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NUMERICAL CONSIDERATIONS IN COMPUTING
INVARIANT SUBSPACES®

JACE J DOMGARRAT, SVEM HAMMARLINGY, anD JAMES H, WILKINSOME

Declicated fo Crene Golud an dhe oeresion of kiv A hirthday

Abseraet. This paper deseribes twa methods for compuating the invariang subspace of 3 matis, The fins
methed involves using lransfarmations 0 interchange 1he eigenvalues, The matris is assumed 1o be in Schur
foren and transformations are applicd 1 interchange neighbaring Bocks, The Bocks can be eithar one b oo
or Ua by twa, The secomd method invelves the constriction of an invariant subspace by & direct computation
of the vervars, rather than by applying transformations t meve the desired sigenvaliues 1o the top af the matri

Key worde. invanant subspaces, eigenvalues, ill-conditioned sgenvalizes
AMSMOS) subjecr classificalion, S5F15

1. Introdoction. In this paper, we consider the computation of the invariant subspace
of a matrix comresponding to some given group of sigenvalues. Potentially, the Schur
factorization provides a method for computing such invariant subspaces, with the im-
portant numerical property that it provides an onhonormal basis for such spaces. Let us
denote the Schur factorization of the real matrix A as

A=01Q7,

where {} is orthogonal and T block wpper triangular, with [ % 1 and 2 % 2 blocks on the
diagonal, the 2 * 2 blocks corresponding (o complex conjugate pairs of cipenvalpes,
Since

AQ =0T,
), of course, provides an orthonormal basis for the invariant subspace of the complete
eigenvalue spectrum of 4. Numerically, @ is 2 much more satisfactory basis than the
eigenvectors and principal vectors of A, which may well be almaost linearly dependent,
If we partition (2 and T as

Tn Tl?]

= T =
&=(¢h k). {n Tor

then

AQy =Ty,

and {J; gives an orthonormal bhasis for the invanant subspace of A corresponding to the
cigenvalues contained in Ty, It is therefore o common requirement to rearder T se that
Ty has eigenvalues with some desired property. For example, we might require T, to
contain all the stable cigenvalues,
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Unfortunately, unles we know the required group of gigenvalues in advance and
accordingly modify the standard shift strategy of the OF algorithm, Ty, will not necmally
contain the required eigenvalues on completion of the computation of the Schur facto-
rization. We must therefore perform some further computation w0 reorder the eigenvalues,
Indeed in most applications we perform an initial Schur factorization in arder to compute
the cigenvalucs, which then gives us information on the required groupang,

An example of the application is the computation of matrix functions via the block
diagonal form of a matrix. In computing the Block diagonal form, it s essential o include
“elose” eipenvalues in the same diagonal block [3].

To this end, Stewart [9] has described an ilerative algonthm for interchanging com-
secutive 1% 1 and 2 % 2 blocks of the block triangular matrix. The ficst block 15 used 1o
determine an mplicit 8 shifll, An acbitrary QR step is performed on both blocks 1o
climinate the uncoupling between them. Then a sequence of JF steps using the previowsly
determined shifl 15 performead on both bBlocks, Except in ill-conditioned cases, the two
blocks will interchange their positions.

In this paper, we present twao other methods for constructing the invariant subspace.
The first involves applying transformations directly to interchange the eigenvalues. The
second method invalves direct computation of the vectors.

2. Interchanging cigenvalues, The reordering of the gigenvalues can be achieved
b suceessively inferchanging neighboring blocks in the Schur factor 1

Suppose, in a given T, we have decided 1o group Ay, Ay, A together, We know that
there exists a unitary matrix (2 such that T = Q70 is still upper triangular but has A,
Ag. A, in the first three positions, Such a @ can be readily determined as the product of
a finite number of plane rotations. We merely need an algonthm which will enable us
to interchange consecutive blocks on the diagonal by means of a plane rotation. Repeated
application of this zlgorithm can then bring any selectsd sef of eizenvalues inlo the
leading positions,

The algorithm we describe could be uzed on a complex igangular matrix, However,
since we are interested here in real matrices, and since complex conjugate eipenvalues
will be represented by 2 X 2 real diagonal blocks, we describe fisst the algorithm for
interchanging two consecutive real eigenvalues.

