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Abstract —This paper describes an extension to the set of Basle Linesr Algebra Subpro-
grams. The exlensions proposed are targeted at matrix vector operations which should
provide for mare eflictent and portable implementations of algerithms for high parior-

mance computers.

Part 1: The Proposal

1. Intraduction

In 1973 Hanson, Krogh, and Lawson wrote an article in the SIGNUM Newslelier
(Vol. B, no. 4, pege 16) describing Lthe advanlages of adopling a sel of basic routines
for problems in linear algebra. The original basie lineer algebra subprograms, now
commonly referred to s Lhe BLAS and [ully described in Lawson, Hanson, Kincaid,
and Kregh [7.8], have been very successful and heve been used in a wide range al
goltware including LINPACK [4] and meny of the algorithms published by the ACM
Transactions en Malhemalical Software. [n particular they are an aid Lo elarily, poria-
bility, modularity and maintenance al sollware and Lhey have become a de facto

TWork supported in part by the Applled Mathemetical Sclences subprogram al the
Office of Energy Ressarch, U, 5 Cepartment of Energy, under Cantract W-31=105-

Eng-38.,



standard for the elementary vector operations.

Special versions of the BLAS, in some cases machine code versions, have been
Imiplemented on a number of computers, thus improving the efficiency of the BLAS.
However, with some of the modern machine architectures, the use of the BLAS is not
the best way Lo improve the efficiency of higher level codes. On vector machines, for
example, one needs Lo oplimize at least at the level of matrix-vector cperations in
order Lo approach the potential efficiency of the machine (see [2 and 3]); and the use
of the BLAS inhibits this optimization because they hide the matrix-vector nature of
the operations from the compiler.

Wa believe that the time iz right to propose the speciflcations of an additional set
af BLAS designed lor matrix-vector operations. It has been our experience that a
small set of matrix-vector operations occur frequently in the implementation of many
of the most commeon algorithms in linear algebra. We define here the basic cperations
for that set, together with the naming conventions and the calling sequences. Rou-
tines at this level should provide a reasonable compromise between the sometimes
conflicting aims of efficiency and modularity and it is cur hope that efficient imple-
mentations will become available on a wide range of computer architestures.

We encoursge readers interested in such a standardization effort to contacl us
with their thoughts on the subject. Indeed we wish Lo solicit elternative ideas and
encourage discussion.

In this paper we shall refer toc the existing BLAS of Lawson et al. as “'Level 1
BLAS" or “Existing HLAS", and the propesed new set as “Level 2 BLAS" or “Extended
BLAS". The Level 2 BLAS involve O{mn) scalar cperations where m and n are the
dimensions of Lthe veclor involved. These could be programmed by a series of calls to
the Level 1 BLAS, though we do not recommend that they be implemented in that
way. Hence, in a natural sense, the Level 2 BLAS are performing besic operations at
one level higher than the Lavel 1 BLAS.

We plan to make available a complete set af Level 2 BLAS in Fortran 77 so Lhat
software developers without access Lo specific implementations can make use of
them. We also plan to develop a test program so that implementations of the
extended BLAS can be thoroughly tested before being distributed. We intend eveniu-
ally to submit the test program and the Foriran 77 version of the routines for publica-
Ltion as an ACM algorithm.



2 Seope ol Lhe Exiended BLAS

We propose that the following three Lypes of basic operation be performed by Lhe
exlended BLAS:

a) Matrix-vector products of the [orm
y+ adzr +y, y~ad’z +y, and y*—:l:..ﬂ."-t + 3y
where a s a scalar, £ and i are veclors and A is a malrix, and
g+~Te, 2+ TTz, and = « T¥z,

where x is a vector and T iz an upper or lower triangular malrix.

b) Rank-one and rank-two updates of the form
AvaryT+ A, Avazy + 4, H v azz + H, and H + azy™ + ayz® + H,

where M is a Hermitian matrix.

