

A= LL7 as
{ Lo

[H.-x- ‘ .-‘1u|\:| - i ] (':..5; | r..r:.'J
A | g Ao [N EOR (B

where the block Ay is an r = r matrix. We shall refer to v
as the bBlock size, The bleck-partiticned form of Cholesky

[16)

Faclorization may be nferred indugtively by writing

Am = Lold i17)
Ae = Ll (18
Ay = LIIIL:;'I + LIILiII- (1%}

If we assume that we know how (o fagior A as in Eq.
{173, then the triangular system Eq. (18} can be solved (o
give Ly, Finally, we rearrange Eq. (1%) as

Ay = Ay — Ll = Ly Ly, {20}

From this equation we see that the prohlem of finding L),
reduces o determining the Cholesky factorization of 1he
(M = r = (M 1 matrix Ap. This can be done by
recursively applving the steps outlined above o A,
Thus, to find the Cholesky factorization of the onginal
matrix A requires [MU el such sieps,

The parallel implementation of the block-partitioned
Cholesky factorization proceeds as follows: Assume that
the lower triangle of A s distributed over a & = 2 process
template with a bleck evelic distribution and a block size
of # » k. Assume that & panels of width » have been
factored, and the remainder of the matrix has been wp-
dated accordingly. Figure 5 again applies, bul only the
loweer triangular portion of the matrix is stored,

Step & <+ | then procecds as Tollows:

. The process in the process template that holds the
diggonal block & + 1, i.c., the first block of panel B in Fig.
5, performs a Cholesky factorization of this block, over-
writing the corresponding entrics of A with L.

I Lpis broadeast along the column of the process tem-
plate holding panel & + 1.

3. The remaimder of the panel is updated in parallel by
these processes, solving Eq. (18), to vield £,.

4. The panel 1= communicated e all other columns of
the process template by broadcasting the appropriate
pieces of the panel along rows of the process template.

5. Whereas in LU tactorization LY s broadoast along
columns of the process template, there 1= no similar com-
munication phase in Cholesky factorization. Instead,
processes of a template column collaborate o distribuie
the appropriate portions of the pancl in the template
column.

6. The rank-r update E* = E — L LT is performed.

F.3. R Faciorization

Civen an M o< A matrix 4. we seek the factarization
A= 08, where iz an M = M orthogonal matrix, and &
1= an Mo AN upper triangular matrix. We partition this
factarization as follows:
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A Ay | 0 Ry | R
A= l{_w ||) =10 I\'“ \II[ i | |u)
WA | A 0 [ ¢/ V0 | Ry, (1
= hi:R = OR. .

In this equation, both Oy and &% are M = AT arthogonal
mairices, submatrix f, denctes the r = e identity matrix,
and % denotes an (M —r) ® (M — r) orthogonal matrix.
Thus, g only affects the last M — rrows of B, Again, ris
the block size, e, the number of rows and columns of
the matrices Ag and B in Eq. (210 Then we may write

(= 22(5)-2(5)

(22)

A 'R f Ay C My

{\ "'] - 0.0: "'] >of ) [ S
Ajy LSTY A/ Ry

where we have made use of the fact that () has no affect
on the first r rows of 8. Equation {220 can be used 1o
determine O and My from the QR factorization of the
first panel of A, Multiplving the other N — r celumns of A
by O gives By and A}, = @1R,,. Thus, the problem of
finding the QR factorization of the M« N matrix A has
been reduced o that of inding the 98 factorization of the
(M — #) 2 (N = ) matrix Ay, Repeating this procedure K
limes, where K is given by Eq. (15), gives the complete
(R factorization of the original matrix A.

In practice, & is compuled as a series of mini ), M) —

1 Houschalider transformations of the form

H; = I = Zaanul, (24}
wherei =1, ... min(M, N) — 1, vyis a vector of length M
with zeroes for the first § = 1 entries and a one [or the ith
entry, and o; = 1/{v/v,). Ina tvpical QR factorization, the
veolors oy overwrite the entries of A below Lhe disgonal,
and o 15 stored inoa vector. Furthermore, it can be shown
that Ay - - H, = [ = VIVT, where T is upper triangular,
and the Ah column of Voequals vy, Indeed, this is how a
version of the QR factorization that is rich in matrix—
matrix operations is derived.

