Farallel Camputing 17 (1951) 1247-1255 1247
Marth-Halland

Parallel Loops — A test suite
for parallelizing compilers:
Description and example results

Jack Dongarra ®, Mark Furtney ¥ Steve Reinhardt ®, and Jerry Russell ®
Y Cerpurer Sciewee Deparmzeni, Unicersity of Toancesee, Enowedile, TW 7000, 8A

el Mfcosiematical Sevences Seevion, Ok Midge Nariaaod Loboearory, Oak Ridee, TV I7820 US4
"'1:'.'.-1?_1 Rerearch, Tec, 855:.F Lowe Oak Drve, Eagan, MN 35121, USA

Abmeracy

Dromgarra, 1. 8. Furiney, 5. Banthardn amd J. Bussell, Farallel Loops — A rest saiie Tor parallelzmng complers:
Descripiian and example resulls, Parallel Computing 17 (195913 12471155,

Several multipreceiscs systems are now egommencially available, and advances in compaler wecheslopy provide
aatomaiic conversion of programs w mn on such systems, However, o accepted measure of this parallel
compiler ahibuy exisiz, This peper presents notest swave of suhroutines and loops, calbsd Meeaffel Loaps, desipned
1o (L) measure 1he ability of parallelizing compalirs 0 converl ode 10 run an parallel and () determine how
effecriveley parnllel hardwore and soltwore work together 1o achieve high performance zcross noronge of
profdlem sipes In addion, we present the resulis of compaling s sulle using two ecememcrcally availalles
parallelzing Foriran campilers, Cray and Convex.

Kepworgs, Muliproccssor sysiems; parallelizing compilers; parallel es suice; resalis; CRAY, CONVEX

1. Intrgaduction

Within the past several years, many vendors have produced computer sysiems with multiple
central processing units (CPUs) with zhared memory, Alliant, BEMN, Convex, Cray Research,
[DEC, TEM, Intcl, and Sequent are examples of machines in this category. While some of these
machines can be wsed most amply as throvghput machines, with each program vsing only one
TP, often a single program will need the extra speed made possible by wsing muliple CPLUS.
For multiprocessing 10 be effective, the compiler must be able 1o detect the parallelism that
cxisis in the program. Moreover, the software and hardware must be able to exploit that
parallelism for the problem size that the vser defines,

Various svstems exploit parallelism in different ways. For example, Cray Kescarch systems
have muluple, segmented Tuncticnal wnits (which can be concurrently active), multiple memory
ports and chained vector operations for exploiting paralleli=sm on a single CP, and a simple set
of hardware and sefiware leatures for exploiting parallelism on multiple CPLUs. However, no
commonly accepted measure of these abilities exists. Several tests measure compiler vectoriza-
tiom abilities in different ways, but none of them concentrates on paralfelizofion abilities, Other
tests measure performance, but generally only for one problem see.

We present a test suite, called Porallel Loops, made up of two parts: (A) a set of subroutines
and (B} a set of DO-loops. We have used this suite effectively 1o measure the ability of software
o detect parallelizm and the akility of hardware and software (o work together 1o exploit this
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parallelism. The executable cods in the subroutines 15 dominated by D-loops (often nested
three or more levels deepl. Run-time performance of the subroutines provides a metric with
which we can measure compiler capabilities (o recognize and exploit parallelizm. Each of the
DO-loops is executed with a set of array sizes and trip counts, and each can be used 10 measure
parallel system performance on a wide variety of problem sizes.

The majority of the loops in this test suite were extracted (rom existing code (from Fart A),
and about 20 loops were built synthetically. No effort was made to choose loops that cover the
space of parallelizable constructs. Although these types of loops could be a vseful addition to
this =et, we have preferred 1o stay with loops that we find in practice. These loops reflect
constructs for which parallelization ranges from easy to challenging to extremely difficult. We
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Takle 2
6 parallel loops (NSIZED = HH0, ME1LED =100, MSIZE = 10)
{0ray Resenrch YoMP /2 ond Ausiotzsking '™ Compiling System, CF77 4.0)
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Tabkle 4 (continued)
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have collected the resulis from compiling and executing these loops using commercially
available, parallelizing Fortran compilers on @ vanely of supercompulers, mini-supercompuaiens,
and mainframes.

