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Absrract. Thiz pager will describe some recent attemgts 10 consirucl irznsporiahle numerical soliware for
higheprerfosmancs computers. Bestructuring alporithms in leems of simple liear algebrs meduls is roviewsd,
This fechnigue hos proved very sisecisiul in abdaining a high level of eensporiability withoul severs loss af
performance o g wids varicly of bath vector and paralled computers. The use of mediles te encapsulate
paralilisen god roducs the ratso of dotn mevement 1o Daating-point operations hos been demonstirably elfective
for regular problems such 25 thase found in dense lincar algebra. In other situations it may be necessary o
express explicitly parallsl algorithms. We also present & programmng methodology that is usefil far constae! -
ing 2 parallel algorithms which reguire sophissicatsd samchronization at o lasge grain lesel, We describe the
SCHEDULE package which provides an enaarcament for developing and snalveang caplivitly parallel progroms
in FORTEAN which are pertable. This package now include: a preprocessor o achisve complete pemability of
usa livel code and also a grophics post proceszor Tor performance analysis and debupging. We discuss details of
porting both the SCHEDNULE package and user code, Bxamples from lingar algebra, and portial daffesennal
eiuetions are wsed o illustraze the waliny of this spproach

Bapwords, Parallel pragramming, poriable pasadlel algorithms, the package SCHERULE,

1, Introduction

In this paper. some technigques for programming computers with advanced architectures will
be surveyed, These computers rely upon vectorization, pipelined functional enits, and multiple
computational clements 1o provide high performance. However, it may be difficult 1o realize
the benefits of these performance features unless cerlain programming technigues are adopted.
Often, this goes bevond trivial reorganization of existing programs and requirgs significant
restructuring of basic algonthms, Moreover, parallel computers {those with multiple canmpli-
tional elements) have motivated the development of entirely new algorithms for standard
prablems.

The advent of these high-performance computers has opened vistas in terms of what are now
thought of as computationally tractable problems. However, they have also brought about a
crists in soltware development. Owver the years there has emerged 3 recognition of the
importance of developing portable high-quality computer software for basic computations. In
the past, issues have largely heen thase of robusiness, accuracy, and reliability as well as case of
maintenance and distribution. MNow a variety of different architectures are being offersd
commercially. The desire 1o exploit these new powerful computers has made it tempting 1o
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dizregard the notion of portability in favor of performance. The techniques discussed below
offer some approaches 1o avouling this dangerous path. Our expericace with these technigues
olfers some evidence that it is indeed possible 1o develop portable codes which obiain a
reasonable fraction of the polential performance of these modern computers. Moreover, 1t is
possible 1o use existing mathematical software written in FORTRAN within a parallel
compuiing covironment wsing the techniques we describe here.

Two hasis adeas are discussed. One is the notion of recasting algorithms in terms of
high-level modules. An important set of such modules. Basic Linear Algebra Subprograms,
BLAS [2d4,14,13] has proven o be very successful in achieving performance without sacrificing
portability in linear algebra librarics. Coding in terms of these modules relieves an algorithm
developer from the tedivm of detailed machine-dependent coding 1o gain performance, Such
detal s encapsulated within the module and done once for each magchine, The other notion is
to use a standardized interface 10 exploil the parallel capabilitics of machines with multiple
processors through explicit parallel programming. A large-grain control flow maodel of compu-
tation is presented which has a natural graphical interpretation that is useful in designing and
implementing explicit parallel algorithms. This graphical imerpretation alse lends itsell well wo
a postprocessing performance analysis of o given code.

Throughout this paper, we only consider shared memaory multi-processors which may or may
not have vector capabilities at the processor level. Section 2 deals primarnily with the use of
modules 1o gain performance and transporiability of software on o wide variety of computers.
Scction 3 deseribes the SCHEDMUILE package.

2, Medularization for portable performance

Encapsulation of basic matrix and vector operations inte & e of high-level modules has
proven o be an imporiant idea which has been very successful in providing clarity, portability,
and case of maintenance in mathematical software. The most successful example of these is a
set of specifications known as the BLAS, proposed originally in 1973 by Hanson et al. [24).
These modules describe vector operations such as adding a scalar multiple of one vectar 1o
another. More recently, there has been a need 1o extend these ideas 1o Level 2 BLAS [14]
involving matrix-vector operations amd 1o Level 3 BLAE [13] involving matrix-matrix oper-
ations, The use of these modules has heen restricted primarily 10 developers of high-quality
lincar algebrea software such as LINPACK [12]. 1t is now clear that these medules should
pecome part of the repertoire of all wsers of high-performance computers and should serve as a
mode] for the development of special purpose modules designed 1o perform basie operations of
given application arcas. An imporiant aspect of the BLAS 15 standardization. Efforts have been
made o armive al a consensus of what medules belong in a given set and what their calling
segquence should be [24.14.13]. This is cssential o get them adopted within the user community
and o motivate manufacturers 0 devoele the resources necessary to develop highly uned
medlules for specific machines.