€) Selutien of triangular equations of the form
zeT 2, 2+ TTz and z « THz,

where T is an upper or lower non-singular triangular maktrix,

We propose thal, where appropriale, Lthe operations be applied Lo general, general
band, Hermilian, Hermitian band, triangular, and triangular band metrices in both
real and complex arithmetic, and in single and double precision.

See Part 2 of Lthis repart [or examples Lo Qlustrale the uses and advantages of the
proposed routines, and an example Lo illustrale the implementation of the routines is
given in Appendix A

A Haming Convenlions

The propesed name of & Level 2 BLAS is in the LINPACK style and consists of five
characlers (excepl for [our routine names with six charscters). The lourth and Aith
characters ln the name denote the type of operation, as [ollows:

MY - Malriz-veclor product
Rl - Rank-one updale
E2 - Rank-two updale
I¥ = Inverse malrix-vector product
(le., solulion of a sel of linear equalions)



Characters two and Lhres [n the name denole the kind of malrix involved, as follows:

GE - Ceneral matrix

GE - Geheral band matrix
HE =~ Hermilian malrix
S = Symrelrie malrix

HP - Hermitian matrix slored in packed form
SP - Symmetric matrix stored in packed form
HE - Hermitian band matrix

SB - Symelric band matrix

TR - Triangular matbrix

IP - Triangular malrix in packed form
TB = Triangular band malrix

The first character in the name denoles Lhe Fortran data type of Lthe matrix, as [ol-
lows:

] = REAL

D - DOUBLE FRECISIOM

C = COMPLEX

Z - COMPLEX*168 or DOUBLE COMPLEX (if available)

The proposed available combinations are indicated in the table below. In the first
column, under complez, Lhe inilial € may be replaced by Z. In Lhe second column,
under real, the inilial 5 may be replaced by D. See Appendix C for the [ull subrouline
calling sequences.

The proposed collection of routines can be thought of as being divided into four
separale parts, comples, real, double precision, and coemplez*]6.. Each part will
include a separale Lesting proagram. ‘The routines proposed are wrilten in Lhe ANSI
Fortran 77 standard with the exception of the roulines that use COMPLEX*18 vari-
asbles. These routines are included for completeness and, because the Fortran stan-
dard dees nol provide lor Lhis variable Lype, may not be available on all machines.



Table 3.1
complex mal MYV RI R2 [V

CGE SGE . * et

ccB SGE  *

CHE 35Y o -, L

CHP S5 - L "

CHE S58 *

CTR STR ’

CTP =TF "

,::'I"E STE L] L]

We do not propose reutines for rank-one and rank-twe updates applied to band
malrices because these can be obtained by calls te the rank-one and rank-lwo full
makrix routines. This is ilustrated in Appendix B.

4. Parameler Conventions

We propose a similar convention for Lthe parameter lists Lo that for the existing
BLAS, but with extensions where comparable paramelers are not present in Lhe exist-
ing BLAS. The proposed order of parameters |s as [ollows:

a) Parareters specllying options.

b) Parameters deflning the size of the rmtrix.
e¢) Inpul scalar.

d) Description of the input matrix.

e) Description of input wecter(s).

f) Desecription of the input-cutput vector.

g) Description of the input-output matrix.

h) Error indicater.

Note thal not each categary is present in each of the roulines.

The parameters Lhal specily optiona are character perameters with the names
TRANS, UPLO. and DIAG. TRANS is used by the malrix vector product routines as fal-
lows:

" Far the general rack-1 update {GER1) we propess bwo complex reutines: CGERIC
for d =aml + 4 apd CGERIU for 4 = ozy™ + 4. This is the only sxceplion to the
ong ba one correspondence between real and complex routices and bhe coly ex-
ception to Lhe Ave-character naming conveniions. See section 7 fer further dis-
CUEFIoIL



Value Meaning

*or'N'  Operate with the matirix.
T QOperate with the transpeose of the malrix.
" Operate with the conjugate transpose of the matrix.

In the real case the values “T" and 'C* have Lthe same meaning.

