Farallel Camputing 17 (1951) 1247-1255 1247
Marth-Halland

Parallel Loops — A test suite
for parallelizing compilers:
Description and example results

Jack Dongarra ®, Mark Furtney ¥ Steve Reinhardt ®, and Jerry Russell ®
Y Cerpurer Sciewee Deparmzeni, Unicersity of Toancesee, Enowedile, TW 7000, 8A

el Mfcosiematical Sevences Seevion, Ok Midge Nariaaod Loboearory, Oak Ridee, TV I7820 US4
"'1:'.'.-1?_1 Rerearch, Tec, 855:.F Lowe Oak Drve, Eagan, MN 35121, USA

Abmeracy

Dromgarra, 1. 8. Furiney, 5. Banthardn amd J. Bussell, Farallel Loops — A rest saiie Tor parallelzmng complers:
Descripiian and example resulls, Parallel Computing 17 (195913 12471155,

Several multipreceiscs systems are now egommencially available, and advances in compaler wecheslopy provide
aatomaiic conversion of programs w mn on such systems, However, o accepted measure of this parallel
compiler ahibuy exisiz, This peper presents notest swave of suhroutines and loops, calbsd Meeaffel Loaps, desipned
1o (L) measure 1he ability of parallelizing compalirs 0 converl ode 10 run an parallel and () determine how
effecriveley parnllel hardwore and soltwore work together 1o achieve high performance zcross noronge of
profdlem sipes In addion, we present the resulis of compaling s sulle using two ecememcrcally availalles
parallelzing Foriran campilers, Cray and Convex.

Kepworgs, Muliproccssor sysiems; parallelizing compilers; parallel es suice; resalis; CRAY, CONVEX

1. Intrgaduction

Within the past several years, many vendors have produced computer sysiems with multiple
central processing units (CPUs) with zhared memory, Alliant, BEMN, Convex, Cray Research,
[DEC, TEM, Intcl, and Sequent are examples of machines in this category. While some of these
machines can be wsed most amply as throvghput machines, with each program vsing only one
TP, often a single program will need the extra speed made possible by wsing muliple CPLUS.
For multiprocessing 10 be effective, the compiler must be able 1o detect the parallelism that
cxisis in the program. Moreover, the software and hardware must be able to exploit that
parallelism for the problem size that the vser defines,

Various svstems exploit parallelism in different ways. For example, Cray Kescarch systems
have muluple, segmented Tuncticnal wnits (which can be concurrently active), multiple memory
ports and chained vector operations for exploiting paralleli=sm on a single CP, and a simple set
of hardware and sefiware leatures for exploiting parallelism on multiple CPLUs. However, no
commonly accepted measure of these abilities exists. Several tests measure compiler vectoriza-
tiom abilities in different ways, but none of them concentrates on paralfelizofion abilities, Other
tests measure performance, but generally only for one problem see.

We present a test suite, called Porallel Loops, made up of two parts: (A) a set of subroutines
and (B} a set of DO-loops. We have used this suite effectively 1o measure the ability of software
o detect parallelizm and the akility of hardware and software (o work together 1o exploit this

(MET-2191 /51 230350 £ 1961 - Elsevier Science Publishers LY. All rights reserved

1248

. osgarrg o ail.

parallelism. The executable cods in the subroutines 15 dominated by D-loops (often nested
three or more levels deepl. Run-time performance of the subroutines provides a metric with
which we can measure compiler capabilities (o recognize and exploit parallelizm. Each of the
DO-loops is executed with a set of array sizes and trip counts, and each can be used 10 measure
parallel system performance on a wide variety of problem sizes.

The majority of the loops in this test suite were extracted (rom existing code (from Fart A),
and about 20 loops were built synthetically. No effort was made to choose loops that cover the
space of parallelizable constructs. Although these types of loops could be a vseful addition to
this =et, we have preferred 1o stay with loops that we find in practice. These loops reflect
constructs for which parallelization ranges from easy to challenging to extremely difficult. We