The reason widespread wse of such modules should be adopted 1= thal they offer both high
performance and portability across o wide variety of computer architectures. Moreover, coding
in terms of such modules will relieve an algorithm developer [rom the detail and tedium
involved in coding lor performance on a specific computer. This has become a greal concern as
widely different computer architectures emerge. To gain performance, one must be aware of
how 1o use vector processers eflectively, manage data movement, utilize memory hierarchies,
et In some cases this performance cannol be achieved moa high-level language and assembly
language must be employed, Such deta) should not be part of a high-level algorithm, but must
be taken into account at some level o performance 12 o be realized. Coding in terms of
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madules which have standardized interfaces to a programming language such as FORTRAN
allow o wzer Lo tap the performance of any computer which bas had the modules wned for i

The effectivencess of this approach is best illustrated from expericnce in linear algebia
LINPACK s an example where this restructuring can lead to increased performance. This is a
collection of linear algebra subroutings vzed for solving bnear algebraic systems of various
types. This package was orniginally structured and coded in terms of the Level 1 BLAS
Howeever, very poor performance was observed on vector computers [16]. [n an effort 1o
caplure the expected performance, the LINPACK routines were recast in lerms of what are
now called Level 2 BLAS invalving matrix-vector operations. The metivation was 1o reduce the
ratio of data movement to floating-point operations o incresse performance, This approach
has been very successful on a wide vanety of vector and parallel computers. The performance
results are well documented in [11.18] and the details of the restructuring are shown in [18].

As computer architectures becoms more sophisticated in their organization, we are required
to supply even a higher level of granularity in our algorithms 1o ke full advantage of the
potential performance. We are already feeling the effects of designs involving memory
hierarchies such az cache and large sets of vector regisiers. Experience with these machines has
mobivated the study of higher-level modules. The nexit level of modularicy we naturally focus on
is at the matriz-mairiz level, Again, the idea is 1o reduce the ratio of data accesses to
Meating-point operations. Matrix-matrix operations such as the product of two matrices ane
obvious candidates. The advantage here is obvicus, only (N a®) data is referenced 1o perform
O{n") floating-poant operations when two matrices of order # are multiplisd. Again the main
factorization routines of LINPACK have been recast in terms of these Level 3 BLAS
operations with reasonable success. The details of how this restructuring might been done has
been descnibed in L8]

Table | illustrates the relative effectivencss of these modules in the context of computing the
LU-factorization of a matrix. Tn the takle we compare the performance of LU-facionzation
when recast in terms of the various levels of BLAS just discussed, These computations were
done on an Alliant FX /8 computer which has eight parallel-vector processors sharing up o 64
Mbvies of memory through a 125 kbyvie cache. In the resulis shown in Table 1, the Level 2 and
3 BLAS have been coded iz assembly language to assure full use of the vector registers, The
table shows that the Level 3 BLAS modules can he wvery effective. Moreover, while this
technique appears o be wned o a partcular siuation, it s equally effective in a non-cache
situation as long as there are a significant number of vector registers available, Finally, hlocks
of cache may be used in place of vector registers when (a5 with the Alliant) the memory access
from cache matches the memory access from registers.

A number of researchers have considered matrix-matrix formulation of the basic Taetoriza-
tien routines of linear algebra, A very nice treatment of a block version of the Householder
QR-faciorization may be found in [3). Extensive use of this 1echnigue has been made in the
development of a library of lingar algebra at the Center for Supercomputer Research and
Development at University of Illinois at Urbana [4]. A proposal for @ formal specification of
the Level 3 BLAS may be found in [13],

Tabkle 1
LUl-decompasitzan with parial prvoting Allant & CE's

Implensenbation Miflaps order

10 200 ) Al 50 6000
Luwel | BLAS 25 49 54 5.7 57 T e i
Level 2 BLAS 52 0.8 1Lz 1.7 114 11,3

Level 3 BLAS (1] 11.8 15% 1.2 187 I?.é
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X, Explicit parallel programming

Encapsulation of low-level detal in modules such as the BLAS has indecd been very
successful bul certainly has limited applicability. Some parallel algonithms will require explicit
parallel programming in order 10 he implemented. Adequate tools have been provided by
several vendars 1o support loop-based parallelism. This only provides a fork—foir mechanism.
We find the tools available for explicit parallel programming of algorithms which require
multilevel parallelism and dynamic allocation of wser processes 10 be less than adequate.

Many new paralle]l computers are now emerging as commercial products [15]. Exploitation
of the parallel capabilities requires either extensions to an existing language such as FOR-
TRAM or development of an entirely new language. A number of activities [29.32] are under
wiy Lo develop new languages that promise 1o provide the ability to exploit parallelism without
the considerable effort thal may be required in using an inherently serial language that has
been extended for parallelism. We applaud such activities and expect they will offer a true
solution 10 the software dilermma in the future, However, in the short term we feel there is 3
need Lo confront some of the software issues, with particular emphasis placed on transportabil-
ity and wse of exizting sollware,

Owr interests lie mainly with mathematical software typically associated with scientific
computations, Therefore, we concentrate here on using the FORTRAN language, Each vendor
of o parallel machine desizgaed primarily for numencal caleulations has provided a different ser
of parallel extensions 1o FORTRAN. These extensions have taken many forms alresdy and are
wswilly dictated by the vaderlving hardware and by the capabilitizs that the vendor wishes 1o
supply the user. This has led to widely different extensions ranging from the ability 1o
synchronize on every assignment of a variable with a full fempty [23] to attempts at automati-
cilly detecting loop-based parallehzm with a preprocessing compiler aided by user directives
[9]. The ael of getting o parallel process executing on a physical processor ranges from a simple
‘create’ statement [23] which imposes the overhead of a subroutine call, to *TSKSTART [1]
which imposes an overhend on the order of 10° machine cveles, 1o no formal mechanism
whatzoever [9]. These different approaches reflect charactenstics of underlying hardware and
cperating svstems and 1o a large extent are dictated by the vendors view of which aspects of
parallelism are marketable. 1t is too ecarly to impose a standard on these vendors, yet it is
disconeerting that there is noe agreement ameng any of them on which extensions should be
included, There s nol even an agresd naming convention for extensions that have identical
functicnality. Program developers inlerested a producing implementations of parallel al-
gonithms that will run on a different parallel machines are therefore faced with an extremely
difficult task. The process of developing portable parallel packages is complicated by additional
factors that lie beyond each computer manufacturer supplyving different mechanism for parallel
processing. A given implementation may require several different communicating parallel
processes, perhaps with different levels of granularity. An efficient implementation may require
the ability to dynamically starl processes, perhaps many more than the aumber of physical
processors in the system. This feature is either lacking or prohibitivelv expensive on most
commercially available parallel computers, Instead, many of the manufacturers have limiled
themselves o providing ange-level loop-based parallelizm.