2.1, Single past single. Suppose A and g are in positions pand p + 1. A similarity
rotation in plancs pand p + 1 will alter only rows and columns g and g 4+ 1 and will
retain the triangelar form apart from the possible introduction of 2 nonzero in position
(p+ I, p). The rotation can be chosen so as to interchange & and g while retzining the
zera in (o + 1, p). Cleardy the rotation is determined solely by the 2 3 2 matrix, which

we denote by
LA
(U [ )
We have

(1) (; :j(uf:-.)=“(;h)'

i, (e, — A)T i the elgenvector corresponding 10 . IT 2 i3 chosen so that

o)
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oo sorel,li)el5)

and hence, vsing (2] and dividing by £, we have

oy <Jero)+o)-(2)

This states that the frst column of the transformed 2 % 215 i the required form. Hence

W Ay Wrile
Aoah o e B
G[ﬂ #)Q ['3 ’FJ‘I-

Since the trace and Frobenius norm are invanant,

then

b p=pty, T ST _].I:::'l *'r! I'r‘il,
VI
w=h and F=Zea,
A rotation giving (2 is defined by
(3] cas =/ F, sin = {u—A)/r, r=+[ad+{p— AP0

amd it will readily be verthed that this gives § = +a.

If the original T has been determined from a matrix 4 by means of an orthogonal
transformation, the matrix defining this transformation must be updated by multiplication
with the plane rotations used in the reordering process. Note that in this method, wherever
two eigenvalucs that we have decided to place in the same group are interchanged, a
selected eigenvalue is moved up only past eigenvalues with which it is not (0 be associated.
Mareaver, having determined the rotation, we shall apply it to rows and columns p and
p+ 1 but not ta the 2 x 2 itself. There we shall merely interchangs & and g and do ne
computation. Moving | » 1 blocks 15 discussed in [8].

2.2, Single past double, In bringing a selected real eigenvalue toa leading position,
we shall, in general, need to pass 2 3 2 blocks on the diagonal corresponding ta complex
conjugate pairs. Hence we must be able to interchange a real eigenvalue with a real 2 X
2 hlock by means of an orthoponal similarity transformation. Obviously, the trans-
formation is determined by the relevant 3 % 3 diagonal block which, for simplicity, we
WIILE 2%

= r'b
(4 8ot
[ e

The same principle may be used as in the single past single case. IT

X
{3) Xz
I

denotes the sigenvector cormesponding 1o Aa, then we require & ¢ such that

It
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and then, as before,

i)

Note that the general principle we are using is the one commoenly employed to establish
the Schur canonical form by induction. The 2 » 2 matrix C in the bottom of (&) is not
the same a5 & in (47, but it will, of course, have the same @igenvalues, However, B and
O will nat, in general, be orthogonally similar,

The matrix (2 can be determined as one Householder matrix or as the product of
twi Givens rotations. Since Ay is real and & has complex conjugate eigenvalues, B can
have no cigenvalues in commaon with As; hence, a unique eigenvector of the form (5}
will exist, As the two eigenvalues of B approach the real Ay, their imaginary pars become
small, and the eigenvector (3} will have progressively larger components in the first two
positions, i.e., the normalized version will have a progressively smaller third component.

2.3. Double past single, When a pair of complex conjugate cigenvalues is included
in the selected group, the associated 2 % 2 diagonal hlock has to be moved into a leading
position on the diagenal. On the way up it will, in general, pass both single eigenvalues
and 2 % 2 blocks with which il is not 1o be associated. We consider Orst taking a complex
pair past a real eigenvalue, In other words, in terms of the relevant 3 % 3 matrix, we
require an orthogonal O such that

Here the selected eigenvalues are those of &, a complex conjugate pair. The sigenvalues
of € will be the same pair, but in general C and & will be different matrices and will not
be arthogonally similar. If we think in terms of moving & to the bottom, we may use
much the same principle as before but now we work in terms of a lefi-hand cigenves-
tor, IF

»ITy= " with p7=(1, 3. 1),
wie determine a & such that
pTG=(0,0, x).
Then (7 T30 has (0, 0, A, as its last row, and the objective has been achieved.

