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Abstract—The SLATE project is implementing a distributed
dense linear algebra library for highly-scalable distributed-
memory accelerator-based computer systems. The goal is to
provide a library that can be easily ported to different hardware
(CPUs, GPUs, accelerators) and will provide high performance
for machines into the future. Current ports include CPUs,
CUDA, ROCm, and oneAPI. We achieve both performance
and portability by leveraging several layers and abstractions,
including OpenMP tasks to track data dependencies, MPI for
distributed communication, and the BLAS++ and LAPACK++
libraries developed as a portable layer across vendor-optimized
CPU and GPU BLAS and LAPACK functionality. We rely on the
C++ standard library and templating to reduce code duplication
for better maintainability. The few kernels not present in BLAS
are implemented in CUDA, HIP, and OpenMP target offload,
and are easily ported to new platforms.

Index Terms—numerical linear algebra, distributed computing,
GPU computing

I. INTRODUCTION

The SLATE project [1] is implementing a distributed dense

linear algebra library for highly-scalable distributed-memory

accelerator-based computer systems. We seek to provide a

replacement for ScaLAPACK, with similar functionality in-

cluding parallel BLAS, norms, solving linear systems, least

squares, eigenvalue problems, and the singular value de-

composition (SVD), as well as expanding coverage to new

algorithms. The goal is to provide a library that can be easily

ported to different hardware (CPUs, GPUs, accelerators) and

will provide high performance for machines into the future.

We achieve both portability and performance by leveraging

several layers and abstractions, illustrated in Figure 1.
To gain more parallelism and overlap communication, recent

linear algebra libraries have leveraged runtime systems to

schedule tasks. SLATE uses the OpenMP runtime [2] to track

dependencies between tasks and schedule task execution on

each node. To keep the size of the task graph manageable,

we aggregate operations on individual tiles of the matrix

into larger super-tasks, and track dependencies between super-

tasks, as discussed in Section III-A. For execution on the GPU,

many of these super-tasks can be mapped to batched BLAS

operations, which are a key for SLATE to achieve portable

performance.
LAPACK and ScaLAPACK have been the de facto standard

linear algebra libraries for decades, and this success can largely
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Fig. 1. SLATE software stack.

be attributed to ways that they layered the software using

vendor-optimized BLAS libraries to achieve good performance

in a portable fashion. Inspired by this, we developed the

BLAS++ and LAPACK++ libraries to serve both as a C++

interface to BLAS and LAPACK, and as a portability layer

across different vendor-provided GPU linear algebra libraries,

including the batched BLAS, as described in detail in Sec-

tions III-B to III-D. Current ports are to the NVIDIA CUDA,

AMD ROCm, and Intel oneAPI platforms.

A significant risk in writing a portable GPU accelerated

library is having GPU kernels written in proprietary GPU

computing languages. While several languages and libraries

exist for writing portable code, at the moment there is not one

dominant, portable technique in the industry. SLATE maintains

relatively few of its own GPU kernels, primarily relying on

the vendors’ BLAS. These few, simple kernels are easily

ported between platforms, and we are keeping options open

to a variety of implementations for specific platforms. Our

kernels were initially implemented in CUDA, which are then

translated to HIP. For the Intel platform, our strategy is to

implement kernels using OpenMP target offload, as discussed

in Section IV-D, which may also provide portability to a

variety of architectures.

In a break from the traditional Fortran and more recent

C based linear algebra libraries, SLATE uses standard C++,

currently relying on C++17 features including templates and

the C++ standard library. Using templates and object-oriented

abstractions reduces the amount of code for better maintain-

ability and productivity. We template for both data types and

implementation targets on the CPU or GPU, as described in

Section III-E. The standard library provides us with portable
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and efficient implementations of many data structures, al-

gorithms, and threading utilities. Using these C++ features

increases developer productivity by reducing the code that

needs to written and maintained.

II. RELATED WORK

A. ScaLAPACK

To draw inspiration during the design of SLATE, we looked

at the ScaLAPACK library [3] and examined what led to

its long-term viability. ScaLAPACK has been the de facto

standard distributed dense linear algebra library for over two

decades, being first released in 1995. It has remained portable

and highly productive over multiple generations of computer

architectures and network designs. This degree of longevity is

due to a dependence on a set of core features and underlying

libraries:

a) BLAS: The Basic Linear Algebra Subprograms spec-

ify operations on vectors and matrices to provide a foundation

for building higher level mathematical routines. There are 3

levels of BLAS routines: Level 1 BLAS work on vectors

only [4], Level 2 BLAS contain matrix-vector operations [5],

and Level 3 BLAS contain matrix-matrix operations [6]. The

BLAS routines can be very highly tuned on the underly-

ing single-node architectures, whether they are CPU, multi-

core, GPU, or other hardware devices. Particularly, the Level

3 BLAS routines, of which general matrix-matrix multiply

(gemm) is the canonical example, have a high computa-

tional intensity with O(n2) memory accesses for O(n3) flops,

yielding a surface-to-volume effect, and can be optimized to

approach the theoretical peak on many devices.

b) LAPACK: The Linear Algebra Package [7] builds on

top of the BLAS to provide routines for factoring matrices

(e.g., LU, QR, Cholesky), solving systems of linear equations

and linear least squares, eigenvalue problems and the SVD.

Earlier linear algebra libraries such as EISPACK and LIN-

PACK used Level 1 and 2 BLAS, which have O(1) memory

accesses per operation, resulting in memory-bound algorithms.