Table 1
36 subroutines (Cray Besearch Y-3PE and Autatasking ' compiling system, CF77 4.0
Subr Flaating Yector 1 CPU Veotor 3 CPUs Specdup Sposdup Speedup Speadup
sl Point - Sealar (31 Weotor (17 Vector (817 Wectar (3,0
Oips. uELOEs ik RAELCES Eﬁk Scalor(l} Sealar {1} ¥ecior(l} Scalar (1}
{CHHY's)
1 T3 3ET 1 Ll 1 1.28 Li0 1.11 277
. Shel 568 18 313 2 093 L) (42 3T
3 128307 1313 EH] aTig 2 556 a5 1T 35485
q IT0513 1684 i3 1712 432 b.55 18] [i1.22
3 17668 1050 i3 1472 5 174 i1z 1.4 T34
i 173757 1559 41 e 34 10 &30 5.52 46,50
b X647 1309 57 10248 4 395 AT Sah 44,57
4518 130, 41 1244 1 045 Sl] 465
kS 11256 . T1.5 24 1507 L 514 91 1494 13.43
1 10452 T 22 194 g 347 A4S 355 23001
11 TRUElL 192 4l 1842 ? 0.4z 150 035 1046
12 101542 1059 K] SERT 22 545 1102 242 50,75
13 134 GRS 21 GE.] 1 105 S 09 360
14 21141 26540 &4 10611 42 550 3.98 4Kl 13.5%
15 12815 452 14 Gna 2 1.55 T8 1.35 AL
16 IS 3033 e 1957 1) (.5} 5.2 0496 L)
17 243733 44 3 11143 44 621 574 240 anaz
14 MM2 606 i | 4078 16 467 545 6.12 3338
1% 18Ge0 1404 47 LI il 503 [536 REN
n 6%l 554 7 Fo.8 3 273 4] 180 .31
il 23T 140, 4 Laz g 3 058 747 083 T
o] 130845 962 o G501 23 0,44 L 40,76 45 50
e 4504 281 i 142.3 5 Le3 1.7 A s44
4 10495 120k k] TR i TE 405 % 2550
5 22563 1301 a1 113.1 q Lis 5.14 087 £.54
] 12913 927 oL 0.3 1 0.5¢6 511 0.57 4397
17 1323 12 3 25,1 1 2.4E v, 2,53 &
pl] 1317 0Ll] 2487 £ 130 x93 2.56 T.51
19 180604 134.% 4 i iy kS 1.5 431 1.72 L0E?
m 33503 2307 T4 1526.7 G0 5.00 E.HG 0,56 .13
k| 136403 2302 T3 G354 25 iz 908 276 1505
1 122346 1348 43 ferie e 20 13 Tad ER mn
k] 2528 147 4 13.8 | .56 100 101 1.1
4 27661 1505 30 D K 11 6,54 £11 1,77 1458
L IB0TO 1626 51 53 i 1.27 .84 1.27 932
36 16355 4.9 1% ETE R 14 fr.dX ing fr.dd 2538
Aggragate MMG2461635 149.1 47 4707 1% 143 TA3 33 EER
Maxintm 05,0 i 1524.7 1] L= 110 .76 67.3%

Farglhe! Loons - @ rast suite foe porediplining conmgrifies 13440

Takle 2
6 parallel loops (NSIZED = HH0, ME1LED =100, MSIZE = 10)
{0ray Resenrch YoMP /2 ond Ausiotzsking '™ Compiling System, CF77 4.0)

- D= Floating Yictor 1 CPLF Weolor 3 CPUz Speedug speddup Spidup el
I loop Point MFLOPE & MELOFS T Scalar (8)/ Vector {137 Veotor (B1 Vecior (B
mnniler bl operaons Sealar (1) Scalar (1) Vecwor (1) Scalar (13