Azzume that & of the above procedures have been per-
formed, so the first &r columns of B and the first & vee-
tors i have respectively overwritten the first &r rovws and
columns of A, Then the last & — & calumns have been
updated accordingly, and A has been updated to the form
shown in Fig. &, in which pancl B iz (M = &6 = rand s
(M = &) 2 (N = (& + 1) Step & + | then proceeds as
(ol lows:

I. Perform a QF factornzaton on panel 8, overwriting
the panel with the corresponding triangular factor and
VECTOTS Ukrt iy vwrs Vprere DEE TRCROTE &pn . ..o, @pes, a0 also
stored in a veclor.

2. Form Vyyand Ty sothat f — Vi T Vi, = Alus

R [,

3. Update C" = (f — Vi Ten VLT,

IGEIM, AND WALKER

FIG. & Slage & + | of the block QR factorization algenithm, show-
ing the pangls & and O thal are facuoned an this slage.

The LAPACK implementation of this form uses the
Level 3 BLAS routings xGEMM and sTEMM (o perform
the various parts of the application of (F — Vi 7o Vie)
1o O,

Turning now to the parsllel implementation of the
block-partiticned R factorization algorithm, assume A
15 distributed over a P = O process template with & block
cyclic distribution and a block size of r % v, Assume again
that & panels of width r have been factored, and the re-
mainder of the mairix has been updated accordingly.
Step & + 1 then proceeds as follows:

[. The column of the process template that holds panel
£ + 1 performs a (Jf factorization of this pancl, storing
the Howseholder vectors as described belore.

2. The same processes collzborate to form Ty, leav-
ing thiz upper triangular mateix on the node that holds the
diagonal block of A corresponding to the current panel.

30 Matrix Vi s communiscated w all other columns of
lhe process template by broadeasting the appropriate
pigces of this matrx along template rows.

4. Matrix Ty., is broadcast along the row of the pro-
cess template in which it lies.

5 Columns of the process template collaborate 1o
form pieces of VI, O, leaving the result distributed over
the template row that holds 7.,

6. Processes in the template cow that holds T inde-
pendently update their portion of Vi, 0.

7. Appropriate pieces of Ti,,V1,C are broadcast
along columns of the process template.

& The rank-r update C = C = Vi o[ Tos Vi C) is per-
formed.

5. PERFORMANCE AND SCALABILITY

In this section, we develop approximale models of the
performance and scalability behavior of the parallz] im-
plementations of the three algorithms described in the
previous section. We demonstrate that this behavior is
observed in practice by reporting the performance at-
tained on the [28-node Intel iIPSC/EG0 hypercube at Oak
REidge Mational Laboratory,

3. Run Time Estimates and Sealability

Eather than concentrating on cxact models for the per-
formance of each of the algorithms, we develop approxi-
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mate models by retaining only the leading terms affecting
concurrent performance, efficiency, and scalabilicy, and
we shall concentrate on the information that can be ex-
racted from these models,

1t is customary 1o model the time For sending a message
of length g oitems (o owr case double precision numbers)
hetween two nodes by

e+ o,

where o denotes the latency, and & the inverse of the
bandwidih.

For square & = N matrices, the execution Umes of
sequential implementations of {he factorization algo-
rithms are given by

Tieg = Cap™y + OINT),

where w15 the time for a fleating point operation, and the
constant depends on the algorithm: Oy = 4, Copg = b
and Cog = 4. Ideally, in the absence of concurrent over-
head, we would expect the execution ume lor a logical
mesh of P = 0 processors 1o be

|~'|-I L]

C:'I-F P Q v -+

QIN.

|
o

[mstead the run Gme of the parcallel LU factorization is
estimated 1o be (sec Appendin A)

3 Af P+ ":;} e
:'!-P'IET Fl:,_-;' LTt I
o L o ] o (251
T
L BTy - otee P00V G,

PO

The first term is due 1o the parallelization of the rank-»
update. The second term 1= mainly due o load imbalance
during the rank-r update, the panel factorization. which
utilizes only P processes, and the simuliansous (riangular
salve, which utilizes only € processes, all of which com-
putations e in the critcal path of execution. The o ferm
is due 1o the communications necessary for pivoling and
broadeasting. The lnal term s due 1o the volume of com-
munication that lies in the critical path of execution. In
[34], it 15 shown theoretically that the minimum commun-
ication required for an LU factorization that balances the
workload 1= [(# + 0P - EINDE. The logarithmic
factor im the last term of Eg. (2531 can be removed by using
a more sophiztcated broadeast such as the EDST algo-
rithm in [37], &t the cxpense of a higher cost lor commun-
wation startup.