In comparison to these, LAPACK reformulated algorithms by

blocking in order to extensively use Level 3 BLAS. LAPACK

routines are defined in shared-memory nodes and depend on

the underlying BLAS implementation for high performance.

c) PBLAS: The Parallel Basic Linear Algebra Subpro-
grams [8] are an implementation of the BLAS for distributed

memory architectures. These routines were intended to support

a distributed equivalent of LAPACK, so that the LAPACK

algorithms could be translated to a distributed-memory infras-

tructure with high productivity.

d) BLACS: The Basic Linear Algebra Communication
Subprograms are a linear algebra-oriented communication

interface designed to be implemented on multiple distributed

memory machines in a portable and efficient manner. BLACS

can be built on top of the PVM (Parallel Virtual Machine) [9]

or MPI (Message Passing Interface) [10] communication li-

braries. Today, MPI dominates HPC communication interfaces,

although alternatives do exist.

ScaLAPACK built on these underlying components that

provide abstract matrix operations. Implementations of high

performance BLAS are provided by vendors or open source

projects as new hardware became available. Support for newer

network infrastructures was left to other projects such as

the MPI implementations. The PBLAS routines made the

transition from shared memory LAPACK algorithms to dis-

tributed memory ScaLAPACK implementations a relatively

direct translation operation. The longevity of ScaLAPACK is

in a great part due to the use of an appropriate set of lower

level building blocks, which were then implemented on newer

architectures by vendors.

B. Task-based libraries

While (Sca)LAPACK1 blocks the matrix to achieve high

performance, it uses a “fork-and-join” model, where the main

thread issues a large BLAS operation to be done in parallel

(“fork”), then the threads or MPI ranks synchronize (“join”).

This creates unnecessary artificial synchronization points, re-

ducing the achievable performance.

The PLASMA [11] and FLAME [12] libraries popularized

linear algebra algorithms where the data is represented as

collections of contiguous tiles, using a runtime scheduler to

track data-tile dependencies between tasks and schedule tasks

when their data-tiles are ready. This eliminates artificial syn-

chronization points inherent in (Sca)LAPACK’s fork-and-join

model. FLAME uses its own SuperMatrix runtime. Originally

PLASMA used the home-grown QUARK runtime scheduler,

which was later replaced by OpenMP tasks when OpenMP 4.5

added data dependencies [13]. This works well on a variety

of systems, but the large task graph was found to overwhelm

OpenMP schedulers on heavily accelerated systems using

Intel Xeon Phi, which can only be exacerbated in distributed

environments with multiple accelerators per node.

DPLASMA [14] extended the PLASMA algorithms to

distributed environments via the PaRSEC runtime system [15],

with GPU accelerator support using CUDA. In DPLASMA, a

number of algorithms use a Parameterized Task Graph (PTG)

to describe the tasks and dependencies [16], where each task

internally knows all its successor tasks via a formal state-space

description. In this representation, the task dependencies do

not need to be inferred at runtime and a PTG can be efficiently

executed. However, algorithms that make runtime decisions

based on data, such as LU with partial pivoting, are easier to

express using the less efficient but more intuitive Insert Task

interface, which is similar to OpenMP tasks and has similar

scalability concerns.

Chameleon [17] extended PLASMA algorithms differently

to support various runtime systems: QUARK, OpenMP, PaR-

SEC, or StarPU, with PaRSEC and StarPU supporting dis-

tributed environments and GPU accelerators using CUDA. Use

of advanced runtimes in DPLASMA and Chameleon has been

a successful strategy. The main difficulty is that it is tied to

1We use “(Sca)LAPACK” for discussion that applies to both LAPACK and
ScaLAPACK, and “(D)PLASMA” for both PLASMA and DPLASMA.
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the runtime, which often requires close collaboration with the

runtime developers. For instance, adding ROCm or oneAPI

support likely requires first adding this support to the runtime.

MAGMA [18] is a library for single-node GPU-accelerated

linear algebra, with current ports to CUDA and ROCm. While

it does not use a runtime scheduler, it uses similar techniques

such as a lookahead update to overlap tasks on the CPU with

tasks on the GPU and remove artificial synchronizations.

C. GPU platforms

NVIDIA was the first vendor to offer general-purpose GPU

programming via their CUDA language [19], as well as BLAS

and LAPACK-style linear algebra routines in their cuBLAS

and cuSOLVER libraries. They were also among the first to

offer batched BLAS routines.

As a counterpart to NVIDIA’s CUDA platform, AMD

developed the Radeon Open Compute (ROCm) GPU ecosys-

tem [20]. ROCm is open-source and has several math li-

braries including rocBLAS, rocSOLVER, and rocSPARSE.

AMD also developed the HIP (Heterogeneous Interface for

Portability) layer on top of the ROCm and CUDA ecosystems.

For instance, the hipBLAS library wraps either cuBLAS or

rocBLAS. The HIP programming language closely follows

CUDA, so that it can be compiled for either platform, allowing

developers to write portable code to run on AMD and NVIDIA

GPUs.

A third platform is provided by SYCL, which is an open

standard for GPU computing in C++ [21] managed by the

Khronos Group and originally targeting OpenCL, but now

supporting multiple backends. Intel adopted SYCL for their

GPUs and extended it in their DPC++ (Data Parallel C++)

compiler. Building on DPC++, Intel developed the oneAPI

libraries [22], including the oneMKL (Math Kernel Library).

These three ecosystems comprise the U.S. Department of

Energy’s current and upcoming top systems: Summit and

Perlmutter using NVIDIA GPUs, Frontier using AMD GPUs,

and Aurora using Intel GPUs. Therefore, these platforms have

been the current focus of SLATE’s porting efforts.

III. DESIGNING FOR THE FUTURE

The SLATE project has the goal of creating a high per-

formance library that is portable to new hardware platforms.

To achieve this, SLATE builds on a number of layers and

abstractions, as shown in Figure 1, much as ScaLAPACK did.

