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Abstract: The rapid rise of generative AI has shifted the center of gravity in advanced 
computing toward hyperscale AI platforms, reshaping the hardware, software, and 
economic landscape that scientific computing depends on. This paper argues that 
scientific and technical computing must “ride the wave” of AI-driven infrastructure while 
“building the future” through deliberate investments in new foundations. It presents 
seven maxims that frame the emerging reality: (1) HPC is increasingly defined by 
integrated numerical modeling and generative AI as peer processes; (2) energy and 
data movement—not peak FLOPS—are the dominant constraints, motivating “joules per 
trusted solution” as a primary metric; (3) benchmarks should reflect end-to-end hybrid 
workflows rather than isolated kernels; (4) winning systems require true end-to-end 
co-design, workflow first; (5) progress demands prototyping at scale with tolerance for 
failure; (6) curated data and trained models are durable strategic assets; and (7) new 
public–private collaboration models are essential in an AI-dominated market. The paper 
concludes with a call for a national next-generation system design “moonshot” targeting 
orders-of-magnitude reductions (≈1/100) in energy per validated scientific outcome via 
energy-aware algorithms, architecture innovation focused on memory/interconnect 
efficiency, and software stacks that optimize hybrid AI+simulation workflows.  

1.            Introduction 

In 2023 [18], we argued that the center of gravity in advanced computing had already shifted 
away from traditional scientific and engineering high-performance computing (HPC), with the 
locus of influence now centered on hyperscale service providers and consumer smartphone 
companies. We enumerated five maxims to guide future activities in HPC: 

1.​ Semiconductor constraints dictate new approaches, 
2.​ End-to-end hardware/software co-design is essential, 
3.​ Prototyping at scale is required to test new ideas, 
4.​ The space of leading-edge HPC applications is far broader now than in the past, and 
5.​ Cloud economics have changed the supply-chain ecosystem. 

Since then, given the meteoric rise of generative artificial intelligence (AI), the computing 
landscape has shifted more dramatically than even the most disruptive technology forecasts 
might have anticipated. Today, the dominant computing markets are unequivocally AI-driven; the 
energy and cooling demands of hyperscale systems are measured in hundreds of megawatts, 
making them public issues; high-precision floating point hardware is giving way to reduced 



precision arithmetic in support of AI models; and national strategies increasingly treat 
AI-capable clouds and scientific supercomputers as a fused strategic resource, with deep 
geopolitical implications. 

Consequently, scientific and technical computing is increasingly a specialized, policy-driven 
niche riding atop hardware and software stacks optimized for other, much larger markets. The 
challenge for scientific computing is to adapt to this rapidly changing world, albeit with a more 
holistic perspective on the global landscape, one that looks beyond the narrow, but important 
design of next-generation computing systems to how an integrated ecosystem of new, nascent, 
and still-to-be developed computing technologies enables scientific discovery, economic 
opportunities, public health, and global security.  We must ride the wave of AI, while 
simultaneously building the future. 

In this paper, we outline seven new maxims that define the present and the future of advanced 
scientific computing.  From these new maxims, we conclude with a proposal for a “moon shot” to 
build a new foundation for future computer systems for research, one that would benefit both 
scientific computing and AI.. 

 

2.  Current Technical and Economic Reality 
Each high-performance computing transition has been driven by a combination of market forces 
and semiconductor economics, requiring the scientific computing community to develop and 
embrace new algorithms and software to use the systems effectively.  Each time, there were 
those who initially resisted inevitability, only to suffer the consequences of delayed adoption, 
whether clinging to vector supercomputers or refusing to embrace scalable message passing. 
Today is no different. The scientific computing community must again adapt and embrace the 
new realities of our AI-dominated technology world. 

The first sea change is one of economic and technical influence. The scientific computing 
community has long been a driver of computing innovation, even in the commodity hardware 
space, by specifying and buying the earliest and largest instances of new technology. Today, 
that is no longer possible, especially under current procurement models. Today, the scale of “AI 
factories” dwarfs that of even the fastest machines on the list of the TOP500 supercomputers, 
and the gap widens each year. 