To cxaming scalability, first assume that & = 1. In this
case, the malnx is columo-wrapped over a eng-dimen-
sional array of processors, and the run time estimale be-

53l
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y + O(NTy + (N + (N8

TIN, | % () = %
(26}

fat | 1t

In this case, if we wish 1o maintaim efficiency, &, we must
prow N owith O in the following way:

Consl. = &[N, | = (0 = T NWQ - TON, 1 = )

[1 & NQIND + HOINaly + CNQIN ]!
(27)

Mot that in oeder 1o maintain efficiency, N must grow in
proportion to (. Given the fact that memory require-
ments grow as N This approach has rather poor scalalil-
ity propertics.

Mexl, assume a general < Q process template, with
F o1l Then to maintain elficiency, the following must
fislsd:

Const.

= g{N, P x () = T (WWP - 3 T(N, F X N

= [1 + QP + QNN + Ollag PIFP - QNN oy
+ log:l PP + QNNIEY] .

(28]

Consider the case where P = 0, Once the number of
nodes 5 large, log, 0P grows very slowly and only mildly
degrades the efficiency. If the variation of log{F) iz ig-
nored, constant efficiency can be maintaimed by letting &
grow with P, the square rool of the number of nodes, The
net resile i thae efficiency can be approximarely main-
fained when the memory regiremends for e mairix per
node are Eepd constand. Thus, according to the definition
of scalability given in Section 2.1, our implementation of
dense LU factorization, using a two-dimensional block
cyvehic data distribution, 15 expected o exhibda good scala-
bility.

The other algorithms lead 1o similar resulis, with differ-
cnt conslants.

Mate that the estimate execution time is & function of
many parameiers. o particular, the following parameters
can be chosen w oplimize the performance of the paralle]
implementations:

. template dimensions, P = 2, which we will here
assume carrespond in some way 1o the physical dimen-
sions of a grid that can be embedded in the given architec-
fure;

2. block size, r.ooand

i, problem size, M o= N,

A g orule, massively parallel architectures are used o
solve massive prollems, 2o we can assume that the prob-
lem size is large enough to Gl a large portion of available
memory, For such problems it is alwavs advaniageous 10
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add compute nodes. This leaves the user wilth the deci-
sion of how (o choose the ratio P70, and the ¢, that opti-
mize performance on a particular machine.

It iz tempting (0 10y [0 construgt a more precize maodel
of execution ume, and hence W compute the optimal val-
ues of r and PIQ. In practice, however, the performance
of the algorithm as a lunction of r depends much more on
the size of the cache, the memory bandwidih, and the
details of the CPUL Indeed, changing the blocksize by
cne can easily affect the performance on a single com-
pute node by a Factor of 2 [438]. As a resull, roshouold be
treated as a constant that depends on the implementaiion
ol the matrix—matrix muluply and on the hardware,

The optimal ratic /0 could be predicted by the model.
For our algorithms., communication within rows can be
pipelined, and therefore partially hidden by compatation.
Computation within a column of the template 15 ughtly
coupled, making communication more difficull 1o hide.
As aresult, an optimal ratie will be attained when P =
[48].

3.2, Experiments on the iPRCTRS0

I thiz zection, we show how experimental resulis sup-
porl the theoretical scalability results by reporling perfor-
manse attained by our algorithms on the Intel iPSC/ERD,
The Intel iPSC/A60 15 a parallel architecture with up to
128 processing nodes, Each node consists of an Intel i8al
processor, ciach with & Mbytes (on the ORNL machine).
The interconnection network forms a hypercube. Logical
erids of nodes can be embedded by having columns and
revws Torm subcubes, Oneach node all compuiation wis
performed in double precision arithmetic, using assembly
coded BLAS (Lewvels 1, 2, and 33, which are parl of &
math library implemented by Kuck and Associales and
provided by Incel,

.;. =0 40 B0 B0 100 120 140
number of nodes
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Ag mentioned in the previous section, if the logarith-
mis factors in owr performance model are ignoced, our
implementations based on two-dimensional data decom-
positions allow efficiency o be retained when the mem-
ory use per node iz held constant as the number of nodes
15 increased, We report performance as a function of the
number of nodes in Figs, 7-10. In these fipures, the larg-
esl problem size per node of 6,25 Mbyies corresponds 1o
the memaory constraint in Fig. |, while the size of the
Intel iPSCERD (128 nodes) corvesponds 1o the machine
size constraint. In our Uming experiments we wers nol
constrained by run fime, stability, or minimum problem
size considerations, so the other constraints in Fig. | are
not relevant here.