A. OpenMP tasking and MPI communication

SLATE uses OpenMP as its runtime scheduler, as PLASMA

does, which provides a portable standard to rely on. In the

PLASMA algorithms, tasks operate on a tile-by-tile basis,

each task updating usually one or two tiles. This results in an

O((n/nb)
3) task dependency graph, for a matrix of dimension

n with block size nb, which can be daunting for large matrices

in a distributed environment. For instance, in the Cholesky

factorization diagrammed in Figure 2, PLASMA would have

a task for each colored tile. In contrast, in SLATE these indi-

vidual tile operations are aggregated into super-tasks, yielding

... ......

Lookahead
Update

Lookahead
Update

Panel

Panel

Trailing Matrix
Update

On CPU Host
Nested OpenMP
tasks calling BLAS

On GPU Devices
Batched BLAS

Tile operations

herkpotrf

trsm gemm

Trailing Matrix
Update

Fig. 2. Super-tasks with dependencies in SLATE, for the Cholesky factoriza-
tion. Super-tasks are dispatched to either the CPU or GPU.

a much coarser granularity that tracks dependencies between

block columns and block updates, resulting in an O(n/nb)
task dependency graph as illustrated by the large gray blocks

in Figure 2. These super-tasks can then schedule fine-grained

tasks on tiles in a variety of ways, including OpenMP tasks

without dependencies, OpenMP nested parallelism, or batched

BLAS on the CPU or the GPU. Scheduling super-tasks this

way yields many of the advantages of finer grained tasks

– reducing artificial synchronizations, overlapping tasks, and

overlapping communication with computation – in an easy-to-

program manner with the convenience of OpenMP compiler

pragmas.

Using a node-level runtime instead of a distributed runtime

means that SLATE must manage its own communication. Due

to its ubiquity and familiarity to developers, SLATE directly

uses the MPI standard for communication, unlike ScaLAPACK

which had the BLACS layer.

B. BLAS++ and LAPACK++ CPU portability layer

A key layer for portability in SLATE are the new BLAS++

and LAPACK++ libraries developed to wrap around the vendor

optimized BLAS and LAPACK libraries. These are distributed

as independent C++ libraries that can be used by applications

other than SLATE. Major goals include making code more

portable by hiding differences between Fortran compilers,

enabling template code by smoothing differences between real-

valued and complex-valued routines, and simplifying the use

of BLAS and LAPACK routines to improve productivity.
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The Fortran BLAS standard continues to provide portable

performance across different CPUs, with both sequential and

multi-threaded versions available. With some caveats, it is

portable across different CPU platforms. The caveats are

mostly related to things unspecified in the Fortran standard

regarding the application binary interface (ABI). Fortran 2003

can be used to export a C-compliant interface, resolving these

issues, with a C++ interface layered upon that. We chose to

handle all the issues in C++ to avoid depending on the Fortran

compiler used for the BLAS library.

A primary role of BLAS++ is to provide C++ calling

conventions, instead of the C interface to BLAS provided by

CBLAS, or the Fortran conventions in directly calling BLAS.

Minimally, this means scalars are passed by value instead of by

pointer, and the spelling of routines in the Fortran ABI is hid-

den, whether the convention is dgemm_, DGEMM, or dgemm.

BLAS++ deals with any peculiarities of the Fortran BLAS

implementation, such as whether single-precision routines like

sdot return a single-precision or double-precision result (an

oddity in f2c, CLAPACK2, and macOS Accelerate), or how

string values are passed to Fortran, a long unappreciated issue

in CBLAS and LAPACKE [23].

BLAS++ goes further, removing the initial letter in BLAS

routines signifying the data type (“d” in dgemm), and over-

loading blas::gemm for different data types that dispatch

to sgemm, dgemm, cgemm, or zgemm for single (float),

double, complex-single, or complex-double, respectively. It

can potentially support other precisions such as half and quad.

This overloading is critical to enable templating in SLATE, by

making SLATE’s code identical for all data types.

A second goal is to handle real and complex values in

an identical fashion. For instance, in the traditional BLAS,

there are [cz]herk routines3 for a complex-Hermitian rank-

k update, and [cz]syrk routines for a complex-symmetric

rank-k update, but only [sd]syrk routines for real valued

matrices, since a real-Hermitian matrix is typically just called

symmetric. Instead, BLAS++ provides both blas::herk
and blas::syrk for all data types; in the real case both

blas::herk and blas::syrk map to [sd]syrk. Again,

this is critical for templating in SLATE. For instance, Cholesky

can call blas::herk for all data types, whereas in non-

templated libraries like LAPACK and (D)PLASMA, routine

names need to be translated from [cz]herk to [sd]syrk
when translating code from complex to real-valued.

BLAS++ rectifies other examples where BLAS or CBLAS

treats real and complex values differently. CBLAS passes real

scalars by value, but complex scalars by pointer; BLAS++

always passes scalars by value:

// CBLAS: real alpha is passed by value.
cblas_sscal( n, alpha, x, incx );

2CLAPACK is a translation of LAPACK into C using the Fortran to C
translator f2c, but keeping Fortran calling conventions. LAPACKE is a library
of C wrappers around LAPACK, similar to CBLAS.

3Henceforth, we will use [..] regular expression syntax as shorthand for
multiple names, in this case, cherk and zherk.

