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Absiract. This paper describes algoribms for solving namow banded systems and the Helmholz difference
eguations 1hat are suitable for mubiprocessing sysiems. The organization of the algorithms highlight ihe large
grain parallelism inherent in the problems.
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1. Infroafuction

We consider algonithms for solving narrow=-banded diagonally dominant linear systems which
are suitable for multiprocessors. We desenbe a direct solver similar to that in [12] fer tridiagonal
systems, and in [9] for solving a banded system on a linearly connected set of processors. We
will also provide and analyze a parallel implementation of the partitioning algorithm and the
matrix decomposition which we refer to as a hybrid solver (direct and iterative) which is
superior to the direct solver especially for strongly diagonally dominant svstems., When the
imterconnection network is not sufficiently powerful, a bottleneck develops in one of the stages
of the direct solver in which the cost of the computation 1= proportional to the number of
processors. This ineffliciency may be alleviated by using an iterative scheme in this siage that
takes full advantage of the parallelism offered even by a linear array of p processors,

A similar approach is also used to handle the positive-definite system that arises from the
standard five-point finite-difference discretization of the Helmholiz equation. Thiz problem
arises frequently in situations where fast solvers are of primary importance. In this paper we
consider the matrix decomposition solver that has been described in several papers, eg.
[1,2,6.10,11].

1. A partitioning algorithm for banded systems

Let the linear system under consideration be denoted by
Ax=f (1)
where A 15 a banded diagonally dominant matrix of order n, We assume that the number of
superdiagonals m == r is equal to the number of subdiagonals. On a sequential machine such a
system would be solved via Gaussian elimination without pivoting at a cost of O m’n)
arithmetic operations, We describe here an algorithm for solving this svstem on a mult-
processor of pprocessing units. Each umit may be a sequential machine, a vector machine, or an
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array of processors, In this paper, however, we consider only p sequential processing umits.
Let the system (1) be partiioned into the block-tridiagonal form shown below

(4 B | [* '| ({177
G 4, B X3 h
i . =|: (2)
G-1 Apr By || Xama ;-
| cn' "'I!I1 l I':"-rl |"|r"‘ I

where 4,, 1 £ i< p — 1, is a banded matrix of e\ g=| nf‘::] and bandwidth 2m + 1 (same as
A},

0 0
,-(5 o) 1step-d {3a)
and
l} rl"‘l i
Ga=[D S, (3b)

in which ¥, and ¢, are lower and upper triangular matrices, respectively, each of order m.
The algonthm consists of four stages.

2.1, Swage |

Obtain the LU-factorization
A=LU, 1<igp i4)
using Gaussian elimination without pivoting, one processor per factorization. Here [, is unit
lower triangular and [ is a non-singular upper triangular matrix. Note that each A, is also
diagonally dominant.
The cost of this stage is {m*n/p) anthmetic operations, no iNtEr-processor ComMmunicalion
15 required.
22 Siage 2
If we premultiply both sides of (Z) by
diag{ A", A70,.... 4]")
we oblain a system of the form

[ I, E /% | [m I|
E I, 5 Xy B3
S . = (5)
Foca L Ep ]| %aa Ba-a

where
.-{F 0), F=(0,F)
in which £, and F; are matrices of m columns given by

E =4 l( B.? and  F=a7f E‘f [

and will in general be full. In other words EI F, and g, are obtained by solving the linear
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forl=sizp,

p B oy é)
LU(£. E,. g =[[Ei,}‘(.3. | 4
here ¢, =0 and EPI‘I,='EI. Each processor 2= k < p ~ 1 handles 2m + 1 linear systems of the

form LU = r, while processors 1 and p each handles m + 1 lingar systems of the same form.

The cost at this stage 1s O{m*n/p) arithmetic operations, no inler-processor communicalions
are nesded.