This section describes an environment for the transportable implementation of parallel
algorithms in a FORTRAN setting. By this we mean that a user's code is virlually identical for
each machine, The main tool in this environment s a package called SCHEDULE which has
been designed o aid a programmer lamibar with a FORTRAN programming environment 1o
implement a parallel algorithm in a manner that will lend itsell 1o (ransporting the resulting
program across a wide variety of parallel machines, The package is designed to allow existing
FORTRAN subroutines to be called through SCHEDULE, without modification, thereby
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permitling users acoess 10 a wide body of existing library =oftware in a parallel setting. Machine
intrinsics are invoked within the SCHEDULE package. and considerable effort may be
required on our part to move SCHEDULE from one maching 1o another, On the other hand.
the wser of SCHEIDMILE is relieved of the burden of modilving cach code he desires o
transport leoan ong maching o ancther.

A number of efforts are waderway 10 provide parallel programming toels, Our work has
primanily been influenced by the work of Babb 2], Browne [6]. and Lusk and Overbeek [25).
W present here our approach, which aids in the programming of explicitly paralle]l algorithms
in FORTEAM and which allows one to make use of existing FORTEAMN libraries in the
parallel setting. The approach taken here should be regarded as minimalist: it has a very limited
scope. There are two ressons For this, First, the goal of portability of wser code wqll be less
difficult to achicve. Second, the real hope for a solution 1o the software problems associated
with parallel programming lies with new programming languages or perhaps with the right
extension o FORTREAMN. Our approach iz expected 1o have a limited lifetime. [s purpose is o
allow us 1o exploit existing hardware immediately. Nevertheless, experience gained through this
cffort is quite valuable. Tt is not wargazonable 1o expect this approach o mature into & very
effective programming 1ool,

LA Pavallel progromming wsing SCHEDULE

The underlying idea in SCHEDLULE is that parallel computations may often be represented
graphically and that this is o wseful way to think about and o construct parallel programs. A
parillel program is derived by breaking a computalion up into wnits of computation and
execution dependencies between them. We use the term execetion dependency rather than data
dependency because these dependencies are assertions made by the user abour the order in
which computations may occur. This order must respect data dependencies but may be used
more generally o achieve load balanang and cther characteristics during execution, We [ it
more accurate, therefore. to call this a conieol fow graph rather than a lorge-prain data flow
zraph.

In the FORTRAMN language. it is natural o associate a unit of compulation (or a process)
with & subroutine name together with the data wpon which this subroutine will operate, The
basic idea is thal FORTRAN programs are naturally broken into subroutines that identify
self-vontained units of computations which operate on shared data structures. Natrally, this
notion encompisses the use of existing library subroutines in a paralle] seting, One would like
i1 b able 1o call upon such routines in the wsual way without modification, and without having
to write an envelope around the library subroutine call in order to conform 1o some wnusual
data-passing conventions imposed by a given paralle]l programming environment.

To write a SCHEDULE program, a user musl construct a large-grain dependency graph
representing the units of compuetation and the execution dependencies betwesn them in order 1o
specify a parallel computation. Each of these units of computation will represent a subroutine
call that iz o be made when execution dependencies have been satisfied. The vser must take the
responsibility of ensuring that the dependencies represented by the graph are valid. We shall v
to explain this concept through a generic example; in the following sections we shall describe
the underlying concepts, the SCHEDULE mechanizm and give some examples.

The first step in writing a SCHEDULE program is to express the algorithm in terms of
processcs and execution dependencies among the processes. A convenient way 1o represent this
is through a computational graph. For example, the graph in Fig. 1 denotes five subroutines A,
&0, Iy and E dhere with two ‘copies” of subrowtine £ operating on differcar data), We intend
the execution o stacl simuliagngously on subroutines <, 0, 2, and £ since they appesr as
leaves in the dependency graph { 2 will be inigated twice with different data). Onee B, 5, and
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E have completed, 5 may execote. When & and O have completed execotion, A may start and
the entire computation 15 lnizhed when A has completed. To use SCHEDULE, one 15 required
i specify the subroutine names and the arsuments asseciated with each of the i units of
computation, along with a representation of this dependency graph,

For gach node i the graph, SCHEDULE reguires two subroutine calls. One contains
information about the user's rouline o be called, such as the name of the routing, calling
sequence parameters, and 3 simple tag 1w oadently the process, The second subroutine call
defines the dependency in the graph o nodes above and below the one being specihed, and
specilies the tag o wdentily the process, In this example, after an imtal call o set up the
environment for SCHEDULE. six pairs of calls would he made 1o define the relationships and
data in the computational geapl,

Within the context of a SCHEDULE program, execution dependencies are assertions made
by the user aboutl the correct order of computation, Responsibility for the correctness of these
assertions rests with the user. SCHEDULE provides a mechanism to record the units af
compulation, express the dependencies between them, and then execute the computation
deseribed by the SCHEDULE program. It is very imporiant o clearly define and undersiand
the shared data of a problem and how 1112 1o be parttioned lor parallel processing.