2.4. Double past double. Finallv, we may need o move a selocted 2 3 2 matrix
past an unrelated 2 % 2. IF we denote the relevant 4 4 matrix T by

by |z X%
bye ] et _(.ﬁ'|k’)
o FRPI= T )

| €1 £

then we require an orthogonal §F so that

where B and ¢ have the same eigenvalues as B and €, respectively.
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The same general principle may be used, We compute generators of the invariang
subspace corresponding 1o < 10 the form

[x. 0= {0
0 1
by solving
(7) n{x,m={x.y}f.'={x.1=n("" “].
O3 [

it

This gives us four equations for the four top components in {x, 1) If we now determine
L]
+ tooui] [
x, ¥l= ( 0

R)
( i: ;

then Q7507 will be of the required form. Such a @ mav be determined as the product
of twi Householder matnices or four Chivens rotations.
To see how O3 related 1o O, we observe that (7 ) implies that

OTaQ700x, ¥) = Q(x,y1C,

_Cl!':ll- -

piving
AR\ (R
0T 0 [n] (ﬂ]r:.

that is,

L I i
Gn@’(”)—(“)[m ),

This last equation states that the frst two columns of 707 are
RCR")
[ R
and hence = RCR-', We shall not, of course, compute ¢ via &!
3. Mumerical conziderations. In each of the four cases discussed above, we determine
gither an gigenvecior or two independent generators of an invariant subspace.

1.1. Single past single. When taking a single past a single, the formulae giving the
components of the vectors are of a particularly simple form. For consistency with the
other three cases, the sigenvector in i ) should perhaps have been expressed in the form

(e le—21, 1)

This emphasizes the fact that when g — A is very small compared with o, the first com-
ponent of (he eigenvector 15 very large, 1o, in the normalized form, the second component
is very small. However, in this case & and u should almost certainly have been associated
together, and we should not be tnving to interchange them!
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This remark has more force than might be imagined when the Tull & > 8 guasitrian-
gular matrix has been produced from & general matrix 4 by an orthogonal similarity
transformation. In this case, the elements below the diagonal elements are in no sense
true zerns, They are at best negligible to working accuracy.

As an example, consider the matrix

b
(8) L i l+€), M=l—e M=1+e
A perturbation —¢? in the (2, 1) element gives modified cigenvalues &, = &; = |, and
the matrix is defective. Suppose we are working on 4 ten-digit computer and & = 1077,
We may not think of 1 = 107 as unduly close, but a perturbation of —107'% gives
coincident cigenvalues, and this perturbation 15 well below the negligibde level, Iwe think
in terms of perturbations of order 10" (i.c., computer noise level), all we can say is
that the true cigenvalues are {roughly) in a disk centered on & = | and of radius 107,
Thus a perturbation 410" in (2, 1] gives cigenvalues 1 2 99321077, while a per-
turbation of — 107" gives eigenvalees 1 +( 1.011"7107%, Toatternpt to distinguish between
| 4 10 % and 1 = 107", and to interchange them, makes no sense. They have no separate
identity, and different rounding emrors 10 the triangularization program giving T might
well have led to complex cigenvalues and have a 2 % 2 block rather than that in (&),
For several moderately close eigenvalues, the remark has cven greater force.
Thus, it

il =i b0 ]

My=1—¢ ha=1,4 =14¢gande= 10" A periurbation even as small as 107" in
{3, 1) gives three cipenvalues of the form 1 + @{107*), This problem is discussed in
considerable detail in [10], [12]. [13]. Clearly, deciding which eigenvalues should b
grouped topether cannot be done on the superficial basis of “looking at the separations.”

The remarkable fzet is that in the single past single case, the cos & and sin @ are
always given with very low relative errors on a computer with correct rounding or chop-
png, On such computers, g — A Is alwavs computed without rounding errors even when
severe cancellation takes place, Thus, if

B3256T  D138aS
( 0 .333559)‘

we have on a six-digit computer g = A = 000002, and this has no error. { This will be
true even when, e.g, A = 999099 and g = 10'(. 100001 ), that is, when close A and g
have different exponents.) Six-figure floating-point computation using (3) gives

cos = 10'(.100000),  sindé=107*(.219091),

and both of these have relative errors on the order of machine precision { 107"} in spite
of severe cancellation having taken place, Henes, if we actually do the computation of
the 2 = 2 matrix {in practice, we would not; we could merely inzert g, A, and « in the
approprate places ), we find that the coupled (1, 13, (1, 21 and {2, 21 elements are corract
o working accuracy and that the (2, 1) element 15 well below the negligible level, This
is comforting because we shall be applying the transformation to the rest of the matrix.

This 15 an impressively good resull, In many situations, nat dissimilar from this, we
watild have ta be satished with a matrix that is exactly simalar to a T with a periurbation
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of order 107" in its elements and such a matrix could have cigenvalues agrecing with A
and g in only the Arst three Ogures, a dizaster from the point of view of effecting an
interchangs of M and !