UPLO is used by the Hermilian, symmetric, and Ltriangular malrizx routines Lo
specify whether the upper or lower triangle is being referenced as [ollows:

Value Meaning

Ll s Upper triangla
o Iy Lower triangle

DIAG is used by the triangular matrix routines to specifly whelher or nol Lhe
malrix is unit Lriangular, as lollows:
Value Meaning
"k Unit triangular
‘W Hon-unit triangular

When DIAG is supplied as 'U” the diagonal elements are not referanced.

It is worth noting that in Fortran actual character arguments may be longer Lthan
the corresponding dummy argument. So that, for example, the value T' for TRANS
may be paszed as "TRANSFPOSE".

The size of the matrix is determined by the two paramelers M and N for an m by
n rectangular matrix; by the parameters M, N, KL, and KU for an m by n band malrix
with &l sub-diagonals and ku super-diagonals; and by the parameters N and K for an n
by m symmetiric or Hermitian or iriangular band matrix with & super- and/or sub-
diagonals.

The description of the matrix consists either of the array name (A) [ollowed by
the leading dimension of the array as declared in the calling (sub) program (LOA),
when the matrix is being slored in a Lwo- dimensional array; cr Lthe Foriran array
name [AP) alone when the matrix is being stored as a (packed) vector. When A Is not
band, then in the former case the actual array must conlain al least {m + din —1])
elements, where d is the leading dimension of the array and m = n {or a sguare
matrix; and in the latter case the aclual array must contain at least nin+1)/2 ele-
ments

The scalar always has the dummy argument name ALPHA. As with the exdsting
BLAS the description of a vector consists of the name of the array (X or ¥) followed by

=]



the storage spacing (inerement) in the array of the vector elements (INCX or INCY).
The increment is allowed Lo be negative, zero, or positive, When the veclor = consists
of & elements, then the corresponding actual array argument X must be of length al
least {1 + (k-1)|INCXK]).

The final parameter of each routine is an error indicator INFO which is set Lo

0 if the operation is successlully completed.
i>0 if thei®® parameter has an illegal value on entry.
<0 if anattempt is made to compute z « Tz, z « T Tz,
ar £ + T-9z, and the i®™ diagonal element
of T is exactly zero.

The following values of parameters are assumed to be illegal:

Any value of the character parameters DIAG, TRANS, or UPLD
whose meaning is nol specified.

M < 0 for GE and GB routines.

N < 0 for all roulines.

KL<ODorKL<M-N orKL> M - 1 for the GH routines

FU<QorBKU<H-M or EU > N - | for the GB routines

KE<OorKz>HN-1{forthe HE, 5B, and TB routines.

LDA < M for the GE routines.

LDA < KL + KU + 1 for the GE routines.

LDA < N [or the HE, 5Y, and TR routines.

LDA < K + 1 for the HB, SB, and TB routines.

Note that it is permissible Lo call the routines with M or N = 0, in which case Lhe rou-
tines exit immediately withoul relerencing their veclor or matrix arguments.

4. Slorage Convenlions

Unless otherwise siated it is assumed that matrices are stored conventionally in
a 2-dimensional array with matrix-element ay; stored in array-element A(LJ).

The roulines for real symmetric and complex Hermitian malrices allow for the
matrix Lo be stored in either the upper (UPLO = ‘U') or lower triangle (UPLD = 'L') of
a iwo dimensional array, or to be packed in a one dimensional array. In the latter
case the upper triangle may be packed sequentially eolumn by column (UPLO = "U7),
or Lthe lower iriangle may be packed sequentially ealumn by eelumn (UPLO = ‘L)
Mote that for real symmelric malrices packing the upper triangle by column is
equivalent Lo packing Lthe lower Lriangle by rows, and packing the lower triangle by



columns is equivalent to packing the upper triangle by rows. (For complex Hermitian
malrices the only difference is that the off-diagonal elements are conjugatsd.)

