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SUMMARY

The paper describes Parallel Universal Matrix Multiplication Algorithms (PUMMA) on
distributed memory concorrent computers. The PUMMA package inclades not anly the non-
transposed matrix mulliplication routine £ = A - B, bat also transpoded multiplication roulines
C=A-B C=A B, and C = AT. BT, for a block eyelic data distribution. The routines
perform efficiently for a wide range of processor configurations and Hock sizes. The FURNBA
together provide the same functionality as the Level 3 BLAS routine xGEMM., Details of the
parallel implementation of the routines are given, and results are presented for runs on the
Tutel Tonchstone Delis conyputer.

1. INTRODUCTION

Current advanced archilecture computers possess hierarchical memories in which sccesses
to data in the upper levels of the memory hierarchy (registers, cache and/or local memory)
are Faster than those in lower levels (shared or off-processor memory). One technique to
miore effectively exploit the power of such machines is to develop algorithms that ARl
reuse of data held in the upper levels of the hierarchy, thereby reducing the need for more
expensive accesses o lower levels, For dense linear algebra computations this can be
done by using block-partitioned algorithms, that is by recasting algorithms in forms that
involve operations on submatrices, rather than individual matrix clements. An example
of a hlock-partitioned algorithm for LU factorization is given in [1,2]. The Level 3 Basic
Linear Algebra Subprograms (BLAS) perform a numbser of commonly used matrix—matrix
operations, and are available in oplimized form on most computing platforms ranging from
workstations up to supercomputers| 3],

The Level 3 BLAS have been successfully used as the building blocks of a number of
applications, incleding LAPACE,  software library that uses block-partitioned algorithms
for performing dense and banded lincar algebra computations on vector and shared menrory
computers [4-8], On shared memory machines block-partitioned algorithms reduce the
number of times that data most be fetched from shared memory, while on distributed
memory machines they reduce the number of messages required 1o gel data from other
processars. Thus, there has been much interest recently in developing versions of the Level
1 BLAS for distributed memory concurrent compuiers [9-12].
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An important routine in the Level 3 BLAS iz xGEMM for performing matrix-matrix
multiplication. The general purpose routine performs the following operations:

Ce=mA-B+aC
Ce=aATB43C
Ce=aA-B+3C
C=aATBT+5C

where *-* denotes matrix multiplication, A, B and € are matrices, and o and 7 are scalars,

In this paper, we present the Parallel Universal Matrix Multiplication Algorithms
(PUMMA) for performing the shove operations on distributed MOy CONCUITEnt
computers. Uriversal means that the PUMMA include all the above multiplication routines
and that their performance depends weakly on processor configuration and Block size.
A block cyclie data distribution is used, which can reproduce many of the commaon data
distributions used in dense linear al gebra computations [2,13), as discussed in the following
Section, There have been many implementations of matrix multiplication algorithms on
distributed memery machines [14-16], Many of them are limited in their use sinee Ly
are implemented with a pure block (non-scattered) distribution, or specific {not general-
purpose) data distributicn, and/or on square processor configurations with a specific number
of processors (column andfor row numbers of processors are powers of 2). The PUMMA
package eliminates all of hese constraints.

The fiest part of this paper focuses on the design and implementation of the non-transposed
matrix multiplication routine en distrbuted memory concurrent computers. We then deal
with the other cases. A parallel matrix transpese algorithm, in which a matrix with a block
cyclic data distribution is transposed over a two-dimensional processor mesh, is priesented
in & separate paper [17]. All routines are implemented in Fortran 77 plus message passing
und compared on the Intel Touchstone Della computer.

L. DESIGN ISSUES

The way in which an algorithim's data arc distributed over the processors of a concurrent
computer has a major impact on the load balance and communication characteristics of the
concurrent &lgorithm, and hence largely determines its performance and scalability, The
Block cyclic {or block scattered) decomposition provides a simple, yet general-purpose, WAY
of distributing a block-partitioned matrix on distributed MEMOTY Concurrent computers. [n
the block cyclic data distribution, described in detail in [13], 2 matrix is partitioned into
blocks of size r 5, and blocks separated by a fixed stride in the column and row directions
arc assigned to the same processor, IT the siride in the column and row directions is P and (]
blocks, respectively, then we require that P - (2 equals the number of processors, M. Thus,
il 15 useful to imagine the processors arranged as a P x (@ mesh, or template. Then the
processor ol position {(pg) (0 = p < P,0 < g < () in the template is assigned the blocks

indexed by, w

(p+ifg+joh (1)

where i=0,.. [(Ms —p — 1)/P|, f= 0 [N — g — 13/, and My = Ny i3 the size
of the matrix in hlocks,