3.2, Single past double or double past single. When we turn o the other three cases,
the situation is nof s0 simple. Let us consider the algorthm for moving a single past a
double, IF we denote the cigenvector in (3) by

K= {':".l 2Kz, I }T:
then Tsx = Ayx pives
(9] Lty — Ag o o + =0,
X Pt — Al F =0,
The matrix of coefficients T of this system of equations is

TRl fiz
Iz fz2— Az

T- L]

which can be singular only if A, i an cigenvalue of the leading 2 = 2 matrix of T, This
peossibility is specifically excluded since A 12 real and the 2 % 2 has complex eipenvalues
{otheranse we would have tnangulanzed it). When A; is wery well separaied from the
two complex eigenvalues, T will be very well conditioned and x, and x; will not be large;
hence, 1n the normalized version of x the third component will nof be small, IF we
compuie the transformation and apply o w the full 3 % 3 matnx, the top element will
be As to high accuracy, the two complex cigenvalues will be accurately preserved, and
the (3, 1) and (3, 2) elements will be negligible, The computed results will be very closse
Ly those derved by exact arithmetic,

As A approaches an eigenvalue of the 2 X 2 block, however [ notice that this means
that the imagnary parts of the complex eigenvalues must be small since A is real, and
hence we are really moving towards a triple eigenvalue), the matrix T will become pro-
presaively more il conditioned, and in general, > and x; wall be larger. [n the limiting
situation, the cigenvector will have a zero third component and will be an eigenvector
af the leading 2 0 2 matrix rather than one corresponding to Ax in the 3 3 3 matrix. The
matrix J is mercly a plane rodation in the {1, 20 plane and does not affest 2. T is diffieul
to view this in terms of bringing the (3, 3) element into the leading position! [ndeed, we
are merely recopnizing the fact that the upper 2 % 2 now has a double real root, and we
are triangularizing if, Since the real roots that it bas are the same as A, however, the
lusion of having moved A; into the leading position is preserved. Thus, i

s
=1l -1]1], Ay=Ry=4,=0,
a 0o

the only eigenvector is {1, 1, 077 there s no eigenvector of the form (x, x, 137 Far the
rotation in the (L, 2} plane, # = /4 and the transformed matrix iz

02 aNZY A |x x
pod INZE = 0
b0 0 T
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The matrix is in the required form, with A; in the leading position, zeros in the first
column, and O given by

{0 1
(10) 5‘(0 ; )

which i3 similar to the onginal 2 = 2, hut cerainly not orthogonally similar sinee it has
i different Euclidean norm. However, considering how it has come about, it would be
perverse 1o describe it as “bringing h; past the 2 = 2.

Suppose now that we perturb the (2, 1) entry of the matrix by ¢ 1o give

1 =1 0
1 '|'|E? =14 lE ], :"la-}"3= :'Tjﬂ. -:"-3,—':].

il 0
Then there is an eigenvector x corresponding to b of the farm
xl= (=1 et = 1fe 1) =(—1/2)1, 1, =),

The normalized version of this vector has a very small third component, If we perform
our algorithm exactly, it gives a (2, 3) rotation with an angle of erder & ( the corresponding
matrix is almost the identity matrix) while the (1, 2) rotation has an angle of almost
exaclly « /4. The resulting matrix has Ay = 0 in the leading position and the 2 3 2 matrix
€15 almaost exactly as in { 10), but has small perurbations that make its cipenvalues +e,

The simplicity of this discussion i slightly obscured by the use of plane rotations
and their introduction of irmtionals. 1F we think in terms of nonerthoponal transfor-
mations, then to convert (1, 1, =)o (1, 0, 0], we perform a similarity with the unit

lower triangular mairix
1
M=]-1 1
Rl

and abiain as our ransformed matrix

0l-1 0
al o 1
0l-g* 0

The zero cigenvalue iz brought (o the top and the sigenvalues =i moved 1o the bottom
in a transparently obvious way. When ¢ = 0, the transformation operates only on row
and column | and Z, and A; is ool invalved. Nonetheless, the transformed matnx is

0j-1 0
o[ 0 1
ofo o

and cur “objective” {inappropriate though it is) has heen achieved,

The relevance of this discussion 1o the performance of our algorithm is the following,
When we attempt 10 bring a single past a double having eigenvalues that are firy close
to il, we risk placing too much reliance on the effect achieved by the very small third
component in the normalized version of the unique cigenvector corresponding 10 A,. In
the analogous single past single case, the solution was determined with considerable
accuracy. Here, however, the selution 15 not nearly as simple, Moreower, when the trans-
formation has been computed, we shall need o apply it 1o the 3 % 3 matrix itself, as well
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s to the remainder of those relevant rows and columns, since the new 2 % 2 is not
determined in a trivial manner, as were the elements in the single past single case,