The graphs that report performance atlainsd per node
clearly show the imitial reduction, followed by the level-
ing, of the efMficiency. This initial reduction eocurs as the
cihcieney falls from 1 for a single node (0 some approx-
mately constant lower efficiency for more than one node,
This behavior is consizstent with the behavior predicted
by the performance models. For the tolal performance
oraphs, the lincarity of the plots when the number of
nodes s increased as the memory usage is held constant,
also ilustrates the good scalability behavior of the algo-
rithms cn the Intel iPSC/860.

For the timing experiments reported on in Figs, 7-9,
the concurrent efficiency, as defined by Eq. (1), Lies in the
ranges 0.5=0.6, 0.55-0.65, and 0.7-0.2 for the Cholesky,
LU, and OQF factonzaton algorithms, respectively. The
smaller cfficiencies correspond to smaller problem sizes
per node, These efficiencies are Quile IMpressive, sinee
the bulk of the computation s being done by optimiced,
assembly-coded Level 3 BLAS routines, rather than by
compiled Fortran code. Thus, the algorithms exhibit
eood scalability ar acceptably high efficiency. As the Gg-
ures show, the single node performance ranges from
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about 22 o 32 Mops for these dense factorization rou-
tincs. The peak performance of the Level 3 BLAS ma-
trix—mateix multiplication routing on a single node is ap-
proximately 36.5 Mfops, which we regard as the peak
performance of the 260 processor,

The bulk of the computation in all algorithms is inthe
rank-r update. We would expect the choice of the optimal
block size to depend on the implementation of this BLAS
operation. The block size for both LU and QR factoriza-
tion 15 ¢ = 6. For the Cholesky Factlorization, only the
lower friangular portion of the mairix is updated, This
poses 4 problem for the parallel algorithm, since the por-
tion of the matrix on each node does not form a lower
triangle, or other shape for which a single call tooa Level 3
BLAS routing suffices, As a resull, panels must B¢ up-
dated individually and, to get good performance from the
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BLAS, the width of the panels must increase, Asaresuli,
the optimal panel size for the Cholesky [aclorization is
r = 24 for large matrices.,

Since the bulk of the commumnication for the LU and
DR factorizations is the same, the optimal grid size, P =
3, for these factorizations is the same: on the Intel (PSC
260 hypercube best performance is atiaingd when FP/Q =
Vo Experimental results show the Cholesky factorization
1o perform best when the dimensions are (approximately)
equal. This can be explaned in part by the fact that the
communication in Step 5 of Section 4.2 is greatly simpli-
fied when P = (.

The relative performance of the algerithms is given in
Fig. 10. The difference in perfformance between the QR
and L1 factorizations is due 1o the more favorakle ratio
of compulation o communication in the former. Simi-
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larly, the Cholesky factorization runs al & slower rale (as
measured in fleating-point operations per second) than
both the LU and QR factomzations for the same reason.
Howewver, note that for the single node implementation,
the Cholesky factorization performs al 22-25 Miops.
compared with 28-32 Mfops for the LU and QR factori-
cations. Thus, even in the single node case, the Cholesky
factorization performs significantly worse in terms of
MAops that the other two algorthms, although the actual
runtime for Cholesky factorization, for & matnx of given
size, 15 sl less than the runtme for LU factorization,
gimce the former invalves about halt as much compuata-
tion as the latter. The relatively poer Milop rate of the
Choelesky factorization is due to the fact that the symmet-
ric rank-r update 15 performed one panel at & time, even
for the single node implementation, yielding an inferior
performance of the BLAS, IL should be noted that the
LAPACK implementation does a single call to perform
the symmetric rank-r update, vielding performance com-
parakle to the LU and QR factorizations.

G, COMCLLUSIONS AND FUTURE WORK

The Scal APACK rowtines for performing lingar alge-
bra computations on distributed memory  concorment
computers use distributed versions of the BLAS 1o per-
form most of the computational tasks, and the BLACS o
communicate data, The wse of Block-partitioned algo-
rithms improves scalability by reducing the frequency of
data movement between processers, The computation
performed by each processor within the  distriboted
BLAS can itself be performed using assembly coded se-
gquential BLAS routines, which results in good perfor-
manee, The Scal APACK routines assume & hlock cyelic
data distribution, and their performance can be uned by
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the user on any given platform by varving the Block size
and 1he aspect ratio, PrQ2, of the process template,

In this paper we have demonstrated the good perfor-
mance and scalability characteristics of the Cholesky,
LU, and OQF dense factornzation routines of the Scal A-
PACK library on the Intel iP5C/E60 hypercube, In addi-
tion, the Scal APACK library also currently includes
routings for the concurrent selulion of triangular sys-
tems. The message passing performed in these routinegs 1=
based on the PICL inierface [30]; howewver, when the
Message Passing Interface (MPID standard [19] 5 com-
plete we intend o rewrite the distributed BLAS and
BLACE in terms of this, which should make the Library
more casily portable, We also intend to add more rou-
tines o Scal APACK, particularly those concerned with
the estimation of conditicn numbers and the selution of
dense cigenproblems, as discussed in Seclion 3.