Moreover, unlike the rise of the modern microprocessor, when all hardware was available for 
public purchase, a substantial portion of the most advanced AI hardware is designed and built 
by the AI hyperscalers themselves. Prominent examples include Google’s TPUs [7], Amazon’s 
Trainium [24], and Microsoft’s Maia hardware. The largest clusters and newest accelerator 
generations are often accessible only to internal AI teams within the hyperscaler or to a small 
set of strategic partners under commercial terms.  



Although both scientific computing and generative AI benefit from high floating point operation 
rates, machine learning flourishes with 32, 16, 8, and even 4-bit operands. In contrast, scientific 
computing has long depended on high-precision, 64-bit floating point. The shift in hardware 
design points for hardware designed by both hyperscalers and NVIDIA, the largest supplier of AI 
accelerators, raises important concerns for traditional computational modeling. 

In addition, the now mainstream cloud software ecosystem, including storage systems, 
scheduling models, and software services, differs markedly from current technical computing 
practices. Lest this seem heretical, remember that UNIX and open source software were once 
viewed as high risk by the scientific computing community, even as they became mainstream in 
the commercial computing world. 

3. Modeling and AI As Peer Processes 

Maxim One: HPC is now synonymous with integrated numerical modeling and generative 
AI. 

The need to embrace AI is more than an economic imperative; it is also an intellectual and 
scientific necessity. Just as computational science became a complement to theory and 
experiment, later augmented by data science [25], HPC and AI are now peer processes in 
scientific discovery.  Both are now needed to integrate deductive (computational science) and 
inductive (learning from data) models. 

It is worth pausing to understand why there was initial resistance to AI in the computational 
science community. First, traditional computational simulation and modeling are deductive, 
based on mathematical models of phenomena based on the laws of classical or quantum 
physics, typically expressed as discretized differential equations.  This approach reflects the 
classical mathematical and scientific training of most computational scientists. 

 In contrast, generative AI models are inductive, with models trained using large volumes of 
data. Just as computational models can approximate solutions to differential equations to 
arbitrary precision, so too can AI models learn to approximate unknown functions to arbitrary 
precision. Crucially, it is not a matter of choosing to invest in simulation and modeling or AI. Both 
are critical and complementary, each offering capabilities and efficiencies lacking in the other. 

Consider weather modeling, an area long dominated by complex, numerical models.  When 
trained on 40 years of analysis, AI can predict 10-day forecasts in seconds rather than hours, 
with results now competitive with the European Center for Medium Range Weather Forecasts 
(ECMWF) on standard metrics [11, 12, 26]. In biology, the protein folding systems, AlphaFold 
and RoseTTAFold, accurately predict protein 3-D structure from sequences [8,9], which many 
now consider to be a solved problem.  AI is also a great help with inverse problems.  Similarly,  
the AI diffusion methods used to create images can also be used to remove noise and  
reconstruct diagnostic-quality medical images [27]. Similar techniques can aid in searching for 
gravitational lensing in large scale survey data [28].  Drug and materials discovery have also 
been aided by AI methods that reduce search spaces prior to expensive experimentation. 



Despite their great promise, AI methods are not without problems, just as numerical models face 
challenges regarding uncertainty quantification. Simply put, AI methods fail when applied 
outside the boundaries of their training data. As we noted earlier, AI methods have proven 
highly effective for weather prediction given historical data, but they are unable to predict the 
emergence of chaotic, rare events such as tornadoes. In contrast, tornadoes can now be 
predicted with HPC fine-grained CFD simulations, an example of the complementary utility of AI 
and numerical models. Nor can generative AI models readily incorporate well-known physical 
laws, though physics-based neural networks offer promise. 

The complementary strengths and weaknesses of numerical and AI models has led to their 
integration as hybrid models, notably the use of AI models as numerical surrogates. First, one 
trains a neural network to approximate an expensive simulation, then uses the AI surrogate for 
rapid parameter space exploration – taking care to not push beyond its domain of applicability,, 
and finally uses the computationally intensive numerical simulation for verification of promising 
results. Similarly, for adaptive grid methods, AI can also be used to predict the region where 
mesh refinement may be most beneficial.  These hybrid techniques incorporate the AI directly 
into the workflow of a large scale HPC computation. 

The message is clear.  AI and numerical models each have advantages and domains of 
applicability. Equally important, their integration creates opportunities not possible with either 
alone. 