22 Parivioning o probiem

The first thing that muwst be understood 1= the distincton between local and slobal varialles.
Clabal vanables are shared amongst all the processes which reference them. Local variakles are
defined within a subrowtine and a local version of these varahles 13 obtined each ome o unit
of computation based upon this subroutine is executed. As a matter of programming style, it is
suggested that all shared data he grouped in named COMMOM even if some of the shared
picrameters are passed in the call o SCHED.

Before discussing bow data s partiioned 11 vseful 1o bave an idea of what o SCHEDULE
program will leok like, The strocture of a SCHEDULE program generally takes the lollowing
form:

Main Program:

CRECHED START_SIARED

common fprbdeflf<array declarations =
CESCHED ENT: SHARED

gxiermnal mmlg
CS5SCHED EXECUTE

initialine variabler
;

call sched (nprocs , paralg, <parms=]
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Code That Records Seatic Execmiaon Dependency Grraphe

subrauline paralg(<parms=>)
declare plobal varizhies

deciare beal warkafler
exlarnal subnans

dis 10 j = 1.nunits

irhing = the idemifior af this ami of corpuraion
icanga = aumber of nogdes fobreg depends o

neheks = pumber of Aodes which depend on joleg
lizr = lzr af idennifiers of these nokeks dependents

call depljaobilag,icange,ncheks, list)
call I}U'l][jl:lﬂ-'lﬂ.ﬂ.SUtlﬂilﬂiE'-"ﬂl:lal'l'l'IE'-“-]

100 contunuae
fEturn

enid

[ this peneric example the main progean declares shared data and initializes it and then makes
the initial call o sefed. This call acquires sprocs physical processers devoted 1w the execution
of the computation defined by subroutine paralg. There can be several calls o solhed in the
main program. Each call involves the overhead of acquining sprocs phvaical processors on the
given svalem, Care must be exercised on some systems because the expense of acquiring a
number of physical processors may be substantial. The statements beginning with CEEHED are
preprocessor directives indicating the start and end of shared commen and also indicate the
first executable statement to the preprocessor. This aids in automatically modifving the shared
commaon blocks on those machines that require specal decluration of shared memory.

Execution of the subroutine paraly records the static dependency graph using calls 1o dep
and puig for cach noede in the graph. In thiz generic example muadds units of compulation were
defined in the 100 leop of the subroutine paralp. Here, all of the units of computation involve
the subroutine sebrame operating on different data, Genercally, there may be several different
subroutines associaled with vanows wnits of computation being placed on the guene. They may
represent very different computations and may have different calling sequences,

Tt is alza possible w bhave dynamically spawned processes at run ome We use the
SCHEDULE subroutine rxfzg and spowe 10 accomplish this as shown in the following
exanmple;

Lt af Compaianion with Dyncemic Spawning

subrauline subname{<parms>)
declare plobal variabier
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e Beai verimbles
exnlermnal sublew

do 200 j = |,nkids

call oxkEgimy tag. jdummy)
call spaemimyLlag, jdummy,sublow, <parms:oe]

200 continge
résfurn
end

Thiz example shows the three levels of parallelism ovpically available in o SCHEDULE
program, However, it should be emphasized that many lavers of parallelism can be expressed
using SCHEDMUILE and fairly intricate inter-process dependencics can be accommaodated, Tn
this genenc example, the subrouting porafz defines the statc control flow graph which is to he
cheved throughout the course of the computation, while the subrovtine swehaaene explons the
lpwest level of parallelizm utilized i this program through dynamic spawning of processes
involving subfow. During execution. the subeane will dynamically spawn processes that will
invoke instances of seblow executing in pacallel, Thiz s sccomplished wsing the calls 1o sz
amd sgawan i the 200 loop.

More will be saud abowt the detnls of this mechanism below, At this point it should be
stressed that the subroutine parale only records the control dependencies and the wmg of
computaion associated with gach node in the contral dependency praph. MNone of these will
crecute until paraley completes. When peraly docs complete (e, execuies a return slatement),
the computation beging by executing those nodes which have fcange = (L During execution, all
of the units of computation recorded by parafy will execute as their dependencies are satisfisd,

Additional wnits of compatation may be allocated during execulion through the spown
mechamsm,

21 Bratic portition

In the generic example above, the subrowtine paraly defines the static control flow graph. As
we have Just pointed out, 1115 impertant te understand that none of the units of computation
defined through dep and prevg will execute until 3 retuen bas been executed by paraly. Thus the
parimeters passed through the calling sequence to sebeaere must be global varables, That is,
every variable passed through the calling sequence 1o swbogmere with o call e purg must sither
reference o varable passed through the calling sequence of parale or must be shared common,

T define the statie conteal flow geaph one must write a program that mcludes a call to dep
followed by a call 10 purg corresponding to every node on the graph. Each node of the graph
must be assigned a jebrag. These joblags mus) b2 suecessive positive inlegers beginning at 1
andd not exeeeding 1030, In the program defining the static control Aow graph there must be the
stalemenis

call depdjoliag,icangn,neheks Lisg)
call putgjobiag,subname, <pammss

corresponding o cach node. The call 1o dep records the conteol flow dependencies for the nods
that has been labeled jeliag, The dependencies are defined through specilication of

feonge = an integer specifying the number of nodes Jobiap depends on,

nefels = an integer specifying the number of nodes which depend on fobrog,
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fixsf = an integer array containing Lzt of wentifiers (e jobiags) of the neheks
processes dependent upon completion of fofayg.

