
Performance Portability of a GPU Enabled Factorization with the DAGuE
Framework

George Bosilca∗, Aurelien Bouteiller∗, Thomas Herault∗, Pierre Lemarinier‡,
Narapat Ohm Saengpatsa∗, Stanimire Tomov∗, Jack J. Dongarra∗†

{bosilca, bouteill, herault, lemarini, saengpat, tomov, dongarra}@eecs.utk.edu
∗ Innovative Computing Laboratory, the University of Tennessee

† Oak Ridge National Laboratory
‡ IRISA, Université de Rennes 1

Abstract—Performance portability is a major challenge
faced today by developers on heterogeneous high performance
computers, consisting of an interconnect, memory with non-
uniform access, many-cores and accelerators like GPUs. Recent
studies have successfully demonstrated that dense linear alge-
bra operations can be efficiently handled by runtime systems
using a DAG representation. In this work, we present the
GPU subsystem of the DAGuE runtime, and assess, on the
Cholesky factorization test case, the minimal efforts required
by a programmer to enable GPU acceleration in the DAGuE
framework. The performance achieved by this unchanged code,
on a variety of heterogeneous and distributed many cores
and GPU resources, demonstrates the desired performance
portability.

Keywords-cluster, GPU, linear algebra, DAG scheduling

I. INTRODUCTION AND MOTIVATION

The current trend of High Performance Computing re-

quires the effective exploitation of network-interconnected

computing nodes, whose computing power is provided by a

large number of cores sharing the main memory in a non-

uniform way assisted by Graphic Processing Units or other

accelerators. As a consequence, the computing elements

inside a node are becoming extremely heterogeneous. The

HPC community has tried different approaches to relieve

the difficulties of dealing with such heterogeneous environ-

ments. MPI has been the tool of choice to enable application

scalability between numerous distributed memory nodes,

but has shown shortcomings when considering multicore

machines. Different projects demonstrated the benefits of

using GPU accelerators for scientific computation. However,

most of the existing applications that exploit the computing

power of GPUs are tailored specifically for GPU computa-

tion only (or GPU-CPU pairs), excluding CPU cores from

the computational resources, or lack the capability to run on

distributed systems. The increase in the number and diversity

of computing units within nodes introduces a challenge for

library and application developers, who need to adapt their

code to more diverse target systems. Overall, there is a

need for these orthogonal efforts to be unified in order to

deliver a coherent and complete programming framework

that comprehends the difficulties of parallel systems with

many heterogeneous computing units, and provides the key

feature of performance portability.

To harness the computing power of such architectures, and

address the inherent code porting challenge, recent works

propose to use tasks scheduling of micro kernels, letting

the middleware schedule those on the computing resources,

thereby allowing the application or library developer to

focus on the implementation of the algorithms. The code

is transformed by a development framework into a direct

acyclic graphs of tasks, with data flowing between tasks.

This approach provides a simple way to express and exploit

fine-grain parallelism automatically. DAGuE [1] is one of

the few micro-kernel scheduling frameworks able to ensure

weak scalability in a distributed machine, in addition to

strong scalability in a single node, harnessing the peak

performance of many-core architectures.

In this paper we present how the DAGuE framework was

extended to make use of the GPU’s computing capabilities.

By reusing a single node kernel ported to GPU program-

ming, and extending the middleware, we demonstrate how to

harness the computing power of a highly heterogeneous dis-

tributed system. We then consider the efforts required by the

application developers for porting their code to GPU acceler-

ated machines; the Cholesky Factorization, a classical linear

algebra algorithm is adapted to GPUs, without changing the

main algorithm representation. We also use this algorithm as

a test case, to underpin the performance obtained on a variety

of GPU accelerated systems, demonstrating that this same

unchanged code can be ported to widely differing types of

systems (accelerated, with multiple accelerators, distributed

and accelerated, non accelerated), while still accessing first

class performance.

The rest of the paper is organized as follows. In Sec. II,

we present the related works; then, in Sec. III we introduce

the modifications to handle GPUs in the DAGuE framework

and investigate in Sec. IV the amount of work required by

the application programmer to port a Tile Cholesky factor-

ization to GPU hardware with DAGuE. Sec. V evaluates the

performances of the framework on a variety of distributed

and heterogeneous hardware, before we conclude in Sec. VI.