// CBLAS: complex alpha is passed as pointer.
cblas_cscal( n, &alpha, x, incx );

// BLAS++: alpha is always passed by value.
blas::scal( n, alpha, x, incx );

CBLAS returns real values, but passes complex values as

output arguments. In Fortran BLAS, whether complex values

are returned or passed as a hidden output argument depends

on the Fortran compiler. BLAS++ always returns complex

values the same as real values, which primarily affects the

dot product:

// CBLAS: real result is returned from dot.
result = cblas_sdot( n, x, incx, y, incy );

// CBLAS: complex result is output argument.
cblas_cdotc_sub( n, x, incx, y, incy, &result );

// BLAS++: result is always returned from dot.
// Also, blas::dot means conjugated, xˆH y;
// use blas::dotu for unconjugated, xˆT y.
result = blas::dot( n, x, incx, y, incy );

For asynchronous GPU routines, it is advantageous for the

result to be an output argument, but again real and complex

are treated the same:

// BLAS++ GPU routine: result is output argument.
blas::dot( n, x, incx, y, incy, &result, queue );

BLAS++ uses enum values for options such as uplo, side,

and transpose, similar to enums in CBLAS, which in tradi-

tional BLAS are characters. This provides a measure of type

safety, consistency, and clarity to the code. With a call like:

dtrsm( "L", "L", "N", "U",
m, n, alpha, A, lda, B, ldb );

it is not immediately obvious what the options mean without

remembering the exact order of arguments, while with:

blas::trsm( Side::Left, Uplo::Lower,
Op::NoTrans, Diag::Unit,
m, n, alpha, A, lda, B, ldb );

the arguments are obvious. Internally these enums are mapped

to characters for calling Fortran BLAS, and to the appropriate

enums for calling cuBLAS, rocBLAS, and oneMKL.

BLAS++ uses the standard C++ std::complex
data type, rather than a library-specific data type such

as lapack_complex_double, or type stripping using

void* as CBLAS does. This provides type safety and avoids

the need for casting data types. One oddity in the C++

standard library is that std::conj applied to a real value

returns a complex value, even though the imaginary part

will be zero. BLAS++ provides blas::conj that returns a

real value in this case, making it a no-op, again to simplify

templating.

All of this applies equally to the LAPACK++ library.

Additionally, LAPACK routines often requires workspaces,

with a query for the optimal workspace size. LAPACK++

hides the workspaces, doing the query and allocating memory

internally as needed, simplifying application code. If needed

for performance reasons, it would be easy to add versions that

take workspaces using C++ overloading.
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Thus, the BLAS++ and LAPACK++ libraries greatly sim-

plify development in SLATE and other applications. They

make code both more portable and enable maintaining a single

templated version rather than separate versions for each data

type. Our strategy in SLATE is to code for the complex-valued

version, and the real-valued template instantiations generally

work automatically.

C. BLAS++ and LAPACK++ GPU portability layer

In addition to wrapping the Fortran BLAS and LAPACK

API, the BLAS++ and LAPACK++ libraries also provide

wrappers around the various GPU BLAS and LAPACK

APIs available in the CUDA cuBLAS/cuSOLVER, ROCm

rocBLAS/rocSOLVER, and oneAPI oneMKL libraries. This is

a more difficult porting challenge than the CPU BLAS, which

already follow the Fortran BLAS standard. While the various

GPU BLAS libraries loosely follow the BLAS standard, they

all have different routine names, different data types, different

enum constants, and take different arguments for streams or

queues. Again, BLAS++ aims to smooth over these differ-

ences, providing a single interface for all the various platforms.

This was critical to enable SLATE to be easily ported to

different platforms.

Other libraries also aim to be portability layers for math

libraries. MAGMA provides a portability layer across cuBLAS

and rocBLAS, which served as a model for BLAS++ and

LAPACK++. However, MAGMA lacks C++ features such as

overloading for different precisions. AMD’s HIP (Heteroge-

neous Interface for Portability) libraries form a layer across

CUDA and ROCm libraries, including the HIP language for

writing kernels and the hipBLAS, hipSOLVER, etc. libraries

that sit on top of cuBLAS, cuSOLVER, etc. for CUDA GPUs,

and on top of rocBLAS, rocSOLVER, etc. for ROCm GPUs.

However, HIP lacks support for Intel oneAPI. Intel’s oneAPI

libraries also have a goal of being a portable library across

various platforms, with ROCm and CUDA builds available,

but currently have a dependency on Intel’s DPC++ compiler

and library [24]. Thus it is unfortunately still unclear if true

portability across all three major GPU hardware architectures

(NVIDIA, AMD, Intel), as well as future platforms, will be

achieved by either of these projects.

In contrast, BLAS++ and LAPACK++ are designed to have

minimal dependencies and work with any recent C++ compiler

that the underlying vendor libraries supports. They are also

easily ported to new GPU BLAS libraries.

To support GPUs, BLAS++ introduces a Queue class that

wraps around either a CUDA stream and cuBLAS handle for

CUDA, HIP stream and hipBLAS handle for ROCm, or SYCL

queue for oneAPI. When calling GPU routines in BLAS++,

the main difference from CPU routines is the addition of this

queue argument at the end, and that pointers point to GPU

device memory:

// BLAS++ call on CPU. x is in CPU memory.
blas::scal( n, alpha, x, incx );

// BLAS++ call on GPU. dx is in GPU device memory.
blas::scal( n, alpha, dx, incx, queue );

Having one queue object, instead of a separate BLAS handle

and associated stream, simplifies the use compared to cuBLAS

and rocBLAS. Unlike cuBLAS and rocBLAS, a BLAS++

queue knows what device it is for, so there is no need to

call cudaSetDevice or hipSetDevice before calling a

device routine. This matches SYCL and oneAPI, which do

not have the concept of a “current device”. It also makes

programming simpler and safer, as calls always correctly

execute on the device associated with the queue. Initially,

BLAS++ also provided a set_device function, which af-

fected routines that previously did not take a queue such as

device_malloc; however this use is being phased out.

Due to differences in the vendor libraries, several design

choices need to be made. cuBLAS and rocBLAS take scalars

by reference as pointers, to provide an extra level of efficiency

when the scalars reside in GPU memory, while oneMKL

takes scalars by value. This unfortunately forces a portable

interface to use a mode that all three platforms support,

namely BLAS++ takes scalars by value on the CPU. It

then passes these scalars to cuBLAS or rocBLAS via CPU

pointers, or passes them by value to oneMKL. This can reduce

performance, for instance in QR factorization, passing by value

forced us to make an extra CPU copy of the tau vector,

which could otherwise be accessed directly on the GPU using

pointers. We can add overloaded versions of routines that

takes scalars as GPU pointers, but it does not appear to be

as portable and might introduce the need for #ifdef or

if constexpr conditions into SLATE’s code, something

we try to minimize.

