Parallel Compuuing 5 (1987} 175-185 175
Marth-Helland

A portable environment for developing
parallel FORTRAN programs *

J1. DONGARRA and D.C, SORENSEN

Marhenarics and Corpurer Soience Dioirion, Argonme Naviono! Laborarory, Argoene, [L SOM304544,
and Ceefer for Supercompriing Ressarch and Desslapaens, Univers rv of filinais @ Drbama-Chempaion,
Urbane, L &/800.2052 LA,

Abstract. The emergence of commencially producsd parallel compuarers has preatly inereased the problem of
prodtuciong iranspectable matbematical sediware, Exploiting these pew parallel capabalities has led (o extensicans
of existing langusges such a5 FORTRAN amd to proposals for the development of entirely new parallel
languages, We préseal an attempl at a short term solution i the transportability problem. The mativation for
developing the package has been 10 extend capabalitics beyond loop based parallelism and 10 provide a
canvenien? maching independent uwser interfoce. A packnge enlled SCHEDULE is described which pravides a
standard user inlerface 1o several sharsd memary paralle] machines. A user writss standard FORTRAN exle
and calls 3CHEDILE rowtines which express and enforce che Inrge grain data dependencies of his parallel
slgorithun, Machine deperdencies are intemal w0 SCHEDULE and change from one mackine 0 anciber but the
users code remains essentially the same across all such machines. The semantics and vsage of SCHEDULE are
deseribed and several examples of parallel algorichms which have been implemented wsing SCHEDULE are
presenied.

Keywaords, Parallel programming, porable implementation of parallel algerithms, muliiprocessor systems, the
package SCHEDULE.

1. Ingroeduction

Many new parallel computers are now emerging as commercial products [7]. Exploitation of
the parallel capabilities requires either extensions (0 an existing language such as FORTREAMN
or development of an entirely new language. A number of activities [11,12] are under way 1o
develop new languages that promise to provide the ability to exploit parallelism without the
considerable effort that may be required in using an inherently serial language that has been
extended for parallelism. We applaud such activities and expect they will offer a true solution
to the software dilemma in the future. However, in the short term we feel there is & need (o
confront some of the software issucs, with particular emphasis placed on transportability and
use of existing software,

Our interests lie mainly with mathematical software typically associated with scientific
computations, Therefore, we concentrate here on using the FORTRAN language, Fach vendor
of a parallel machine designed primarily for numerical calculations has provided its own
parallel extensicns (o FORTRAMN. These extensions have taken many forms already and are
usually dictated by the underlying hardware and by the capabilities that the vendaor fecls
appropriate for the wser. This has led to widely different extensions ranging from the ability to

¥ Work supported in part by che Applisd Mathematical Sciences subpropram of the Office of Energy Research, 115,
Drepartment of Encrgy, under Conlracts We31-108-Enp-38, DE-ACDS-S40R21400, and DE-FGHE-ESERE 01

0167-8191,/87 /53,50 © 1987, Elsevier Science Publishers B.Y. (Morth-Helland)

17 J. Dongarra, 0 Sovensen S Developing paralld Forean programs

synchronize on every assignment of a variable with a full empty property [9] 1o atlempls at
automatically detecting loop-based parallelism with a preprocessing compiler aided by user
directives [1]. The act of getting a parallel process executing on a physical processor ranges
[rom a simple “create’ stalement [9] which imposes the overhead of a subroutine call, o
“taskstart” [5] which imposes an overhead on the order of 10° machine cycles, to no formal
mechanism whatsoever [1). All of these different approaches reflect characteristics of underly-
ing hardware and eperating systems. It is too early to impose a standard on these vendars, il
it iz disconcerting that there is no agreement ameng any of them on which extensions should he
included, There is not even an agreed-upon naming convention for extensions thal have
identical functionality. Program developers interested in producing implementations of parallel
algorithms that will mn on a number of different paralle] machines are therefore faced with an
overwhelming task. The process of developing portable parallel packages is complicated by
additional factors that lie beyond each computer manufaciurer supplyving its own, very different
mechanism for parallel processing. A given implementation may require several different
communicating parallel processes, perhaps with different levels of granularity, An efficient
implementation may require the ability to dynamically start processes, perhaps Many more
than the number of physical processors in the systern. This feature is either lacking or
prohibitively expensive on most commercially available parallel computers. Instead, many af
the manufacturers have limited themselves to providing one-level loop-based parallalism.