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.51

395

II. RELATED WORK

A. DAG based scheduling and GPU computing

DAGs have a long history [2] of expressing parallelism

and task dependencies in distributed systems. Previously,

they have often been used in grids and peer-to-peer sys-

tems to schedule large grain tasks, mostly from a central

coordinator. [3], [4] present a taxonomy of DAGs that have

been used in grid environments. More recently, in [5], [6]

DAGs are used to describe tile linear algebra algorithms

on multicore CPUs. [7] presents the MAGMA project that

leverages a similar approach for linear algebra on GPUs.

[8] defines codelets, a task description language, to enable

the execution of the same operation on different hardware.

[9], [10] then demonstrates how micro-tasks scheduling can

mix shared-memory cores and accelerators. Compared to

our proposition, these approaches do not tackle the issue

of executing on distributed memory hardware.

B. GPU computing on distributed systems

GPUs have also been used in distributed systems, outside

DAG based approaches. [11] accelerated the LINPACK

benchmark on heterogeneous clusters by providing hybrid

kernels (to be executed simultaneously on both GPU and

CPU cores) for the DGEMM and DTRSM routines. In [12],

the authors explain how some computations of a large scale

bag-of-task peer-to-peer system have been ported to GPU.

Closer to the linear algebra community, [13] uses GPUs to

execute critical kernels in a parallel application, in a more

classical SPMD fashion. These approaches can successfully

extract performance, but require tailored engineering. One

of the contributions of the present paper is to demonstrate

the excellent performance level and lower engineering cost

of DAG based approaches for harnessing the power of

GPU accelerated nodes in distributed systems. Most of the

complexity and tuning of the heterogeneous hardware, and

moving data back and forth between nodes and accelerators,

is hidden inside the DAGuE runtime, while the same GPU

kernels developed for MAGMA (or simply CUBLAS) can

be used directly.

III. SUPPORT FOR GPUS IN THE DAGUE FRAMEWORK

A. The DAGuE Project and Goals

DAGuE stands for Directed Acyclic Graph unified En-

vironment. The goal of this framework is to relieve the

developer from the burden of fine tuning its application to

the intricate system-centric issues of current heterogeneous

HPC architectures, such as explicit communication, overlap-

ping communications with computations, mutual exclusion

and synchronizations, load balance, cache reuse and mem-

ory locality on NUMA hardware. One missing feature in

DAGuE, toward this unification goal, was to automatically

use accelerators, when available.

CPU

GPU

core0

core1

stream0

stream1

TaTb Ta

Ta

Tb TbS S S S

S GPU Ta

Tb

TbTb TbTb

Tb Tb

Tb

Tb

in in

out

out

outTb

Figure 1. Schematic (not to scale) DAGuE execution, on a GPU enabled
system; kernels Ta and Tb alternate with scheduling actions (S) and in/out
GPU asynchronous memory accesses.

To achieve these ambitious goals, the DAGuE project

includes a runtime library and several development tools to

help with building and analyzing DAGs of micro-tasks. The

DAGuE Runtime takes a symbolic and concise representa-

tion of a DAG of tasks, built by the DAGuE framework

from different possible input languages (for more details,

please refer to [1]). For regular algorithms, like the Cholesky

Factorization, developers can use a SMPSS-like representa-

tion [14], very close to the algorithm description of Figure 2,

automatically translated into the intermediate Job Data Flow

(JDF) representation. In this format, the algorithm is divided

into two parts, the depiction of the dependencies introduces

by the flowing of data from task to task, and the sequential

computing bodies that are to be applied to data. In this

work, the first part is left unchanged, the programmer just

needs to add GPU code to the second part. The proposed

approach have to retain the core properties of DAGuE: a

symbolic representation of the dependencies that can be

evaluated in a problem-size independent and distributed way,

implicit communications based on the static data distribution

provided by the application, and dynamic scheduling and

load balancing inside the computing nodes, with a scheduler

that takes care of data consistency and cache reuse internally.

B. Scheduler Triggers for GPU management

In order to retain most of the automatic features of

DAGuE regarding scheduling and data management, most of

the GPU handling must be integrated deep inside the DAGuE

scheduler. In the DAGuE runtime, each thread alternates

between the execution of kernels and running the lightweight

scheduler (see Figure 1). When some tasks needs to be

executed on a GPU, the new Hybrid scheduler switches the

thread into GPU support mode. From this point on, this

thread orchestrates the submission of tasks for this GPU,

and remains in this mode until this GPU has no more

work to process. As a consequence, each GPU effectively

subtracts a CPU core from the available computing power

as soon as (and only if) it is processing. Because the typical

compute time of a GPU kernel is tenfold smaller than a

CPU one, should all CPU cores be processing, the GPU

controls would be delayed to the point of, in average, make

396

FOR k = 0..TILES-1
A[k][k]← POTRF(A[k][k])
FOR m = k+1..TILES-1

A[m][k]← TRSM(A[k][k], A[m][k])
FOR n = k+1..TILES-1

A[n][n]← SYRK(A[n][k], A[n][n])
FOR m = n+1..TILES-1

A[m][n]← GEMM(A[m][k], A[n][k], A[m][n])

