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Abstract: The rapid rise of generative Al has shifted the center of gravity in advanced
computing toward hyperscale Al platforms, reshaping the hardware, software, and
economic landscape that scientific computing depends on. This paper argues that
scientific and technical computing must “ride the wave” of Al-driven infrastructure while
“building the future” through deliberate investments in new foundations. It presents
seven maxims that frame the emerging reality: (1) HPC is increasingly defined by
integrated numerical modeling and generative Al as peer processes; (2) energy and
data movement—not peak FLOPS—are the dominant constraints, motivating “joules per
trusted solution” as a primary metric; (3) benchmarks should reflect end-to-end hybrid
workflows rather than isolated kernels; (4) winning systems require true end-to-end
co-design, workflow first; (5) progress demands prototyping at scale with tolerance for
failure; (6) curated data and trained models are durable strategic assets; and (7) new
public—private collaboration models are essential in an Al-dominated market. The paper
concludes with a call for a national next-generation system design “moonshot” targeting
orders-of-magnitude reductions (=1/100) in energy per validated scientific outcome via
energy-aware algorithms, architecture innovation focused on memory/interconnect
efficiency, and software stacks that optimize hybrid Al+simulation workflows.

1. Introduction

In 2023 [18], we argued that the center of gravity in advanced computing had already shifted
away from traditional scientific and engineering high-performance computing (HPC), with the
locus of influence now centered on hyperscale service providers and consumer smartphone
companies. We enumerated five maxims to guide future activities in HPC:

Semiconductor constraints dictate new approaches,

End-to-end hardware/software co-design is essential,

Prototyping at scale is required to test new ideas,

The space of leading-edge HPC applications is far broader now than in the past, and
Cloud economics have changed the supply-chain ecosystem.
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Since then, given the meteoric rise of generative artificial intelligence (Al), the computing
landscape has shifted more dramatically than even the most disruptive technology forecasts
might have anticipated. Today, the dominant computing markets are unequivocally Al-driven; the
energy and cooling demands of hyperscale systems are measured in hundreds of megawatts,
making them public issues; high-precision floating point hardware is giving way to reduced



precision arithmetic in support of Al models; and national strategies increasingly treat
Al-capable clouds and scientific supercomputers as a fused strategic resource, with deep
geopolitical implications.

Consequently, scientific and technical computing is increasingly a specialized, policy-driven
niche riding atop hardware and software stacks optimized for other, much larger markets. The
challenge for scientific computing is to adapt to this rapidly changing world, albeit with a more
holistic perspective on the global landscape, one that looks beyond the narrow, but important
design of next-generation computing systems to how an integrated ecosystem of new, nascent,
and still-to-be developed computing technologies enables scientific discovery, economic
opportunities, public health, and global security. We must ride the wave of Al, while
simultaneously building the future.

In this paper, we outline seven new maxims that define the present and the future of advanced
scientific computing. From these new maxims, we conclude with a proposal for a “moon shot” to
build a new foundation for future computer systems for research, one that would benefit both
scientific computing and Al..

2. Current Technical and Economic Reality

Each high-performance computing transition has been driven by a combination of market forces
and semiconductor economics, requiring the scientific computing community to develop and
embrace new algorithms and software to use the systems effectively. Each time, there were
those who initially resisted inevitability, only to suffer the consequences of delayed adoption,
whether clinging to vector supercomputers or refusing to embrace scalable message passing.
Today is no different. The scientific computing community must again adapt and embrace the
new realities of our Al-dominated technology world.

The first sea change is one of economic and technical influence. The scientific computing
community has long been a driver of computing innovation, even in the commodity hardware
space, by specifying and buying the earliest and largest instances of new technology. Today,
that is no longer possible, especially under current procurement models. Today, the scale of “Al
factories” dwarfs that of even the fastest machines on the list of the TOP500 supercomputers,
and the gap widens each year.