Blocks are scatiered in this way so that good load balanee can be maintained in algorithms,
such as LU factorization [1,2], in which rows andfor calumns of blacks of a matrix become
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eliminated as the algorithm progresses. However, for some of the distributed Level 3
BELAS routines o seallered decomposition does nol improve load balance, and may result
in higher concurrent overhead, The general matrix—matrix multiplication routine xGEMM
is an example of such a routine for which a pure block {i.e., non-scattered ) decomposition
i5 optimal when considering the reutine in isolation. However, sGEMM may be used in an
application for which, overall, a cyclic distribution is hest. We are faced with the choice of
implementing a non-scattered distributed version of xGEMM, and transforming the data
decompositien te this form if necessary each time xGEMM is called, or of providing a cyclic
version and thereby avoiding having to transform the data decomposition. We opt Tor the
latter solution because it is more general, and does not impose on the user the necessity of
potentially costly decomposition transformations, Since the non-scattered decomposition
i just a special case of the evelic distribution in which the block size is given by r = [M/P]
and 5 = [N/(¥], where the matnx size is M x N, the user still has the option of using
a non-scattered decomposition for the matrix multiplication and transforming between
decompositions if necessary, The Basic Lincar Algebra Communication Subprograms
(BLACS) are intended 1o perform decomposition transformations of this Lype [18-20].
The distribution of all matrices involved in a call 1o a Level 3 BLAS routine must be
compatible with respect to the operation performed. To ensure compatibility we Impose
the condition that all the matrices be decompesed over the same P () processor template.
Mozt distributed Level 3 BLAS routines will also require conditions on the block snoe (o
ensure compatibility. For example, in performing the matrix multiplication C= A - B, if the
block size of C is # = £ then thit of A and B must be r x § and [ % 3, respectively.
Another advantageous aspect of the distributed Level 3 BLAS is that often a distributed
routing will call sequential Level 3 BLAS routines. For example, the distributed version
of xGEMM, deseribed in Section 3,2, consists of a series of steps in cach of which each
processor multiplies two local matrices by a call 1o the sequential version of xOEMM.
Since highly optimized assembly-coded versions of the sequential Level 3 BLAS already
exist on most processors we can take advantage of these in the distributed implementation.
Figure | {a) shows the performance of the DGEMM routine for square matrices on
one i860 processor of the Intel Touchstone Delta. In general, performance improves with
increasing matrix size and saturates for matrices of size greater than M = 150, Figure 1 (k)
shows that Tor non-square matricss in our Fortran implementation, if matrix A is 500 < M
and I is M = 500 (M < 3000, then the matrixz multiplication A - B is more efficient than
B - A. Tnt hoth the square and non-square cases, the size of the matrices multiplied should b
maximized in erder o optimize performance of the sequential assembly-coded version of
#GEMM routines. Thus, in the PUMMA routines, instead of multiplying individual blocks
successively on each processor, blocks are conglomerated 1o form larger matrices which
are then multipliesd,
The distributed Leve] 3 BLAS routines have similar argument lists to the sequential Level
3 BLAS routines. Tn the distributed »GEMM routine, for example, original matrices A and
B are preserved as in the sequential routine, Users who are familiar with the sequential
routines should have no difficulty in using the distributed routines.

3. ALGORITHMS

To illustrate the basic parallel algorithm we consider a matriz A distributed over a 2-
dimensional processor template as shown in Figare 2 (a), where A with 12 = 12 blocks
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15 distributed over a 2 » 3 template. If the matrix distribution is seen from the Processor
point-of-view s in Figure 2 (b), each processor has several Blocks of the matrix, and
the scattered blocks, A(D0)AC2,00,A04,0), - - A(I00), are vertically adjacent in the 2-
dimensional areay in the first processor Py, and can be acoessed as one long Block colwmn
A(D:11:2,00. In the same way, A(D.0), A(0,3), A(0.5), A0 are horizontally adjacent in
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Py, and can be accessed as one long bleck row A(0,:11:3). We cxploil this property in
implementing the algorithms 1o deal with larges matrices instead of several small individual
hlocks. We assume data are stored by eolumn in both our Fortran 77 and message-passing
implementation. In general, the algorithms are prescnted from the matrix point-nf-vicw,
which is simpler and easier to understand. In dealing with the implementation details, we
explain the algorithms from the processor point-of-vicw.

3.1, ‘The Basic Matrix Multiplication Algorithm

Our matrix multiplication algorithm is a block cyclic variant of that of Fox, Hey and Oitio
[14], that deals with arbitrary rectangular processos templites,

Suppose the matrix A has M block rows and Ly block columns, and the matrix B has Ly
block rows and M, block columns. Block (L) of Cis then given by

La—1
Cidy ="y AULK) - BIKJ) (2)
]

where f = 0,1,....My — 1,7 =0,1,...,Ns — 1. In equation (2) the order of summalion is
arbitrary.

Fox et al. initially considered only the case of square matrices in which cach processos
contains a single row or o single column of blocks. That is, the blocks that start the
summation lie along the diagonal, The summation 35 started af different point for cach
block row of C so that in the phase of the parallel algorithm corresponding Lo surnmation
index &, ACLE) and B(E.J) can be multiplied in the processor o which OO s assigned,

This requires each processor containing a block of B o be multiplied in step K to
broadeast that block along the column of the processor template of e start of the step.
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DO K=1), Iy =1
[Columncast one Block of B (B(IMODN + K, Na)), I=0 : Ly}
long each column across emplate)
FARDO =0, My — |
KP = MOD(K + 1, Ls)
PARDD J=0, M, — 1
C(L) = CILT) + ALLEFP) - BIKRT)
EMD PARDOD
END PARDD
[Eoll A leftwards)
LMD T

Figure 3. A disiributed block seattered mairix multiplication algeritim, The PARDO: indicate over
behich indices the date are decomposed. All indices refer iz blocks of elements. Commurnication
Phases are indicered in squane brackers

Also A must be rolled lefiwards at the end of the step so that each column is overwritten
by the one 1o the right, with the firgt column wrapping round to overwrile the last caluinn,
The psevdocode for this algorithm is shown in Figure 3. Another variant of this algrorithm
involves broadeasting blocks of A over rows, and rolling B upwards.

In Figure 3 and subsequent figures a “columncast” is a communization phase in which
one data item (typically a block, or set of blocks) is taken from each block column of the
matrix and is broadeast 1o all the other processors in the same column of the presessor
terplate. A ‘roweast” is similar, but brosdeasts a data item from each block row of the
mialrix o all processors in the same row of the template.