Clearly the set of equations must be solved with some care. It is essential that the
normalized version of

(o, x, 1), e, (2,35,5%5)

should be such that
U=l EiHipd b=,
(g Xy + faa X+ B3 = oy

be true with ¢, and £y, which are at noise level relative to the coefficients on the lefi-hand
side (e and & would be zero with exact computation ). The solution of the system by
Gaossian elimination with pivoting ensures just that; it produces x, and x with errors
that are so correlated that the normalized versions give residuals at noise level,

In place of Gawssian elimination with pivoling, we could use any stable direct method
to solve the system, e.g., Givens iriangulation. However, if we were to solve the system
by an unstable methed such a5 Cramer’s rule in standard flcating-poinl anthmetic, we
would obtiin a computed x; and x; with errors that are uncorrelated, and the residual
corresponding to the normalized vector would not then be at noise level,

Assuming, then, that we have a normalized cigenvecior giving negligible residuals,
the process is satisfactory, Indeed, it is merely the method of deflation by orthogonal
similarity transformations that is used after finding an ecigenvector of a gencral matrix
(see, e, [11, § 20, Chap. 9]). This is a stable deflation, provided the eigenvector has
negligible residuals (independent of its absolute accuracy ): the deflated matrix is exactly
orthogonally similar to a matrix that differs from the original by a matrix £, which is at
nodse level relative to it This is true even when we insert {without computation) the
computed eigenvalue in the leading position and zero in the rest of the firel column.
Such a result is the most we can reasonably expect, though it falls somewhat short of the
super-stability of the single past single case.

We have naturally concentrated on the case when we are attempiing to move a real
eigenvalue Ay past a complex conjugale pair, each of which is near A;. because numerical
stability there needs sericus investigation. OF course, when As is “too close,” we usually
include all three eigenvalues in the same space. However, when we move a single eigen-
value Ay past & complex conjugate pair A + iy such that A — 3 is not small but k is
small, that pair will be elose, and hence, in general, very sensilive to perturbations. The
I ¥ 2 block will itselfl be subjected to a similarity transformation, and small rounding
errors will make substantial changes in the eigenvalues, Thus, il we have the matrix

A31265 .5]6325)
(—.Dumm 431937

with the ill-conditioned cigenvalues 431600 2 j(.001198), and subject it to a plane
rotation with angle =4, the exact transform gives

AROTE] 258501
( 257827 _nmu]

with, of course, precisely the same cigenvalues, If rou nding errors produced

©BRSTE .2535&1)
(—.25?31? 173440
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(i, changes of =1 and +1 in the last hgures of the {1, 1) and (2, 2) elements), the
eigenvilues become 431600 £ f.001397), a substantial change in the imaginary parts.
¥etin this example we have used an orthogonal similarity transformation that is favorable
o numenical stability. In general, the bypassed matrix will be subjected toa nonorthogonal
sirnilarity transformation.

1.3, Double past double. Finally, we turn 10 the problem of moving a double past
a double. Since two pairs of complex conjugate eigenvalues &y = gy and hs = jus are
invalved, it is not possible for just one eigenvalue in the lower pair to agree with one in
the upper pair, If, for convenience, we denote the relevant 4 % 4 matrix and the invardant
subspace by

respectively, where Ty, Than Toan and Xare 2 X0 2 mateices, then we have
TuX+1T =XT5.

It is well known that iof Ty, and T have no cigenvalue in commaon, then this is a
nonsingular svstem.
For the case when 7y and s, share an cigenvalue, consider the matrix

If we try to find an invariant subspace of the form (F), we fail; the elements of X turn
out e be infinite. There s no invariant subspace of dimension 2 of the required Form,
{ The particular form chosen for T3 35 not eritical, thowgh, of course, if we take T, to
be null, such an invanant subspace does exist with X = 0; Tis then derogatory.} However,

7{0)=('6')=(o)

and hence we now bave an invarant subspace, which we think of as belonging to
.Jl.||. But

QTnQ.""(g _{I_) when -@=%|::_ll ;) {a rotation ).
Henee
r(y)er=(y)ercerien.
Le.,
oS (5(o (e e
But

o T T ) g 1
F M = =Ty, i&, DMETV'=T,
( IJ {l I] [I:I {I) . LE s
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and hence

T o L GJ -
U)ﬂ (D0 (ﬂ)ﬂ FETH

=]
——
J.'C.l
=
1
I
i

Le.,

A

The columns of (20" are arthogonal, but not erthonormal. 1t 1ooks as though we have
an orthogonal basis of an invariant subspace “belonging (o T, but we should not
really speak in these lerms.