Moreover, unlike the rise of the modern microprocessor, when all hardware was available for
public purchase, a substantial portion of the most advanced Al hardware is designed and built
by the Al hyperscalers themselves. Prominent examples include Google’s TPUs [7], Amazon’s
Trainium [24], and Microsoft’s Maia hardware. The largest clusters and newest accelerator
generations are often accessible only to internal Al teams within the hyperscaler or to a small
set of strategic partners under commercial terms.



Although both scientific computing and generative Al benefit from high floating point operation
rates, machine learning flourishes with 32, 16, 8, and even 4-bit operands. In contrast, scientific
computing has long depended on high-precision, 64-bit floating point. The shift in hardware
design points for hardware designed by both hyperscalers and NVIDIA, the largest supplier of Al
accelerators, raises important concerns for traditional computational modeling.

In addition, the now mainstream cloud software ecosystem, including storage systems,
scheduling models, and software services, differs markedly from current technical computing
practices. Lest this seem heretical, remember that UNIX and open source software were once
viewed as high risk by the scientific computing community, even as they became mainstream in
the commercial computing world.

3. Modeling and Al As Peer Processes

Maxim One: HPC is now synonymous with integrated numerical modeling and generative
Al.

The need to embrace Al is more than an economic imperative; it is also an intellectual and
scientific necessity. Just as computational science became a complement to theory and
experiment, later augmented by data science [25], HPC and Al are now peer processes in
scientific discovery. Both are now needed to integrate deductive (computational science) and
inductive (learning from data) models.

It is worth pausing to understand why there was initial resistance to Al in the computational
science community. First, traditional computational simulation and modeling are deductive,
based on mathematical models of phenomena based on the laws of classical or quantum
physics, typically expressed as discretized differential equations. This approach reflects the
classical mathematical and scientific training of most computational scientists.

In contrast, generative Al models are inductive, with models trained using large volumes of
data. Just as computational models can approximate solutions to differential equations to
arbitrary precision, so too can Al models learn to approximate unknown functions to arbitrary
precision. Crucially, it is not a matter of choosing to invest in simulation and modeling or Al. Both
are critical and complementary, each offering capabilities and efficiencies lacking in the other.

Consider weather modeling, an area long dominated by complex, numerical models. When
trained on 40 years of analysis, Al can predict 10-day forecasts in seconds rather than hours,
with results now competitive with the European Center for Medium Range Weather Forecasts
(ECMWF) on standard metrics [11, 12, 26]. In biology, the protein folding systems, AlphaFold
and RoseTTAFold, accurately predict protein 3-D structure from sequences [8,9], which many
now consider to be a solved problem. Al is also a great help with inverse problems. Similarly,
the Al diffusion methods used to create images can also be used to remove noise and
reconstruct diagnostic-quality medical images [27]. Similar techniques can aid in searching for
gravitational lensing in large scale survey data [28]. Drug and materials discovery have also
been aided by Al methods that reduce search spaces prior to expensive experimentation.



Despite their great promise, Al methods are not without problems, just as numerical models face
challenges regarding uncertainty quantification. Simply put, Al methods fail when applied
outside the boundaries of their training data. As we noted earlier, Al methods have proven
highly effective for weather prediction given historical data, but they are unable to predict the
emergence of chaotic, rare events such as tornadoes. In contrast, tornadoes can now be
predicted with HPC fine-grained CFD simulations, an example of the complementary utility of Al
and numerical models. Nor can generative Al models readily incorporate well-known physical
laws, though physics-based neural networks offer promise.

The complementary strengths and weaknesses of numerical and Al models has led to their
integration as hybrid models, notably the use of Al models as numerical surrogates. First, one
trains a neural network to approximate an expensive simulation, then uses the Al surrogate for
rapid parameter space exploration — taking care to not push beyond its domain of applicability,,
and finally uses the computationally intensive numerical simulation for verification of promising
results. Similarly, for adaptive grid methods, Al can also be used to predict the region where
mesh refinement may be most beneficial. These hybrid techniques incorporate the Al directly
into the workflow of a large scale HPC computation.

The message is clear. Al and numerical models each have advantages and domains of
applicability. Equally important, their integration creates opportunities not possible with either
alone.