Fiak Fak
1 104 LKKHHY 469 14 4.7 | 1040 G0z ke =
2 LI KRR 315 e 24T G 153 1,04 193 A3
ki 1200 IO 131 T 23.1 1 1.040 1.00 1.0 1M
4 130) IEKHHY 69 X a1l X .55 a15 T.57 G171
3 1400 SOOENED 15es &3 2IHAD ¥ 1,143 LT (LY 1071
i L1500 TAIE 2105) 1601.5 Gl 1.51 12.32 161 @RS
7 1K) HAnld 1164 T A5G0 33 549 113 FSE TEIR
B 1700 LOKRHMY 1135 3 il k| V.53 .55 G5 GLTH
4 1300 HEHMNy 2119 T4 15694 3 1.35 11.15 [TEED
1 1500 SEERRY 23T 4 15041 3 Al 1111 [n 35 TEAS
11 2000 IO 14006 ddd 953.7 12 IR .2l 6.7 572
12 2100 200K 171 5 101 42 0,57 10,30 6.2 (S
13 2200 IO 1154 i, oG5 a5 .71 1A .51 54.70
14 2300 JKKRHE 1269 40 anl.n i LR [13,45 .57 1R
15 o] 11 30HEHE 200E G 1545.% il T.53 12,12 e 5141
14 2500 MEHHHY 466 14 3555 14 4,50 561 LEE 4280
7 2600 KRR} 1430 43 Ahi2 R 4,13 LT 4.4 LRk
1% 2700 1500000 1862 3% 13838 35 LR K k.21 il G5 54
14 REIET 140KKRE 1775 ar 1775 7 (.55 11,36 1.040 1135
L 2500 11400KRE 1706 ad EEFH] 2l 243 LR ERLE 1543
2zl 000 LOO000 235 7 2.1 i .36 9.61 i34 454
i3 100 1CCKKEE 200 3 1455 3 T4 1.5 244 B |
I3 KL LCEEEEE 20D 8 1481 3 A Lk T4 3153
A 300 10K 182 3 152% 3 R 586 1.0 4148
5 Mo BHAOOERD ST e £330 04 Tk 1,043 e T
B 3500 1000 150 4 111.2 4 748 G40 .41 4736
T A 10K 21,3 3 1411 3 .57 019 T4 =]
Ik oo 25006 1D 3 bl 3 3.5 .4 LAY P b
e AR00 450000 L1 10 2528 10 730 .00 A G304
| AHH) 2K 4.1 1 A0 1 1,040 1,00 5% 050
il 400 155300 915 28 1.5 k| 1.4} 15.54 1.00 1554
33 A1) 155800 1286 i 1226 4 (.55 5l 1.040 240
15 4200 200E0 BE i B 1 0.5 1467 LUk 158
4 A5 TLCCET 11413 35 110.2 q 1.4} .71 1.040 T.71
3= A4 Hona 3.0 2 TR 21 GECH 17.31 an LR
M A5(H) 150000 1426 45 w25 7 125 14.27 fi. &l 10752
T 451D S0 91,3 20 LEAERY 24 T 14,84 {151)
s 4700 SM00 245 i 25.6 1 0.8% 03 103 bl
5 A5 00 452 13 4.5 1 1.4} 1.71 {137 oy
A0 AMHY 5000 3l 1k 3l 1 0 1.33 1.4 135
41 Sy 15RADOOO0 24R.5 s L&5].2 13 GaA% B.60 (X G410
43 A1 W00 2155 i 1651 fii G5 ERES T [
4% 5200 GOLI ZRTS ul ZBB3 11 1.4H} .14 1.0 Tk
44 SHMy BMEO00 2158 fid L&146.5 fidl G0 654 .56 4546
A5 SAHE TSRO0 2555 1| FULER GE LR 840 GRS e
4 S50 200000 1925 | 19E3.3 8 19.25 1562 1030 10031
47 oy S(MHNH 1573 1 157.2 7 1.4} 14,52 1.040 1650
43 ST I 1352 43 1352 3 0.9% .63 1.00 A3
49 SRiHy A0 91 25 G590 2t GGG B2 117 R3S
30 SMHp WHRAAEED 1956 HE 1656.3 1 144} 924 (5 aa?
5l f{HH} 200000 2548 15 30 8 0.5% 941 1.00 SR
52 SR 4351644 T1345 Ll 15470 &1 G356 9.5 .24 (5.48
53 G200 100 1325 &2 1325 5 LK 1142 1,040 11002