Figure 2. Tile Cholesky factorization pseudocode

POTRF

TRSM

SYRK

GEMM

Figure 3. Step k of a Cholesky factorization.

the GPU run at the CPU speed. However, as GPU tasks are

submitted asynchronously, a single CPU thread can fill all

the streams of hardware supporting concurrent executions

(such as NVIDIA Fermi); similarly, we investigated using

a single CPU thread to manage all available accelerators,

but that solution proved not scalable, as the CPU processing

power is overwhelmed and cannot treat the requests reac-

tively enough to maintain all the GPUs occupied.

C. GPU Data Consistency and Tracking

Another new issue introduced by GPU accelerators is

data movement back and forth from the accelerator mem-

ory, which is not a shared-memory space. The DAGuE

hybrid scheduler is extended to handle GPU-host memory

movements. The hybrid scheduler, when in GPU mode,

multiplexes the different operations asynchronously, using

multiple streams to enable overlapping of I/O and GPU

computation.

The regular scheduling strategy of DAGuE is to favor

cache reuse, by selecting when possible a task that reuses

most of the data touched by prior tasks. The same approach

is extended in the hybrid scheduler, to prioritize on the GPU

tasks whose data have already been uploaded. Similarly,

the scheduler avoids running tasks on the CPU if they

depend on data that have been modified by the GPU (to

reduce CPU/GPU data movements). It moves data from

the CPU to the GPU, places kernel execution orders, and

moves data back from the GPU to the CPU, as well as

detects tasks completions and triggers the corresponding

actions in the task scheduling system. In addition, in order

to maintain the data consistency between the main memory

and the GPU memory, a Modified Owned Exclusive Shared
Invalid (MOESI) [15] coherency protocol is implemented.

The hybrid scheduler is also in charge of retrieving data

that are needed to satisfy remote dependencies on distributed

systems.

D. Codelets for Accelerator Support in the DAGuE Bodies

The last introduced feature in the GPU DAGuE runtime

is the support for codelets. A codelet is a piece of code that

encapsulates a variety of implementation of an operation for

a variety of hardware. In DAGuE, codelets are sequential,

in the sense that they target a single processing unit, either

a core, a GPU stream, even though they can still contain

some internal parallelism, such as vector SIMD instructions.

Practically, that means that the application developer is in

charge of providing multiple versions of the computing

bodies. The relevant codelets, optimized for the current

hardware, are loaded automatically during the algorithm

initialization (one for the GPU hardware, one for the CPU

cores, etc). Today, the DAGuE runtime supports only CUDA

and CPU codelets, but the infrastructure can accommodate

easily to other accelerator types (OpenCL, FPGAs, Cell, ...).

If a task features multiple codelets, the runtime scheduler

chooses dynamically, between all these versions, in order

to execute the operation on the selected hardware. Because

multiple versions of the same codelet kernel can be in use

at the same time, the workload of this type of operations,

on different input data, can be spread on both CPU cores

and GPUs simultaneously.

IV. ACCELERATOR ENABLED TILE CHOLESKY

FACTORIZATION

A. The Tile Cholesky Factorization Use Case

A typical DAGuE application is a regular MIMD applica-

tion that calls numerical routines implemented with DAGuE.

In this section we present the extension of the Cholesky

factorization routine to use GPU accelerators. The Cholesky

factorization (or Cholesky decomposition) A = LLT is

mainly used for solving linear systems of the form Ax = b,

where A is a symmetric and positive definite matrix, and L

is a lower triangular matrix with positive diagonal elements.

Such systems often arise when solving partial differential

equations, or in physics applications where the modeled

phenomenon is symmetrical. The tile Cholesky algorithm

(introduced in [16]) is identical to the classical LAPACK

block Cholesky algorithm, except for processing the matrix

by tiles (see Figure 2). Its distributed implementation in

DAGuE (fully described in [17]) is based on automatically

transforming this sequential algorithm in the data flow de-

pendencies between the different tasks (BLAS kernels). The

sequentiality of the execution is relaxed, and the resulting

algorithm explores the execution space in an opportunistic

dependency-driven order, oblivious of the original loop

nesting.