3.2, Matrix multiplication algorithm with block cvelic data distribution

We now consider the multiplication of matrices distributed with a block cvelic data
distribution. The Block stzes for matrices A and B are # 5 and 5 » ¢, respectively, where
r, 5 and 1 are arbitrary. In thiz case the summation in row § starts al & = {, 50 the blocks
of B broadcast in each stage lie along diagonal stripes. The parallel algorithm proceeds in
Ly stages, in each of which ane block of B is broadeast along cach column of the template,
and A is rolled leftwards, We call this the SDB (Single Diagonal Broadeast) algorithm.
Figure 4 shows, from the matrix point-of-view, the wrapped diagonal hlocks of B
broadeast in the first two stages of the SDB algorithm, where B with 12 % 12 blocks
is distributed over & 2 = 3 template. Cmly one wrapped diagonal is columncast in
eich stage. In implementing the algorithm, the size of the submatrices multiplicd in
each processor should be maximized fo optimize the performance of the sequential
*GEMM routine. From the processor point-of-wiew, as shown in Figure 2 (b,
the first processor Py has A0:11:2,0:11:3) and B2 0103, and it will have
C0:11:2,0:11:3) after the computation. In the first stage of Figure 4 (K = 0), £
multiplics ADOLA(ZO), - ACIOD) with B00.0). These operations ¢an be combined as
one malrix multiplication singe blocks of AORACZ DY - - - A(10,0) are vertically adjocent
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in Py. The processor multiplies a long block column of A (A{11:2,00) with cne block
B{0,0}. This is the reason why we prefer a scheme of column-wise breadeasting B oto a
scheme of row-wise broadeasting A in cur Fortran implementation, where 2-dimensicnal
arrays are stored by columns.

Drengting the least common multiple of P and @ by LOM, we reler 1o & square of
LOM % LOM blocks as an LOM block. Blocks belong (o the same processor if their relative
locations are the same in each square LOM block. The concept of the LOM block 35 very
useful, since an algorithm may e developed for the first LOM block. and then be applied
to the other LOM Blocks, which all have the same structure and divia distribution as the firs
LOM block. That is, when an operation is executed on a block of the first LOM block, the
same operation can be done simultaneously on other blocks, which have the same relative
lecation in ench LOM block.

For a hlock cyclic daa distribution the communication latency can be reduced
by performing multiple instances of the outer K loop (see Figure 3) together, The
communication latency is reduced when instances of the outer K leop separated by LOM
are grouped together, as shown in Figure 5. We call this the MDBI (Multiple Dizgonal
Broadenst 1) algorithm. In this case the parallel algorithm proceeds in LOM stages, in
each of which [Ls/LCM] Blocks of the B mairix are broadeast down each column of the
templte by a single communication phase in the outer loop. In Figure & we show the twa
{[La/LOM] = 12/6) weapped diagonal blocks of B broadeast in the first two stages of the
algerithm. The size of the submatrices multiplied in each processor cannot be increased
amd it is the same as in the SDE algorithm.

The communication latency can be reduced even further by noting that the data for Tikalrix
A returns to the processor in which it started after A has been rolled O times. Thus, we
introduce a third variant of the parallzl algorithm that procesds in (0 stages, ineach of which
(L /(] blocks of B are broadeast down each template column by a single communication
phise in the outer loop. Figure 7 shows the four ([ Ly /@] = 12/3) wrapped diagonal blocks
of B broadcast in each stage. The psewdocode for this version of the algorithm is the same
a5 that shown in Figure 5, except that *LOM” is replaced by "0 This is called the "MDE2
(Multiple Disgonal Broadcast 2)° algorithm.



55 4 CHO, L E DONGARRES AND D. W WALKER

DO Kl=0, LOM -1
[Columnecast L,/ LCM blocks of B (B(LJ Ny LCMYLT=0- Lay
S=MOD + K1, LCM)) along each column of template]
D K2=0, LJLOM ~ 1
K=Kl +K2x LCM
PARDON I =0, My, — |
KF=MODUE + MOD, LOM), Ty)
PARDN = 0, v, — |
Cllly=C{IL.0y + ALEP) - BIKPT)
EMD PARDO
EMI} PARDC
END DO
[Roll A leliwards]
END DO
Figure 5. MDE] alporithen, which is a distibited matric salriplicavion algoritfn switable for o

block cyclic dag distribution. The puter K loop kas been split inge fosps over K and K2 20 that the
eommunication for several steps can be sent in o single messape
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Figure 8. Snapshot of MDBY algorithm, in this case P=2, =3, and 5o the LCM af P ard {Fis &, I
each stage, two (| Ly /LOM = 1246) wrapped disgonals are colummeast, The total rumber of siages
s LOM