CUDA and ROCm both index GPU devices as non-negative

integers. SYCL does not index GPU devices; the user must

query for a list of devices, which returns objects representing

each device. For multi-GPU codes, this makes iterating over

GPU devices cumbersome, and porting across platforms more

difficult. Therefore, BLAS++ enumerates SYCL devices inter-

nally, and presents them as indexed by a non-negative integer

the same as in CUDA and ROCm.

Recently we expanded LAPACK++ to cover some

LAPACK-style routines on the GPU, namely Cholesky, LU,

and QR factorizations (potrf, getrf, and geqrf, respec-

tively). These are provided in cuSOLVER, rocSOLVER, and

oneMKL. In cuSOLVER, these take a workspace. GPU mem-

ory allocation is relatively expensive, often imposing extra

synchronization. Therefore, unlike in the LAPACK++ CPU

implementation that hides workspaces, for GPU routines the

workspace and workspace query is exposed in the LAPACK++

interface. If workspaces are not needed for an implementation,

the query simply returns zero. cuSOLVER also requires a cu-

SOLVER handle, separate from the cuBLAS handle, whereas

rocSOLVER uses the rocBLAS handle, and oneMKL uses just

the SYCL queue. To support cuSOLVER, LAPACK++ sub-

classes the BLAS++ Queue to add the cuSOLVER handle.

On ROCm and SYCL platforms, the LAPACK++ Queue adds

nothing to the BLAS++ Queue. This solver handle is allocated

on its first use, so it adds no overhead if cuSOLVER routines

are never called.
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Fig. 3. Block outer-product matrix multiply, implemented as single gemm,
batched gemm on tiles, or individual tile gemms in separate streams, on
NVIDIA V100 GPU.

D. Batched BLAS

In recent years batched routines [25], which take a set of

matrices and perform the same operations on all of them

in parallel, have become popular. The cuBLAS, rocBLAS,

and oneMKL vendor libraries supply some batched BLAS

routines, but not necessarily all the Level 3 BLAS routines

(i.e., batched interfaces to gemm, hemm/symm, herk/syrk,

her2k/syr2k, trsm, and trmm). For the routines where

the vendor has not provided a batched interface, BLAS++

creates batched implementations that call the vendor’s non-

batched routines in parallel using multiple streams or queues.

A BLAS++ Queue can actually have multiple underlying

streams or queues that it uses internally; externally, it operates

as an in-order queue.

The motivation for using batched BLAS in SLATE comes

from updates in typical matrix factorizations. In LU factoriza-

tion, the trailing matrix update is a matrix-multiply of the panel

block-column and a block-row to update the trailing matrix

(similar to Figure 2). In ScaLAPACK, this is accomplished

with a call to pdgemm, which in turn calls dgemm. In SLATE,

we divide the matrix into tiles and perform a gemm for each

output tile. Since all output tiles are independent here, we can

batch the gemm operations together for increased performance.

Figure 3 compares the performance of doing this update

as a single gemm (blue line), as a batched gemm on tiles

(orange line), or as individual tile gemms in multiple streams

(green line). We see that at well chosen block sizes, which

for cuBLAS are multiples of 64 starting at 192, the batched

gemm matches the performance of the single gemm. Thus

we gain the advantages of storing the matrix by tiles [1]

that can be individually allocated, copied, and operated on,

without sacrificing performance. For tile-based frameworks,

multi-streaming individual gemms works well for large block

sizes but has significantly lower performance for small block

sizes.

E. C++ Templates and Abstractions

SLATE uses C++ templates extensively in its algorithms

and code, in support of productivity and portability. Using

templates improves productivity by reducing the amount of

code that needs to be written and maintained. And templates

improve portability by enabling high level algorithms to be

targeted to various implementations under the covers.

The obvious use of templates is to support the four classic

floating point data types – float, double, complex-float, and

complex-double – with a single templated code. Today, this

can be extended to other precisions such as 16-bit half

precision (IEEE or bfloat “brain float” [26]), double-double,

and quad precision. SLATE algorithms are written assuming

complex values, with operations like conj automatically sim-

plifying when the code is instantiated for real values.

SLATE also templates its algorithms on the target imple-

mentation, whether that is on the CPU host using OpenMP

tasks, on GPU devices using batched BLAS, or another

implementation. This makes the top-level algorithm largely

independent of the lower-level implementation, and allows

adding new implementations without changing application

code that uses SLATE.

A user can further select among different algorithms by

passing an option to SLATE’s routines, in contrast to other

libraries where each new variant adds a new routine to the

public API. For instance, LAPACK has four least squares

routines, depending on the implementation:

• QR (dgels),

• SVD using divide-and-conquer (dgelsd),

• SVD using QR iteration (dgelss),

• complete orthogonal factorization (dgelsy).

SLATE has only one top-level least squares routine (gels),

which can call various implementations (currently House-

holder QR or Cholesky QR) based on an option passed to the

routine. MAGMA has different routines depending on whether

the matrix originates in CPU memory (e.g., magma_zpotrf)

or GPU memory (magma_zpotrf_gpu), and for multi-GPU

variants (magma_zpotrf_m, magma_zpotrf_mgpu). In

SLATE, the matrix object tracks where tiles are distributed

across multiple nodes in CPU host memory or GPU device

memory, and all algorithms are built to be multi-GPU, so there

is only one version to maintain. This also makes SLATE much

easier for an application to use.