Mevertheless, if we consider

R TR :
£ S8 { TR ST e
g2 0

then there is a subspace of the form '}y which we could justifiably describe as “helonging
to Tople),” provided £ # 0. The elements of A (e) will tend o 20 as ¢ = 0 50 that any
normalized version of this invanant subspace wall have very small components in ils
loweer 2 3 2 matrix. In fact, since

(@2 )ar(@77),

wi observe that

ETL""':I __lfli"ﬂ"'

0 0 JTJ:H}—T{QTD_')__(f-?rﬂ"

L W ) G )

o rl:';]T"U, Iy { ﬂ}

Rl ][—ﬁ o)
When o is small, this invarant subspace gives negligible residuals “corresponding
o Topfe)”

Can we expect X{e) to be @707 apart from a scale factor? Unforunately we
cannol, In fact, we have

7o)

L

)Tn[e:l

£l

{1

0

:(X{c] dnd il 5: 551
;. i e 0
(T

4. A direct methed for computing invariant subspaces. In this section, we consider
the construction of an invariant subspace by a direct computation of the vectors, rather
than by applying transformatons to move the desired elpenvalues to the wop of the malrix
T We assume that the matnx T is derived from some sgquare general mairnix A, Suppose
Ay iz the Kth eigenvalue along the diagonal of T and Ty 15 the leading & > & minor in
the matrix 7.
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If & is a simple eigenvalue, we just solve
(F=2:0x=0.
This gives xp., Xxaz. 770 & = 0. Next, we take x, = | and solve
{Tie—=AelIx=0
for xp_g, Xp—z, "0 v, Xz, Xy, 50 the vector x will have the form
x={xy, Xy, = o Xe_y, 1,0, - 0T,
MNow suppose o 15 a multiple cigenvalue, sav a trple, such that
=R = A= Ay, (p=g<r).

In general, there will be only one eigenvector cormesponding (o o (unless Tis derogatory).
First, we find the eigenvector x corresponding to A, by solving

'[ I_-rl,'u-_ I'-'t-lr_:|-1'= 0,
Mext we attempt to find y corresponding 1o A, by taking p, = 1 and attempting to solve
(Toe—2gMy=0, ie, (To—ofy=0

All is fine until we reach the determination of y,. We have

LR o PR TR R - tpg—1¥g—1 T =0,
TF W led
S PR, TR S TR T Y
then
Dy +d=0.

If & happens 1o be zero, then y, is arbitrary,
It is simplest to take ¥, = 0. Henoe, when o = 0, we obtain

X=0x,x, oy Xey, 150, v == 0,0, -2 0)T,

1A= [.!"Ila-.l'"l:- 1 ik |J"_|.l Inl:llfr--l ks ,_}'.;l— 1s l, o |ﬂ}]-

These two vectors are obviously linearly independent, Hence we have two eigenvectors
corresponding to «, Both satisly (T — al)x = Oand (T — al)y = 0.

If we had taken y, to be s instead of zero, the solution would have been y + mux,
This is hne since y + #ix is alse an eigenvestor. We could have chosen y + v orthogonal
b X,

U (y+mx)=0, m={—x"yix"x),

That the matrix will be derogatory is much less probable than that it will be defective.
In fact, even if A were exactly derogatory, T would probably not be, even if it still had
cxact multiple eigenvalues.

Suppose now & # 0. To get v, we would need to solve

Oy.=—.

Hence we cannat get a second eigenvector, Note that if A, were A, + ¢ instead of b, we
wiould be solving

e¥.=—d
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al this stage, giving an erroneous value ol yp. Obviously, in this case the first p components
of y would be essentially { — /¢ )x + {vectar that is not too large). As e — O, the vector
¥ lends toa multiple of x with a relatively negligible amount of interference. In the limit
we find that y and x are in exactly the same direction: the last g — g components of y
are negligible compared with the rest when g is small, and arbitrarily vanish allogether
in the normalized .

We cannot find a second eigenvector. We can, however. find a veclor ¥ such that

(= A Sy =dx.

Hente the determination of p procesds as before, from Feto Moy, sinee xis zero in fhese
componenis We noy have

Ovptipp=1¥ani1t - Tl g1 Ve Hpe=dx, = d,
so that
FREENN T T i o PP U SR
giving
Oy,=10.