In implementing the MDB2 algorithm, the granularity of the algorithm is increased. Tn
the first stage shown in Figure 7 (K1 = 0), the first processor Py multiplies a column block
A CA(D:11:2,00) with B(0,00,8(0,3),#(0,6) and B{0,9). These blocks of B are horizontally
adjacent in the 2-dimensional submateix in Py, and form a long block row B0,0:11:3).
These operations are replaced by one multiplication, Py multiplics a long Block column
of A (A(D:11:2,00) with a long block row of B (8(0,0:11:3)). The combined multiplication
looks like a block version of the suter produce operation. Since [Ls /LCM] = 2, Py needs
to do another outer prodect operation at the same Slep, A(D11:2,60 with B(6,0:11:3), as
shown in Figure § (a).
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In the MDEZ algorithm, the geanulacity of the algorithm is maximized. Py has two
block rows of B to broadeast (5(0,0:11:3) and B(&,0:1 131}, which are condenzsed to one
large matrix (B([0,6],0:11:3)) for economical communications, where 0:11:6 = [0,6], If
block columns of A are presorted with radix LCM in the beginning of the algporithm
{or radix LOM [/ in each processor) as shown in Figure ¥ (), two block columns of
A (A 1:2,0) and A(0:11:2.6)) are accessed as one large matrix (A(0:11:2,[0,6]5). Now,
Pa can complete its operation with ore large: meatrix multplication of A(0:11:2,00,6]) and
S10.61.0:11:3). All proessors compute one matrix multiplication in each step instead
of [Le/LCM | multiplications, The computation is like & block version of marris-matric
multiplication. Figure 9 shows procedures of computing C in Py from the processor point-
of-view, In the second, the fourth, and the sixth steps (Figure 9h), (d) and {c), respectively),
B is received from Py, And presoried A is shified pow-wise after the second and the fourth
sleps.

The communication scheme of the MDB2 algorithm can ke changed to row-wise
broadeasting of [Ly/P] blocks of A and column-wise shifting of presorted B without
decreasing its performance. The two schemes have the same number of steps and the same
amount of computation per processor ineach step, but they have different communication
siratcgics.

3.3 Transposed matrix multiplication algorithm, C = AT . B

We now deseribe the multiplication of transposed matrices, that is, multiplications of the
form € =A"- B and C = A . B, The multiplication algerithm of two teansposed matrices,
C = AT- B, is presented in Section 3.4, Lin and Snyder [16] have gpiven an algorithm
computing C= A - B based on a block distribution, that first transposes one of the matrices
and then uses a series of block multiplications and reduction steps to evaluae C.
Consider first C = AT- B, where A and B are Ly, % M and Ly, % N blocks, respectively,
andd they are distributed with a block cyclic data distribution, €010 is then conyputed by

fa=1

LSy = E[.d.{h’,r:.]" - BK.N {3)
K=

where [ = 0L, My — 1LJ = 0,1, ...,y — 1 and [A(K.0))7 is the transposed block of
ALKI). As in Equation (2), block indices are used, and the order of summation is arbitrary,

Figure 10 gives the pseudocode of the basic transposed matrix multiplication algorithm.
The algorithm proceeds in Ly steps, in each of which blocks of C lying along a
wrapped diagonal are evaluated. Each step consists of bleck matrix multiplication to form
contributions te & wrapped diagonal block of C, followed by summation over columns.
Finally, 2 communication phase shifis A to the left by one black.

As in the MDB1 matrix multiplication algorithm of Section 3.2, the communication
latency is reduced by simultancously performing multiple instances of the outer § loop
separated by LOM. Again the communication latency is reduced further when instances of
the outer loop separated by (0 are executed together as in the MDBZ algorithm, The blocks
of A return to the same processor from which they started after they have been rolled O
times. Se the algorithm proceeds in {f stages, in each of which [Ly/{] wrapped diagonal
blocks of C are computed. The pseudocode of the modified algorithm 15 shown in Figure
11.
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The transposed matrix multiplication algorithm is conceptually simpler than the non-
transposed matrix multiplication algerithm, In C = AT+ B, processors in the same column
of the template compute and add their products, and distribute the summations to the
appropriate positions. The most difficult aspect when implementing the algorithm 15 how
Lo add and distrbate the products efficiently.

As an example, consider the matrix multiplication C = AT B, where matrices A and B,
cach consisting of & = & blocks, are distributed over a 3 = 3 processar template as shown
in Figure 12, In each stage, every Qth wrapped block diggonal of C is computed. In the
first stage, as shown in Figure 12 (b), the processors in the first column of the template,
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DD =0, My —1
PARDD F=0, My = 1
IP=MOD f+ J M)
PARDC KE=10, Ly —1
T{ K) = [A{KAPYT- B{ K, )
LDy PARDC
DO K=0, Lp =1
CLIEN = Cl IR + T K)
EMND [0
EMD PARDHD
[Boll A leftwards]
END M0

Figure 10, The basic arspored marrie multiplication alporitiee, C = AT B for a block seatterad
decampasition, { ACK.IP) 7 iz the transpose of black A{E,IP), This algarivhn needs o seguertial I
loop o compte CUIPL By adding the wemporary results T colimrwise

DO =0, 0-1
DO 2 =40, M= 1
F=F+I2 =
PARDO F =0, Ny — 1
TP = MO + MODG O, M)
PARDD KL =0, P— 1
T{EL1=0.0
DO KZ=0,LyfP -1
KeKl+K2=P
T(E 1) =TiK1) + [ACKTFNT BIKD
EMD DO
END PARDO
DO E1=0 -1
C{IRN =0OIRN + TIE L)
EMD DO
EMND PARDC
EMD Dy
[Boll A lefvwards)
EM» Dy

Fl'ﬁ'_lfr:s o The raniposed malvic multiplicerian sigeritn, C = AT B The outer loog fas Feen
spiit inge foops over 1 and i2 5o that the communicarion for several sleps can be sent in a single
mEsEagE

Fyg, Py and Py, multiply the zeroth and third Block columns of A (A0 0:5:3)) with the zeroth
andd third block columns of B (B{:,0:5:3)). They compute their own portion of multiplicstions
and add them to obtain 2 = 2 blocks of C {C(0:5:2, 0:5:2)), which are placed in £y, In this
example, where the template 15 square, only the diagonal processors Py, Py and Py have the
computed blocks of C for each column of the template. After the first stage, A shifls 1o the
left. The next wrapped diagenal processors Py, Py and Py have the computed blocks of C
in ihe second stage.
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(a) Compaied blocks of C from marris peine-of-view

a1 4.2 5

(b} Snapshos of the first slage from processar poant-of-view

Figure 12, Snapshat of C = AT I when P=0=3 and My = Ny = Lp=0: (] from the manix

poirt-afvies, e compured Bocks of the marrix O in S firs] paoo sages of the ranspesed mateis

mpftiplication aigoriths are shaded; () snapsherof the frr stage from ihe processer point-gf-view.