In addition to templates, SLATE uses C++ object-oriented

abstractions, such as Matrix and Tile classes, that also greatly

reduce the amount of code and simplifies programming. In-

stead of the 19 parameters of the PBLAS pdgemm routine,

SLATE’s gemm routine takes just 5 parameters: scalars alpha

and beta, and matrices A, B, and C. The transposition

operations, dimensions, offsets, data pointers, and context are

all encapsulated in the Matrix objects. The top-level code can

even ignore the transposition operation, which is handled at a

low level when calling BLAS++.
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IV. PORTABILITY

A. OpenMP Issues

Following the OpenMP standard gives us a portable runtime

to work with. We did find that different compilers or compiler

versions seemed to make different implicit choices about

whether variables are private or shared. For instance, in:

for (int i = 0; i < n; ++i) {
#pragma omp task
my_function( i );

}

whether i is considered private (desired) or shared (causes

errors) seems to vary, which could be an OpenMP compliance

issue. The recommendation is to add default( none )
and always declare whether variables are private or shared:

#pragma omp task default( none ) \
firstprivate( i ) shared( A )

However, on some platforms adding default( none )
causes compile errors. Using an assert inside an OpenMP

task required declaring the C++ constant __func__
for g++ versions ≤ 9. Referencing an MPI_Datatype
required declaring Open MPI internal globals such

as ompi_mpi_double. Our solution is to define a

macro, slate_default_none, that we can set to

default( none ) for test builds to check that variables

have explicit firstprivate and shared clauses, but the

macro is empty for general builds:

#pragma omp task slate_default_none \
firstprivate( i ) shared( A )

B. SLATE Port to AMD Platform

SLATE was initially written to support NVIDIA’s CUDA

and cuBLAS for GPU acceleration. As the ROCm software

stack will be used on upcoming exascale systems, such as

Frontier, we expanded SLATE’s GPU support to include AMD

GPUs.

The strategy we employed in SLATE is to leverage

the BLAS++ library as a portability layer to run on

AMD and NVIDIA GPUs. We replaced all the CUDA

and cuBLAS function calls by portable abstractions in the

BLAS++ library. For example, cudaStream_t stream
and cublasHandle_t cublas_handle are replaced by

the BLAS++ wrapper blas::Queue queue, which pro-

vides CUDA and ROCm backends. BLAS++ also handles

setting the device as needed based on the queue, eliminating

uses of cudaSetDevice. Because of the close similarity

between CUDA and ROCm semantics, few issues arose in

porting to ROCm.

C. SLATE Port to Intel Platform

SLATE has an experimental port to Intel accelerators, which

is well underway and expected to be released when Intel’s

HPC GPUs become available. Intel provides the oneAPI set of

tools and libraries as a unified, multi-architecture programming

model path for developing high-performance, data-centric ap-

plications across diverse architectures. For the purposes of

SLATE, we are using the SYCL interfaces to manage GPU

access and memory allocation and using the oneMKL math

library for optimized BLAS and LAPACK routines.

There are some differences between SYCL and the earlier

approaches that needed to be addressed. For SYCL, all calls

need to be provided with a SYCL queue, which implies the

device to execute on, whereas in the earlier CUDA and ROCm

implementation, SLATE used a set_device call to set the

current device, notably before GPU memory allocations. To

accommodate SYCL, a queue argument was added to the

BLAS++ memory allocation interface, and the set_device
call moved into BLAS++. The BLAS++ set_device func-

tion is deprecated.

For SYCL, the sequence of calls submitted to a SYCL

queue will (by default) execute asynchronously and out-of-

order. Each oneAPI call generates a SYCL event, which

may be used for synchronizing enqueued tasks. However, the

SLATE programming style expects the device calls to execute

in the order that they are submitted. In order to match that

expected behavior, the SYCL queues are initialized using the

in_order property to provide in-order execution.

Beyond these changes, which are contained mostly in the

BLAS++ layer, the SLATE algorithms did not require any

major changes to adapt to the Intel oneAPI platform. This

demonstrates the careful design in SLATE that allows the

platform porting changes to be very localized to specific layers.

D. Portability of Device Kernels in SLATE

SLATE has made a substantial effort to minimize the GPU

accelerator specific code, obtaining a majority of accelerator

functionality from the BLAS++ and LAPACK++ libraries.

However, a small set of useful routines remain that are not

contained in BLAS++ and LAPACK++ and need to run on

the accelerators. This includes routines for setting initial matrix

values, adding, copying, scaling, and transposing matrices, and

computing various matrix norms. These are all memory-bound

kernels that simply loop once over the matrix entries, and

so are relatively easily ported. In SLATE, all these routines

were initially implemented in CUDA. ROCm/HIP support for

AMD GPUs was added to SLATE by using the hipify tool

to automatically translate the CUDA code. This is integrated

into SLATE’s Makefile and CMake build systems, so any

updates to the CUDA code are automatically translated to HIP,

significantly reducing the effort to maintain two versions.

Only minor differences between CUDA and HIP have

arisen. One is the device implementation of complex abs,

which in ROCm was not numerically robust for numbers

that could have intermediate overflow. We substituted an

implementation based on LAPACK, which is the only case

where our kernel code has an #ifdef __NVCC__ to use

different code for CUDA and HIP. Another is that the x *= y
operator generated a compiler error for complex numbers in

ROCm; simply substituting x = x * y solved the issue.