4. Energy and Data Movement Dominate 

Maxim Two:  Energy and data movement, not floating point operations, are the scarce 
resources. 

Energy As a Design Constraint 

As semiconductor scaling has slowed and architectural complexity has grown, energy 
consumption and heat dissipation have become limiting factors for both AI data centers and 
traditional supercomputers. Systems that draw hundreds of megawatts now define flagship 
deployments, driven by both the rising scale of deployments and the energy requirements of 
modern semiconductors. At these scales, every aspect of system design becomes an energy 
problem: how to deliver power from the grid, how to remove heat efficiently, and how to align 
operations with carbon reduction commitments. Liquid cooling is de rigueur with direct-to-chip, 



immersion, and hybrid schemes now the norm.

 

In this context, traditional performance metrics such as peak floating point operations per  

second (FLOPS) or even time-to-solution are no longer sufficient. What matters is "joules per 
solution"—the total energy cost of producing a scientifically meaningful answer or training a 
model to an acceptable level of quality. This metric forces new trade-offs among fidelity, 
resolution, model size, and energy consumption. It also highlights the role of algorithmic 
innovation: mixed-precision methods, communication-avoiding algorithms, data compression, 
and smarter sampling and surrogate models can all reduce joules per solution, sometimes 
dramatically, without sacrificing reliability. 

Critically, the time scales for computing system design and energy infrastructure decisions are 
increasingly mismatched. A new hyperscale data center and associated computing 
infrastructure can be designed and built in a few months. Upgrading power generation, 
transmission, or distribution infrastructure often takes much longer, especially when it involves 
regulatory approvals, environmental review, and large capital projects. This asymmetry means 
that unless the system design also includes building and operating a utility (e.g., a reactor or 
wind farm), the power envelope for systems is often effectively fixed years in advance, long 
before architectural details are finalized. As a result, future systems must be conceived as 
configurations that operate within pre-defined energy and cooling budgets, not as free variables 
to be optimized later. 

Consequently, as Figure 1 shows, the energy demand for AI factories is now outpacing the 
capacity of energy grids [33].  In addition to the mismatch in construction timescales, it also 
reflects inadequate investment, at least in the U.S., in grid modernization. Rising energy 
demand, from both the proliferation of data centers and their growing scale, is now a bottleneck 



for data center deployment.  In consequence, some hyperscalers are now embracing temporary 
solutions, such as arrays of gas turbine generators. 

Sustainability is no longer a public-relations story; it is a design constraint and an operating 
condition. Policy mandates, institutional climate goals, and community expectations will 
increasingly require large-scale computing projects to quantify and justify their energy usage in 
terms of joules per solution, not just peak capability. Energy efficiency must be a first-class 
objective across hardware, software, and workload design—not as a downstream optimization 
once the systems are built. 

Data Movement Costs and Floating Point Arithmetic 

In the past, the energy cost of arithmetic operations dominated.  Today, moving data (within and 
between chips) consumes more energy than the arithmetic operations enabled by that data 
movement, yet our measures of software efficiency still center on arithmetic operation counts. 
Simply put, performance metrics that ignore power and communication costs encourage 
architectures that look impressive on paper but are increasingly impractical to operate at scale. 

If facilities are to operate within tight energy envelopes while supporting both AI and high-fidelity 
simulation, algorithmic co-design must also extend beyond kernels and into the fundamental 
treatment of precision and data movement. In this view, arithmetic precision and communication 
are not merely implementation details; they are explicit algorithmic resources to be budgeted 
alongside time and memory. 

This shift has already begun, with hardware designed for AI already focusing on reduced 
precision arithmetic to reduce energy and data movement costs.  NVIDIA’s latest hardware 
exemplifies this trend, as illustrated in Table 1. 