The shaded avea of A and B represents Blocks b be madiplied, and thar of C deneres blacks compited

Jrom the muliiplicaron. Oaly diapenal processors have resulis in the first stage. Afler each stage, A
ix shifred wo the Jef

Figure 13 shows the case of # = 3, = 2, where C is computed in two stages. The
first column of processors, Py, Py, and Py, compute 3 » 3 blocks of C (C{0:5:2,0:5:2)), by
multiplving the zeroth, second and fourth block columns of A (A(z0:5:2)) with the zeroth,
second and fourth block columns of B (8 0:5:200. Aler summing over columns they have
computed their own row Blocks of C.

When (2 is smaller than P, processors need more memory to store the partial products, if
they compute their own products first and then add them together, Imagine the case when
P=40=1and My = N}, = L = 4. Each processor has | x 4 blocks of A and B, and it has
1 3 4 blocks of C after the computation, But processors need 4 x4 blocks to store thear
own partial products. Thus, memory requirements do not scale well.

Processors can multiply one block column of A with whole blocks of B in cach step
to avoid non-scalable memory use. In the first step of Figure 13, Py, P and Py compute
C{00:5:20 by multiplying AC with B 520, The computed blocks of C are placed in
Py, These processors then compute C02,065:2), which is placed in Py, and finally compute
C14,0:5:2), which is placed in Py. After this stage A is shified to the left. With this scheme,
the processors require three steps (o compute C(0:5:2,0:5:2) for the first stage of the
algorithm. This procedure is less efficient, but needs less memory 1o hold partial products.
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The shaded areaof A and B represents blacks fo be muliiplied. Thar of C stands for the reswlt Blocks
fir e placed after multiplication and summalion processes over the column af the remplare
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The loss of efficiency can be offset by overlipping computation and communication.
Consider a modified algorithm in which the blocks of C rotate downwards over the
processor lemplate after cach stage. Each processor computes its own products and updates
the received blocks, The processors receive their own desired blocks of C afier P — 1
communications. If Pand  are relatively prime as shown in Figure 13, all processars have
their own hlocks of Cin each stage. They receive partial products from the processor above,
add their contributions to the partial products, and then send them to the processor below,
IT processors are waiting to receive the preducts before multiplying, some processors have
to wait a long time when # = (} as in Figure 12 (or P and  are not relatively prime). For
these cases, processors compute their own multiplications ficst, and then 33d them afler
they receive the products. This can be implemented effectively with asyrchronows message
passing 1o minimize processors” waiting time to receive the products.

As an example, consider Figure 14 (a), where 12 = 12 block matrices are distributed
over & 3 x 3 processor template. Py computes two (M LCMT) transposed matrix
multiplications of Block colurnng of A (A(0:11:3,00 and A70: 1 1:3,6)) with i1 own submatrix
B (B(0:11:3,0:11:2)), and generates two block rows of C (C(0,0:11:2) and €06,0:11:2)).
The two rows of C are condensed for fast communications as in the MIDB2 algorithm in
acction 3.2. If block columns of A are presorted with radix LOM (or radix LOM /(2 for cach
processor) at the beginning of the algorithm, processors compute one ransposed mateix
multiplication in each step instead of [ Ly /LC4 ] multiplications as shown in Figure 14 (b).
Again, the computation is like a block version of (fransposed) matriz—matrix multiplication.

The case C = A - BT is similar to the C = AT B algorithm, but the partial result blocks
of C rotate horizontally in each step, and BT shifts upwards after each stage.

34. Multiplication of transposed matrices, C = AT. BT

Suppose we need to compute C=A". BT, where A 15 Ly = M, blocks, B is N, ¢ Ly blocks
and C is M 2 Ny, blocks, One approach is to evaluate the product

[ |

Ciy =S Ak - (8K (4)
K=l

directly using a variant of the matrix multiplication routine in Section 3,2, but in which
blocks of A are columneast ineach step. and Blocks of B are rotated leftwards. The resuliant
matrix then has to be block-wise transposed, i.e, block C(J,J) must be swapped with block
C(J.} in order to obtain C. Thus, for this approach the algorithm is as follows:

1. Locally transpose each block of A and B,
2. Multiply A and B using variant of paralle] algorithm.
3. Do a block-wise transpose of the result to obtain C.

In an actual implementation, the local transpose in (1} can be performed within the calls
to the assembly-coded sequential xGEMM routine.

Anciher approach is to evaluate C7=B - A and then transpose the resulting matrix 1o
obdain C, In this case the algorithm iz as follows:
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[. Multiply B and A using the parallel algorithm in Section 3.2
2, Locally transpose cach block of resull,
3. Do a block-wise ranspose 1o obtain C.