For trisngular matrices the parameter UPLD serves Lo define whether the malrix
is upper (UPLO = *U*) or lower (UPLO = 'L’) triangular. In the packed storage the tri-
angle has Lo be packed by column,

The band matrix routines allow storage in the same style as with LINFACK, so that
the j** column of the matrix is stored in the 7 column of the Fortran array. For a
general band matrix the leading dimension ol the matrix is stored in the ku+1% row
of the array. For a Hermitian or symmetric matrix either the upper triangle (UPLD =
"U") may be stored in which case the leading diagonal is in the £+ 1% row of the array.
or the lower triangle (UPLD = 'L') may be stored in which case the leading diagonal is
in the frst row of Lhe array. For an upper Lriangular band matrix (UPLO = 'U') the
leading diagonal is in the k+1* row of the array and for a lewer iriangular band
matrix (UPLO = 'L") the leading diagonal is in the flrst row.

For a hermitian matrix the imaginary parts of the diagonal elements are of
course zero and thus Lhe imaginary parts ol the corresponding Fortran array ele-
ments need nol be set, but are assumed to be zero. In the R1 and RE roulines these
imeginary parts will be set to 2ero on return.

For packed triangular matrices the same storage layoul is used whether or not
DIAG = 'U’ (diagonal elements are assumed to have the value 1), iLe. space is left for
the diagonal elements even if those array elements are not referenced.

B. Specificalion of the Extended BLAS

(This section has been deleted for space reasons, Consult the full propesal for
deizils, )

T. Eationale

The three basic matrix-veclor cperations chosen (Secticn 2) were obvious candi-
dates because they occur in a wide range of linear algebra applications, and Lthey
occur at Lthe innermaost level of many algorithms. The hard decisicn was to restrict the
scope only Lo these operations, since there are many other polential candidates, such
&5 malrix scaling and sequences of plane rolations. Similarly, we could have extended
the scope by applying the operations Lo other types of matrices such as complex sym-
metric or augmented band malrices. We have aimed al a reasonable compromise
between a much larger number of routines each performing one type of operation
(e.g. * « L™Tz), and a smaller number of routines with a more complicated set of
options. There are in (acl, in each precision, 18 real routines performing altogether 43



different operations, and 17 complex routines performing 58 different operations.

We feel that to extend the scope further would significantly reduce the chances of
having the routines implemented efliciently over a wide range of machines, because it
would place toc heavy a burden on implementers. On Lhe other hand, to restrict the
scope [urther would place Loo narrow a limit on the potential applications of the level
2 BLas,

The parameter a is included in the non-triangular routines to give extra fexibil-
ity, but we recommend that implementors consider special code [or the cases where
a=1.0and @ = =1.0. Similarly, as with the leve] | BLAS, we have included an incre-
ment parameter with the veclors so that a vector could, for example, be a row of a
matrix. Bul again we recommend that implementors consider special code for the
case where the increments are unity.

As noled earlier. corresponding to the real routine SGER1 we propose two com-
plex routines CGERIC (for 4 + azy® + 4) and CGERIU (lor 4 ~ azyT + 4). Both are
frequently required. An alternalive would be to provide a single ecomplex routine
CGER1 with an oplion parameter: however this parameler would have become redun-
dant in the real routine SGERL. Rather than have redundant parameters, or different
parameter lists for Lhe real and complex routines, we have chosen two distinet com-
plex routines; they are analogous to the level 1 BLAS CDOTC (e ~ ¢ +zMy) and CDOTU
(e = c +zTy),

We have included an error parameter INFO in each of the routlines. This is a
departure from the conventions of the level | BLAS, bul is prompted by Lhe increased
possibilities for error (incorrect dimensioning of 2-dimensional arrays, division by
zero In the solutien of Lriangular sets of equations), and the decrease in the relative
cost of checking for errors.