Again 1, is arbitrary, and it is smplest to take 3, to be zero, There are no further problems,
and we have

X=X, X, 0o Ko, L0, oo 00,0, - 00T,

-I"I'[.]"ls.:"‘ln- B I'-I:]-.l":p—ln- ke |.|'"|.---I-|-:r-:'- e :-':-'l}T
with (T — al)x = 0,({T - aly = dx, or

d a
T, ¥)={x,¥) :
e
MNow for the third vector, we shall ignore the possibility of its being derogatory for
the moment, We attempt to solve
(To—alNz=0
starting with z, = 1. We proceed as usual until we reach zy. At this stage we have
Ozp+igge12Zge + 7" i, 12—+ ip, =0
s that
!.J_q-l-jgu-‘ |+ = 'y +.I'¢_l.-_|2_,.. |‘:'|'*._r=f.
Hence, we solve
(Te—alz=gp.

This does not affect the components already computed since ¥, = 0, (i=q).
For convenience we then take z, = 0. We continue until reaching 2. We now have

Ozt o ps1Zpag+- Lor— 1 Eec ) T g o= £,

lop+1Zawit o 7: Tt re l:-'-:r--:|+4',p.-r=..ir-
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If f'# 0, we would get z, = 0. To avaid this situation, we solve
[ Te—al)z=ev+ X,

This does nat affect previous components since x; = () for § > p. The equation for z,
then hecomes

Oz, =10,
If we take z, = 0 and determine =, , Zp_3, = ** . &1, We then have

(T—alx=0, (T=aly=dx, (T—af)z=ep+[x,

ar
T Lo
(11 t?'—nf}tx,}-.z]-{x.}-.a}( ¢ e2|=(x¥2)i,.
[t
Xx={Xy,X, " %1, L00, - - 0,0, ==~ 7,

LY U TRCEEING S 1 TSP T 1+ KRR ) LS
L] - TR S | I SRR SC L ,z‘._hﬂ.si._., CICCI A ) R ,CI]:'-.
Clearlv, x, v, z are lincarly independent, and they span the three-dimensional in-

variant subspace associated with o, They are not orthogonal, in general, but we could
develop an orthogonal basis from this, Specibeally, if

Py Fiz fis
{(x. ¥ 2)= (g, q1.4) Pz Pz | =R,

P13
then
(T—af)y Ry =BT,
or
(T—al)Oy= ([ RaT.R3"]= (M.

(ks is now an orthogonal basis, and A has « as a triple eipenvalus.
A derogatory matrix will be revealed by zero values among 4, e, . Thus if =
¢ = =0, we gel three independent cigenvectors, and

L
T{.r.k'.:}-l.'LJ'.i'J( o )
o

Ifd = = 0and ¢ # 0, we have

ik
T{x,y.:]=[x.y,z]l( & E).

o

Then we have a lincar divisor (A — o) and one quadratic, (A — a)®

Ifall computations are exact and T comes from exact computation, then we associate
only the eigenvalues that are truly equal, and the vecters oblained in the way we have
deseribed are truly independent. In practice, however, T wall rarely be an exact matrix.
Usually it will have been obtained from a matrix 4 by, say, the OR algorithm. Even if
A had defective eigenvalues, T will usually not have any repeated diagonal elements. A
real prohlem is to decide which diagonal clements 10 associate together. We may need
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1o assoctate eigenvalues that are by no means pathologically close. If we have decided
which cigenvalues we wish to associate, then we proceed exactly as described,

S0 far in this section we have tacitly assumed that 7 is cxactly iriangular, but the
(2R algorithm may give 2 % 2's on the diagonal. If a 2 % 2 corresponds to a pair of real
eigenvalues, we can get rid of it by an orthogonal transformation, If it corresponds to a
complex conjugate pair, we cannot. We assume then that all 2 ¥ 2's correspond Lo
complex conjugate cigenvaliies,

W turn mow 1o the case of 2 X 2 blocks. If we associate only real eigenvalues in an
invariant subspace, there are no real new poings, We merely need o know how to get
the two components of any of our vectors in the position of 2 2 ¥ 2 block in the matrix.
Clearly we selve a 2 X 2 system of equations for the twoe components, The technigue for
getting the generators and the M 15 unchanged.