This paper 1= organized as [ollows, Secton 2 discuses our metvation for developing the test
suite, Section 3 catcgorizes the collection of loops used in the test. Section 4 describes the
methodology vsed to perform the 125 Section 5 explains how the results were seored, and
Section 6 presents the results of our testing. Section 7 discusses the value of this test suite and
presents suggestions for fulure research,

2. Muaotivation

Cwver the past five years, several vendors have introduced compilers that have the abilily to
automatically parallelize Fortran programs, Matwreally, the designers of these parallel compilers
would like 1o know where to direct their next development efforts o have the most positive
effect, (This is the constant challenge of trying to define *typical” applications.) Moreover, they
are interested in measuring the compiling svstem in o way that will translate inle expected
improvernents for coslomer codes,

Unforiunately, the traditional collections used 1o test performance do not satisfactorily
measure the concurrency abilities of hardware and software systems in handling such applica-
tions:

1. The Livermore Fortran kernels [1], for example, provide a proven method for deriving
information about vectorization from run-time data, However, the loops are simple encugh
and seravon counts arg small enough that converting them to run in parallel is sometimes
less efficient than running them on a single CPU (at least for machines thal have hardware
with sigmificant ability o exploit parallelizm within a CPLL eg. vector registers).

2. The Yector Loops by Levine o al. [2] measure the abibily of o compiler 1o veclonze Fartran

consirucls,

The LINPACK Benchmark [3] measurss both senal and parallel performance and scknow]-

edges that different problem sizes are appropriate for machines of different power, henoe the

s
h
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D00 = 100 and 1000 = 1000 problem sizes. However, we wizh 1o measure a wider variety of
loop constructs, with more emphasis on performance and parallel speedup.

4. The Perfect Benchmarks [4] measures the performance of entire programs. However, the
problem sizes of the Perfect Benchmarks have been scaled down so that systems from many
vendors (with a wide vanation in peak and sustained performance) can run the tesls noa
reazonahle time. This bias in problem sie strongly affects the decision 10 use uniprocessing
or multiprocessing oo gel the best performance for individoal DO-loops and loop nests,
Additionally, the Perfect Benchmarks do not illustrate the effects that different problem
sizes will have, and (lus information is often important o different users.

X The parallel test suite
31 Belecrion

We have collected subroutines and loops that conain significant parallelism and are
representalive of real applications. As stated before, a few of the constructs are svnthetic, but
for the most part they are drawn from existing applications, A variety of scientific disciplines
are represented; no single discipline dominates the sample. No alterations 1o the source code
have been performed, except 1o make *cleanup’ changes (that is, adding uniform indenting and
statement labeling, and changing variable names). Mo manuval optimization has been carried
outl, and no directives have been added. This iest is meant 1o be run as i, although vendors will
have 1o supply their own wall-clock tming function which 12 called throughout the source, We
have chosen two parts 1o the test, *Whole Subrountines” and °Loop Mests', as the best way to
represent real applications.

F 2 Whele subroutines

Fart A of the test suite consists of whole subroutines, becanse these are what the end user
maost ollen encounters. The suite has a total of 36 subroutines, 26 driver rouwtines, 3 wility
routines, and a main routing. The 36 subroutings contain over 730 DO-loops in about §,500
lines of Fortran, The routines have significant nesting levels: over hall are doubly nested, and
maore than a third are nested three or mare deep, DNeration counts have heen adjusted so that
most of the routines take about the same amount of time on a CRAY Y-MP /8 system, The
routines conform to the ANST Fortran 77 standard.

The focus of Part A s principally on the ability of the compiler 1o convert code o run
concurrently, The larger pieces of code involved may give sophisticated compilers a better
opportunity to schedule parallelism as appropnate for a given machine (since parallelism may
be exploitable with a larger granularity). However, whole subroutines often make it harder for
compilers 1o find exploitable parallelizm,

A3 Loop nesis

Fart B of the test suite consists of &4 individual loop nests, most of which were chosen [rom
the subroutines in Part A, The amount of work done i each loop nest varies, Eleven cases with
different tteration counts are execuled per DO-loop o provide appropriate coverage of the
wiys these loops are used in many applications.