This paper describes an environment for the transportable implementation of parallel
algorithms in a FORTRAN setting. By this we mean that a user's code is virwally identical for
each machine. The package, called SCHEDULE, can help a programmer familiar with a
FORTRAN programming enviromment to implement a parallel algorithm in a manner that will
lend itself o transporting the resulting program across a wide variety of parallel machines. The
package is designed to allow existing FORTRAN subroutines to be called through SCHEDULE,
without modification, thereby permitting vsers access to a2 wide body of existing library
software in a parallel setting. Machine intrinsics are invoked within the SCHEDULE package,
and considerable effort may be required on our part to move SCHEDULE from ane machine
1o another. On the other hand, the user of SCHEDULE is relieved of the burden of modifying
cach code he desires to transport from one machine to another.

Owur work has primarily hesn influenced by the work of Babb [2], Browne [3]. and Lusk and
Orverbeek [10). We present here ouwr approach, which aids in (he programming of explicitly
parallel algorithms in FORTRAN and which allows one to make use of existing FORTRAN
libraries in the parallel setting. The approach taken here should be regarded as minimalist: it
has a very limited scape. There are two reasons for this. First, the goal of portability of user
code will be less difficult to achieve. Second, the real hope for a solution to the soltware
problems associated with parallel programming lies with new programrming languages or
perhaps with the “right’ extension to FORTRAN. Our approach is expected to have a limited
lifetime. Its purpose is to allow us to explait existing hardware immediately.

. Terminolggy

Within the science of parallel computation thers seems to be no standard definition of lerms,
A certain terminology will be adopted for the sake of dialogus. It will not be *standard” and is
intended only 1o apply within the scope of this document,
- Frocesst A unit of computation, an independently executable FORTRAM subroutine to-
gether with calling sequence parametlers, common data, and externals;
— Task: A main program, processes, and a virlual processor;

L5 iowgarra, D0 Sarengen S Develaping pacallel Foerme programs 1m

— Virtwal processer: A processor designed o assume the identity of every process within 3
piven task (through an appropoate subroutine call);

— FProcessor: A phiysical device capable of exccuting a main program or a virtual processor;

— Khared data: Vanables that are read and sor written by more than one process (including
copies of processes);

— Data dependency: A siluation wherein one process {4) reads any shared data that another
process (8} writes, Thiz data dependency iz zatisfied when B has wrilten the shared data;

- Sehedwiabie process: A process whose data dependencies have all been satisfied.

3. Parallel programming ideas .

When designing a parallel algorithm one is required o describe the data dependencics,
parallel struciures, and shared vanables involved in the selution, Typically, zuch algonthms are
first designed at a concepiual level and later implemented in FORTREAN and its extensions.
Each manufacturer provides a different set of extensions and targers these extensions al
different implementation levels. For example, some manofacturers allow only test-and-set along
with spawn-a-process, while others allow concorrent execotion of different loop ierations.

Our attempt here §5 to allow the user to define the data dependencics, parallel structures,
and shared vamables in his applicavon and then o implement theze ideas i a FORTREAN
program written in terms of subroutine calls to our environment. Each set of subroutine calls to
the environment specilies the subrouline, or process (umit of computation), along with the
calling parameters and the data dependencies necessary to coordinate the parallel execution.

The basic philosophy here 15 that FORTEAN programs are naturally broken inte sub-
rouwtines that identify units of computation that are self-contained and that operate on shared
data structurss. This allows one o call on existing library subroutines in a paralle] setting
without modification, and without having o write an envelope arcund the library subrowtine
call in order to conform o some unusual data-passing conventions imposed by a given parallel
PrOgramming environment,

A parallel(izable) program 15 written in terms of calls to subroutines which, in principls, may
be performed either independently or according to data dependency requirements that the wser
is responsible for defining. The r@sult 15 a senal program that can run in parallel given a way 1o
schedule the units of computation on a system of parallel processors while obeving the daa
dependencies.