397

B. Selection of the GPU Enabled Kernels

As discussed in the previous section, to enable accel-

erators in a DAGuE implementation, the programmer is

required to only provide sequential GPU kernels functionally

equivalent to the CPU kernels. The Cholesky factorization is

based on four kernels. Figure 3 depicts how, at each iteration

k, these kernels are applied to some blocks of a N × N
matrix. We describe below each of the kernels, and their

contribution to the total factorization time.

POTRF: The kernel performs the Cholesky factoriza-

tion of a diagonal (triangular) tile T and overrides it with

the final elements of the output matrix. There is one POTRF

on the diagonal tile at position (k, k). The completion of

the POTRF releases the dependencies on all the TRSM

described below. With only one appearance per iteration,

this kernel is a minor contributor to the overall workload.

Its GPU implementation is slower than its CPU equivalent,

hence it does not need to be GPU enabled.

TRSM: The operation applies an update to a tile A
below the diagonal tile T , and overrides the tile A with

the final elements of the output matrix. The operation is a

triangular solve. There are N − k − 1 TRSM operations

during iteration k. Each of these TRSM, once completed,

releases the dependencies of a set of update GEMMs and

a SYRK on the corresponding row. Again, this operation

appears only O(N2) time during the algorithm, and is slower

on GPU than on CPU.

SYRK: The kernel applies an update to a diagonal

(triangular) tile B, resulting from factorization of the tile

A on its left. The operation is a symmetric rank-k update.

There are N − k − 1 SYRK per iteration k, one per

remaining diagonal tile. Although this operation can be

efficient on GPU, we decided not to enable it: the CUBLAS

kernel currently provided is slow, and the O(N2) overall

contribution to the workload does not mandate considering

a custom GPU implementation.

GEMM: The operation applies an update to an

off-diagonal tile C, resulting from factorization of two tiles

A on its left. The operation is a matrix multiplication.

The GEMMs are totally independent of one another, and

are therefore embarrassingly parallel. The O(N3) overall

workload of GEMMs usually accounts for more than 90%

of the computation time. Moreover, the GEMM kernel on

GPU is significantly faster, and many GEMM kernels are

applied on the same data, which reduces GPU to host traffic.

Hence, we focused our efforts on enabling GPU computing

for this particular kernel.

C. Optimized GPU GEMM Kernels

The only modification to the original DAGuE Cholesky

factorization is the addition of a GPU SGEMM body codelet

that embeds the call to the MAGMA, or CUBLAS kernels,

depending on the runtime detected underlying accelerator.

For the Tesla and Fermi GPUs, CUDA SGEMM kernels

are reused from the MAGMA library. The Fermi kernel

had to be further tuned for the DAGuE framework. The

originally developed one [18] uses 64 × 4 thread blocks,

each computing a 96 × 96 block of the resulting matrix.

This kernel binds textures to global memory for direct

access to the data that would be texture cached. Although

this approach gives about a 5% performance improvement,

reading through texture is not Error Correction Code (ECC)

protected. We removed the texture reads and reduced the

blocking size to 80 × 80 to increase inter-tile parallelism,

while still retaining high efficiency. When the GPU ac-

celerator ecosystem becomes more mature, one can expect

that the BLAS library (CUBLAS for this hardware) will

be adequately tuned by default, as is MKL for Intel CPUs,

reducing the programmer’s actions to only adding prefixes

to function names in the DAGuE body codelets.

V. PERFORMANCE EVALUATION

A. Experimental Conditions

The purpose of this performance evaluation is to inves-

tigate how the generic Cholesky factorization performs on

differing heterogeneous hardware. We use two very different

platforms, one featuring many GPU accelerators on a single

node, the second featuring a cluster of GPU accelerated

nodes.

Mordor: It is a single node Tesla S1070 blade. It

includes four Tesla C1060 boards, each with 240 1.44GHz

CUDA FPUs and 4GB of memory. The theoretical peak of

this accelerator is 4.14 Tflop/s in single precision, but for

all practical purpose, it has to be reduced to 2.76 Tflop/s as

it has extraneous ADD units that are not balanced by the

number of MUL units. The host features 4 quad core AMD

Opteron SE8358 at 2.2GHz (16 cores total). Each NUMA

socket is served by 8GB of memory (32GB total). The

accelerator S1070 blade is connected by two PCI-Express

x16 lanes, each lane shared by two C1060 cards.