 
 
 
 
 
 

Operations 

Peak Performance 

2022 2024 2026 

 
NVIDIA  

Hopper (H200) 

 
NVIDIA  

Blackwell (B200) 

 
NVIDIA  

Vera Rubin 

FP64 FMA 33.5 TFLOPS/s 40 TFLOPS/s 33 TFLOP/s 

FP64 Tensor Core 67 TFLOPS/s 40 TFLOPS/s 33 TFLOP/s 

FP16 Tensor Core 989 TFLOPS/s 2250 TFLOPS/s 4000 TFLOP/S 

BF16 Tensor Core 989 TFLOPS/s 2250 TFLOPS/s 4000 TFLOP/S 

INT8 Tensor Core 1979 Teraops/s  4500 Teraops/s 2500 Teraop/s 

Memory bandwidth 4.8 TB/s 8 TB/s 22 TB/s 

Table 1 NVIDIA Floating Point Performance 



Mixed-precision methods exemplify this shift [13,14]. Rather than assuming uniform 64-bit 
(FP64) floating point arithmetic, future numerical solvers will partition computations across 
FP64, FP32, BF16, FP8, and integer-emulated formats, using high precision only where it is 
most needed for stability or accuracy. Iterative refinement [21], stochastic rounding [23], 
randomized sketching [22], and hierarchical preconditioners [20] will allow most floating point 
operations to be executed on low-precision units. At the same time, small high-precision 
components provide correction and certification. In AI workflows, similar ideas apply to training 
and inference, with dynamic precision schedules and quantization strategies tuned to minimize 
joules per unit of practical learning. 

Communication-avoiding and energy-aware algorithms add a complementary dimension [15]. 
Classical work on minimizing messages and data movement must be reinterpreted in the 
context of modern communication fabrics, offload engines, and hierarchical memory systems. 
Runtimes will need to be aware of both energy and communication costs, scheduling tasks to 
minimize expensive data motion across racks or facilities and to exploit near-memory or 
in-network computation where possible. Hybrid AI+simulation workflows will rely on 
asynchronous, event-driven communication patterns that allow different parts of the system to 
operate at their own natural time scales without constant global synchronization. 

This algorithmic work must be conducted in deliberate co-design with emerging hardware—just 
as hyperscalers already do for AI, where they face similar energy cost and data movement 
challenges [29]. Scientific computing cannot simply await new architectures and adapt 
afterward. Instead, targeted collaborations are needed in which hardware features (numerical 
precision formats, on-die networks, memory hierarchies, and DPUs) are shaped in dialogue with 
scientific algorithms, and in which software stacks expose those features in usable, portable 
ways. 

5. Benchmarking and Evaluation 

Maxim Three: Benchmarks are mirrors, not levers. 

Performance metrics such as High-Performance Linpack (HPL), High-Performance Conjugate 
Gradient (HPCG), or any other next-generation benchmark reflect the systems vendors are 
already building; they rarely reshape the broader market trajectory on their own. Put another 
way, they generally reward incremental improvements rather than transformative alternatives. 

New benchmarks must span both simulation and AI partitions, exercising end-to-end workflows 
rather than isolated kernels. For example, a climate benchmark might couple high-resolution 
dynamical core simulations with AI-based subgrid parametrizations and data assimilation, 
measuring not only time-to-solution but also energy consumed, data moved, and robustness of 
the resulting forecasts. A materials benchmark might link quantum-level calculations, surrogate 
models, and large-scale screening workflows.​
​
Energy- and carbon-aware metrics should be central, not peripheral. Joules per trusted 
solution—and, where possible, estimated emissions per solution—provide a more meaningful 



measure of a system’s value than peak floating point performance. Benchmarks can incorporate 
these metrics directly, reporting performance as a Pareto frontier among time, energy, and 
fidelity. This will encourage architectures and algorithms that balance, rather than chasing 
single-number records.​
​
Equally important is the need to benchmark the data fabric itself. Future metrics should stress 
test data ingestion from instruments, movement across simulation and AI partitions, access to 
long-term archives, and enforcement of security and access policies. They should evaluate not 
just raw bandwidth and latency, but also how well facilities support governed, equitable access 
to data and models—key concerns for national platforms that serve diverse communities.​
​
Finally, benchmarks should reflect the hybrid nature of public-private computing infrastructure.  
Some workloads will span on-premise facilities and secure cloud regions; others will rely heavily 
on AI services coupled with local simulations. Measurement frameworks must be able to 
attribute performance and energy across these boundaries, enabling comparisons of different 
design and deployment choices.​
​
In short, if we want design patterns for future scientific facilities that genuinely align with societal 
and scientific goals, we must update the mirrors we use to see ourselves. New benchmarks and 
metrics—rooted in AI+simulation workflows, energy and carbon efficiency, and equitable 
access—are as essential as new chips, racks, and cooling systems. 