2.3, Stage 3

Let £, and F, be partitioned, in turn, as follows

F | 5,
F=|M| and E=|N]|
Q| | T
where £, (. 5. and T, € R™"™. Also, let g, and x, be conformally partitioned:
LT f Mai-z)
(T [ and x,= P )
| F2i-1 Fri-1 |
As an illustration we show the system (5) for p= 3,
I & Y| [he
! N Iy L
. T ¥ by
P! .i",,| S] » 'Fl:'
M, I, My Ex [ = [ ey
@2 I. T ¥y hy
By o d, ¥ h,
My I, Iy Wy
1 @, e ¥y | by

Ohserve that the unknown vectors v, ¥y, ¥y and yy (each of order m) are disjoint from the
rest of the unknowns. In other words, the m eguations above and the m eguations helow each
of the p = 1 partitioning lines form an independent system of arder 2m( p — 1), which we shall
refer to as the “reduced system™ Ky = k, which is of the form

fy T, O a W h,
Py I, 0 S ¥z h
e L o mDoa ¥ hy
oI, 05 ¥ by
@y 0 In Ty ¥s hy
Fa Iy e = | he

1. Tp-a 00 ¥ap—s hap-s

Fout Ia 0 St L P h.!.p--i

0y 0 fo  Toor| | Fap-3 hap-s

LA | ¥1p-2 _hzlp ]
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The cost of the algorithm to be used lor solving (6) depends on the interconnection network.
Processor | contains T, and h,, processor j, 2 &j=p— 1, contains P, &, 5, T,and hy,_,,
fiy,_ . and processor p contains F.and hy,_; Hence, if the processors are linearly connected
we can only solve (6) sequentially at the cost of O{m’p) steps, where a step is the cost of an
arithmetic operation or the cost of transmitting a floating-point number from one processor 1o
either of its immediate neighbors, We should add here that since A is diagonally deminant it
can be shown that (6) is also diagonally dominant and hence can be solved via CFaussian
elimination without pivoting.

24 Siage 4
Once the y's are obtained, with y, in processor 1, Frj-a and My, , if processor |

il=j<p—1), and y,, , in processor p, the rest of the components of the solution vector of
(3} may be computed as follows. Processor &, | £ &k < p, evaluates

Ep=w = My ey — Ny (7}
with processors 1 and p performing the additional tasks
Yo=ho—5p and yy,  =hy, =Q, 0, ;. (&)

respectively { M, and N, are non-existence and are taken to be zero in this equation). The cost
of this stage is O{mn /p) steps, with no inter-processor communication,

It can be shown that for a linear array of processors, the speedup of this algarithm over the
classical sequential algorithm behaves as shown in Fig. 1 where p, and o, are Ofyn/m ). Siage
I dominates the computation until p,. then the communication costs impact the performance
and Stage 3 has a greater influence.

For a linear array of processors, the bottleneck in this paraliel algorithm is the process of
solving the reduced system (Stage 3). It is the only stage whose cost increases as P becomes
large. This inefficiency may be alleviated by solving the reduced system (6) using an ilerative
scheme that takes full advantage of the parallelism offered even by a linear array of p
processors. Since the reduced system is diagonally dominant, the simyplest iterative scheme that
is suited for such a linear array of processors is the hlock-Jacobi algonithm which we outline
below.

Lei

- I :FI T-| ] . . - -~ "
':'"llf’.u erl|. i=1,2,...p-1, G=diag(G,, G,,....G,_,), (%)

and let #f be the block-tridiagonal matrix

7T TR A
H_l( i n.nl'ﬂ"-.” -s.,,.,ll~

28] ] FiE-' 1,
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Le. K= — M. Mow, the Jacobi iteration 15 given by

I:r'_g.""'+1'=f.f_1-'”:'+-‘l'. (10}
If each processor j. 1 </ < p — 1. transmits T, and #,,_, to processor j + 1. and each provessor
g p—1, transmits §, to processor f+ 1, at a l-r-la] cost of m['-’m i ]] sieps, then the
matrices G, M. the right-hand side k. and an iterate »'*'= (%7, 33;' ) are stored in

processors 2, 3, .., poas shown in Table 1.

Mow, the Jacobd scheme may be organized on a hnear array of p processors as follows,

(a) Preprocessing.

Each processor 1-5; £ p obtains the LU-factorization of &,_,, and generates the random
vectors iy, and pfY .

(b) Tneration: k=10, 1, 2

Each processor _.l' =21 3 .., p performs the following:

(1} Computes w!3}) =@, ¥t and transmit it 1o processor § + 1; note that @.=0

(2) Computes r-'l'L -5 1';'5;“1‘. and transmits it to processor § — 1 note that &, =0,

(3
'L'\-‘-Er'\.lll I.HI*‘II’ .qu_1.|

J
= 4

&) :
l:' LTy

note that ul'' = pl*'= 0.
(4) Given the factorization of (,_,. solve the lincar system

g%
1 i 1

I 1':“ 1|| l'nli.;-'l
G, | =
II I I:.::P} _I

As a result, the cost per iteration is roughly 6m® steps. Thus, if the number of iterations v
necessary o achieve a “reasonable” accuracy is small, the cost of this iterative scheme will be
independent of p and appreciably smaller than the cost of the direct solver wsed in Stage 3
(o .rrr"'p]jl. For strong diagonally systems (1), convergence of the iterative scheme should be fast
as the system has been preconditioned by diag{ A, ',.... 4 ')

We have made extensive use of LINPACK [4].