4. Parallel programming using SCHEDULE

The package SCHEIMILE requires a wser tn—r::p:u:if':' the subroutine calls along with the
execution dependencies in order o carry out a parallel computation. Each of these calls
represenis a process, and the user must take the responsibility of ensuring that the data
dependencies represented by the graph are valid, Thiz concept iz perbaps difficult o grasp
without some experience with writing parzllel programs. We shall try to explain it in this
section by example; in the [ellowing section we shall describe the undedying concepts and the
SCHEDULE mechanism.

To vze 3CHEDMUILE, one must be able 10 express (Le., program) an algorithm in terms of
processes and execution dependencies among the processes. A convenient way 1o view this is
through a computational graph. For example, the graph of Fig. 1 denotes [ve subroutines A,

178 S Ponparnn, D Sarengen [Developlag parailel Forrar progroms

2
R

D D E Fig. 1.

B, €, D, and E (here with two *copies’ of subroutine 2 operating on different data). We intend
the execution to start simultanecusly on subroutines O, £, 0, and E since they appear as
leaves in the data dependency graph (23 will be started twice with different data). Once 0, 03,
and E have completed, § may execute. When £ and C have completed execution, A may
start and the entire computation 15 finished when A has completed. To wse SCHEDULE, one is
required to specify the subroutine calling sequence of each of the six schedulable wnils of
computation, along with a representation of this dependency graph.

For cach node in the graph, SCHEDULE requires two subroutine calls. COne contains
information aboul the user’s routine to be called, zuch as the name of the routine, calling
sequence parameters, and a simple tag to identify the process. The second subreutine call
defines the dependency in the graph to nodes above and below the one being specified, and
specifies the tag to identily the process. In this example, after an initial call o set up the
environment for SCHEDULE, six pairs of calls would be made to define the relationships and
data in the computational graph,

These concepts are perhaps more easily grasped through an actual FORTRAN example. A
very simple example is a parallel algorithm for computing the inner product of twe vectors, The
imtention here is (o ilustrate the mechanics of vsing SCHEDULE, This algorithm and the use
of SCHEDULE on a problem of such small granularity are not necessanly recommended.

Problem, Given real vectors g and b, each of length &, compuie o -aTh,

Parallel Algorithm. Let a® = {a], al...., ot} and b" = (4], bI,..., b} be a partitioning of the
vectors @ and & into smaller vectors g, and b,
Compute {in parallel)

o =agly, j=1..k

When all dong
ag=g)tay+ --- o

Each of the parallel processes will execute code of the following form:

cubrourine ipprodim, s, b, 2ig)
integer m
real al*pob(®) 51p
sig = 0.0
do 100 j = 1.,m
sig = 5ig £ a(jl*hij)
1) coptinue
ralurmn
ol

The following routine 15 wsed 0 accumulate the resulr:

Lo

LT Doagaees, ILC Sorenren 7 Deoclaping parelic! Forvran progrmes

gubrowtline addupl{k.s1gma, temp)
integer k
real sigma,cempl(™)
sigma = 0.0
do 100 j = |,k
Figma = gigma + Lempijh
cantinue
TELUER
end

k+

[) 3 k Fig. 2.

174

The first step in constructing a code 15 10 understand the parallel algorithm in terms of
schedulable processes and a data dependency graph. Then the algorithm is expressed in a
standard (zerial) FORTREAN code, Thiz code conzizts of a main program which intializes the
shared Jdata and a *parallel” subrowtine parped to compute the inner product by invoking the
parallel processes inprod and addup. The program is shown below and the associated data
dependency graph in Fig, 2,]
Herial Code:

propram main
integer n,k
real all000) bII0OD) , temp (50}, 5igma
read {5.*)} n.k
do 100 j = 1,n
alj) = j
Bijy = 1