It is essential that at least one node has icange = 0 set. Withowt this condition the program
canm zlart. There can be several nodes with fepngs = 0. Exactly one node must have the
condition nckeks = 0 sel, The program cannot finish without this. Error messages will be
oulpul and the SCHEDULE program will execute a FORTRAN stop if either of these
conditions are oot met. A uait of computation s “scheduled” for cxecution when s icange lias
been set to O indicating that it is not waiting upon the completion of any other unit of
computation. The ieangs counter of each of the nofieks dependents on the S will be
decremented avtomatically when jebrag completes. The unit of computation labeled jebrag is
recorded through the call 10 purg. Ooce the control lMow dependencies for jabvag have been
satisfied, a

call submame [ <pamiss )

will be executed where {parms’ represents the list of parameters 1o be passed to the subroutine
subvranre, The call 1o pwig records the entry point e safaeee and the addresses of each
parameter in the calling sequence {parms). Execution of this unit of computation only occurs
after the control flow dependencics have been satisflied and o physical processor has become
aviilable. The order of cxecution is dictated by the order in which schedulable processes get
placed on a *ready to execule’ quens called readvg. When the number of phvsical processors is
I, this order is predetermined, but when more than one processer is active, the order is
generally nondeterministic. This queus 15 served by upracs workers on a sell scheduled bass
By this we mean that each worker continually gets work off the resdvg, executes the unit of
computation, updates the dependency mformation, and then tries 1o get ancther unit of
computation off the reodyg,

.4 Dysarde speavwning

Mauny interesting algorithms can he expressed using a static dependency araph. However,
there are situations where, for a given problem. it is not known in advance that a code segment
will warrant parallel processing until the execution of the program. In these cases the ability 1o
dynamically spawn processes during execution is required. 11 one wishes 10 do dynamic
spawming within one of the executing processes that has been defined statically, there are three
options with varying levels of generality. The simplest case where no work has 1o be done alter
spivaming occurs has been shown in the generic example given above. Here we show the most
general case which allows multiple re-entry and multiple spawning segmenis:

subrouiine subname(<parms>]
deciere giohal variasles

deciore Ioeal wartinhles

Ipgical wail
external sublow

f

FEswns computnation at the Iobel nember retlurned throwgh igmlcy

ga o CROO0, 000, . . MO0}, ientsy Gy lag M)
LO0G cont inge
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call maagimycag, jdummy)
call spawn{mytag. jdummy sublow, <pzrmg>)

200 continae

label = 2

if (masr{mytag,labkel}) return
000 conqinuac

return
NOGO continue

refurn
end

The logical function wait sets up an implied barrier which will not be crossed until all of the
spawned processes have completed execution. Nevertheless, this is not busy wail, If the
reference 10 waiy returns the value friee indicating spawned processes have nol completed yet,
then a return is made to SCHEDULE weork routine which then becomes available to
participate in executing other schedulable unils of computation. This mechanism allows (he
program to execute on a single processor. The secomd argument that s passed 1w wair s
returned as the value of wniry when the process myrag is rescheduled for execulion after the
spawned processes have all completed,

Another consiruct one might wse is to make wait 2 subroutine and call it at thiz point. Thus
the werk routine executing this process could aceess the SCHEDULE readye through wadr and
participate in the execution of other processes until the spawned child processes were com-
pleted. This approach was wried but found 10 be unwieldy when dynamic spawning of several
laxers was desired. Stack overflow scemed 1o be the problem in this case. The constrect we have
shown above does net suffer from this problem hecause the informalion is stored in quewes that
are managed explicitly within SCHEDULE.

Let us call executing process defined by sufvrame together with its arguments the parent. In
the computation above, the parent process will spawn nkids child proceszes. The parameter
mavtag which appears in the calling sequence of hoth nxtag and spawa must conlain the jolvay
of the parent process. The parameter mviag must be stored in o global vanable which has been
passed Lo the parent salwame either through the calling sequence or through named commaon,
The calls 1o nxtag and spaws must be done together. The statement

call nxtmpimytag ilummy)

returns & fobtag in the parameter Jdusiy which has been assigned by SCHEDULE internally,
The control flow dependencies are automatically defined: the ecach spawned process will be
forced to complete before the parent can finish. The statement

call spawndmytag fdummy, subdow,<parmss)

15 similar in nature to a call to purg in the sense that will invoke a call to suhroutine stclafow
{{parms}),
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A5 The SCHEDULE mechanism

The detils of the underlying SCHEDULE mechanism which invelves gueuws management
and synchronization has been described in [19]. This mechanism has remained essentially the
same but implementanens for the vanous machines has been quite tedious o some cases, An
important poant 1= that the cost assogatsd with oblaining a physical processor is only incurred
with the initial call to sehed. Moreover, there is no dependence in a SCHEDULE program on
the number of phvacal processors used,

4. An environment for the development of explicitly parallel programs

As we mentioned at the catset, SCHEDULE i3 a programuming aid that is imtended 1o serve
az Lthe backbone of an environment for the development of explicitly parallel programs. Our
goal 15 o provide a wnifoom interface o the parallel capacities provided by existing and
impending parallel svstems. [ncloded in this are tools for debugging and analyveing the
performance of paralle] programs. In this section we shall describe some of our goals in this
are, Preliminary attempis at achieving these goals have been implemented or are in the design
stage. The package has been ported 10 a number of parallel machines and some experience with
porting user codes has been gained. A detalled performance stwdy of the SCHEDULE
mechanism has not been wndertaken vet but iz in preparation, We do have some conlidence
that when used as intended, very gocd performance cin be expected,

W repard SCHEDULE as a tool primarily designed as an aid to constructing an implemen-
tation of a new parallel algenthm, We do oot thank s pacicalacly well suited 10 converting,
an existing serial code 1o a parallel version, although this weuld be possible in some cases. The
reazon for this statement is that o program sath SCHEDULE 0 s imperatve that the
large-grain contral flow dependencies are well understood by the programmer. This is of course
required in any successful implementation of a parallel program, However, with SCHEDRULE
the data partitioming and construction of the control lew dependency graph are an explicit
part of the programming effort. We expect that the designer of a parcallel algonithm will have
this infermation naturally at hand. At least this has been our experience in the design of our
own parallel algonthms [18]. Enforcng this programming sivle goes a long way towards
avding bugs that are offen associated with parallel programming.