The CHARACTER parameters UPLO, TRANS, DIAG, are to be comprised of text in
the Fortran character set. This convention will be adhered to in the Lesting programs
and the portable Fortran version of the Level 2 BLAS. On certain machines, which do
not use the ASCII sequence on all of their Fortran systems, lower case characters Ay
not exist. Jo that the innocent looking argument ‘', passed through the parameter
TRANS for designating a transposed matrix, is not in the Fortran character sel. Some
UNIVAC systems do nol have a lower case representation using the ‘field data’ charac-
ter set. On the CDC NOS-2 system, a mechanism is provided for a full 128 ASCII char-
scters by using pairs of 6-bit host characters for certain 7-bit ASCII characters. This
means that there is a "2 for 1" physical extension of the logical records that contain
lower case lelters. This fact can hamper portability of codes written on ASCIL
machines thalt are later moved to CDC systems. The only sale way Lo proceed i Lo
convert the lransported Lext entirely into Lhe Fortran character set. On the ather
hand we believe that users on ASCIHl character set systems may wizsh la develop



special versions of the Extended BLAS package thal treal upper and lower case
letters as equivalent in meaning. If this is done, [t means that text that will be tran-
sported Lo machines of unknown types must have Lhe ASCI set mapped Into the For-
tran charaster set before Lhe text is moved.

The band storage scheme used by the GB, HB, 3B, and TB routines has columns of
the matrix stored in columnps of the array, and diagonals of the matlrix stored in rows
of the array. This is the storage scheme used by LINPACK. An alternative scheme
(used in some EISPACK [8.9] routines) has rows of the matrix stored in rows of the
array, and diagonals of the matrix stored in columns of the array. The latter scheme
has the advantage that a band matrix-vector product of the form i = adz + y can be
computed using long vectors (the diagonals of the matrix) stored in contiguous ele-
ments, and hence is much more efficient on some machines {e.g. CDC Cyber 208) than
the fArst scheme. However other computations inveolving band matrices, such as
T, 2+ T 'z and LU and UT UV factorization, cannot be organized ‘by diagonals’;
instead the computation sweeps along the band, and the LINFACK storage scheme has
the advantages of reducing the number of page swaps and allowing contiguous vectors
(the columns of the matrix) Lo be used.

Although not discussed here, we plan to provide a portable testing package for
each of the four parts of this extended BLAS package. The Lest package will be sell-
contained: generating test data and checking for conformity with this proposal in a
portable fashion.

Wa cansidered the possibility of generalizing the rank-1 and rank-2 updates to
rank-k updales. Rank-k updates with k& > 1 (but k& €< n) can achieve significantly
betier performance on some machines than rank-1. But to take advantage of this wsu-
ally requires complicating the calling algorithm, and moreaver rank-k updates with
k = 7 would allow an even higher level cperaticn such as matrix multiplication 'in by
the back door’. We preler to keep Lo a clean concept of genulne matrix-vector opeara-
tions.

In thiz zection we have tried to explain some of the design decisions which we
have taken. We welcome comment {rom people who feel that we have averlooked
mpartant considerations, or at least have not atiached enough welght to them,
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Part 2:

B Applicability of a Set of Level 2 BLAS

The purpose of Part 2 is to demonstrate the wide applicability of the set of Level 2
BLAS propesed in Part 1. LINPACK and EISPACK are taken as well-known examples of
heavily used software which could, with hindsight, have made extensive use of such a
sel of BLAS; future versions may do just that. The most straight{forward way Lo use the
Level 2 BLAS i3 as components in the development of new soltware; working oul how
to fit them into existing software can be more complicated, but may still be wery
worthwhile if it leads Lo substantial improvements in performance; a similar exercise
has already been underiaken on selected NAG Library routines Lo improve Lheir per-
formance on veclor processors [1).