Dancer: It is an 8 nodes, 64 cores, Infiniband 20G clus-

ter. The nodes feature two NUMA Nehalem Xeon E5520 at

2.53GHz (hyperthreading is disabled), with 2GB of memory

(4GB total). The accelerator board and Infiniband NIC are

connected on independent PCI-E lines. Half of the nodes are

equipped with a Tesla C1060, while the other four feature

the more recent Fermi C2050. The Fermi accelerator features

448 1.15GHz CUDA cores, which translates into a peak

performance of 1.03 Tflop/s in single precision. The board

also contains 3GB of memory. We refer to deployments

using both types of nodes, in equal number, as the Hybrid

cluster.

Software: Both systems are running the Linux 64bit

operating system, version 2.6.31.2 on Dancer, and version

2.6.35 on Mordor. The software is compiled with the Intel

compiler suite 11.1 (including MKL). The network backend

398

 0

 100

 200

 300

 400

 500

 600

 700

 0 5000 10000 15000 20000

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Matrix size (N)

Practical GPU GEMM Peak
DAGuE

DAGuE (restricted to 1 stream)
MAGMA

Figure 4. Fermi (C2050) Performance of Cholesky factorization according
to problem size. Comparison between DAGuE and MAGMA (Dancer,
single node).

 0

 200

 400

 600

 800

 1000

 1200

 1400

10k 20k 30k 40k 50k

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Matrix size (N)

C1060x4
C1060x3
C1060x2
C1060x1

Figure 5. Multiple Teslas (C1060) Performance of Cholesky factorization
according to problem size (Mordor, single node).

in DAGuE uses Open MPI 1.4.2. The version of CUDA is

3.1 on Mordor and 3.2 on Dancer. Experiments use single

precision arithmetic (appropriate to Tesla hardware).

B. Single GPU Single Node

Figure 4 presents the performance of DAGuE and

MAGMA for the Fermi nodes on the Dancer system.

MAGMA is the state of the art implementation of a linear

algebra library for GPU accelerated single node machines.

On this experiment, two DAGuE setups are presented, one

with streams and one without. In a CUDA kernel, the

GEMM input matrix is divided into inner blocks, called

warps which are then mapped to the grid of CUDA cores.

To reach parallel efficiency on distributed machines, DAGuE

favors a smaller tile size; as a consequence, there is no exact

divisor between the DAGuE tiling and the CUDA cores grid,

leading to some imbalanced warps at the end of every kernel.

Without streams, the GPU cores (including idle ones) are all

locked while those warps are executed. Because MAGMA

does not have to accommodate for distributed resources, it

can take as input the entire untiled matrix and then apply an

inner tiling of its choice that maps to the CUDA grid. This

explains why, although not benefiting from the computing

power of the CPU cores, MAGMA can compete very closely

with DAGuE, when restricted to one stream.

On the Fermi hardware, Nvidia introduced the capability

of concurrently running several kernels. When this concur-

rent execution feature is enabled, the load imbalance in

DAGuE from the outer tiling can be recovered by the extra

parallelism expressed by the DAG representation between

different GEMM kernels. As a consequence, as soon as

enough GEMM kernels are ready simultaneously, for matri-

ces larger than 2000, the tuning advantage of MAGMA can

be negated by this extra inter-kernel parallelism. Moreover,

as the DAGuE scheduler takes care of data movement

between CPUs and GPUs, it can accommodate for larger

matrices that do not fit entirely in the GPU memory. Overall,

the DAGuE code competes favorably with MAGMA, thanks

to the extra computing power provided by the CPU cores.

C. Multiple GPU Single Node

To further stress how the DAGuE Cholesky test case

performs on a variety of hardware, Figure 5 depicts the

performance on the Mordor multi-GPU shared memory

machine. Overall, based on the performance of a single

GPU in this configuration (around 400 GFlop/s), a perfectly

scalable framework is expected to deliver around 1500

GFlop/s on all four GPUs (the contribution of the CPUs

being accounted for only once). With up to 2 GPUs used at

the same time, the scalability is almost perfect. However, the

measured performance out of the 4 GPUs is slightly lower

than expected. This is mostly a consequence of the 2 GPUs

boards sharing a single PCI-E lane: a careful observation

of the traffic on the PCI-E bus indicates that due to the

increase in the number of requests to move data to and from

the GPUs, the shared bus becomes a bottleneck (a similar

effect is discussed in another context in Table I). Despite

this intricate hardware aspect, the DAGuE runtime is able

to harness a major speedup from this architecture as well,

from the same unchanged code.