To provide oneAPI support, SLATE has implemented

OpenMP device-offload kernels for these routines. Currently,
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these OpenMP device-offload kernels are functionally equiv-

alent to the other implementations, though some do not yet

achieve the same performance levels. Much of the performance

difference is because the CUDA and ROCm kernels use high-

speed GPU local shared-memory regions to hold buffers for

accumulating partial results, which in CUDA equate to a user-

managed L1 cache. These memory regions are difficult to

specify and access under OpenMP 4.5. However, the OpenMP

5.0 specification includes predefined memory allocators, so

that different kinds of memories can be supported. As full

OpenMP 5.0 compiler implementations become more com-

mon, SLATE should be able to use these new memory

allocators (e.g., omp_pteam_mem_alloc) to improve the

performance. These OpenMP device-offload kernels may even-

tually reach sufficient performance to allow SLATE to remove

the remaining CUDA and ROCm vendor-specific code, making

SLATE more device independent and easily portable to new

platforms.

V. PERFORMANCE RESULTS

A. Experimental Setup

To validate the portability of SLATE, we performed experi-

ments on two systems: the NVIDIA-based system Summit [27]

and the AMD-based system Crusher [28], both located at

the Oak Ridge Leadership Computing Facility (OLCF). Each

node of Summit has two 22-core IBM POWER9 CPUs, six

NVIDIA V100 GPUs, and 512 GiB of DDR4 memory. A

V100 GPU has 16 GiB HBM2 memory and a theoretical peak

performance of 7.8 Tflop/s for double-precision arithmetic.

Crusher is an early-access system with the same node

hardware as the upcoming Frontier exascale system. Each

node of Crusher has one 64-core AMD EPYC 7A53 CPU,

four AMD MI250X GPUs, and 512 GiB DDR4 memory. An

MI250X GPU has two Graphics Compute Dies (GCDs); each

GCD has 64 GiB HBM2e memory and a theoretical peak

performance of 26.5 Tflop/s for double-precision arithmetic.

An MI250X GPU has a network interface chip (NIC) that

connects with Infinity Fabric so that MPI messages can be

sent directly between GPUs over the network without passing

through the host CPU memory.

One MPI process per GPU for Summit and per GCD for

Crusher is used in all experiments. Table I displays the mod-

ules that are explicitly loaded and the software environment

used on these systems.

B. GPU-Aware MPI

Due to the integrated NIC on the AMD MI250X GPU, it

is essential to store data in the GPU memory and perform

communications without including the host CPU. The GPU-

aware MPI library on the Crusher system provides such

functionality. We investigate the performance impact of ex-

ploiting this property in the parallel gemm operation. Figure 4

displays the performance effect of using GPU-aware MPI

during parallel gemm operations. Weak scalability experiments

are performed for varying number of MPI processes running

on one node of Crusher. The largest square matrices of the

TABLE I
SOFTWARE ENVIRONMENT FOR EACH SYSTEM.

Summit Crusher
gcc/9.1.0 rocm/5.1.0
essl craype-accel-amd-gfx90a

Modules cuda/11.5.2
(explicitly spectrum-mpi
loaded) netlib-lapack

netlib-scalapack
python

Compiler GCC v9.1 Cray clang v14
MPI Lib. IBM Spectrum v10.4 Cray MPICH v8.1
Math Lib. (CPU) IBM ESSL v6.3 Cray LibSci v21.08

2 3 4 5 6 7 8
Number of MPI processes

20

40

60

80

100

T
fl
op
/s

27

41

54

63

76
81

99

17 19
25

20

28 26

36

GPU-aware MPI

Non-GPU-aware MPI

Fig. 4. Performance impact of using GPU-aware MPI on one node of Crusher.
gemm operation is performed. One MPI process per GCD is used. Using GPU-
aware MPI provides significant speedup.

same size are used for each number of MPI processes. As

seen in the figure, communicating matrices directly from the

device memory instead of communicating using host memory

results in significant performance improvements. This avoids

allocating temporary tiles on the CPU, copying data to the

CPU, then after the MPI send/recv, copying data back to

the GPU. Using the Matrix and Tile abstractions in SLATE,

enabling use of GPU-aware MPI was a simple code change,

essentially just specifying the device ID of the tile used for

MPI communication, rather than using the default host ID.

GPU-aware MPI is used for communication operations in

gemm and potrf experiments on Crusher in the rest of the

paper.

However, enabling GPU-aware MPI does raise portability

issues. Enabling it may require setting an option in the job

scheduler (such as adding --smpiargs="-gpu" to jsrun

on Summit) or setting an environment variable (such as

MPICH_GPU_SUPPORT_ENABLED=1 on Crusher). There is

not currently a standard mechanism in MPI to query whether

it is GPU-aware or not, and a non-GPU-aware MPI generally

segfaults if given pointers to GPU memory. Hence we will

need to add a compile-time or run-time mechanism for the

user to instruct SLATE to assume use of GPU-aware MPI.
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Fig. 5. Weak scaling performance of SLATE’s double-precision gemm
operation on Summit and Crusher.
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Fig. 6. Weak scaling performance of SLATE’s double-precision potrf
operation on Summit and Crusher.

C. Performance Portability Results

We conduct experiments on Summit and Crusher to empir-

ically show that SLATE obtains decent performance on both

systems with completely different architectures and software

stacks. Figures 5 and 6 present the performance of the gemm
and potrf operations, respectively, on 1, 2, 4, 8, and 16

nodes of both systems. We report weak scaling results to

show the best performance that SLATE can achieve. The

largest square matrices of the same size are used for gemm
and similarly the largest matrix is used for potrf for each

number of nodes. The commands for running SLATE on

one node of the respective system are shown in Figure 7,

showing example block sizes nb and grids. These commands

consist of a command for the batch job scheduler software

and another command to run the SLATE tester. The best tile

size nb that is found empirically is used for each linear algebra

operation and system. Since the mix of communication and tile

BLAS operations changes for different matrix operations, the

optimal block size can vary, typically in the range nb = 256

to 1024, though it may be larger for some operations such

as gemm. Compared to a typical ScaLAPACK block size of

nb = 64, these larger block sizes provide a higher compute

intensity (flops per memory access) required for good GPU

performance.