There has been much interest recently in the use of
versions of the sequential Level 3 BLAS based on Stras-
sen’s matrix mulliplication algorithm [43] as building
blocks for inear alpebra ibraries, such as ScalL APACK
[£. 25, 36], We intend 1o pursue the possible use of such
routines inour future work. Strassen’s algorithm reduces
the computaticnal complexity of multiplying two A = N
matrices from TNt QUNEET), though for variants of
the algorithm the exponent g even smaller. Although
Strassen’s method docs not satisfy as strong a stability
criterion as the traditional methad, it is believed 1o be
sufficiently stable for many applications, and this view is
supported by numerical experiments [36], It has been
shown thal on one processor of a Cray Y-MP the use of
Strassen’s methed can speed up LU factorization for
moderately sized matrices [3]. However, for parallel im-
plementations on distributed memory architeciures it is
ol clear which is the best approach, since Strassen’s
methed favors larger block sizes, but this increases load
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imbalance in the panel factorization and friangular solve
phaszes, Furthermore, a practical issue that argues against
the current use ol Strassen-based Level 3 BLAS in a
portable software library is the fact that assembly coded
versions of these routings are not so widely available as
lor the original Level 3 BLAS.

The Scal APACK software is electronically availlable
via the sedih facility, It may be retrieved by anony-
mous fip from the dircctory scalapack on netlib:2,
s, utle, edu, or by the xeedih Xeowindows intecface, or
by MOSAIC by opening the URL  http:
netlibz. es. utk, edu/scal apack .

APPERDIX, RUN TIME ESTIMATE {F THE
LU FACTORIZATION

Examing step & + 1 of the algorithm,

. The column of nodes that holds the (& + [hh pancl
collaborates 1o factor that pancl. This must be broken
down into r subsleps, ene for each of the columns. For
the ith column of the panel,

ia) Determine the pivol row, This procecds by first
determining the local maximum on or below the diagonal,
followed by the global maximum, Cost on & hyperoube:
about

[.l:if —fr =i+ ]

5 (29)

y + log:(F)a

(assuming latency dominates the communication). Here
[x], denotes the smallest integer multiple of r greater than
or cagual o x.

(k) Fivot the portions of the pivot row that fall in this
panel. Cost:

& + rf. [30)
iMaturally, if the element is on the processor that holds
the diggonal block of the matrix, this need not be done.
We shall assume pivoting 15 always necessary. )
() Compute the multipliers, distributed among the
column of nodes, Approximaite cost:
M=k =i y
|f| ¥. (31)

(d) Update the rest of the panel using a rank-1 up-
date. Approximate cos

M=fr=i
[i [32]

i -
| i [ .
r |,f Y

2, Broadcast the pivol information within rows of
nodes. This can be pipelined around an embedded ring
(within the row), vielding a contribution of

Ne + rf). (33

335

1. Broadcast the [actored panel (L and L) in Fig. 5k

! M- & X
2 [.-:.n: + [ I L : rﬁ;l. [34)
4. Pivel the remainder of the rows:
i M- r| £
, o || =1 1
' |:\-5|: | o II‘il:' [35)

5. Compute & by solving Ly0f = € on the row of
nodes that holds O

N =+ L :
[f—_i . {36)
A, Broadeast O
] M= + 1} b
loga(P) [ + [+ He | SN 27

7. Perform a rank-# update on matrix E,

M=k + 1r] [N -k + [_|r]
o
2 [ T I,| Ak (]
After this step, the next column of nodes is ready Lo start

step k + 2.

To achicve a total estimate of the execution lime. the
above quantities must be summed over all steps. If for
simplicity we consider only square matrices. M = N, and
assume rois fized and small, then summing the varous
contributions, we gel

a3 a1
3 ) =y + N logd Pl
& 1 P

" =l I."a
2 LB =—a+Ng

Ly

M2 .
3P DNy

;J}__‘,[;n-

N
ar ¥

; E (32) = N1

~ o+ N

It

T (33) =
X

N N ]
¥ 34) = —a+ 5 B+ ONE
&

I

5 N?

5 [35) = Na + ?' &+ ({NB
N

3 (36) = 557+ 0Ny

)
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