D. Accelerated Clusters

1) GPU/NIC PCI-E bandwidth contentions: The first

question, when considering a distributed system encompass-

ing at the same time GPU accelerators and high performance

network interface cards, is to what extent the fact that both

type of hardware feature DMA chipsets, that compete for

the PCI-E and memory bandwidth, introduces perturbations

on the achieved performance. Table I presents the results

of performing concurrent accesses to the memory and the

399

Table I
IMPACT OF CONCURRENT ACCESSES BETWEEN GPU AND NIC ON THE

BANDWIDTH (GB/S) WITH A TILE SIZE OF 384

Perturbation none remote die same die interleave
Network - 11.533 11.363 11.001

GPU 0 push 29.250 26.497 12.897 25.919
GPU 1 push 21.509 21.580 11.457 21.553
GPU 0 pull 13.746 12.897 11.366 12.060
GPU 1 pull 13.089 11.457 9.636 10.767

PCI-Express bus with GPU accelerators and HPC network

interfaces. In these experiments, two Dancer nodes were

added an extra GPU (Nvidia 8600GT). The NetPIPE ping-

pong benchmark has been modified to spawn two extra

threads, in order to stress the memory and PCI-E subsystems

with concurrent CUDA memory traffic to and from a GPU.

When no Infiniband interference is taking place, the GPU

memory copy aggregated bandwidth is over 50Gb/s pushing

data to the GPUs and 26.7Gb/s retrieving data. When the

Infiniband traffic is pinned to a different socket from the one

hosting the GPU threads, the GPU aggregated bandwidth

is slightly reduced to 48Gb/s and 24.3Gb/s. The worst

case scenario is to pin both Infiniband operations and GPU

traffic to the same socket, which reduces the performance to

33.1Gb/s and 20.9Gb/s. The Infiniband bandwidth is almost

unaffected. When the accessed memory is spread on all

NUMA banks (numactl interleave mode), the performance

penalty is comparable to the remote die setup; on the Dancer

system, all the PCI-Express buses are separated, therefore

the perturbations are mostly the consequence of memory

bank contentions. This setup mimics the floating network

thread of the DAGuE environment, demonstrating that, on

average, it avoids interference with the GPU operations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

192 256 320 384 448 512

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Tile Size

Fermi Cluster (4 nodes)
Tesla Cluster (4 nodes)

Cluster Without GPU (4 nodes)

Figure 6. Performance of the Cholesky factorization as a function of the
tile size, for a problem size of 34560 (Dancer cluster, 4 nodes).

2) Mixed Hardware Types: On heterogeneous system that

includes many different components, like Dancer, tuning the

size of the tiles on which the DAG will executed impacts

several parameters, from the speed of the BLAS kernels

on the differing computing units, to the efficiency of the

network transfers. Figure 6 presents the performance of the

Cholesky factorization on a 4 node cluster, when varying

the tile size, for a fixed problem size of 34560. The CPU-

only experiment illustrates that the DAGuE framework is

flexible enough that the network and CPU efficiency are

unaffected by the tile size, hence the tuning can focus

on GPU efficiency only. The performance of the GPU

accelerators are indeed strongly dependent on the tile size.

On the Fermi cluster, the performance increases steeply

when growing the tile size up to 320, but remains constant

for larger tiles. On the Tesla cluster, the performance drops

when using tile sizes larger than 384 (due to unavailability

of multiple streams). Overall, DAGuE allows for a single

set of tuning parameters that performs adequately on all

the considered hardware of Dancer, even when the setup

is mismatched.

 0

 500

 1000

 1500

 2000

 2500

1;30k 2;42k 4;60k 8;84k

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Number of Nodes;Matrix Size

Fermi Cluster
Tesla Cluster

Hybrid Cluster
Cluster without GPU

Figure 7. Weak Scalability: performance of the Cholesky factorization as
a function of the number of nodes, with a problem size scaled accordingly
(Dancer cluster).

3) Scalability: Figure 7 exhibits the weak scalability, i.e.,

the performance of the system when increasing both the

number of computing resources and problem size in order to

keep the workload per node constant. On platforms featuring

similar nodes (either all Tesla, all Fermi or all CPU), the

DAGuE runtime can harness the maximum speedup from

the distributed architecture.