6. Co-Design Really Matters 

Maxim Four: Winning systems are co-designed end-to-end—workflow first, parts list 
second. 

Although the hyperscaler and AI community has aggressively embraced hardware-software 
co-design, in scientific computing, the story is less encouraging. There are notable examples of 
co-design in specific missions—fusion devices, climate modeling initiatives, and some exascale 
application teams have worked closely with vendors to shape features or software paths. 
However, most production scientific codes must still adapt to extant architectures. Porting and 
tuning cycles are long; exploitation of new features (tensor cores, DPUs, new memory tiers) is 
partial, ad hoc, and large segments of the scientific software ecosystem remain effectively 
frozen on older models of the machine.​
​
 Is this because the community is risk-averse, or simply because it is resource-constrained? The 
honest answer is both. Co-design at scale requires sustained funding, institutional continuity, 
and the ability to place substantial bets on uncertain outcomes. In reality, most scientific teams 
operate with fragmented funding and short time horizons; they cannot afford to gamble entire 
codes on speculative hardware features. Most tellingly, this has proven true even for the largest, 
mission-driven applications such as nuclear stockpile stewardship.  Meanwhile, vendors are 
understandably reluctant to optimize for niche workloads when AI and cloud customers 
dominate revenue.​



​
 The net result is that co-design remains the exception rather than the rule in scientific 
computing. Where it has worked, it has done so in contexts that resemble AI—concentrated 
workloads, strong institutional commitment, and substantial aligned resources. For co-design to 
enable a broader spectrum of scientific codes, governance and funding structures must look 
more like those of AI ecosystems: fewer, more focused efforts with the scale and longevity to 
justify genuine hardware–software co-evolution. 

7. Prototyping at Scale 

Maxim Five: Research requires prototyping at scale (and risking failure), otherwise it is 
procurement. 

In 2023 [18], we advocated for more aggressive prototyping of next-generation systems at 
scale. The idea was simple – if we want new architectures and programming models, ones 
better matched to the needs of scientific computing, we must first build and let real users test 
them in realistic configurations. Since then, we have seen a handful of promising large-scale 
prototypes and early-access systems. Nevertheless, these efforts remain scattered and, in 
many cases, closed or narrowly scoped, with inadequate funding and little ability to take 
calculated risks. 

Such prototyping and development will require larger scale investments (i.e., tens of millions of 
dollars), either in startup companies or laboratory teams, that embrace targeted technological 
risks (e..g, custom chiplets) that leverage the extant hardware ecosystem. Only with scalable 
testbeds can new hardware, software stacks, and energy-management strategies be exercised 
by a wide range of scientific workloads under realistic conditions. This is neither simple nor 
easy, but it is essential if we are to address the limitations of hardware designed for commercial 
markets.  

Equally importantly, advanced prototyping means being willing to accept failure while drawing 
lessons from the failure.  Put another way, we must embrace calculated risks to explore 
promising new ideas. Such risk-taking was once more common in computing.  One need look 
no further than the 1960s experiments with the IBM Stretch and the Illinois/Burroughs ILLIAC IV, 
followed more recently by DARPA’s targeted parallel computing program in the 1990s, which led 
to a host of novel parallel hardware prototypes, including the Stanford DASH and Illinois Cedar 
systems. 

Pursued seriously, advanced prototyping may push scientific+AI HPC toward a "bespoke 
instrument" model. Rather than building generic machines and layering everything on top, 
designs might explicitly target particular classes of workflows (e.g., climate + energy systems, 
fusion + materials, or life sciences + health analytics) with algorithmic patterns, precision 
strategies, and data topologies tuned to those missions. The challenge will be to retain enough 
generality and openness that such bespoke instruments remain shared national resources, not 
single-experiment machines. 