Sections 10 and 11 demonstrale In some detail how calls to indiwidual Lewvel 2
BLAS can be used to perform the bulk of the computation in the CPO-, CPP- and CPB-
gets of LINPACK routines. Section 12 surveys the broad applicability of the entire sel
of Level 2 BLAS in LINPACK and EISPACK

8. Example: the CPO- Roulines in LINFACK

{This sechion has been deleled for spoce recsons. Conswll the full proposal for
defails. )

10. Extensions: the CPP- and CPB- Routines in LINFACEK

{This section has been deleted for space reasons. Consuli the full proposal for
datails. )

11. Scope of Applicalion in LINPACK and EISPACK

Table 1 shows, without any claim to completeness, where calls to the proposed set
af Level 2 BLAS might be incorporated into LINPACK or EISPACK routines (only the
real single precision set have been considered, and EISPACK routines which operate
on complex matrices have been omitted). Many of the calls to SGEMV and SGER1 arizse
in the application of &8 Householder transficrmation te a matrix. The computalion

Xe(f=auuTX =X - au(¥Tu)’



can be performed by the [cllowing operations using the Level 2 BLAS in conjunction
with a wark vector w:

w +
w+XTu +w [(SGEHW)
¥+ —auwT + X (SGERL)

Same latitude has been allowed in drawing up Table 1, in that a suitable work vector
may nct be available in the existing code. Similarly. to make use of STRIV In SGESL
would require the interchanges to be handled differently by the SGE- set of LINFACK
roulines.

Furthermore, many of the algorithms listed in Table 1 can be crganized in
differsnt ways, as was pointed out by Dongarrs, Gustavson and Karp (5] for matrix
multiplication and LU-factorization. Following their ccnventien, in which the basic
operation in Lhe innermost locp is something like a; = 0y & g 3y

-with i as the outermost loop index, the result is computed
row by row;

- with j as the outermost loop index, the result is computed
column by column,

-with & as the outermost loop index, the computation proceeds by

updating a large suhmatrix and (in most algorithms) reducing the
dimenslon of the problerm by one at each stage.

13



Table 1
BLAS LINPACK EISPACK | BLAS LINFPACKE EISPACK

SGEMV SGEDI ORTHES | 35PMV - TRED3
SQRDC ORTBAK
SSVDC ORTRAN | 35PR1 SPPOI -

ELMHES SSPFi
QZHES
TRED2z | SSPR2 - TREDS
TEBAKL
TRBAKI STHMY - ELMBAR
REDUC
SIPMY SPPDI -
SGER1 SPODI DRTHESI
SGEFA ORTEAK STRIY SGESL ELMHES
SGEDI  ORTRAN | SPOFA  REDUC
SGBFA  QZHES SPBFA  REBAK
SQRDC  TREDZ SPOSL

S5VDC TRBAKI
TRBEAK3 | STPIV  SPPSL =

SPPFA
S5YMY - TRED1
TRED2 STBIY  SGBSL -
SPBESL
SSYH1L  SCHDC -
SPODI
SSIFA
SSYTHE - TRED1

TREDZ2

In Fortran code, in order to avoid paging problems, the j-form iz uwsuslly pre-
ferred to the i-form, but the i-form would be preferred il malrices were stored by
rows. The i-ferm and j-form can often permit GAXPY operations [5] in their inner-
most loops, so are likely to be favorable on a CRAY-1, whereas the k-lorm (which can
work either by row or column) would be preferable on machines which allowed the
individual AXPY operations of a rank-1 update to be performed in parallel. Each of the



three melhods of erganizing an algorithm can invelve calls to diflerent Level 2 BLAS.
For example, for LU-laclorization,

= the i-form requires STRIV (z + U~Tz) and SGEMV (y ~ adTz +y)
- the j-form requires STRIV (z + L™’z and SGEMV (y « adz + 3)

- the k-form requires SGERL (A « azy™ + 4)

In all the algorithms studied whizh invclve symmelrle matrices, it has proved
possible o find & form which permils the use of packed storage in conjunetion with
the Level 2 BLAS. Consider as an examplas the computation of L7'AL™T for symmetric
A using packed storage (l.e. a “packed” varsion of the EISFACK rouline REDUC), If the
lower triangles of 4 and [ are packed by columns, the camputation can be imple-
mented by calls to SSPRR (4 ~ azy” + ayzT + 4) and STPIV (x = L7'z); if the lower
triangles are packed by rows, Lthis is equivalent to computing U=T AU with the upper
triangles of A and ' packed by columns, and ¢an be implemented by calls Lo STPIV
{z « ('z) and SSPMV (y + adx+y for symmetric &).