Distributed platforms can be heterogeneous in two dif-

ferent ways. First, by featuring heterogeneous computing

units inside the nodes, a feature that is expected to become

mainstream for HPC systems in a near future and is a

main motivating factor for DAGuE existence. Second, by

gathering nodes of differing computing capacity, as is often

the case in desktop grids computing, but is not typical of

HPC. Because of the hardware features of our test machine,

to present 8 nodes scalability, we were forced to use the

Hybrid platform nonetheless. The typical linear algebra

400

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

10k 20k 30k 40k 50k 60k

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Matrix Size

Fermi Cluster (4 nodes)
Cluster Without GPU (4 nodes)

Figure 8. Problem Scaling: performance of the Cholesky factorization as
a function of the problem size, (4-node Fermi Cluster).

 0

 200

 400

 600

 800

 1000

 1200

10k 20k 30k 40k

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Matrix Size

Tesla System (4 nodes)
System Without GPU (4 nodes)

Figure 9. Problem Scaling: performance of the Cholesky factorization as
a function of the problem size, (4-node Tesla Cluster).

distribution used by the Cholesky algorithm is regular 2D

block cyclic, meaning that the workload is equally divided

between all nodes, regardless of their computing capacity. As

a direct consequence the maximum achievable performance

of the distributed system is constrained by the performance

of the slower Tesla nodes. A non regular distribution could

have improved the performance, but tackling the issue of

non-uniform capacity nodes is outside the goals of DAGuE.

The experiment demonstrates a perfect weak scalability,

under the constraints imposed by the initial data distribution;

the overall performance at 8 nodes for the hybrid system

is double of that of the Tesla or Hybrid setups with 4

nodes. Therefore the heterogeneity within nodes and the

communication to computation ratio imbalance, originating

in accelerator capabilities, do not have a negative effect

on the weak scalability property of DAGuE (demonstrated

without GPUs up to thousands of cores in [1], [17]).

4) Problem Scaling: Figure 8 presents the performance of

the Cholesky factorization as a function of the problem size,

using all available nodes for the Fermi homogeneous dis-

tributed system. The x-axis represents the leading dimension

of the square matrix. We compare the evolution of the perfor-

mance with the performance of an accelerator-free system.

The peak, with GEMM running on a single core, has been

measured at 19.55 GFlop/s, leading the aggregated CPU

peak of 625.6 GFlop/s. The DAGuE implementation without

accelerators reaches 87.3% of the GEMM peak. Taking into

account the accelerators, the DAGuE implementation using

Fermi cards requires larger matrices to reach full efficiency,

as the parallelism within the nodes is not sufficient to

overlap the communication of tiles between GPUs and

CPUs with computations inside the GPU. Nonetheless, for

a larger matrix size, the Fermi system obtains 1.97TFlop/s,

which represents 77% of the maximum GEMM performance

aggregating all CPUs and GPUs (practical peak). Similarly,

on the Tesla system (see Figure 9) the runtime is able to

reach 76% of the practical peak. Again, the same GPU-

enabled Cholesky code can achieve very good performance

on a variety of distributed system, without modifications.

VI. CONCLUSION

With CPU frequencies reaching their pinnacle, high per-

formance supercomputers maintain their growth in comput-

ing power by multiplying the number of cores and adding

computing accelerators, such as GPUs or FPGAs. Different

programming paradigms have been proposed to address this

sharp increase in the number of heterogeneous computing

elements. One of these paradigms is scheduling of DAGs

of micro tasks. Using this approach, the DAGuE framework

has successfully harnessed the performance of large scale

clusters of many cores for various linear algebra operations.

In this paper, we presented how this framework has

been adapted to heterogeneous hardware, enabling the use

of GPUs. The fully distributed scheduler of DAGuE has

been adapted to a hybrid scheduler, capable of selecting

codelets and orchestrating GPU operations when beneficial

for the performance of the application. The hybrid scheduler

extends the cache-reuse heuristics of DAGuE to the GPU in

order to minimize data movements. Porting an application

using a regular DAGuE algorithm to use GPUs consists

solely of the addition of the necessary GPU codelets (and

kernels), as is illustrated by the presented Cholesky factor-

ization algorithm. The performance evaluation, on a variety

of heterogeneous hardware, including distributed clusters of

GPUs and multi-GPU shared memory nodes, demonstrates

not only that the DAG approach reaches excellent levels of

performance, but it also does so while using the same code

on all considered platforms, thanks for the DAGuE runtime

taking care of handling the intricacies of heterogeneity. In

the future, we plan to scale the evaluation on larger scale

distributed systems, when they become available, and to port

other numerical operations.