4. Energy and Data Movement Dominate

Maxim Two: Energy and data movement, not floating point operations, are the scarce
resources.

Energy As a Design Constraint

As semiconductor scaling has slowed and architectural complexity has grown, energy
consumption and heat dissipation have become limiting factors for both Al data centers and
traditional supercomputers. Systems that draw hundreds of megawatts now define flagship
deployments, driven by both the rising scale of deployments and the energy requirements of
modern semiconductors. At these scales, every aspect of system design becomes an energy
problem: how to deliver power from the grid, how to remove heat efficiently, and how to align
operations with carbon reduction commitments. Liquid cooling is de rigueur with direct-to-chip,



immersion, and hybrid schemes now the norm.
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Figure 1 Total U.S. Data Center Electricity Use [33]

In this context, traditional performance metrics such as peak floating point operations per

second (FLOPS) or even time-to-solution are no longer sufficient. What matters is "joules per
solution"—the total energy cost of producing a scientifically meaningful answer or training a
model to an acceptable level of quality. This metric forces new trade-offs among fidelity,
resolution, model size, and energy consumption. It also highlights the role of algorithmic
innovation: mixed-precision methods, communication-avoiding algorithms, data compression,
and smarter sampling and surrogate models can all reduce joules per solution, sometimes
dramatically, without sacrificing reliability.

Critically, the time scales for computing system design and energy infrastructure decisions are
increasingly mismatched. A new hyperscale data center and associated computing
infrastructure can be designed and built in a few months. Upgrading power generation,
transmission, or distribution infrastructure often takes much longer, especially when it involves
regulatory approvals, environmental review, and large capital projects. This asymmetry means
that unless the system design also includes building and operating a utility (e.g., a reactor or
wind farm), the power envelope for systems is often effectively fixed years in advance, long
before architectural details are finalized. As a result, future systems must be conceived as
configurations that operate within pre-defined energy and cooling budgets, not as free variables
to be optimized later.

Consequently, as Figure 1 shows, the energy demand for Al factories is now outpacing the
capacity of energy grids [33]. In addition to the mismatch in construction timescales, it also
reflects inadequate investment, at least in the U.S., in grid modernization. Rising energy
demand, from both the proliferation of data centers and their growing scale, is now a bottleneck



for data center deployment. In consequence, some hyperscalers are now embracing temporary
solutions, such as arrays of gas turbine generators.

Sustainability is no longer a public-relations story; it is a design constraint and an operating
condition. Policy mandates, institutional climate goals, and community expectations will
increasingly require large-scale computing projects to quantify and justify their energy usage in
terms of joules per solution, not just peak capability. Energy efficiency must be a first-class
objective across hardware, software, and workload design—not as a downstream optimization
once the systems are built.

Data Movement Costs and Floating Point Arithmetic

In the past, the energy cost of arithmetic operations dominated. Today, moving data (within and
between chips) consumes more energy than the arithmetic operations enabled by that data
movement, yet our measures of software efficiency still center on arithmetic operation counts.
Simply put, performance metrics that ignore power and communication costs encourage
architectures that look impressive on paper but are increasingly impractical to operate at scale.

If facilities are to operate within tight energy envelopes while supporting both Al and high-fidelity
simulation, algorithmic co-design must also extend beyond kernels and into the fundamental
treatment of precision and data movement. In this view, arithmetic precision and communication
are not merely implementation details; they are explicit algorithmic resources to be budgeted
alongside time and memory.

This shift has already begun, with hardware designed for Al already focusing on reduced
precision arithmetic to reduce energy and data movement costs. NVIDIA’s latest hardware
exemplifies this trend, as illustrated in Table 1.