1) continua

czll parprdi{m.k,a.b,temp,sigmal)
wrilel(h,*) ' sipma = ", 5ipma

slop

end

subrouline pagprdin.k, 2, b, temp, sigmal
declare shared wariables

imteger n.k
real af®), b{*),temp{™), sipma

declare local variables
integer m,indx,
m = nfk
indx = 1
doe 200 j = 1.k
¢all inprodi{m,e{ipdx) blindx},temp{jl}

indxs = indx 4 m ;
if (j .eq. k-1)m=mn - indx + 1-

Nnla

1# JJ Dongeres, ILC. Soremeen 0 Deceloping paralfe! Fortran prograres

200 continaa

call addupik,sigma, 1 emp)

TELUTN
LSTH

In this data dependency graph we have identified % processes
tnprod(m, alindc), b{indx), temp (1), =12, Kk, indx =1+ (j—1)+m

which are not data dependent, Each of them reads a segment of the shared data a, b and writes
on ils own entry of the array remp, but none of them needs to read data that some other
process will write. This fact is evident in the graphical representation where they are Jeaves.
Dne process,

.::r-:i{:'.ru_p{.ﬂ; . Ergmr, fang 1.

labeled &+ 1 is data independent on each of the processes 1, 2,... k. This is because addup
needs 1o read each entry of the array remip in order 10 compute the sum and place it into g

From this data dependency graph we may proceed to write the parallel program. Once we
have understood the computation well enough 1o have carried out these two steps, the
invocation of SCHEDULE 1o provide for the parallel execution of schedulable processes is
straightforward. Calls to parprd, inprod, and addup are replaced by calls to SCHEDULE to
identify the routines to be executed as well as the information relating to the dependency
graph. The madificd code follows: -

Parallel Main:

praogram maimn
inlteger n,k

EXTERMAL PARFPED

real all0O0Y, bCIDODY, cemp {507, 5igma
cead {5.*) n, k. NPROCS
do 100 j = 1.;
BLid = j
B(jY = 1
) camtinuwe

©
CAlLL SCHEDnprocs,PARFRED, n Kk, &, b, temp, sigmal
c
write(& *} ' sigma = ',&ipma
LA
& il
subroutine parprd{n,.k.a, b, temp,sigma}
%
- declare shared variabkles
2
integer n,k
real af*) . B(*). temp(*).sigma
i
c declare local variables
c
integer ml md,inds,j,.jobrag,. icango neheks myehkn(2)
c

EXTERMAL INFROD, ADDUFP
save ml mk

ml = nlk
1adx = 1
do 200 j = 1,k-1

L]

S, Dungaree, DO Sorenren [/ Develaping parallel Fortren programs 181

- cxpress data dependencies
c

JTOETAG = j

TCAMNGD = [

MCHEES = 1

MYCHEN{1) = k+l

CALL DEP(joblag,icangao.nocheks mychkn)
Call PUTQ{ jokrap THPRCD ml ,a(indx) b{indx}, temp(i)}

e
indy = indx & ml
200k continue
ml = mn - indx + |
&
= express detn dependencies for elean up s1op
= :
JORTAG = k
ICAaRGD = O
NCHER: = 1
MYCHEM{1) = k+l
i
CALL DEP{jobtag,icango,.ncheks mychkn)
CaALL PUTG jobhrag, INPROD md s indx) biindx), 1empik}]
i
indx = imndx + ml
o
JOBTAG = k+l
ICANGD = k
MCHEES =
c
CALL DEP‘IZ_iI}hHr.:.i-::au;l}.nl:]u-k:,m}'cil.in':u
CALL PUTQC joblag ADDUF k, sigma, 1emp)
4
relurn
&

The code that will execute in parallel has been derived from the serial code by replacing calls
to parpred, inpeod, addup with calls to SCHEDULE rowtines that invoke these routines, The
medifications are signified by putting calls to SCHEDWULE routines in capital letters. Let us
novar deseribe the purpase of each of these calls.