Mow, consider obtaining & pair of vectors spanning the two-space associaled with
complex conjugate pairs of eigenvalues, assuming for the moment that we are not as-
socating it with any other eigenvalues. For T, illustrated by

I-"I = = ] L =
] L3 = = =
:|I"= L] L] L3 = :
L * &
i = L] L]
1 "_."II
we merely salve the equations
i
{12) ﬂx,..x,p+.]={x;,;-.,..}[ e £hghl )
prlp fpdnpel
and take
Faowh
| = % |
¥ @
(g Xpaid=| 1 0
o1
0 0

hatice ,.-"I
s0 that they are certainly independent. The two hack substitutions For determining x,
and x., , are done as before. We determine x/* and x/"* " from the pair of equations
ablained by equating row § on hoth sides of (12}, This gives a well-separated petir of
vectors even when the two eigenvectors are close, provided the earlier eigenvalucs are
well separated from them. Thus, for

3 I 2Nfxm X oM i 1
oA ()
0 —-10-" f\o i A

the eigenvalues are | £ 710°% they are close, but well separated from the other eigenvalue
Ap = 3. The components x, and y, satisiy

Ixi+1=x—-10"",  Ip+I=x+mn.
To eight decimals, x; = =1 and y, = —£ The vectors arc extremely well separated and

T{x.r}—l.’xw}( = {10710y,

l 1
o Lt J]
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If, when computing the twa vectors corresponding 10 4 complex pair, we cncounter
anather 2 % 2 block, say, in position J, / + [, theén components jand i+ 1 of x and ¥
are determined by solving a set of four linear equations derived by equating rows J and
i 4 1 of (12). This will be a well-conditioned 5 > 4 system if &g, Moy are well separated
from be. Aos-

When we wish to associate { Ay, A ) with some of the earlier eipenvalues ( for which
we have already done the back substitution), the solution is quite clear. When we en-
counter a real eigenvalue A, that is to be associated with them, we solve from that point
on, namely,

Ty X 1) = (s e .}{

(ot Tpat ) 4 (x iy, ds)

foaip fet+ip+d

and we chose &, and s sa that the ith component of X, and Xp . are 2e00. This gives us
a pair of equations for d) and dz. I &, Aot and &, were the only three to be associated,
we would have for the invariant threg-space

Il|'.| 'ull ﬂl:
T[x“-:'-lu--"lprl}: ':l Ir\l'.\j.l 'rﬁ'.nl | .

0 thsnp fa+ipsn

If during the back substitution for xp, Xy W encounter a pair Ay, Ay that we wizh (0
associate with them, we solve [rom that point on

i fenai
:I'"I,’.f,,,.trﬁ‘.,]:[x,‘.,xplj(- . o }"'{-"-':--fsq}[

o e lpatp+ls

dy i+ )

el 4 (] ﬂlr+ FER

where the four ds are chosen 5o s to ake components { and { + 1 of X, and x4 equal
1o ZeTo.

For example, suppose wie group (e, As), Aes (A, bs) where (g, g} and (s, A}
are complex pairs. We have

- £ L] = w

- - ] w &

L D00 0O

O 1|0(0 o

oo | "

O of1f(0 0

[.:l::l_. T Ve K .'l'-g.] = MARE -

0 O|0f1 @

O oo |1

0 ool 0

o ololo o

and Onally

fiyy taa s du ﬂ':i;-".,I
| fx faa dis A dae
TA X3, Xa, Xin X2 Xu ) = (X3, X4, X6, X, X5) lee  teg  dan

Bz fan

r)
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The elements named oy and oy, would have been determined when compuling x, when
we reached rows 3 and 4; the elements dy and dys would have been determined when
cemputing xz and x3 when we reached clement 6; and the clements da, day, ey, iz
would have been determined when we reached elements 4 and 3,

If we have made a good decision about our grouping, rows of the vectors will not
be large, though this would not be sufficient to decide that the grouping is complete.
First, there may be some A which should also be associated with these five, Second, the
WCCIOTE X3, s, Xy, Xy, and g might not be as linearly independent az we would like,

Other approaches have been suggested for computing the invariant subspace directly;
see [4]-]6]. These are likely to be more stable but more expensive 1o COmpuUe.

3. Conclusions. The methods described in § 2 have been improved and generalized
by Mg and Parlett [ 7] and implemented in LAPACK [1]. The LAPACE implementation
includes tolerance checks and scaling to ensure numerical stability [2]. This is essentially
achieved by not swapping blocks that are regarded as being too close,

We have discussed numerical issues concerned with the computation of invanant
subspaces and proposed two methods related 1o their computation. The method discussed
for swapping diagonal blocks can readily by extended to the generalized eigenvalue
problem.
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