Figure 5 shows the performance of gemm on Summit and

Crusher. On Summit the single-GPU sustained peak perfor-

mance of the double-precision gemm operation in the CUDA

library on one V100 is 7.57 Tflop/s. For different number

of nodes, SLATE’s multi-node gemm performance per V100

varies between 79% and 85% of the sustained single-gpu peak

gemm performance. Regarding Crusher, the sustained peak

performance of the gemm operation in the rocBLAS library

on one GCD of a MI250X highly depends on the tile size nb

and the transposition of the input matrices. In the case when

A is non-transposed and B is transposed, with nb = 2048,

the single-GCD sustained peak performance of the double-

precision gemm operation in the rocBLAS library on one GCD

of one MI250X is 24.5 Tflop/s. In the case when both A and

B matrices are non-transposed, the peak performance drops

to 18 Tflop/s. For different number of nodes, SLATE’s multi-

node gemm performance per GCD varies between 58% and

68% of the single-GCD sustained peak gemm performance.

Figure 6 shows the performance of potrf on Summit

and Crusher. For different number of nodes, SLATE’s double-

precision potrf performance per device varies between 42%

and 53% of the sustained peak gemm performance on Summit.

SLATE’s double-precision potrf performance per device

varies between 28% and 32% of the sustained peak gemm
performance on Crusher. We expect as the ROCm software

stack matures, improving the performance of batched gemm
and other routines, and as we continue to tune and optimize the

SLATE code for this new architecture, that the performance

will improve. We have already seen significant improvements

since earlier versions of ROCm.

VI. CONCLUSION

SLATE follows in the footsteps of LAPACK and ScaLA-

PACK in using blocked algorithms and leveraging vendor-

optimized BLAS to achieve high performance in a portable

fashion. It differs from these previous efforts in the level

of complexity of today’s machines: multi-core CPUs, mul-

tiple GPUs per node, complex memory hierarchies, machines

over-provisioned for floating point computation compared to

memory and network bandwidth, and a variety of vendor and

community languages and libraries for programming GPUs.

We apply the same portability techniques as in the past, up-

dated for today’s ecosystems: using industry standards where

available in C++, OpenMP, and MPI; minimizing vendor-

specific code in CUDA and HIP; and developing a portability

layer in the BLAS++ and LAPACK++ libraries around vendor-

optimized BLAS and LAPACK, which now includes both CPU

and GPU implementations. Early results on forthcoming AMD

systems show the promise that we can achieve both portability

and good performance. The porting effort to Intel systems

shows the robustness of the design, and we look forward to
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Commands run on Summit for one node (42 cores, 6 GPU devices, 6 MPI ranks):
jsrun --nrs 6 --tasks_per_rs 1 --cpu_per_rs 7 --gpu_per_rs 1 -brs
./tester --dim 16384:524288:16384 --nb 896 --grid 3x2 --target d --repeat 3 gemm

./tester --dim 16384:524288:16384 --nb 896 --grid 3x2 --target d --repeat 3 potrf

Commands run on Crusher for one node (64 cores, 8 GPU devices, 8 MPI ranks):
srun --nodes 1 --ntasks 8 --cpus-per-task 8 --gpus-per-node=8 --gpu-bind=closest
./tester --dim 16384:524288:16384 --nb 2048 --target d --repeat 3 gemm

./tester --dim 16384:786432:16384 --nb 320 --target d --repeat 3 potrf

Fig. 7. Weak scaling performance of gemm on Summit and Crusher.

the availability of Intel’s high-performance GPUs. The modern

templating and abstractions in C++ and the task scheduling

in OpenMP allow us to achieve these goals in a relatively

compact code, avoiding significant code complexity and code

duplication for ease of maintenance and high developer pro-

ductivity.
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REPRODUCIBILITY APPENDIX

A. Artifact Details

The experiments are performed on Summit and Crusher at

OLCF. Each node of Summit has two 22-core IBM POWER9

CPUs and six NVIDIA V100 GPUs. Each node of Crusher has

one 64-core AMD EPYC 7A53 CPU and four AMD MI250X

GPUs. Each MI250X GPU contains two GCDs, so eight GPU

devices are detected by the user code on a node. 1, 2, 4, 8,

and 16 nodes of these systems are used in the reported results.

The experiments are performed using the SLATE library.

The code is included in the artifact. There are two folders

named slate in total since the code run on Crusher is slightly

modified. This modified version uses device pointers for MPI

calls to enable GPU-aware MPI communications.

Two common linear algebra routines implemented in

SLATE are run on these two systems: Generalized Matrix-

Matrix Multiplication (gemm) and Cholesky factorization

(potrf). Double precision arithmetic is used.

B. Artifact

The artifact can be downloaded at this link: https://doi.org/

10.5281/zenodo.7003870. The artifact contains a folder for

each system as follows:

summit/
install-slate-on-summit.sh
run-slate-on-summit.sh
slate/

crusher/
install-slate-on-crusher.sh
run-slate-on-crusher.sh
slate/

Each folder has an installation script to install SLATE. The

installation scripts can be run as follows:

cd summit/
cd slate/
source ../install-slate-on-summit.sh

The installation script for Crusher

install-slate-on-crusher.sh can be run in

the same way. Note that these installation scripts must

be sourced since they load system modules and change

environment variables. These modules and environment

variables are also required by the experiments. The following

commands are used to reproduce the gemm and potrf results

on Summit:

cd summit/slate/
bsub ../run-slate-on-summit.sh

The following commands are used to reproduce the gemm and

potrf results on Crusher:

cd crusher/slate/
bash ../run-slate-on-crusher.sh

Note that the account numbers in run-slate-on-....sh
scripts must be set accordingly.

The largest number in the gflop/s column in the result

output is reported as the performance of the kernel operation

on a corresponding number of nodes of the system.
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