Thiz Jacob scheme may be replaced by a C.G-like algorithm, Orthomin 1, eg see [3] or [13]
for solving the reduced system Ky =4 in (6} The only restnction on this scheme 15 that
{ K+ K") must be positive definite. We consider two preconditioners: M, = G in (9), and M,
being the lower block tnangular part of (6), 1.e

I:;I
u G,
M, = * -
® =
IL 3G
Tahle 1
Processor 1 Processor 3 Processor § il Presussar .
0 1y L LI
F:I '1'.|-| =1

Q- o, . @, ii:
My g L Baj3 Bz g hyp—a- Bap-y
wH, W, " LI L Hila MY,
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where ¢, is given by (%), and
f 0
U';lluﬂ n.l'
The Orthomin (1) scheme is given by
{a) Initial step.
¥y is chosen arbitrarily,
rp=h— Ky,
fo=M""r,,
Po=5%: qo=Kpy, wg=Ks,.
(b} Iteration: i=10, 1, 2,....
(1) n=gq,
(2) a,=rg/m,
3) =yt ap,
(4] ryq=rn—agq,
(5) 5,01 =M'r,00
(6) oypq=Ksq.
(7 Bi= —{ul1g:)/m
(8) Pisi =35+ B8P,
(9) Gray=wpsq + Big,.

When M= M, we refer to the scheme az PBANDZ, and az PBAMD3 when M = M. The
cost of the anthmetic of one ieration of Orthomin (1) 15 naturally higher than one iteration of
the block-Jacobi scheme PBANDN. While one iteration of the block-Jacobi scheme iz practically
free of inler-processor communication, an iteration of Orthomin (1) requires solving systems of
the form My =r, and requires that the result of two inner products be made available 1o all
processng units, Hence, Orthomin (1) is 10 be preferred only on multiprocessors with powerful
interconnection networks.

3. The matrix-decomposition algorithm on o multiprocessor

Consider the Helmholtz problem
- Tilu+atu=g(x, y) (1

on the unil square with Dirchlet boundary conditions. Using a uniform mesh of size A= 1/(n
+ 1), the usual five-point fimte difference discretization of (11) yields the hinear system

|I T 'rll | |I I'E'I .I | .-rl A
I T I By s
. I 1 T (12)
o .F" T '!_r H.q i .f.r |
| ¥ "rn .II | | Hn .l | .-F.lr |

where w,, ,€R", and T,=[- 1.4+ a®, —1] is a tridiagonal matrix of order . Assuming that
the number of processing units p 15 such that g = n/p 15 an integer that is greater than or egual
1o 4, the system (12) may be partitioned as shown below
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ET N E ity k

E' N E|l8,_  J2F)

L~p -r.r

£-(-1, of

and MN=|—=[_ T, =[] are of order gn,

- i T r r .
b= o ggryrecstily)  and  fm (ST, 1<igp.

119

(13)

If the multiprocessor consist of p processing unils, the matrix decomposition algorithm
(MID-algorithm) may be organized as [ollows,

21, Srage |

Each matrix T has the spectral decomposition

T=0AQ

where (} is an orthogonal matrix whose elemenits are given by

efQe, = 2/Tn+1) sinlifn/(n+1)), 1<i, j<n

and A = diag(A,,..., A, ), with

A= (2 +a’)+dsin’ jrAn+1)), 1%j=n.

Mow, (13) 15 reduced to the form

(M E TL IR
E' M E i £

ET .MT E (8 &
| E .-'L:!'I % | &

where M =[~1I,, A, —1,] is of order gn.