A further degree of variation iz intreduced if for any reason we wish to perform
the basic Lriangular faclorizations ‘backwards’ (ie. as UL, LTL or UUT ).

Allowing for all these possibililies within a small set of fundamental algorithms,
vields applicalions for each of the propozed Level 2 BLAS, excent the banded matrix
vector products. We consider it important that the set of extended BLAS be
sufficiently wide te permit this degree of variation and not to constrain the freedom
of software developers.

Theze remarks have concenlrated on algorithme for dense malrices with & zimple
strusture. It is hoped that the Level 2 BLAS may alse prove useful when dealing with
malrices with more complicated structurss, if this can be done by splitling Lhem inta
dense sub-malrices.
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Appendix A
{Thiz seciion has been delelfed for spoce reosons. Jonswll fhe full proposal for
defails. )

Appendix B
{(Thiz seciion hos been deleled for spoce veasons, [omswlt fhe full proposal for
delails. ]

Appendiz C
This appendix conlains Lhe salling sequences for all the proposed level 2 BLAS,

et ] aptlens dim  b-widih scalar matriz x-vecior y-vector into
_CE TRARS, U, H, ALPHA, A, LD, X, [MNEX, Y. [HCY, [HFQ )
LAV THANSE, M, N. BEL. HR), ALPHA. &, LDA. X, I[NNI, Y, I[NCY, [NBD )
=TEMV] UPLD, K, ALPER, A, LD&, X, THOL, Y, [HCY, [NFO )
BT, UPLAD, L ., ALPHA, A, LDa, X, TRGSL, Y, [HCY. [NFO )
S UPLG, N, ALPHA, AP, X, INCL. ¥, INCY, [NPD )
ST UPLD, M, ALPHA, A, LDA, X, INZE. Y, [NCY, [NPOQ )
—SET UPLD, M, &, ALFHA, A, LDA&, X. NG Y, INCY, INFO )
SEA UPLO, M, ALFHA, AP, . WG, ¥, [MCY, IWFO )
—FN[ UPLD. TRANS. DIAG. M, A, LDA, X, [N, IWFD )
—THEIV( UFLO,. TRAMNI, DIAG, o, [ A, LDa, 3, [SCX, INFD )
TPV UPLZ, TEAMS, DIAG, M, A, b o 5 IHFQ )
_TRIV({ UPLa, TRewsS, DIAG, H. A, LDA. X, [MOX, 10 )
STEIV] UPLO, TRANS, DIAG, M, K, A, Loh, ¥, I, KD )
IPIV{ UPLO, TRANMS, DILAG, H. AP, X, IR, [NFO )
T aptiona dine  zealar r=vecler y-vector omtriz iofo

_GER1_{ M, M. ALFEA, X, [NCX, ¥, [NCY. & L[OA, [KFD )
SHER1{ UPLQ, N, ALPHA, X, (NCX, &, LOA, [KFD )
=HFR1({ LFLO, M, ALPHA, X, NG, aE [_'\?{:I]
HERR{  UPLO. M, ALPHA. X, INCK, Y, [NCY, A. LDh, [NFO )
MERz{ URLO, M, ALPHA. X, IMCX, ¥, [NCY, ap, [HFD ]
SR RO, W, ALPHA. ¥, THCX, A, LDA, [P )
EPR1[ LD, M, ALPHA. X. 1ROX, AP, IWED )

17



SYE={ UPLD, W, ALPHA, ¥, IKZX, Y. IRCY. A, LDA, IWFQ )
SFR2( UPLG, M, ALPHA. X, IR Y, DMCY, AF. [HED )