We have found 1t very wselul 1o retain the capabilily of executing a paralle] program in serial
mode. A SCHEDULE program does not depend wpon the number of physical processors
available in & given svstem. 1 wall execute wath one processor active, Others have found this o
be o wseful property of such a programming tocl [253]. We find at least two reasons 1o provide i
First it allows one to develop and st code on a senal maching such as a VAKX 117780 or a
workstation, This is quite important when the parallel maching is at a remote site or if the
zoftware development environment existing on the parallel machine is inadequate or difficult 1o
use. Sccond, when developing a new algomthm cne would hke 1o be assured that the numencal
properiies of the alzorithm are cormect in serial mode before entering the paralle] festing regime.
Operating in this sequence ends 10 separate ardinary programming bugs lrem those associataed
wilh parallel programming, Moreover, due to the SCHEDULE mechanism, one can be lairly
conflident that a parallel bug is doe either 10 aneorreet speaihcation af the dependency graph or
W ineorrect partitioning of data. Explicit svnchrenization is senerally not a part of a
SCHEDULE program amd thus &ifficull synchromzation bugs do not generally arise. When
they do arise it is possible to analvze them graphically using the graphics post processing ool
described below,
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To aid in ascertaimng a correcl specification of the control flow dependency graph we
cnvision @ tool that will visually represent the units of dependency graph and the sxecution of
the units of computation. A preliminary version of this ool has heen implemented  and
experience with this ool is reported below. Similar idess have been proposed by Babb [2] and
cthers. In our view, the level of detail required in the environment developed by Babb is too
fine. We expect the level of detail in such a representation of a parallel program to roughly
carrespond to the absteact level al which the programmer has partitioned his parallel algorithm.
Let us illustrate this with a simple cxample, A favorite example of our's is the solution of a
triamgular lincar system partitoned by blocks.

4.1, Trigngwlar solve example

We can consider solving a trangular svstem of equations Tx = & in parallel by partitioning
the matriz T and vectors x and b as shown in Fig. 2,

The first step is to solve the system Tyx, = b, this will determine the selution for the part of
the vector labeled x,, After x, has been computed it can be used to update the right-hand side
with the computitions

by =iy = Ty, by =ty — Tox, . by By — Tty by =h, — Tox,.

Matice that these matrix-vector miultiplications can occur in parallel, az there are no depen-
dences. However, there may be several processes atlempting to update the value of a vectlor b,
{for example 4, B, 11 will vpdate &) and this will have to be synehronized through the wse of
locks or the use of temporary arravs for cach process, As soon as b, has been updated, the
computation of x, can proceed as x, = 75 'h.. Notice that this computation is independent of
the other matrix-vestor operations invelving by, b, and b, After x, has been computed, it can
be used to update the rght-hand side as follows:

by=by—Tox,,  by=8 —Tx,. . b=bh—Tpx..

The process is continued untl the full scletion is determined. The contrel flow dependency
graph [or this can be represented as in Fig, 3,

In Fig. 4 we show the output from an executing SCHEDULE implementation of this
triangular solve example with 36 rather than 15 nodes. The program was ren on an Alliant
FX/8. An cutput file was produced as the program executed which recorded the units of
computation as they were defined and executed. The file was then shipped 10 a SUN
workstation where a graphics program interpreted this oulput, constructed the graph and
played back the execution sequence that was run on the Alliant. In the graph shown in Fig 4
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the black nodes show processes which have completed execution, the doubly hatched nodes
show execuling processes, the singly hatched nodes show processes ready for execution, and the
white nodes show processes waiting 1o have dependences satisfied. The program was able o
produce this playback cutput automatically simply by linking to SCHEDULE with a reguest
far the graph option. The user's program did not change in any way.

Defining the contral flow araph is a1 present o tedious activity. It would be desirable to have
the ability 1o automatically generate a FORTRAN program from a graph. In this setting a user
would construct a graph using a *mouse driven’ graphics input device. The user would associate
cach unit of computation with each node, perhaps from a menu. Then on command a
FORTEAN program is generated, A preliminary version of thiz capability is operational.

In addition 10 discovering bugs in the specification of the graph, this representation is wsell
m exposing more subile aspects of the executing program. For example when the graph
produced by SCHEDULE is contrasted with the abstract user specified graph there are
noticesthle differences. The graph produced by SCHEDULE exposes inherent serial bottlenecks
i the algorithm. Dwring execution the bar graph, labeled ‘active processes” al the top., tracks
the mumber of processes actually executing, The bar labeled *timing speed” can he adjustable 1o
spesd up or slow down the replay. The event will ocour in time proportional 10 execution time.
This gives a much hetler indication of serial bottlenecks and load balancing problems within an
executing program. Onee load balance anomalies have been discovered, they can be corrected
by revising the execulion dependencies to force certain processes to complete before others 1o
achieve a better load balance. There i a histopram available which records the number of
processes active al a given event, One can also view subgraphs and find critical paths by
referencing the various options shown in the hoxes just blow the speed bars,

In the future we hope 1o provide the capability of constructing & program from a graphical
specification. That is, one would input the control flow dependencies graphically on a
workstation say, amd then name the units of computation associated with the nodes of this
graph. Automatically, a control flow program would be generated hased upan this graph. This
would remove the burden of the tedious programming associated with specifying the control
Mow dependency graph. A rudimentary version of this facility has been constrected and we are
experimenting witl il now,

5. Porting the SCHEDULE package

Alter considerable effort, versions of the package are now running suecessfully on the VAX
L1780, Alliant FX /8, Sequent Balance 21000, Encore Multi-Max, and CRAY-2 computers.
An earlier version of the package ran of the Dencleor HEP computer. The same SCHEDULE
user programs will execute without modification on all of these machines, The SCHEDULE
internals had to be medilied for cach of these machines, These modifications were minor in
some cases, bul extremely diffieult ie others, They involve such things as naming and
parameler-passing conventions for the C-FORTRAN imerface. They also involve coding the
low-level synchronization primitives and managing to “create’ the work processes, LUsers have
ported the SCHEDULE package to the following svstems: FLEX /32 [31], 1BM 3090 [30),
Ultra Computer [22]. and NCURE [3).