CALL SCHEDMnprocs PARPED.n k.o,b, cemp, s gmal

This replaces the call to parprd in the serial code. The effect is 1o devote mprocs virtual
processors o the parallel subroutine parprd. The parameter list following the subroutine name
consist of the calling sequence one would use 10 make a normal call to parprd, Each af (hese
parameters must be called by reference and not by value, Mo constants or arithmetic
expressions should be passed as parameters through-a call to sched. This ¢all ta sched will
activate mprocs copies of a virtual processor work., This virtwal processor is a SCHEDULE
procedures (written in C) that is internal 1o the package and not explicitly available 1o the user.
TORTAG
T ARG
MCHEKE
MYCHEM{1) = k+l

i
]
1
CALL DEP{jeprag.i¢ange, nchoks mychknl

CaLl PUTQ jobtag, INPROD . m,efindx) . biindz), Lempijl)

This code fragment shows the jth instance of the process inprod being placed on a queue. The
infermation needed 1o schedule this process is contained in the data dependency graph. In this

152 JI Donparra, DL Sevensen F Devaloping porafiel Foriraw progrows

case, the fth instance of & call to inprodd is being placed on the quewe, 50 jolftag i3 201 ta f. The
value zero is placed in icange, indicating that this process does not depend on any others. If
this process were dependent on p, other processes then fcange would be set o p.

The mechanism just described allows static scheduling of paralle]l processes. In this program
the partitioning and data dependencies are known in advance even though they are para-
meterized. [is possible to dynamically allocate processes; this mechanism will be explained
later. It might be worthwhile at this poant (0 discuss the mechanism that this package relies on.

8, The SCHEDULE mechanism

The call to the SCHEDULE routines dep and putg, respectively, pliaces process dependencies
and process descriptors on & quene. A unique user supplied identifier jofrag is associated with
each node of the dependency graph. This identifier is a positive integer. Internally it represents
& pointer to & process. The items needed to specily a data dependency are non-negative integers
foarge and nekeks and an integer arcay schisr, The foarge specifies the number of processes
that process fobtog depends on, The scheks specifies the number of processes that depend on
process jobiag. The mychia is an integer array whose first sehelr entries contain the identifiers
{le. jobiag 5) of the processes thal depend on process jobrag.

In Fig. 3 a typical node of a data dependency graph is shown. This node has two incoming
arcs and three oulgoing arcs. As shown 1o the rght of the node one would sel jrange =2,
ncheks =3, and the first three entries of mypehkn o the identifiers of the processes pointed 1o
Iy the oulgoing arcs,

The initial call to sched(nprocs, subname, {parms)) resulls in nprocs virtwal processors
called work to begin executing on sprocs separate physical processors. Typically nprocs should
be set to a value that iz less than or equal to the number of physical processors available an the
given system. These work routines access a ready queve of fobrag 5 for schedulable processes.
Fecall that a schedulable process is one whose data dependencies have heen satisfied, Alter o
work routine has been successful in obtaining the Jjobiag of a schedulable process, it makes the
subroutine call associated with that jobisg during the call 1o putg. When this subroustine
execules a retern, control 1= returned to work, and @ SCHEDULE routine chekin is called
which decrements the icango counter of each of the noheks processes that depend on process
Jobigg. Il any of these icange values has been decremented 1o zero, the identifier of that process
i5 placed on the ready quene immediately,

We depict this situation in Fig. 4. The array labeled parmyg holds a process descriptor for
cach joltag, A process descriplor consists of data dependency information and a subroutine

icango =1

L _AO
)

Fig. 3. A nede in a dependency groph,

LI Domparra, D0 Sorewees [/ Develoging parailel Foriren programs 183

T AR

REATYG ! Head

an

Tail

¢ L0 myjoi = peeprhijobiag)

wall submamed<parmsz]

i

W rall checkin(joboag)
oo goua 1D

R

S S F R

Tig. 4. The SCHEDULE mechanism.

name together with a calling sequence for that subroutine. This information is placed on parmg
through the two calls

CALL DEP{jobtag.icange,.ncheks mychkn)
CALL PUTQ jehrag.<subnames, <pacms=) .