Bo=h, and g =0f

(14)

in which = diag( ..., () is of order gn. Here, the ith processing unil performs the g sine

transforms

K 1|<.-IA='E"]| AT | k=g,
where = (2] 1os1ee - B lSigp.
1.2 Swage 2

(15)

Premultiplying both sides of (14) by diag{M ", ..., M ™"}, we obtain a system of the form

o ) (8 ki

G I F By h,
G I F 53 i

G I}\s, h,

{16)
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where

T T
T OO W 1 VR R

G=MET, F=M7'E, and h,;= M '§, 1 €i<p. From the structure of M, we see thal
solving a linear svstem of the form Mx=r, where x=(§,...., Evn}1 and r={(p,,....p,, 3T
consists of selving a independent positive-defimite tndiagonal systems Tx;=r.1%j<n, each
of order g. '

| Ay =1 I| i £ 'l I, 'l
_1 }"_| _1 'E.r-i-.- |:||-|-||-
-1 l.:|I'.l -1 'E';l.l—';l.lr"'.' .I?-'.;.'. Tjmtj

| = :.'-'. [ree— | Prg—t1a+) |
Hence, F and & are obtained by solving the positive-definite systems

Th==¢,, lsjgn [17a)
and

Tiey=—e,, 1&jxn. (17h)

Observing that each ]q is a symmetric Toeplitz matrix, then if ¢, = {y;",... .':rﬂ'rf']-T. b, is given
by b =(y;"",....¥/""), eg. see [B]. Note that G and F are of the form

Il H‘? i | H-_ 'I
Ny . » and F= ™ ’
H, 4 i}
| My . -H-vi‘ i

respectively, with M, being a diagonal matrix of order n,

| o (L) |
¥ '
iXj

H = T

4

o

Mk, = & may also be solved by considering the » independent systems

Tdi'=s", 1gjen (17c)
where
[ 1 | [ eTdin
51 m f;ﬁ'cr-mw: e o f'krﬂ'i” D e e
| r:g,,i. I;’Iﬂ'i” |

Hence the :th processing unil, 1 £ i = p, handles the following tasks:
(1} The factonzations

Ty=L.D L, (i-1llg+1<sk<ig.
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where I, is unit lower hidiagonal and D, is diagonal with positive elements.
{2) Solving

LD Lic,=—e,. (i-1)g+lsk<iy,

where
A R N o
(3} Solvng
LDLE"=5", 1<jsn.
For p=4. and g =4, the matrix of coefficients of system {16) 15 of the form
1 D
i D
! D
I D
D I n
o i D
I i D
I I D
n I fil]
iy ! iy
e i e
i oo
D I
D i
o I
n I}

where [} denotes a diagonal matrix,
1.3 Srage 3

Again, as we have seen in the previous section, we extract from (16) an independent system

of order 2ni p— 13,
Hwe =i, (1%]

where
' 1
|§:e r o
H=| i
o r o
| & r|
in which
i (0 0 | (H, 0
I'(_H,r 1, :| ﬂ=l.u H,_]' fa=||In uJ‘
um (%, Bhes 85y, Blpasi o380 ies Bpmnieotl
and

|
. N B L R e T }|
i {L-r' Daeti Dage Urgerionen Op-1pgr Bp-mg+1) -
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In twrn, this svstem consizts of o independent pentadiagonal systems each of order 2{ p — 1)
and 15 of the form

Pow,=ug, lmkgn, (19}
where
[ |
I
s g ] .
T
| TP
in which
| L 0 0 | [r*" o}
B o "P-| [k -l |
|IT$ 1 I ﬂ ':I'] 1 I':' I'I.I
ech, e,
E'.'.:qu.| 'E.l!‘l':.-iu-l
r{h.!q' f.:-ﬁlq'
= T 1l i
= | o,y and w, = et
I?Eﬁlp_l:-v 'f'r'["lp 5T
.E£H|.1—I:-u+l 'l"‘.:-‘.l_l.l-:llq'*'l_

Note that H and Py, | £ & < »n, are non-singular, and i1 can be venfied that each svstem (19)
may be solved using Gaussian elimination without pivoting. Processing unit § solves Pyu, = u;
for k=(i=1g+1,....54.

3.4, Srage 4

Finally, the rest of the componenis of the solution of (16) are extracted as [ollows:
{a) Processing unit 1.

rp=h,—Hu. . l=jsg-—1,
(b} Processing unit i
|.||—|:-|‘|+_- -'Frl_r-:llq—_l . ': H_lr'l.'u—'l + Hu—_l'i'll:'ll_r-llq'}l 15;." ﬁ;'r.ll_ 1"

{c) Processing unit p.

‘L:l_:l 'II:.'I.'=hIp ||||ll.'_'”.-;| _|'||[I||'| lig® Er‘:.nriﬂ'?'