Peak Performance
2022 2024 2026
NVIDIA NVIDIA NVIDIA
Operations Hopper (H200) Blackwell (B200) Vera Rubin
FP64 FMA 33.5 TFLOPS/s 40 TFLOPS/s 33 TFLOP/s
FP64 Tensor Core 67 TFLOPS/s 40 TFLOPS/s 33 TFLOP/s
FP16 Tensor Core 989 TFLOPS/s 2250 TFLOPS/s 4000 TFLOP/S
BF 16 Tensor Core 989 TFLOPS/s 2250 TFLOPS/s 4000 TFLOP/S
INT8 Tensor Core 1979 Teraops/s 4500 Teraops/s 2500 Teraop/s
Memory bandwidth 4.8 TB/s 8 TB/s 22 TB/s

Table 1 NVIDIA Floating Point Performance




Mixed-precision methods exemplify this shift [13,14]. Rather than assuming uniform 64-bit
(FP64) floating point arithmetic, future numerical solvers will partition computations across
FP64, FP32, BF16, FP8, and integer-emulated formats, using high precision only where it is
most needed for stability or accuracy. Iterative refinement [21], stochastic rounding [23],
randomized sketching [22], and hierarchical preconditioners [20] will allow most floating point
operations to be executed on low-precision units. At the same time, small high-precision
components provide correction and certification. In Al workflows, similar ideas apply to training
and inference, with dynamic precision schedules and quantization strategies tuned to minimize
joules per unit of practical learning.

Communication-avoiding and energy-aware algorithms add a complementary dimension [15].
Classical work on minimizing messages and data movement must be reinterpreted in the
context of modern communication fabrics, offload engines, and hierarchical memory systems.
Runtimes will need to be aware of both energy and communication costs, scheduling tasks to
minimize expensive data motion across racks or facilities and to exploit near-memory or
in-network computation where possible. Hybrid Al+simulation workflows will rely on
asynchronous, event-driven communication patterns that allow different parts of the system to
operate at their own natural time scales without constant global synchronization.

This algorithmic work must be conducted in deliberate co-design with emerging hardware—just
as hyperscalers already do for Al, where they face similar energy cost and data movement
challenges [29]. Scientific computing cannot simply await new architectures and adapt
afterward. Instead, targeted collaborations are needed in which hardware features (numerical
precision formats, on-die networks, memory hierarchies, and DPUs) are shaped in dialogue with
scientific algorithms, and in which software stacks expose those features in usable, portable
ways.

5. Benchmarking and Evaluation
Maxim Three: Benchmarks are mirrors, not levers.

Performance metrics such as High-Performance Linpack (HPL), High-Performance Conjugate
Gradient (HPCG), or any other next-generation benchmark reflect the systems vendors are
already building; they rarely reshape the broader market trajectory on their own. Put another
way, they generally reward incremental improvements rather than transformative alternatives.

New benchmarks must span both simulation and Al partitions, exercising end-to-end workflows
rather than isolated kernels. For example, a climate benchmark might couple high-resolution
dynamical core simulations with Al-based subgrid parametrizations and data assimilation,
measuring not only time-to-solution but also energy consumed, data moved, and robustness of
the resulting forecasts. A materials benchmark might link quantum-level calculations, surrogate
models, and large-scale screening workflows.

Energy- and carbon-aware metrics should be central, not peripheral. Joules per trusted
solution—and, where possible, estimated emissions per solution—provide a more meaningful



measure of a system’s value than peak floating point performance. Benchmarks can incorporate
these metrics directly, reporting performance as a Pareto frontier among time, energy, and
fidelity. This will encourage architectures and algorithms that balance, rather than chasing
single-number records.

Equally important is the need to benchmark the data fabric itself. Future metrics should stress
test data ingestion from instruments, movement across simulation and Al partitions, access to
long-term archives, and enforcement of security and access policies. They should evaluate not
just raw bandwidth and latency, but also how well facilities support governed, equitable access
to data and models—key concerns for national platforms that serve diverse communities.

Finally, benchmarks should reflect the hybrid nature of public-private computing infrastructure.
Some workloads will span on-premise facilities and secure cloud regions; others will rely heavily
on Al services coupled with local simulations. Measurement frameworks must be able to
attribute performance and energy across these boundaries, enabling comparisons of different
design and deployment choices.