The development of SCHEDULE has taken place in three steps. The first version reported
in [7] was written entirely in FORTREAN and required the wser 1o consiruct an explicit weork
routine from a template involving a eomputed gota with an appropriate subroutine call defined
at each label of the goto. Pointers were passed instead of explicit subroutine names and
irguments o define units of computation. This mechanism was deemed as oo unwicldy 10
explain and use correctly so an alternative was considersd. It was decided that & mechanism
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wirs nesded o record the subroutine names and parameters defiming a uml of computiation
which would ook very similar 1ooa standard FORTRAN subroutine call. A similar mechanism
wirs devised for dynamic spawning. This version was reported i [19], More recently, the syntax
of these constrects has been revised, a preprocessor was developed, and a graphics post
processing analysis too] was provided.

The new features developed during the second phase obviously required either the wse of
assemhbly language or C to be able to record entry points and addresses of memaory locations, 1t
wits also necessary o be able o be able 10 make a generic ¢all 1o a subrouting by pointing 1o
the appropriale entry point. These capabilities were all present within the C language and since
it is quite portable we decided to use it Unfortenately, although hoth © and FORTRAN are
poriable, the interface between them s certamnly not! This non-portability of the interface led
to many months of tedious frustrating effort te overcome. [n retrospect it probably would have
been better 1o have wiitien some low-level assembly language roulings Lo record addresses and
ENLEY Poinls,

Crher difficulties stemming feom the individual paralle]l consiructs provided by each of the
vendors were expected and did indeed arise. These problems involved process creation,
synchronization, and memory management, The mital FORTRAMN version was developed on
the Deneleor HEP computer [17]. The HEF certainly provided the most convement suppaort Tor
this development since it wis designed at the cutset 1o support explicit parallel programming at
a wvery fine grain level. [n fact, the SCHEDULE package represented a structured wav 1o
manage the capabilities offersd by the HEP. The next machine it was put on was the Alliant
IFX A8 where most of the continuing development has taken place, In the case of the Alliant the
package offers a considerable enhancement of the ability 10 express parallel algerithms, The
Alliant offers a marvelous preprocessing compiler which aids in detecting and exploiting loop
bazed parallelism. However, 1 offers no assstance in exphol paralls]l programming and
synchronization,

Process creation required 1o gel instances of the wark roulines execoting on physical
processors was different on each machine, On the Alllant we wsed the CVDEL CRNCALL
directive before a loop that performed mprocs calls 1o the subrowtineg wark, This concept was
straightforward o move 10 the Segquent where we used the CIDOACROSE directive. However,
Sequent required additional system calls cpus_onfiee and m_ser _procs 10 enable the user 1o
acguire more than hall of the available processors on the Sequent. The Encore required the wse
of ther fork svstem call. [n this case aprocs — 1 Instances of work were lorked and one was
called. On hoth the Sequent and Encore, these processors had to be physically released through
a syslem <all or they would remaln active umx processes afler the program had completed
unheknown 1o the wser. On the CRAY-2, process creation is accomplished using tskstar
provided by the CRAY multitasking hbrary [1], Thizs construct also requirsd speocs — 1 calls o
Evkstart 1ooanvoke imstances of werk [ollowed by one call to wark.

FFor the Albant FX/% we coded the low-level svnchronieation primtives in assembly
language wsing their test-and-sel mstrecion simee no synchronization primitives were provided
by Alliant, We vsed the synchronization primitives provided by the system in the cases of
dequent, Encore, and Cray, All of these are versons of fockefi. OF course the syntax was
different lor each of them and we provide a uniform svotax for these primitives 1o the user for
low-level synchronization that has been built out of the machine-dependent versions. For serial
machines we provide dummy routines which reselve references 1o these synehronization
primitives but have no functicnality.

The mest seriows diflicalies anse from memory management. The Alliant and Cray seemed
to have rensonable management of shared memory, However, the Sequent and Encore were
very clumsy an this regard, Thas difficulty stems primarily from the fact that they both rely on a
modification of the notion of a UNIE process 1o achieve paralle]l processing. Thess UNIX
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processes invoked through a fork are allowed 1o share a certain portion of their memory with
cich other. Allocatng this memory and aligning it properly seems o be very tricky, Initially,
the wser had 1o become involved m this alignment process on both of these machines, Sequent
has rectilied this at the price of reguinng shared commoen blocks and C-structures 1o be named
in the link and load command. However, Encore still reguires shared common blocks 10 be
padded 10 zet them aligned on page boundanies and a system call must be made by the user o
record the length of these blocks, Moreover, vanous compiler directives must be inserted in
ench of the machines wo invoke proper LA svstem calls, assure reentrant code is generated, cie.
All of these things would reguire explicit action on the part of the user withoul & preprocessor,
Thus, az much as we had hoped (o aveid any preprocessing it was decided that one had 1o be
provided. The preprocessor avtomatically mserts the things we have just mentioned in a wser
code, Al present we are nel able (o provide named common that is privale 1o process inoa
portable way. This is a feature we intend 10 provide and the preprocessor will be used o
Facilitare ik 1115 our view that common that 15 not explicitly declared shared should default 10
private and should have a scope that includes all subroutines on the calling tree below the
subroutine that [irst names the common area, The lifetime of the common arca should coincide
with the lifetime of this subrowtine as well. This would Facilivate the vie of FORTEAMN libraries
hecauze am explicit change would not have 1o be made 1o the codes to invoke them in parallel.
Interestingly enough, this treatment of common iz valid within the exisgng FORTEAN
standard although no manufacieeer bas chosen w implement it this way [2827).