When making these two calls the user has assured that a call to subname with the argument Jist
parms i3 valid in a data dependency sense whenever the counter feomgehas been decremented
to the value zero. When a work routine has finished a call wo chekin, it gets the jobrag of the
next available schedulable process off the readvg and then assumes the identity of the
appropriate subroutine by making a call to subnome with the arsument list parss,

6. Low-level synchronization

[deally, the mechanism we have just described will relieve the user of explicitly invoking any
synchromization primitives. Unfortunately, some powerful paralle]l constructs are not 5o easily
deseribed by this mechanism. It may be desirable to have two processes executing simulta-
necusly that are not truly data independent of each other, A typical example is in pipelining a
computation, that is, when several parallel processes are writing on the same data in a specified
order which is coordinated through explicit synchronization. To provide this capability, two
loe-level symchronization primitives have been made available within SCHEDULE. They are
lockon and lockoff. Each takes an integer argument. An example of usage is

call loeckon{ilack}
ilogal = imdx
imds = indx + 3
call lockeffiilack)
In this example a critical section has been placed arcund the act of getting a local copy of the
shared variable indx and updating the value of Jmdx, If several concurrent processes are
excouting this code, then enly one of them will be able to cecupy this eritical section al any

124 LI Dowporra, DO Sorengen 5 Dvgelfoping parcelis! Fortran pragrames

given time. The variable theck must be a globally shared variable and it must be initialized by
calling the rovting lockasgm, In the above sxample the statement

call lockasgn(ileck,)

must execule exaclly once and before any of the calls 1o lockan are made, If there are low-level
data dependencics among any of the processes that will be scheduled, then it will be necessary
to enforce those data dependencies using locks. It is preferable to avoid using locks if possible.
Fowever, 1n certain cases such as pipelining, locks will be reguired.

7. Dynamic allocation of processes

The scheme presented above might be considered static allocation of processes. By this we
mean that the number of processes and their dota dependencies were known in advance.
Therefore the entire data structure (internal to SCHEDULE) representing the computational
graph could he recorded in advance of the computation and is fixed throughout the compula-
lion. In many situations, however, we will not know the computational graph in advance, and
we will need the ability for one process to start or spawn another depending on a computation
that has taken place up to a given point in the spawning process. This dynamic allocation of
processes i3 accomplished through the use of the SCHEDULE subroutine spawn, The method
of specifying a process is similar to the use of putg described above.

We shall use the same example to llustrate this mechanizm,

Processes:
subrouting inprod ., same as above

subroutinme addupimyid , n. K, a, b, sigma, temp)
integer myid,n. k
real af®) . bi*).sigme,.temp(®)

<
(] daclare local wariahles
&

inleger j,jdunmy,ml , m2
a

LOGTOAL WALT

EXTERMAL [MNPRCD

save ml,ml
tH

ga o (1101,2322), IENTREY(myid]
1111 camlinue

iz replace the call ta inprod with & ¢all o sapswn

CALL SPASN(my 4, jdurey , INPRCD ml e indx}. B indx), cempdj})
inds = ipdx + ml
200 continue
md = - indx + 1

clean up step
replace the call to ipnprod with a call Lo spawn

L - =]

CALL SPAWW{my id, jdommy , INPROD m2 , a(indx) , bl indx), tempik))

o

nproce = K &
L2222 = 1

JJ. Donparra, 0.C, Sarseren /5 Developing paralls! Farrean programs 1Rs

]

c 1f any aof the spewned process have not complercd, EETURN
o lo Lhe scheduler and help out. This avoids busy weiting
@ and allows this code 10 he execcuted by one proccsszar.
i

il (WAIT(myid,nprocs L22223) return

2TEL conlinae
c
= All have checked in, now amddup the resulos,
C

sipgma = 0.0
de 100 j = 1,k
ghpma = sigme + tempij)
100 ¢onplinus
return
cnd

The subrouting parprd must change somewhat,

subreuctine parprdin,k, a8, b, temp, g bpmad

C deglare shared vaghahles
[
imleger n,k]
real al®*) . b{*}.1emp{*),sipma
-
o declare local wariables
o
integer mychkn({l).icango,ncheks. joblag
EXTERNAL ALDUR
save jobtap
i
MIBTAG = |
[CAMGD = 0
MCHEES = 0