Software Stack Interoperability and Malleability 

Nor can the world of prototypes be limited to software; it must also encompass interoperability 
between computational modeling and cloud services. In a world where traditional 
supercomputing and modern AI clouds are not separate worlds but interoperable layers, a 
climate scientist, materials chemist, or nuclear engineer would move fluidly between running 
large-scale simulations on government HPC systems, invoking scientific foundation models 
hosted in secure clouds, and using AI agents to orchestrate end-to-end workflows that span 
both environments. 

Alternative Computing Models 

Building the future means more than just riding AI hardware trends, it also means investing in  
alternative computing models, ones that address precisely those areas where constraints are 
becoming first-order: energy, data movement, and domain-specific computing. 

For example, neuromorphic computing [30] can be more aptly characterized as an “energy-first” 
approach for event-driven, sparse inference, or control. Asynchronous, spiking networks with 
co‑located memory and compute are inherently suited to always‑on sensing, edge scientific 
instrumentation, autonomous laboratories, fast triggers, and adaptive control.  The priority, not 
just in neuromorphic computing, but in sensing generally, really, ever since Einstein’s earliest 
days in physics, has been ‘act quickly, with minimal joules.’ 

Quantum computing [31 also represents an accelerator for a class of problems. Specifically, a 
quantum computer can be integrated into a hybrid processing pipeline involving 
chemistry/materials simulations (specific electron-structure problems), small- to medium-scale 
combinatorial optimization, sampling problems, and perhaps cryptology/security applications. 
However, the bar is relatively high, as the potential to lower the cost of communications and 
synchronization is becoming increasingly dominant. 

8. Multidisciplinary Data Curation and Fusion 

Maxim Six: Data and models are intellectual gold. 

In an era when many countries can buy similar hardware and access similar cloud platforms, the 
differentiators are increasingly the quality of curated datasets, the sophistication of the trained 
models, and the legal and institutional frameworks that govern their use. High-value scientific 
datasets—long climate reanalyses, fusion diagnostics, high-resolution Earth observation 
archives, curated materials, and molecular databases—are expensive to generate and maintain. 

When combined with frontier AI and hybrid AI+simulation workflows, they allow a given amount 
of computation to yield more insight, faster and more reliably, than would otherwise be possible. 
Similarly, scientific foundation models trained on such data—models for weather, climate, 
molecular design, materials discovery, or engineering design—become reusable assets that can 
be fine-tuned, coupled to simulations, and deployed across a wide range of applications. 



Data stewardship must be a central element of national and institutional strategy. Investments in 
high-quality metadata, provenance tracking, curation, and long-term preservation are 
investments in future scientific leverage. Thus, the design and training of scientific foundation 
models must be treated as infrastructure. Just as we do not rebuild compilers and linear algebra 
libraries for every application, we should not treat domain foundation models as disposable 
experiments. 

9. New Public-Private Partnerships 

Maxim Seven: New collaborative models define 21st-century computing. 

Frontier AI+HPC has moved from the realm of research strategy to national geopolitical policy. 
Executive orders and national strategies now explicitly identify AI+science platforms, secure 
cloud AI, and supercomputers as components of national competitiveness and security. 
Genesis-style [17] missions recast a historically technical conversation as a matter of national 
priority. 

Concurrently, the shift to an AI-dominated computing market forces a rethinking of how to fund 
and organize scientific computing. In a world where hyperscalers and AI platform companies set 
the pace of hardware innovation, traditional models—incremental upgrades to on-premise 
systems funded through periodic capital campaigns—are no longer sufficient to sustain 
leadership in HPC for science. Instead, future government funding models must recognize that 
advanced computing is now a mixed public–private ecosystem, in which strategic consortia, 
pre-competitive platforms, and mission-driven initiatives play central roles.​
​
In turn, this means articulating explicit AI+HPC requirements linked to national and global 
challenge problems – climate resilience, health, energy transition, national security, and 
economic competitiveness. Funding calls that tie hardware, software, data, and workforce 
development together—anchored in concrete mission outcomes—are more likely to produce 
durable ecosystems than one-off hardware acquisitions. 

Genesis-style initiatives are one example of this logic: they frame AI+science platforms as 
critical infrastructure for national goals rather than as isolated technology experiments. The core 
lesson is that publicly funded scientific computing cannot succeed by passively purchasing 
available computing hardware. It needs proactive, coalition-based funding models that treat 
AI+HPC as a long-term strategic national asset, integrating hardware, software, data, and 
people under coherent missions. 