The focus of Part B s on the ability of the hardware and software to work in umson to
provide good performance across a range of problem sizes. Because the loops are easier to
analvze than the subroutines, we expoct more parallelism to be found and exploited. Dafficulty
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may arise, however, because the granularity of parallelism (for a particular problem size) may
limit the efficiency, though this should be less of a difficulty as the problem size grows,

4. Testing methodology

The Poralfel Loops test suile 15 modeled alter the Livermore Fortran kernels in several
respects. First, it is intended to be run unaltered except for the timing routines; that is, no code
changes or directives are to be included, Second, the result arrays of each subroutine are
sumimed, and the sum 1= comparsd o known correct answers. Third, the speed of cach rowtine
i caleulated as the number of floating-point operations (as measured by the CRAY-Y /MP
hardware performance momitor [3], and included in the source codes) divided by the wall-clock
tume. The programs are self-contained and require ao input data, Multiple execulions of the
test are required to collect the data necessary for the speedup caleulations (once with one CPL,
and onee more for each multi-CPU configuration to be tested),

5. Loop scoring

Wendors were mailed 4 magnetic tape containing the Paraflel Loops collection. They were
asked 10 compile the loops without making any changes, wsing only compiler options for
automatic parallelizaton, Thos, the wse of compiler directives or interactive compilation
features to gain additional parallelizations was not fested.

Vendors returned their outpul o us alter compiling and running the suite. The output was
further refined and is printed in the appendix of this report. The objective of this test suite has
heen 1o provide a measure of system performance on these loops; both raw computational
speeds and speedups for several problem sizes are reporied and made available for comparison,
Users of this report are urged to consider these results carelully when making comparisons, and
in particular to be careful when comparing spesdups — which, after all, are only ratios and are
difficuli 1o compare effectively.

&, Interpretation of the results

Two types of information were gathered: the raw computation rates (for 1 and ¥, CPUs)
and the specdup ratios. Mote that “Aggregate” and ‘Maximum® columns of data are also
supplied, where *Aggregate” is defined as the total operation count divided by the total time,
The raw computation rates are an cffective measure of how well 3 particular system (hardware
and software) performs with a particular problem tvpe. Included with these raw computation
rates is the percentage (1-99) of peak performance achieved., The speedup ralios compare
elapsed (wall-clock) tmes of senal, vecior, parallel, and parallel-vector execution. These ratios
represent the abihity of software and hardware to work together o exploit the parallelism
represented in the subroutings and DO-loops.

For each vendor, we include several tables in the appendix. Tabdez [ oand 3 show the resuliz
of Part A, the subrouting portion, of the Parallel Loops, The raw computation rates may be
useful for a vanety of compansons (for example, comparing Cray’s 4.0 compiler releaze with
the older 3.0 release). Tables 2 amd 4 show the Tull results Tor the largest of the 11 iteration
count sets of Part B (000 = TO0 = 100,
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7. Conclusions

We have developed a test suite, called Porollel Loops, 10 2erve a2 3 metnic of parallgl
compiler and hardware performance. [n doing 50, we have tried to choose a set of routines that
will test the strength of o computer system (compiler, run-time system, and hardware) in a
varigly of disciplines, Cur initial goal has been twofold:

{13 1o compare the ability of dilfferent Fortean compalers 1o automatically parallelize various
laops, and

{23 to measurs the paralle]l performance of Tull syvsiems (hardware and software) on real
problems of varying sizes.

A copy of the source code wsed in the esc s available from perfil ar Oak Ridge MNational
Lahoratory. To receive a copy of the code, send electronic mail to netlib@ omnl.gov. In the mal
messigs, Ivps

send pacallel from benchmark

W intend o update and expand the resulis presented here. In particular, we plan to develop
a check to venify the correctness of the compiler-generated code,

We may also add new loops. We believe the Paraliel Loops are a good measure of how well
compilers and hardwars work (ogether 10 run commaon loop constrocis in parallel. However,
the test is definitely focused on the tvpes of parallelism that can be detected by wday's
compilers. For example, the whaole st iz defined 10 measure parallelism that occurs within the
bounds of a single subroutine. Today interprocedural analyziz 15 a matter of Agmificant research
interest, but few existing prodoction compilers have the ability 1o detect and exploit cross-sub-
program parallelism. In the future this ability may become common, in which case this test
should change 1o reflect the new technology.

We solicit the aid of outside partiss in reviewing our routines, deciding whether they
constitute o representative 221 o numerically intensive disciplings, disseminating the routines
o interested vendors, and moderating the resuliz on o continuing baziz,
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