| &

el LECRERHE 30,1 L 03 1 (ER 114 1.01 1.11

Tahle 2 {continued}

- D Fleating Vestar TEOPL Veptar 5 CPUs Speedup Spesdup Specdup Speedop
loop loop paint j M_F_L-lf-}_F'.Ei_E- HI:".]_':'_'IF‘E ?-b Scalar (217 Vector (1) Vector (8)7 Veclor (8]
fnfnker lahel operations Pesk Paak Scalar(l) Scalor {1y Vector (1) Scalar(l)
53 DD J000000 2056 65 16633 66 G 10,56 5.0 5,38
A [P SRHHMD 153.8 42 FRG0 15 250 11.58 219% 15304
57 GECE 15HHMHD Z25.6 72 1661.1 [5-3 .50 .10 136 6,510
Bt Pl H] 16(HHMD TO0 25 6.8] LKl E.dl 1040 EAl
59 EECD ZOSEHANY 11358 ki3 1134 L 1.LK) 14,34 1.0 1=.38
0 =] GOHMMD UZE A q1 1243.0 43 1182 12.23 BET 11822
il pEET] TN 37 i 1348 4 T 10,65 & #1.53
[0 TLED J00WWHME 30467 g 3187 1z (H00] 929 1.00 Q3R
[THE AKHHHNY 20472 a7 HIG53 EX T.48 .33 89 4375
i3 T30 ZDHRHAY 1.5 HE| TN | &2 | A0 24 ;.27
Aggregnte TIATEAGNG 200 BE 11764 45 0 oEd) 0 376 4,36 1640
Maxinm 147 i AT 8 19.24 1.3 1103 180,401
Tahle 3
Jib smbaramniens (Cooves -5 1 O Vs, 2 OFLUs ard compiling system, of 2,17
Subrmziine Floating Convexd Comyvex 1 Convex 4/
B unker Paang MELDES T Feak MFLOPS T Peak Croovex |
Cips. (000730

1 TR a0 i Iy F .77

1 S0 6.6 3 .0 12 L.10

k! 1 206307 B30 11 Tl i | 117

i 2SS adl 14 LN T 4,19

5 1 TEEE 414 22 15.9 | 277

i 174757 244 2 11,7 3 340

7 201647 5.4 32 17.5 35 16T

] MEE 2,1 2 21.4 &2 (B

g 11155] 1 %I 1k 135
11 1052 ai q L& 3 562
11 28581 194} i T 13 LEa

12 101543 351 17 100 20 3151
13 10 5.4 4 [13 1.2%
14 221141 0.7 21k .3 14 4,50

15 12815 104 k] 50 10 2.0
14 FIES 5.3 p 4.5 q 1.1%
17 2A3TES a0a) 1%1] 4,145
14 W 7.3 8 4.9 qa 153
19 THIEED 5.4 a2 216 = EA
) Bl 124 fi il] o7
21 237G 210 15 14,7 £ 1.1
22 130245 ITh 13 (21 13 115
23 450 41 2 14 7 .42
24 136494 AR H 154 =l 185
25 21563 i 14 1.7 25 11E
6 12413 Th i s 14 T
n 1313 32 1 1.3 2 244
R 1amT 54 12 k2 i 249
) 15614 iz9 14 118 3 2.79

Ul LRG0 55 %4 16.4 32 .15
| 136813 351 14 12,3 i3 L
1z 122344 05] 15.4 i} %4

i3 2518 4.2 2 T 7 .14
34 27661 557 7 1%.0 K 293

15 kAl i] I®Aa 14 1.5 23 145
34 16545 2 .
Aggregate MSRTE 159 17 1.3 3 112
Cheramel g s i) aa

* The viening For this loeep was 100 inseurate to pive reliable parformance nambers

Faraitel Laipe - @ Sesl suite for paraflelizing compilers 1251

Talsle 4
G paralled loops (NELEELD = 1000, NELEED = 10, NSIZEY = 10} Cenvex C-21 OPU v, 4 CFLUs compiling svstem, fo
4.1