In short, if we want design patterns for future scientific facilities that genuinely align with societal
and scientific goals, we must update the mirrors we use to see ourselves. New benchmarks and
metrics—rooted in Al+simulation workflows, energy and carbon efficiency, and equitable
access—are as essential as new chips, racks, and cooling systems.

6. Co-Design Really Matters

Maxim Four: Winning systems are co-designed end-to-end—workflow first, parts list
second.

Although the hyperscaler and Al community has aggressively embraced hardware-software
co-design, in scientific computing, the story is less encouraging. There are notable examples of
co-design in specific missions—fusion devices, climate modeling initiatives, and some exascale
application teams have worked closely with vendors to shape features or software paths.
However, most production scientific codes must still adapt to extant architectures. Porting and
tuning cycles are long; exploitation of new features (tensor cores, DPUs, new memory tiers) is
partial, ad hoc, and large segments of the scientific software ecosystem remain effectively
frozen on older models of the machine.

Is this because the community is risk-averse, or simply because it is resource-constrained? The
honest answer is both. Co-design at scale requires sustained funding, institutional continuity,
and the ability to place substantial bets on uncertain outcomes. In reality, most scientific teams
operate with fragmented funding and short time horizons; they cannot afford to gamble entire
codes on speculative hardware features. Most tellingly, this has proven true even for the largest,
mission-driven applications such as nuclear stockpile stewardship. Meanwhile, vendors are
understandably reluctant to optimize for niche workloads when Al and cloud customers
dominate revenue.



The net result is that co-design remains the exception rather than the rule in scientific
computing. Where it has worked, it has done so in contexts that resemble Al—concentrated
workloads, strong institutional commitment, and substantial aligned resources. For co-design to
enable a broader spectrum of scientific codes, governance and funding structures must look
more like those of Al ecosystems: fewer, more focused efforts with the scale and longevity to
justify genuine hardware—software co-evolution.

7. Prototyping at Scale

Maxim Five: Research requires prototyping at scale (and risking failure), otherwise it is
procurement.

In 2023 [18], we advocated for more aggressive prototyping of next-generation systems at
scale. The idea was simple — if we want new architectures and programming models, ones
better matched to the needs of scientific computing, we must first build and let real users test
them in realistic configurations. Since then, we have seen a handful of promising large-scale
prototypes and early-access systems. Nevertheless, these efforts remain scattered and, in
many cases, closed or narrowly scoped, with inadequate funding and little ability to take
calculated risks.

Such prototyping and development will require larger scale investments (i.e., tens of millions of
dollars), either in startup companies or laboratory teams, that embrace targeted technological
risks (e..g, custom chiplets) that leverage the extant hardware ecosystem. Only with scalable
testbeds can new hardware, software stacks, and energy-management strategies be exercised
by a wide range of scientific workloads under realistic conditions. This is neither simple nor
easy, but it is essential if we are to address the limitations of hardware designed for commercial
markets.

Equally importantly, advanced prototyping means being willing to accept failure while drawing
lessons from the failure. Put another way, we must embrace calculated risks to explore
promising new ideas. Such risk-taking was once more common in computing. One need look
no further than the 1960s experiments with the IBM Stretch and the lllinois/Burroughs ILLIAC 1V,
followed more recently by DARPA's targeted parallel computing program in the 1990s, which led
to a host of novel parallel hardware prototypes, including the Stanford DASH and lllinois Cedar
systems.

Pursued seriously, advanced prototyping may push scientific+Al HPC toward a "bespoke
instrument" model. Rather than building generic machines and layering everything on top,
designs might explicitly target particular classes of workflows (e.g., climate + energy systems,
fusion + materials, or life sciences + health analytics) with algorithmic patterns, precision
strategies, and data topologies tuned to those missions. The challenge will be to retain enough
generality and openness that such bespoke instruments remain shared national resources, not
single-experiment machines.



Software Stack Interoperability and Malleability

Nor can the world of prototypes be limited to software; it must also encompass interoperability
between computational modeling and cloud services. In a world where traditional
supercomputing and modern Al clouds are not separate worlds but interoperable layers, a
climate scientist, materials chemist, or nuclear engineer would move fluidly between running
large-scale simulations on government HPC systems, invoking scientific foundation models
hosted in secure clouds, and using Al agents to orchestrate end-to-end workflows that span
both environments.