1.5 Siage 5

Umee £y,.... 0, are computed the solution of (13) is obtained via the sine transforms

Hy=0r,, k=1,2,....n

with the ith processing unit computing b

g baeeen Mg
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The cost of the arithmetic {alone) of this algorithm is O{n log, #) and 15 dominated by the
sine transforms in Stages 1 and 5. If the anthmetic is overlapped with the inter-processing
communication (through the global memaory), the total cost remains O(n log, n).

4. Mumerical resuli=

The algorithms described above require more arithmetic operations than the well-known
sequential algonthms currently in wse for solving the problems described above. Hence, they
should mot be competitive on sequential machines, We have used all of our paralle]l schemes as
sequential solvers and have obtained results of equal numerical accuracy with LINPACK [4],
for solving narrow banded systems, and with FISHPACK for solving the Helmholiz equation.

PBAKD consumed twice the time as the routines SGBFA and 3GBSL from LINPACK on a
VAX-TED for solving the svstem of linear equations (1) with » = 512, m =5, and the number of
processors p= 16, This ratio of ume consumed held for three examples: A, = [r;::' N 1gks3,
with n::”. i # j, obtained by a random number generator, and the diagonal elements a'f' = a,
given by @, = 32, @, =3, and a, = 3. All A, are non-singular with A; being the only diagonally
dominant matnx. In Table 2 we compare the number of iterations required by PBARND, 2, and
3 to achieve a residual of 2-norm less than 107 % We see, then, that if the miulliprocessor
possesses a reasonably powerful interconnection network, the PBAND 3 version of Orthomin
(1} can be an effective scheme for solving the system when A is nod diagonally dominant ba the
reduced sysiem has a positive definile symmetnc parl.

We ran our FORTRAN program on the CRAY X-MP-4 using the muluitasking features
available en the machine [3]. The CRAY X-MP-4 has four processors which can be used by a
single FORTRAN program. In running the band solver we wsing one, two, three, and four
processors 1o solve the problem. Table 3 shows the results for PBANDS for a positive-definite
random matrix of vanous orders. For large problems using two processors the speedups are
almeost perfect. Resuliz with three and four processors show some degradation in preformance,
but considenng the level of granularity the results are quite impressive,

We also implemented the same program on the Denelcor HEP, The Denecor HEP 15 a
MIMD computer which supports tightly coupled parallel processing. The fully configured
computing system offered by Denelcor consists of up 1o 16 processing elements (PEMs) sharing
a large global memory through a crossbar switch. Within a single PEM, parallelism 15 achieved
through pipelining independent serial instructions streams called processes. The principal
pipehine that handles the numencal and logical operations consists of synchronous functional

Tahle 2

Alporithm IR = 11 =5 ay =3

PEANIN i “ n

FRAMZ 1 3 i |

FRANDY 1 L (1]

Tahl= 3

n * Bandwidth Time {seconds] Speedup Speedup Speedup

1 processer 2 processons 3 provessors 4 processors

51z 11 0024 1.E 140 1.36

A 15 0.256 198 L6 175

16334 k]| L3 1.595 151 347
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Tahle 4
H Bandwidih Speedup over Hmning sequentially
512 Tl B,
S096 4 B.
15384 i Tosr Large 10 run
Tahle 5
P 1 H 16 2
FISHPACK 12 ' B

Helm 3 ar n

umits that have been segmented into an eight-stage pipe. The HEP we used had only a single
PEM. and the maximum speedup over the same process run ning seguentially is hetween eight
and ten, For further details on the HEP architecture see the article [7] by H. Jordan, See alzo
Tahle 4.

Similarly, we compared HELM with the cyclic reduction scheme of FISHPACK [13] for
solving the Poisson equation (a = 0) on the unit square with mesh size 1,129, i.e. n = 128, for
P =8, 16, and 32 processors. Both schemes succeeded in produecing residual of 2-norms less than
10"%, Table 5 shows the time in seconds consumed by HELM and FISHPACK running on a
VAX11,/780 for different values of p.

The results in Table 5 reflect the fact that HELM performs redundant arithmetic operations
compared to their sequential scheme in FISHPACK (eyelic reduction). One may also conclude
that with an “appropriate” inter-connection of the p processors, HELM may achieve a speedup
of p/3 over FISHPACK's sequential algorithm. True speedups achieved by these parallel
algorithms over the sequential counterparts can only be measured by actual runs on a specific
mulliprocessor.
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