10. Implications for the Future 
The old model of HPC as a dominant, self-directed driver of advanced hardware and software 
has ended. Indeed, it arguably ended decades ago, with the emergence of clusters based on 
commodity microprocessors.  Absent strategic investment in new architectures, what remains is 
a role dependent on AI-centric, hyperscaler investments for technology advances.  



In such a world, Genesis is a pragmatic bridge into the AI-factory era, but it should not become 
the ceiling of our ambition. “AI factories” cannot continue growing without bounds; there are 
practical energy and carbon constraints. Equally importantly, the future trajectory of 
semiconductor innovation and cost curves is also uncertain. 

If the dominant commercial trajectory is toward ever larger, ever more energy-intensive clusters 
(e.g., xAI-style "Colossus" builds, Oracle's OCCI-class deployments, and other 
zettascale-aspirational AI campuses), then science needs a countervailing national program 
whose primary objective is not peak capability, but orders-of-magnitude reduction in joules per 
trusted solution. 

We believe the scientific computing community must play a distinctive role in reshaping this 
ecosystem. This includes serving as a co-designer of AI infrastructure, drawing on decades of 
experience in numerical methods, performance engineering, and uncertainty quantification to 
collaborate on the design of AI-centric systems that support both scientific computing and 
AI-mediated discovery. Doing so will require embracing new models of collaborative 
public-private partnership, identifying leverage points where early research can shape 
technology futures. 

11. A Call To Action: A National Next-Generation System Design Moonshot 

Consider the following Gedanken challenge: deliver the same validated scientific results as 
today's frontier AI datacenters, but at roughly 1/100th the energy per solution? Such a target 
requires  a fundamentally different design point that includes: energy-proportional computing 
[32], extreme data-movement frugality, and algorithm-architecture co-design that treats 
numerical precision, communication, and verification as first-class resources, not afterthoughts. 

Why has this not been the default design point, and a sociotechnical imperative, given the clear 
and ever more looming challenges of today’s approach? Simply put, because it is far more 
challenging than incrementalism and procurement. A true moonshot requires accepting risk 
(and failure), building prototypes early, and resisting the temptation to equate "national 
leadership" with the largest single installation. It also  challenges existing incentives: vendors 
optimize for hyperscale utilization; government procurement cycles favor incremental upgrades; 
and "largest machine" headlines still crowd out efficiency metrics.  

The scientific case for such a moonshot is compelling. AI factories and HPC systems face 
similar technical challenges, including inadequate memory bandwidth, high and rising energy 
requirements, and semiconductor scaling issues. Moreover, many of the highest-value 
workflows (i.e., climate and weather ensembles, materials screening, fusion design loops, 
health analytics, inverse problems, and hybrid AI+simulation pipelines) scale best when one can 
run many jobs in parallel with predictable energy cost. A fleet of smaller, efficient systems can 
deliver more scientific throughput per dollar and per megawatt than a single monolithic machine, 
while improving resilience, availability, and breadth of access. 



Note that we are not suggesting that we abandon the desire for higher performance, merely that 
our current approach to increasing performance has reached the point of diminishing returns.  
We must first rebuild the foundations of computing, then leverage these foundations to build 
both leading edge systems and a set of grid-deployable "science engines" - modular systems 
small enough to locate at multiple research institutions and regional power nodes, and 
numerous enough to support diverse communities.  

In many ways, computing became most transformative when it became small enough and 
economical enough for personal use; the national analogue is to make advanced capability 
compact, repeatable, and ubiquitous enough that science can own the workflows end-to-end. 
The same is true for AI engines; broad access is needed for scientific discovery. 

Concretely, such a moonshot would couple (i) aggressive energy-aware algorithms (mixed 
precision with certification, communication-avoiding methods, learned surrogates with 
validation), (ii) architecture innovation focused on memory and interconnect efficiency rather 
than raw FLOPS, and (iii) software stacks that measure and optimize joules per trusted outcome 
across hybrid AI+simulation workflows. The outcome of such a project would not replace 
Genesis;  it would complement it, making sure that public science is not forever constrained to 
renting  computing and storage resources designed for someone else’s business model. 
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