These last 1wo steps together transpose €7, and may be done in any order. The
performance of both approsches is very nearly the same, but the second approach has
the advantage of using the existing algorithm for finding B - A, ac described in Section
3.2, without any modification being necessary. Paralle]l matrix transpose algorithms are
described in [17], and are used to compuls Cse AT. BT + 3 C as described above in the
two steps: T=c B - A, then C=T" + 4 C.

4. RESULTS

In this Section we present performance results for the PUMMA package on the Intel
Touchstone Delta system. Matrix elements are generated uniformly on the interval [—1, 1]
in double precision. Comversions between measured runtimes and performance in gigaflops
{Gilops) are made assuming an operation count of 2MNL for the multiplicationof a M « L
by a L = N matrix. In our test examples, all processors have the same number of blocks so
there is no load imbalance.

4.1, Comparison of three matrix multiplication algorithms

We first compared the thres matrix multiplication algorithms, SDBE, MDB1 and MDEZ on
two fixed processor templates. Figures 15 and 16 show the performance of the algerithims
om a square processor lemplate (8 = 8, P = () and a non-square template (9 = §, P and (2 are
relatively prime), respectively. Two different block sizes are considered 10 see how block
size affects the performance of the algorithms for a number of different sized matrices.

The performance of the SDE and MDB1 algorithms improves as the block size 15
increased from 5 to 10, but this change of the block size has almost no effect on the
performanse of the MDB2 algorithm, since in MDB2 the size of the submatrices multiplied
in each processor {using the assembly-coded Level 3 BLAS) is independent of block size.
For a square 1emplate, the number of communication steps is the same in the MDEB1 and
MDEBE2 algorithms singe LCW = (2, but there is a big difference in their performance. This
difference arises becanse the basic operation of the MDB1 algorithm is a multiplication
of a block column of A with a single Block of B, whereas, i the MDB2 algorithm, larger
matrices are multiplied in each step, as explained in Section 3.2.

The block size is 2elected by the user. In most cases, the optimal block size is determined
by the size and shape of the processor lemplate, floating-point performance of the processor,
communication bandwidth betwesn processors, and the size of the matnices. However, for
the MDB2 algorithm, the performance is independent of the block size. We adopted a block
size of 5 3 § in all subsequent runs of the matrix multiplication routines.

We next considered how, for a fixed number of processors N, = P » (2, performance
depended on the configuration of the processor template. Some typical results are presented
in Table 1, from which it may be seen that the template configuration does have a small
effect on performance, with squarer templates giving better performance than long, thin
templates. For a fixed number for processors, a larger value of { increases the numbes of
outer loops performed, but reduces the time to broadeast blocks of B across the templie,
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Figare 13, Performance comparizon of the three matric multiplicanion rounines on an & = &
pracessor templade

The relative importance of these two factors determines the oplimal template configuration,
For rectangular templates with different aspect ratios, those with small ¢ show better
performance than those with small P, For a fixed processor template with small £, an
MDE2 algonithm, in which A is broadeast row-wise and B is shifted column-wise, is
preferable to the version described in Section 3.2, inwhich B is broadeast eolumn-wize and
A iz shifted rov-wise,
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Figure 17 (a) shows the performance of the MDB2Z algorithm on the Inte]l Touchstone
Delta as a function of problem size for different numbers of processors for up to 236
processors. In all cases a sguare processor template was used, ie. P = ) the block size
was fixed at 5 = 5 elements, and the test matrices were of 5108 up 1o 400 = 400 elements

Per PrOCessor.
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In Figure |7 {b) we show how perfonmance depends on the number of processors
for a fixed graon size. The fact that these isogranularity plots are almest linear indicates
that the distributed matrix multiplication routineg scales well on the Delta, even for small

aranularity.
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Table 1. Dependence of perfommance on femplate configurntion (40 e La G000

G Privcessons 54 Processors 48 Processors
F O Grlops Px@  Gfops P Gilaps
6% 16 1972 4% 16 1373 4% 12 1101
Ex 12 2007 AxE 1447 w8 1.1581
12=8 2,008 16 % 4 1444 Axi 1.200
16 =6 2002 12x 4 1.130
T.':' 1 1 1 L 1 L L
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Matrix Size, M

Fipure TR, Perfermance comparizon of three maiines onar 8 = 8 emplaee. P = Qo LOM = & and
=8

4.2, Comparisen with transposed matrix multiplication algorithms

We compared the performance of the MDEZ version of the matrix multiplication routine C
= A - B with that of the transposed matrix multiplication routines, C= AT Band C= A"
BT. For C= A - B, we adopted a routing with row-wise broadcasting of A and column-wise
shifting of B. C = A”- B is implemented as described in Section 3.3, For C= A" BT, B is
directly multiplied with A 10 form B - A, which is then transposed to give C.

Figures 18-21 show the parformance of the algorithms on 8 < 8, 8% 8« 10and §x 12
remplates, respectively. In all cases the block size 15 lxed at § = 5 elements. The solid and
the broken lines show the performance of A - B and AT. BT respectively. The difference
of the two lines is due to the matrix transpose routing used in evaluating AT- BT In most
cases, the performance of the AT- B algorithm, which is drawn with the dot-dashed lines,
lies batween that of the A - B and AT- BT algorithms, but for the sguare template in Figure
|8, its performance is worse than that of A™. B, In the AT- B routine, processors in the
same column of the emplue sequentially update their own C. Some of the processors have
to wait a long time to receive the partial prodects if P = 2
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Figure 20, Pedformance comparisor of three routines on an § = J0 remplate. P = 8 @2 = M),
LM = d0 and GOD = 2