401

REFERENCES

[1] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra, “DAGuE: A generic
distributed DAG engine for high performance computing.”
in Proceedings of the 16th Int. Workshop on High-Level
Parallel Programming Models and Supportive Environments
(HIPS-11). IEEE, May 2011.

[2] J. A. Sharp, Ed., Data flow computing: theory and practice.
Ablex Publishing Corp, 1992.

[3] J. Yu and R. Buyya, “A taxonomy of workflow management
systems for grid computing,” Journal of Grid Computing,
Tech. Rep., 2005.

[4] O. Delannoy, N. Emad, and S. Petiton, “Workflow global
computing with YML,” in 7th IEEE/ACM Int. Conf. on Grid
Computing, september 2006.

[5] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek,
and S. Tomov, “The impact of multicore on math soft-
ware,” in Applied Parallel Computing. State of the Art in
Scientific Computing, 8th Int. Workshop, PARA, ser. LNCS,
B. Kågström, E. Elmroth, J. Dongarra, and J. Wasniewski,
Eds., vol. 4699. Springer, 2006, pp. 1–10.

[6] E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. van de
Geijn, “Supermatrix out-of-order scheduling of matrix oper-
ations for SMP and multi-core architectures,” in SPAA ’07:
Proceedings of the nineteenth annual ACM symposium on
Parallel algorithms and architectures. New York, NY, USA:
ACM, 2007, pp. 116–125.

[7] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak,
J. Langou, H. Ltaief, P. Luszczek, and S. Tomov, “Numerical
linear algebra on emerging architectures: The PLASMA and
MAGMA projects,” Journal of Physics, vol. 180, 2009.

[8] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A hybrid multi-
core parallel programming environment,” in Workshop on
General Purpose Processing on Graphics Processing Units
(GPGPU 2007), 2007.

[9] H. Ltaief, S. Tomov, R. Nath, P. Du, , and J. Dongarra, “A
scalable high performant cholesky factorization for multicore
with GPU accelerators.” LAPACK Working Note, Tech. Rep.
223, Nov. 2009.

[10] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief,
S. Thibault, and S. Tomov, “QR Factorization on a Multicore
Node Enhanced with Multiple GPU Accelerators,” in 25th
IEEE IPDPS, Anchorage, USA, May 2011.

[11] M. Fatica, “Accelerating LINPACK with CUDA on heteroge-
nous clusters,” in GPGPU-2: Proceedings of 2nd Workshop
on General Purpose Processing on Graphics Processing
Units. New York, NY, USA: ACM, 2009, pp. 46–51.

[12] T. J. Desell, A. Waters, M. Magdon-Ismail, B. K. Szymanski,
C. A. Varela, M. Newby, H. J. Newberg, A. Przystawik, and
D. P. Anderson, “Accelerating the milkyway@home volun-
teer computing project with gpus,” in Parallel Processing
and Applied Mathematics, 8th Int. Conference, PPAM 2009,
Wroclaw, Poland, September 13-16, ser. Lecture Notes in
Computer Science, vol. 6067, 2009, pp. 276–288.

[13] M. Fogue, F. D. Igual, E. S. Quintana-Ortı́, and R. A.
van de Geijn, “Retargeting plapack to clusters with hardware
accelerators,” in HPCS’10, 2010, pp. 444–451.

[14] J. Perez, R. Badia, and J. Labarta, “A dependency-aware
task-based programming environment for multi-core archi-
tectures,” in Cluster Computing, 2008 IEEE Int. Conf. on,
29 2008-oct. 1 2008, pp. 142 –151.

[15] AMD, “Amd64 architecture programmers manual volume
2: System programming,” AMD64 Technology, Tech. Rep.,
2011.

[16] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra, “A
class of parallel tiled linear algebra algorithms for multicore
architectures,” Parallel Computing Systems and Applications,
vol. 35, pp. 38–53, 2009.

[17] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, H. Haidar,
T. Herault, J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief,
P. Luszczek, A. YarKhan, and J. Dongarra, “Flexible develop-
ment of dense linear algebra algorithms on massively parallel
architectures with dplasma,” in 12th IEEE Int. Workshop on
Parallel and Distributed Scientific and Engineering Comput-
ing (PDSEC-11). IEEE, may 2011.

[18] R. Nath, S. Tomov, and J. Dongarra, “An Improved MAGMA
GEMM for Fermi GPUs,” LAPACK Working Notes, Tech.
Rep. 227, 2010.

402