LR -Rooe LR - Fleanng Conves 4 Conves 1 Convex 4,7
nuwnoer labs| Puoint - - Canvex 1
Cps, (000°5) MFLOFS E Paak MELOPS T Panks
1 L0 iy} 4.4 1 12 r a7
2 110K MO0 GL2 a7 11.3 2 E42
3 130K 300 14 1 24 4 14K
4 120K L P 1 04 1 41K
il 140K1 G 05 H A 4 I0R
) L300 Tl 597 el A4 40 243
T L&) 5% e 13 - F 17 AR
i 13060 L 269 13 TE 15 X125
@ L2 Rl]] 25 148 £yl 15
10 1540 2y e 5 157 1 131
11 2000 200 3E 17 @ 1& W
12 21 20Hy 415 1 11.5 3 1
13 2204 20 14.1 T 39 1L 113
14 2300 AWk 32 1 1z 1] 1.0
15 2 113Kk M) a5 233 A6 R
14 2500 M) 1650 k] 4 10 1an
17 £ 1 N} L | 4 13,3 A 145
18 2TH) 15K} k1.2 40 21.2 42 183
12 L 150 7.3 iz 119 4% 138
20 K LEHH 51,8 4 218 45 159
| UL 1K) 0.3 i} 59 11 Jdd
2 J10K1 1K1 150] 4.3 [1,75
i3 32K 10K] 17.7 -] 4.6 % 388
4 330 10 176 & 4.7 & 3a
il LK) AOE] 1071 a1 KRR 71 2.0
14 JHH 101 74 k] 1.2 3 4.11
T LK) 1K) %A 4 i b 156
5 B EH) ik 1 L. 1 325
12 JE0 450 154 7 3G 7 A0y
gl gLy 0 i 1 0.7 1 36
n ACCE 19 194 % 7.8 15 248
31 100 155 102 b LR 14 1.30
33 4300 200) 1.7 ; 3 1.12
kL 00 10l = b TAa 15 243
a3 44040 1043 Foa 12 TA 15 323
36 4500 150 414 21 11.8 23 al
37 A0 A0 P 14 4 14 358
3 4700 Rl 139 i 36 7 58
3% 200 00 14 1 33 & 143
Al 4G] 1.5 4 11.1 iR 1435
41 S 15500 1050 5 PR 42 <30
42 510 Gl Gihd 45 112 44 £]
43 S2(H) hi 1434 71 413 82 347
L] 530 BO0GED o 45 110 4 143
4 L1} 1K1 1733) 417 a5 LY
wh SHMHp (W 4.8 2 157 ay| IES
47 Sl (KKK H4.2 LY 143 3 351
a4 ST} 3 L - 11.0 11 035
49 LR (KK 3.5 T 10 1] 343
1 SEHH] TEHHE ok 1% 1.2 41 1.70
51 S0 20 1] 19 17.% 15 12
i G10K 4351 T4 g 2.% 43 365

i3 GIEK] 291 Shb 7 14.% 28 14

13242 . Dangareg & ail.

Tabkle 4 (continued)

I.:;I.;}-I.-'_H.'-p DO-leop Flaaung Convex 4 Coavis 1 Conves 47

nipmber labed Faint PT‘I'E'E{'.IF‘E % Peak MFLOTS % Peaks Cosivin 1
Clpes, (00°5)

W H300 T TR 9.3 1% .02

55 G404 LK £, a2 265 53 239

36 £500 5200 15.7 7 15.3 3 Lo

57 Bl 3080 9.4 38 271 54 251

S S700 180 150 7 71 14 211

45 HE0D 20EE0 571 28 12.6 37 107

i STHHD LT 50,7 24 170 34 255

61 T 7001 728 k13 737 147 5%

2 710 300K 5.3 12 117 2 218

63 7204 1000 1356 07) 77 150

i 7300 4300 124.3 2 2 62 1458

Aggregane 27530 8.7 4 132 T3 .55 X

W ma 173. 86 737 147 242

{.'-mlrnri;'i.c Mean 2.7 LA

have collected the resulis from compiling and executing these loops using commercially
available, parallelizing Fortran compilers on @ vanely of supercompulers, mini-supercompuaiens,
and mainframes.

This paper 1= organized as [ollows, Secton 2 discuses our metvation for developing the test
suite, Section 3 catcgorizes the collection of loops used in the test. Section 4 describes the
methodology vsed to perform the 125 Section 5 explains how the results were seored, and
Section 6 presents the results of our testing. Section 7 discusses the value of this test suite and
presents suggestions for fulure research,

2. Muaotivation

Cwver the past five years, several vendors have introduced compilers that have the abilily to
automatically parallelize Fortran programs, Matwreally, the designers of these parallel compilers
would like 1o know where to direct their next development efforts o have the most positive
effect, (This is the constant challenge of trying to define *typical” applications.) Moreover, they
are interested in measuring the compiling svstem in o way that will translate inle expected
improvernents for coslomer codes,

Unforiunately, the traditional collections used 1o test performance do not satisfactorily
measure the concurrency abilities of hardware and software systems in handling such applica-
tions:

1. The Livermore Fortran kernels [1], for example, provide a proven method for deriving
information about vectorization from run-time data, However, the loops are simple encugh
and seravon counts arg small enough that converting them to run in parallel is sometimes
less efficient than running them on a single CPU (at least for machines thal have hardware
with sigmificant ability o exploit parallelizm within a CPLL eg. vector registers).