Table 2 shows how the block size has an effect on the performance of the algorithms. It
includes three cases of the block size: two extreme cases — the smallest and largest possible
block sizes — and a 5 = 5 block of elements, The algorithms depend only weakly on the
block sime. Even for the case of the smallest block size (1 x| element), the algorithms
show pood performance.
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Tahle 2. Dapandence of performance on block size (unit: Gfops)
Pow Matrix sive Blpek size AR AT R AT.BT
1% 1640 1529 1.607
Ex8 200k > 2404 5¥35 .41 1.530 lLats
F0HD % M) 1.643 1.531 lali
[ | L.502 1504 1.732
Exa 2520 = 2520 5H S 1.924 1.939 1850
R 1925 1.044 1.860
1=1 2085 2067 1461
o 10 2400 = 2400 bl 2.un 2110 2033
4 = 4l 20 2123 10EE
1x1 2374 2121 2245
#ml2 A0 = 24400 Sx5 et 2310 1308
100 = 100 2397 LAEE 1117

Performance per node is shown in Table 3. The 12 | template gives the performance of the
assembly-coded Level 3 BLAS matrix multplication routine, The numbers in parentheses
are concurrent efficiency, which is the relative performance of nodes compared with the
miimem performance of the assembly-coded Level 3 BLAS routine. Approximately 77%
efficiency is achieved for A - B, 73% for AT~ B and 795 for A”- BT if P = 2. The routines
perform better on templates for which P#Q. More than 80% efficiency is achieved for all
cases if P and & are relatively prome,
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Table 3. Performance per oede in Miops, Block size is fixed at 5 = 3 elements, Endries for the 1
# | template case give the performance of the assembly-coded Level 3 BLAS matrix multplication
roting, Mumbers in parentheses are concurrent efficiency

P ) Matrix size AR AT.B O

131 400 % 400 3621 (100,00 35 54(100.00 34 58010000
ExE 300 3 3300 27.77 (16.7) 25.RG(TLE) 27.26079.1)
8x9 3240 ¢ 37240 29,00 (80.1) 2R S6(50.4) 28 10813
&% 10 TI00) = 3200 2225 (TR.0) ZT.74(78.1) 2747779 4)
B 12 3200 * 3200 28,44 (78.5) 27.55(77.5) 27 AB(T0.5)

4.2, Resulls with Optimized Communication Rouwtines for the Intel Delta

For the implementation of the PUMMA  package, Blocking and  non-blocking
communication schemes were used. In this Section we modify the algorithms with
optimized communication schemes specifically for the Tntel Touchstons Delia,

First, force type communications [21] are incorporated for faster communications, A
force 1ype message bypasses the normal flow control mechanism, and is not delayed by
clogged message buffers on a processor. A force type message i discarded if no receive has
been posted on the destination processor prior o its arrival, If force types are not used on
the Delta, the routines can accommodate matrices up to 400 = 400 elemsnts per processor
without encounting problems arising from system bulfer overflow [22]. With foree type
communication, the routines can handle larger matrices, up to 500 = 500 per processor,
where the maximum size 15 determined by the available memaory per processor rather than
by aystem buffer constraints.

A block rotating scheme is used to shift A row-wise in the MDEZ2 algorithm of Section 3.2
and in the A B routine of Section 3.3, A simulianeous rotating scheme, shown in Figure
22 (a), may be used on the Intel iPSC/S60 hypercube. However, an odd—even rotating
scheme is preferable on the Delta [23]. This scheme performs the communication in two
steps a5 shown in Figure 22 (b). In the firsl step, odd-numbered processors send their own
data Blocks and even-numbered processors receive them. In the next step, even-numbered
processors send and odd-numbered processors receive,

1] L 2 5 Bibad 3 Ak e

T‘_H_H_H_'.-._"‘_“_g".

{a) Simulianess naling scheme

depl Ow—@ Jea—@  Dw—a Oa—a
0 i 2 3 4 % & 7
spep 2 ll- Clo— Tt Cl— g ;.

(o) Oedd—even regming schegne

Figure 22, Vv rotating schemes; falnodes frsesend to the left and then receive from the Fighe: fb)in

e first siep, odd-rinbered processors send dava Blocks aad even-mionbered processars receive them,

i the next step, even-nambered processors send and odd-menbered processors receive, Odd—even
relafing Ir faster o Delte, bir sinalimieons relaling is fasier on S iPECAES0 hupercube
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In the original MDEZ2 algorithm, blocks of B are broadeast in each column of the templse
based on a ring communication scheme. In the Delta-specific MDEZ algorithm, messages
are broadeast based on a mimmuom spanning ree, A special broadeasting routing is desirable
for the Delta, which differs from that used on hypercubes [24]. Consider broadcasting a
message on & linear array of p = 7 processors as shown in Figure 23, where nodes are
numbered O through 6. In the hypercube scheme, the root node Pz, which has the message
i be broadeast, first sends the message to Py, whose least significant bit (LSB) is differsnt
froam the root node. Then the message is delivered by toggling successive bits from LEE ta
the most significant bit {M3B). On a mesh topology such as the Delta, the metweork trallic
becomes congested &= the broadeast proceeds, as shown in Figure 23 (a).