The greatest difficulty by far was the nonstandard C-Foriran interface on the different
machines. A minor, but annoving, detail was the convention for distinguishing betwesn O and
FORTRAMN rewtimes, The Allant and YAX scemed perfectly compatible with a O routine
made FORTEARN callable by preceding the procedure name with an wnderscore and a
FORTEAMN routine made O callable simply by referring to it as a procedure invocation with
underscone inserted belere the subroutine name, (For example the C routing  Jos 15 referred 1o
in g FORTREAN call as CALL FOOy The Encore used essentially the same convention T
placed the underscore after the routing name, The CRAY-Z regquired all FORTEAN routines
called from © routines o be referred o in capital letters and all © routines called by
FORTRAM 1o be defined in capatal letiers, The Sequent had the most insidious version of this
reguiring the FORTEAN routine to reference a O routine by placing an underscore before the
name of the routine. (For example the O rouwtineg Jos iz relerred 10 in g FORTEAM call as
CALL RO FORTREAN routines are made O callable by defining them with an underscore
before the subroutines name. This is of course exactly opposite 1 all of the other machines and
requited intervention by our preprocesser o overcome. The Ssquent alse provided ihe
difficulty of having the parameters passed in reverse order hetween C and FORTREAM routimes,
Maoreaver, when a procedure name s pazsed, the Seguent preprocessor inseris a non-user
varahle in the calling sequence. These things required a complere rewrite of the O rootines
paety, sperwr, and sohed, T was necessary weowrile 3 comphicated case statement and Lo pass a
variable with the number of passed parameters in the calling sequence (o these routines in order
e handle varable calling sequences. Again the preprocesser was used o msert the number of
parameters. In this application there was no need to pass rectangular arrays between the O and
FORTEAN routings 50 we dhid oot sulfer from the meompatibiliny of the storage schemes of
these twe languages.

6. Conclusions

Twir concepts Tor achieving, transportable soflware for high-performance computers have
been presented. Experience with the module approach to encapsulating and machine-dependent
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code within a few modules 10 achieve hizh performance has been rewarding. This concepl has
been very successful within the context of lincar algebra software and would be useful to 1y
elsewhere,

The construction of SCHEDULE has evolved naturally during the course of our experience
with progrimming various parallel machines, We are primarily motivated by the lack of
wniformity and limited capabilities offered by vendors far explicit parallel programmming, We
are deeply indebted to our colleagues who are active in similar pursuits and we have used many
of their ideas in constructing SCHEDULE. However, although we have been greatly infMuenced
By their work, we [eel that our siperience with numencal software has guided us in subtly
different directions. 1t is our view that the user interface at this point in time is of PAramaotint
importance to the ulility of such an effart. Our goal las been to provide a methedolazy that 15
within the grasp of a capable FORTRAN programmer and 1o provide syntax which does not
represent a radical departure in appearance from FORTRAN programming. We have already
madified this interface several tmes based upon interaction with users. The current approach
has evelved from a package written entirely in FORTRAN (o one requiring a3 C-FORTRAN
interface. The implementation of SCHEDULE for some machines has been made much more
dilficult with this requirement due o the lack of standardization of such an interfans. Homwewer,
our goal of providing a clean user interface with the parallel capabilities seems 1 have becn
achigved through this mixed language approach.

A number of codes have been implementing using SCHERULE and have heen ported Lo the
machines listed above with out change, In addition o some oy programs used for debugging
SUHEDLE, several codes have been written and exccuted using SCHEDULE. These codes
include the algorithm TREEQL for the symmetric tridiagonal eigenvalue problem [20]. a
domain decomposition code for singularly perturbed convection-diffusion PDE [7], an adaptive
quadrature code [E], and a block preconditioned conjugate gradient code for systems arising in
reservoir simulation [10], & mulifrontal code for sparse climination [21]. and & code for
multivaniate tensor product spline approximation [26].

An important step in the development of SCHEDULE will ke 10 provide the ability of
constiucting the program from a graph. At the moment it is possible 1o do this when the eraph
is small and static. However, the oode produced is straight line code. Tt 33 2 considerakle
challenge 1o produce a loop streclure automatieally,

Another interesting line of developrment would be to implement the package for a distrib-
uted memory ¢computer such as the Intel iPSC, or the NCUBE machines, A version of
SCHEDULE has been implemented on the NCUEBE by Beguelin [3]. In this implementation
one node af the NCUBE plays the role of master and manages the dependency graph and
associated gquewes. This master process monitors the work routines operating on the other
nodes and sends them wnits of computation when they are free by message pazsing, There are
several performance issues that need 1o be studied in this setting. The most serious of these is
how to avoid having to send the data associated with a unit of computation 1o the physical
processor that will execnte i

Our experiene with SCHEDULE has been encouraging for the most parl. We do nol viesw it
as & “solution” to the seltware problem we lace in parallel programming. However, we do think
this will be useful in the short term and perhaps will have some influence on the development
of a long term solution,
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