CALL DEP{jobrag,ic¢ange, neheks myvehkn)
CaLL PUTQE jehrag ADRDUP, jobtag.n,k.a.b,sigma, temp)

relurn
&l

8. Experience with SCHEDULE

Al present the experience with using SCHEDULE is limited but encouraging. Versions are
running successfully on the VaAX 117780, Alliant FX A8, and CRAY-2 computers. Thal 1z, the
same wser code execuies without modification on all three machines, Only the SCHEDULE
internals are modified, and these modifications are wsually minor, but can be difficult in some
cazes. They involve such things as naming and parameter-passing conventions for the C-FOR-
TEAM interface. They alse involve coding the low-level svnchromzation primitives and
managing o "create’ the work processes.

On the CRAY -2 process creation 15 accomplished vsing taskstart, and the low-level synchre-
nization already maiches the low-level synchronization routines provided by the CRAY
multitasking library [3]. For the Allant FX 8 we coded the low-level synchronization prim:-
tives using their test-pnd-sel instroction. To “create’ the work rowtines, we wsed the CVDEL
CHCALL directive before a loop that performed aprecs calls to the subroutine work.

In addition (o some oy programs used for debugging SCHEDULE, several codes have been
written and executed vsing SCHEDULE, These codes include the algorithm TREEQL for the

186 S Dongarra, DL Sovewren [/ Developing parallel Fortean programs

symmetric tridiagonal eigenvalue problem [B], a domain decomposition code for singularly
perturbed convection-diffusion PDE [4), and a block preconditioned conjugate gradient code
for systems arising in reservoir simuolation [§).

References

[1] Allinnt Computer Systems Corp, Allsae FX A Fartran Programnes"s Flandbook, Acton, Ma, 1985,
[2] BLGG. Babl, Farallel processing with large grain data flow technigques, JEEE Cronpprar, 17 [1584) 55-61.
[3] 1L Browne, Fromewark for formalation and anslysas of parallel compulation structures, Meeelfel Comp, 3
{1480) 1-%
[4] B. Chin, 5. Hedsiram, F, Howes and J, MoGiraw, Paralle]l ecupulation of mueltiple-scale problems, in: A, Wouk,
@, New Comparning Excranmenir: Faraflel, Fector, and Sparalie (1AM, Philsdelphin, PA, 1985) 134-151.
[5] CRAY 2 Multitasking Users Guide, Cray Ressarch [nc., Ming, MM, 1955,
(6] L Doiaz, Caboalating the block preconditioner on parallel multivector processors, Frov, Worksbop on Applied
Commining in e Erergy Fiefd, Srillwater, QR (1584),
[7} 11 Deagarea end L5 Daff, Advanecd archuectore computers, Argenne Maiional Laboratory Repon, ANL-MOS-
Td-57 (1985).
[8] 1.1 Dengarra nnd DUC, Sorensen, A fully paratle] algesithm for the symmelric sigenvalues problem, STAM STS5C
B 987
[?] H. Jordan, HEP archivecture, programming and perfonsancs, in: I Bowalik, ed, Porallel WIMD Congpansion;
AEN Supercgenpreter e e Applicaiioes (MIT Press, Camboidge, Ma, 1985,
[10] E. Luzk and B Overbeek, Implementation of maniters with macsos: A programming aid for the HEP 2nd other
parnllel processors, Aggonse Naticoal Labaratory Report, ANLE547, 1953,
[11] FR. MoGraw et al, SI5AL: Sireams nnd Deration in o siagle assignment kanguage, Language Beferance Marual,
Yersion L2 Lawrence Livermore Mational Laberatory.
[1E] J. ¥an Rasendale and P Mehrotrz, The BLAZE Innguage: A paralied languags for scientific programming, 1CASE
Repart 28329, 1985,