Alternative Computing Models

Building the future means more than just riding Al hardware trends, it also means investing in
alternative computing models, ones that address precisely those areas where constraints are
becoming first-order: energy, data movement, and domain-specific computing.

For example, neuromorphic computing [30] can be more aptly characterized as an “energy-first”
approach for event-driven, sparse inference, or control. Asynchronous, spiking networks with
co-located memory and compute are inherently suited to always-on sensing, edge scientific
instrumentation, autonomous laboratories, fast triggers, and adaptive control. The priority, not
just in neuromorphic computing, but in sensing generally, really, ever since Einstein’s earliest
days in physics, has been ‘act quickly, with minimal joules.’

Quantum computing [31 also represents an accelerator for a class of problems. Specifically, a
quantum computer can be integrated into a hybrid processing pipeline involving
chemistry/materials simulations (specific electron-structure problems), small- to medium-scale
combinatorial optimization, sampling problems, and perhaps cryptology/security applications.
However, the bar is relatively high, as the potential to lower the cost of communications and
synchronization is becoming increasingly dominant.

8. Multidisciplinary Data Curation and Fusion
Maxim Six: Data and models are intellectual gold.

In an era when many countries can buy similar hardware and access similar cloud platforms, the
differentiators are increasingly the quality of curated datasets, the sophistication of the trained
models, and the legal and institutional frameworks that govern their use. High-value scientific
datasets—Ilong climate reanalyses, fusion diagnostics, high-resolution Earth observation
archives, curated materials, and molecular databases—are expensive to generate and maintain.

When combined with frontier Al and hybrid Al+simulation workflows, they allow a given amount
of computation to yield more insight, faster and more reliably, than would otherwise be possible.
Similarly, scientific foundation models trained on such data—models for weather, climate,
molecular design, materials discovery, or engineering design—become reusable assets that can
be fine-tuned, coupled to simulations, and deployed across a wide range of applications.



Data stewardship must be a central element of national and institutional strategy. Investments in
high-quality metadata, provenance tracking, curation, and long-term preservation are
investments in future scientific leverage. Thus, the design and training of scientific foundation
models must be treated as infrastructure. Just as we do not rebuild compilers and linear algebra
libraries for every application, we should not treat domain foundation models as disposable
experiments.

9. New Public-Private Partnerships
Maxim Seven: New collaborative models define 21st-century computing.

Frontier Al+HPC has moved from the realm of research strategy to national geopolitical policy.
Executive orders and national strategies now explicitly identify Al+science platforms, secure
cloud Al, and supercomputers as components of national competitiveness and security.
Genesis-style [17] missions recast a historically technical conversation as a matter of national
priority.

Concurrently, the shift to an Al-dominated computing market forces a rethinking of how to fund
and organize scientific computing. In a world where hyperscalers and Al platform companies set
the pace of hardware innovation, traditional models—incremental upgrades to on-premise
systems funded through periodic capital campaigns—are no longer sufficient to sustain
leadership in HPC for science. Instead, future government funding models must recognize that
advanced computing is now a mixed public—private ecosystem, in which strategic consortia,
pre-competitive platforms, and mission-driven initiatives play central roles.

In turn, this means articulating explicit AI+HPC requirements linked to national and global
challenge problems — climate resilience, health, energy transition, national security, and
economic competitiveness. Funding calls that tie hardware, software, data, and workforce
development together—anchored in concrete mission outcomes—are more likely to produce
durable ecosystems than one-off hardware acquisitions.

Genesis-style initiatives are one example of this logic: they frame Al+science platforms as
critical infrastructure for national goals rather than as isolated technology experiments. The core
lesson is that publicly funded scientific computing cannot succeed by passively purchasing
available computing hardware. It needs proactive, coalition-based funding models that treat
AI+HPC as a long-term strategic national asset, integrating hardware, software, data, and
people under coherent missions.