0o 0 -:F 0o o Jl-:-

1o Q L] 1o [ ]
1% @ 2 Ié? ||-3>
3 . LT iao fof [|o
40 0 o 4 II ,:,'f | i}
L) a o ﬁj | o Lf
& o [} a f -
stepl  sep2 sepd siep l sep? mepd
(4} send from L5H o MSE [h) send fioam other half

Figure 23, Brogdeasiing on finear array of p = 7, where rodes are menbered O throngl & Fy
in @ roo! rede, (a) (s the Rypercabe algorithm and (b) &5 the mesh algorithm

In order to wvoad metwork contention, the root node sends the message to the Arst node
in the other half of the processors. By recursing [or [log, Pl similar sieps, the message is
delivered 1o all nodes without any contention as shown in Figure 23 (b). In general, each
column of the wmplate has P/ GCD ool nodes in a stage, which broadeast their blocks of
B over GO processors of the column, whers GO denotes the greatest common divisor
of P and £, These operations are a form of group comirication [23].

For AT. B in Section 3.3, the partial prodiects in the same column of the processors are
combined and the sum is stored in the root (destination) node. A special collecting scheme
haz been developed for the Delta to avoid network contention. The new collecting scheme
on 4 linear array shown in Figure 24 (b) 12 based on the broadeasting scheme in Figure 22
(k). The partial prodects are sent and added in nodes which are nearer to the rood node.
Cenerally, in eoch stage of the algorthm, each column of the femplate has P/OCOD root
nodes to collect the partial products. Partial products of a group of GOIP processors are
added hrst with the products of other groupis) in the same column. After Proony — ]
communicitions and additiens, the pactial produects in each group of GOD processors are
cffectively added o the root nodes.

The A - B and AT - B routines have been implemented with the optimized communications
for the Delta based on both the ring and the minimum spanning tree stracture for broadeasts.
Performance resulis are shown in Table 4. The non-transposed matrix multiplication routing
for 3000 = 300 matcices on 16 = 16 nodes performs at about 00 Gilop for the tree
structure, and the transposed multiplication routine executes al about 7.54 Gllop for the
ring structure, They obtain about 31.25 Mftop and 29.46 Mflop per processor, respectively,
which correspond to concurrent elficiencies of 86% and 8355, respectively.
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Table 4. Performance in GRop with optimized communication routines on two structures, ring and
spanning tree, Block size is Aned 1o 3 % 5. The routine for A - B is faster for a tree structure, bl the
routine for A7 15 has betier pecformanee for @ ring sireclure,

AR ATB
] Matrix size RING TREE RING TREE
4 x4 DO = MO0 0515 (L530) 0488 0494
G w6 S0 = J0HHY 1.130 1.15% 1.081 1.073
BExg A0ED ¢ ACHHD 1.585 2056 1.908 1.901
12 =12 GONED = GO0 4438 4507 £, 260 4. 150
14 = 16 E000 = B000 R4 200 T.542 7.325
Exa 3000 o 3900 21326 2324 231 2.321
2% 10 0] = L4000 2561 p | 2493 2486
=12 R0 = R0 259065 r0al 2556 TR
g6 600 » SE00 3558 4022 1707 3.622

IT F*and £ are relatively prime, there is no performance difference between tree and ring
versions. The A - B algorithm performs well for the tree structure, Although broadeasting a
mesgage 10 the entire column of the processoss on the ring is slow, the overall performance
15 not influenced since the stages of the al gorithm are pipelined. That is, processors directly
prococd to the next stage as soon as they finish their multiplication at the current stage.

In a gingle stage of the AT- B routine, eollecting the partial products in a column of the
processor emplate is faster for the tree algorithm, However, overall the ring algorithm is
preferred for the A™- B rouline, since stages of the algorithm can be pipelined.

5 CONCLUSIONS AMD EEMARKS

W have presented a parallel matrix multiplhication routine and its varianis for the block
eyclic data distribution over a two-dimensional processor template, We have described
how 1o develop the algorithms for distributed memory concurrent computers from a matrix
point-of-view, and given implementation details from a processor point-of-view. Finally
we have shown how Lo adapt the communications for a specific target machine, the Intel
Touchstone Delta computer, by exploiting its communicalion characteristics. The general
purpose matrix muliiplication routines developed are universal algorithms that can be used
for arbitrary processor configuration and block size.
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In general, the first dimension of the data matrix may be different from the number
of rows of the matrix in a processor If they are different, the data portion of A in 2
local processor should 1o be copied before it is sent out in the initial shifting of A in the
MDB2 routine. Instead of o direct copy, the block columns of A are presorted so that
ench processor performs a block version of matrix-matrix multiplication in each step, as
described in Section 3.3, Without this presosting, processars compute multiplications as
a Block version of the outer product operation, 1e, a column of blocks is multiplied by a
row of hlocks, The outer product operation performs well and its performance is almost
the same as the routing with presorting for blocks larger than 3 = 5 clements. But for
the case of small block sizes, presorting improves performance. IF the ficst dimension of
matrix A is the same as the number of rows, the presoting is not necessary, and A can be
sent out directly, since after {2 shifts of A, processors have their ariginal blocks, and A is
unchanged, This scheme may also save communication buffer space. For the transposed
matrix multiplication routines (A7 B and A - BY), the presorting process improves the
performance more than 10% for a block size of 5 x 5.

In some cases, the transposed matox multiplication algoeithm may be slower than the
two combined routines, matrix transposition and matrix multiplication. That is, C = AT- B
can be implemented wath two steps (T = AT, C=T . B), where extra memory space for
T is necessary. Users can choose the bost routine accerding to their machine specifications
and their application, The performance of the routines not only depends on the machine
characteristics, but also the processor configurstion and the problem sie.

The PUMMA package is currently available for all numernc data types, ie single
precision real and complex, and double precizion real and complex. To obln a copy
of the software and a description of how to use 11, send the following message, "send
punma from scalapack’ onetlibdornl. gow.
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