2. The Yector Loops by Levine o al. [2] measure the abibily of o compiler 1o veclonze Fartran

consirucls,

The LINPACK Benchmark [3] measurss both senal and parallel performance and scknow]-

edges that different problem sizes are appropriate for machines of different power, henoe the

s
h

Maralled Lonps - a st swie for paealiclizing conspiiors 1253

D00 = 100 and 1000 = 1000 problem sizes. However, we wizh 1o measure a wider variety of
loop constructs, with more emphasis on performance and parallel speedup.

4. The Perfect Benchmarks [4] measures the performance of entire programs. However, the
problem sizes of the Perfect Benchmarks have been scaled down so that systems from many
vendors (with a wide vanation in peak and sustained performance) can run the tesls noa
reazonahle time. This bias in problem sie strongly affects the decision 10 use uniprocessing
or multiprocessing oo gel the best performance for individoal DO-loops and loop nests,
Additionally, the Perfect Benchmarks do not illustrate the effects that different problem
sizes will have, and (lus information is often important o different users.

X The parallel test suite
31 Belecrion

We have collected subroutines and loops that conain significant parallelism and are
representalive of real applications. As stated before, a few of the constructs are svnthetic, but
for the most part they are drawn from existing applications, A variety of scientific disciplines
are represented; no single discipline dominates the sample. No alterations 1o the source code
have been performed, except 1o make *cleanup’ changes (that is, adding uniform indenting and
statement labeling, and changing variable names). Mo manuval optimization has been carried
outl, and no directives have been added. This iest is meant 1o be run as i, although vendors will
have 1o supply their own wall-clock tming function which 12 called throughout the source, We
have chosen two parts 1o the test, *Whole Subrountines” and °Loop Mests', as the best way to
represent real applications.

F 2 Whele subroutines

Fart A of the test suite consists of whole subroutines, becanse these are what the end user
maost ollen encounters. The suite has a total of 36 subroutines, 26 driver rouwtines, 3 wility
routines, and a main routing. The 36 subroutings contain over 730 DO-loops in about §,500
lines of Fortran, The routines have significant nesting levels: over hall are doubly nested, and
maore than a third are nested three or mare deep, DNeration counts have heen adjusted so that
most of the routines take about the same amount of time on a CRAY Y-MP /8 system, The
routines conform to the ANST Fortran 77 standard.

The focus of Part A s principally on the ability of the compiler 1o convert code o run
concurrently, The larger pieces of code involved may give sophisticated compilers a better
opportunity to schedule parallelism as appropnate for a given machine (since parallelism may
be exploitable with a larger granularity). However, whole subroutines often make it harder for
compilers 1o find exploitable parallelizm,

A3 Loop nesis

Fart B of the test suite consists of &4 individual loop nests, most of which were chosen [rom
the subroutines in Part A, The amount of work done i each loop nest varies, Eleven cases with
different tteration counts are execuled per DO-loop o provide appropriate coverage of the
wiys these loops are used in many applications.

The focus of Part B s on the ability of the hardware and software to work in umson to
provide good performance across a range of problem sizes. Because the loops are easier to
analvze than the subroutines, we expoct more parallelism to be found and exploited. Dafficulty

1254 J. Dongarra or af

may arise, however, because the granularity of parallelism (for a particular problem size) may
limit the efficiency, though this should be less of a difficulty as the problem size grows,

4. Testing methodology

The Poralfel Loops test suile 15 modeled alter the Livermore Fortran kernels in several
respects. First, it is intended to be run unaltered except for the timing routines; that is, no code
changes or directives are to be included, Second, the result arrays of each subroutine are
sumimed, and the sum 1= comparsd o known correct answers. Third, the speed of cach rowtine
i caleulated as the number of floating-point operations (as measured by the CRAY-Y /MP
hardware performance momitor [3], and included in the source codes) divided by the wall-clock
tume. The programs are self-contained and require ao input data, Multiple execulions of the
test are required to collect the data necessary for the speedup caleulations (once with one CPL,
and onee more for each multi-CPU configuration to be tested),

5. Loop scoring

Wendors were mailed 4 magnetic tape containing the Paraflel Loops collection. They were
asked 10 compile the loops without making any changes, wsing only compiler options for
automatic parallelizaton, Thos, the wse of compiler directives or interactive compilation
features to gain additional parallelizations was not fested.