10. Implications for the Future

The old model of HPC as a dominant, self-directed driver of advanced hardware and software
has ended. Indeed, it arguably ended decades ago, with the emergence of clusters based on
commodity microprocessors. Absent strategic investment in new architectures, what remains is
a role dependent on Al-centric, hyperscaler investments for technology advances.



In such a world, Genesis is a pragmatic bridge into the Al-factory era, but it should not become
the ceiling of our ambition. “Al factories” cannot continue growing without bounds; there are
practical energy and carbon constraints. Equally importantly, the future trajectory of
semiconductor innovation and cost curves is also uncertain.

If the dominant commercial trajectory is toward ever larger, ever more energy-intensive clusters
(e.g., xAl-style "Colossus" builds, Oracle's OCCl-class deployments, and other
zettascale-aspirational Al campuses), then science needs a countervailing national program
whose primary objective is not peak capability, but orders-of-magnitude reduction in joules per
trusted solution.

We believe the scientific computing community must play a distinctive role in reshaping this
ecosystem. This includes serving as a co-designer of Al infrastructure, drawing on decades of
experience in numerical methods, performance engineering, and uncertainty quantification to
collaborate on the design of Al-centric systems that support both scientific computing and
Al-mediated discovery. Doing so will require embracing new models of collaborative
public-private partnership, identifying leverage points where early research can shape
technology futures.

11. A Call To Action: A National Next-Generation System Design Moonshot

Consider the following Gedanken challenge: deliver the same validated scientific results as
today's frontier Al datacenters, but at roughly 1/100th the energy per solution? Such a target
requires a fundamentally different design point that includes: energy-proportional computing
[32], extreme data-movement frugality, and algorithm-architecture co-design that treats
numerical precision, communication, and verification as first-class resources, not afterthoughts.

Why has this not been the default design point, and a sociotechnical imperative, given the clear
and ever more looming challenges of today’s approach? Simply put, because it is far more
challenging than incrementalism and procurement. A true moonshot requires accepting risk
(and failure), building prototypes early, and resisting the temptation to equate "national
leadership" with the largest single installation. It also challenges existing incentives: vendors
optimize for hyperscale utilization; government procurement cycles favor incremental upgrades;
and "largest machine" headlines still crowd out efficiency metrics.

The scientific case for such a moonshot is compelling. Al factories and HPC systems face
similar technical challenges, including inadequate memory bandwidth, high and rising energy
requirements, and semiconductor scaling issues. Moreover, many of the highest-value
workflows (i.e., climate and weather ensembles, materials screening, fusion design loops,
health analytics, inverse problems, and hybrid Al+simulation pipelines) scale best when one can
run many jobs in parallel with predictable energy cost. A fleet of smaller, efficient systems can
deliver more scientific throughput per dollar and per megawatt than a single monolithic machine,
while improving resilience, availability, and breadth of access.



Note that we are not suggesting that we abandon the desire for higher performance, merely that
our current approach to increasing performance has reached the point of diminishing returns.
We must first rebuild the foundations of computing, then leverage these foundations to build
both leading edge systems and a set of grid-deployable "science engines" - modular systems
small enough to locate at multiple research institutions and regional power nodes, and
numerous enough to support diverse communities.

In many ways, computing became most transformative when it became small enough and
economical enough for personal use; the national analogue is to make advanced capability
compact, repeatable, and ubiquitous enough that science can own the workflows end-to-end.
The same is true for Al engines; broad access is needed for scientific discovery.

Concretely, such a moonshot would couple (i) aggressive energy-aware algorithms (mixed
precision with certification, communication-avoiding methods, learned surrogates with
validation), (ii) architecture innovation focused on memory and interconnect efficiency rather
than raw FLOPS, and (iii) software stacks that measure and optimize joules per trusted outcome
across hybrid Al+simulation workflows. The outcome of such a project would not replace
Genesis; it would complement it, making sure that public science is not forever constrained to
renting computing and storage resources designed for someone else’s business model.
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