Vendors returned their outpul o us alter compiling and running the suite. The output was
further refined and is printed in the appendix of this report. The objective of this test suite has
heen 1o provide a measure of system performance on these loops; both raw computational
speeds and speedups for several problem sizes are reporied and made available for comparison,
Users of this report are urged to consider these results carelully when making comparisons, and
in particular to be careful when comparing spesdups — which, after all, are only ratios and are
difficuli 1o compare effectively.

&, Interpretation of the results

Two types of information were gathered: the raw computation rates (for 1 and ¥, CPUs)
and the specdup ratios. Mote that “Aggregate” and ‘Maximum® columns of data are also
supplied, where *Aggregate” is defined as the total operation count divided by the total time,
The raw computation rates are an cffective measure of how well 3 particular system (hardware
and software) performs with a particular problem tvpe. Included with these raw computation
rates is the percentage (1-99) of peak performance achieved., The speedup ralios compare
elapsed (wall-clock) tmes of senal, vecior, parallel, and parallel-vector execution. These ratios
represent the abihity of software and hardware to work together o exploit the parallelism
represented in the subroutings and DO-loops.

For each vendor, we include several tables in the appendix. Tabdez [oand 3 show the resuliz
of Part A, the subrouting portion, of the Parallel Loops, The raw computation rates may be
useful for a vanety of compansons (for example, comparing Cray’s 4.0 compiler releaze with
the older 3.0 release). Tables 2 amd 4 show the Tull results Tor the largest of the 11 iteration
count sets of Part B (000 = TO0 = 100,

FParalled' Loogps - @ resr .a.ul'.'l'_l"r:-." ll:l\.urlh'u'i‘hl.'.'n:.llg .'-':A.lHﬁu:.Ill"'.".l: 1255
7. Conclusions

We have developed a test suite, called Porollel Loops, 10 2erve a2 3 metnic of parallgl
compiler and hardware performance. [n doing 50, we have tried to choose a set of routines that
will test the strength of o computer system (compiler, run-time system, and hardware) in a
varigly of disciplines, Cur initial goal has been twofold:

{13 1o compare the ability of dilfferent Fortean compalers 1o automatically parallelize various
laops, and

{23 to measurs the paralle]l performance of Tull syvsiems (hardware and software) on real
problems of varying sizes.

A copy of the source code wsed in the esc s available from perfil ar Oak Ridge MNational
Lahoratory. To receive a copy of the code, send electronic mail to netlib@ omnl.gov. In the mal
messigs, Ivps

send pacallel from benchmark

W intend o update and expand the resulis presented here. In particular, we plan to develop
a check to venify the correctness of the compiler-generated code,

We may also add new loops. We believe the Paraliel Loops are a good measure of how well
compilers and hardwars work (ogether 10 run commaon loop constrocis in parallel. However,
the test is definitely focused on the tvpes of parallelism that can be detected by wday's
compilers. For example, the whaole st iz defined 10 measure parallelism that occurs within the
bounds of a single subroutine. Today interprocedural analyziz 15 a matter of Agmificant research
interest, but few existing prodoction compilers have the ability 1o detect and exploit cross-sub-
program parallelism. In the future this ability may become common, in which case this test
should change 1o reflect the new technology.

We solicit the aid of outside partiss in reviewing our routines, deciding whether they
constitute o representative 221 o numerically intensive disciplings, disseminating the routines
o interested vendors, and moderating the resuliz on o continuing baziz,

References

(1] E.H. McMahon, The Livermore Fortman Kernels: & comguiter test of numerical performance range, Lawsrence
Livermare Mational Lobarotory R-:'p-nrl: LCRL-53T45, Oxtober 1986,

[2] [x Levine, Do Callaban and J. Desgarea, A comparaiive study of awlomaisc vectorizing compdlers, Mathemaies and
Campuier Science Crivision Preprint MOS-F215-0331, Argonns Matanal Laboesatory, March 1991,

[3] L1 Degarca, Perfermance of varions compuiers using standand linear equalions software in 2 Forlran aoviran-
meni. University of Tennessos Repaorn O5-80-80, 15590,

[4] B Berry e al, The perfect club henchmarks: Effective perlormana: evaluation o sopensonigalers, Dol
Fupercomprier Applivetices 3030 (Fall 15890 -40

[4] Cray hardware reference mamsal,

