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This paper gives a brief overview of the CRAY X-MP-2 general-purpose multi- 
processor system and discusses how it can be used effectively to solve problems that 
have small granularity. An implementation is described for linear algebra algorithms 
that solve systems of linear equations when the matrix is general and when the matrix 
is symmetric and positive definite. 

OVERVIEW OF THE SYSTEM 

“Multiprocessor” is a term that has been used for years. Our definition 
follows those of [8], [9], and [lo]. 

The CRAY X-MP is a follow-up to the CRAY-1S system offered by 
CRAY Research, Inc. The CRAY X-MP family is a general-purpose multi- 
processor systeln. It inherits the basic vector functions of CRAY-lS, with 
major architectural improvements for each individual processor. The inter- 
processor communication mechanism and the provision of Solid-State Disk 
device(SSD) are new designs that create tremendous potential in the realm of 
high-speed computing. 

The CRAY X-MP-2 system is the first product of the CRAY X-MP family. 

*Work supported in part by the Applied Mathematical Sciences Research Program (KC-04- 
02) of the Office of Energy Research of the U.S. Department of Energy under Contract 
W-31-109-Eng-38. 
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It is a dual processor model that is housed in a physical chassis identical to 
that of the CRAY-1S. Each processor occupies half of the space of the 
original CRAY-1S. This is achieved through larger IC integration, denser 
packaging, and much improved cooling capacity. 

The system is designed specifically to handle computation-intensive and 
I/O-intensive jobs in an efficient way. It can be used to perform simultaneous 
scalar and vector processing of either independent job streams or independent 
tasks within one job. Hardware in the X-MP enables multiple processors to 
be applied to a single Fortran program in a timely and coordinated manner. 
(See Fig. 1.) 

All processors share a central bipolar memory (of up to 4 million words), 
organized in 32 interleaved memory banks. Each processor has four memory 
ports: two for vector fetches, one for vector store, and one for independent 
II0 operations. In other words, the total memory bandwidth of the two 
processors is up to eight times that of the CRAY-1S system. The added 
memory bandwidth provides a balanced architecture for memory-to-memory 
vector operations as typified by scientific Fortran codes. 

Other features of the machine include hardware automatic “flexible 
chaining” [ 11. This feature allows each individual processor to have simulta- 
neous memory fetches, arithmetic, and memory store operations in a series 
of related vector operations. The elimination of “chain slot time” guarantees 
“super-vector” speed in all vector operations. It contrasts with the “fixed 
chaining” and unidirectional vector fetch/store of the CRAY-IS [7]. The 
balance between CPU speed and memory bandwidth makes the CRAY X-MP 
more friendly to Fortran codes. The need to resort to assembly level hand 
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DATA PATH 
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FIG. 1. Cray X-MP-2 system organization. 
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coding is drastically reduced. Other improved features of the CPU include 
multiple data paths and increased instruction buffer size. The machine has a 
faster central clock with improved cycle time, 9.5 nsec as compared with 12.5 
nsec on the CRAY- 1. The result is a much improved scalar and vector speed 
over the CRAY - 1 S . 

In addition, a new, optional, CPU-driven Solid-State Storage Device 
(SSD) offers an extended central memory, an important element to buffer 
between fast central memory and slow disk devices. The SSD can be used as 
a fast-access device for large prestage or intermediate files generated and 
manipulated repetitively by user programs, or it can be used by the system for 
job swapping space and temporary storage of frequently used system pro- 
grams. 

While multiprocessing is not a new concept, the CRAY X-MP multi- 
processor design is unique in many ways. It differs from most other con- 
ventional multiprocessors (see, for example, [lo], [ 131) in its multilevel 
parallelism (vectorization in the inner most loop and multiprocessing in outer 
loops) and its tightly coupled interprocessor communication control (sharing 
of registers, for example). 

Additional hardware in the X-MP enables efficient and coordianted appli- 
cation of multiple processors to a single user program. All processors as- 
signed to a task share a unique set of synchronization and communication 
registers. There are three kinds of shared registers: a set of binary sema- 
phores, a set of index registers, and a set of data registers. These registers, 
in cooperating with the shared central memory, allow processors to signal 
each other, wait for each other, and transfer data between each other. Pro- 
cessors can also interrupt each other through the interprocessor interrupt. 
These basic hardware functions provide a basic mechanism for efficient 
communication and synchronization between processors. 

Other than hardware instructions, software support for multitasking is at 
the library level, where the user makes calls to ask the system for multitasking 
functions. Three categories of routines provide different mechanisms for 
parallel processing [5]. First, a task can be created to be scheduled for 
execution through the TSKSTART call. The calling task may wait for the 
termination of a created task with the TSKWAIT routine. Task is a sched- 
ulable unit that the user expects to be executed in a serial manner. It is a 
software entity that the programmer deals with, as the physical processor is 
concealed from him. 

Second, tasks may need to communicate or synchronize with one another 
as they execute concurrently. Producing tasks may signal consuming tasks 
through an EVPOST routine. A consuming task may wait for the signal 
through an EVWAIT routine. As the signal is consumed, it may be reset 
through an EVCLEAR call. 

In the third category, the LOCKON and LOCKOFF routines are used to 
protect the integrity of code segment or shared resources (e.g., data) among 
tasks. 
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Based on these three categories, other synchronization and communication 
mechanisms can be developed. Since the multitasking library employs a 
queuing mechanism (among others) to handle general situations, it is very 
flexible. Of course, the user always has the option of hand coding his own 
synchronization routines through the use of hardware instructions. 

GRANULARITY OF TASKS 

A number of factors influence the performance of an algorithm in multi- 
processing. These include the degree of parallelism, process synchronization 
overhead, load balancing, interprocessor memory contention, and modifica- 
tions needed to separate the parallel parts of an algorithm. 

The size of the work performed in parallel, the granularity of the task, is 
the first critical factor in matching a parallel algorithm to an architecture 
which should be addressed. By “granularity,” we mean the amount of time 
the cooperating tasks execute concurrently on related codes in between syn- 
chronization points. The need to synchronize and to communicate before and 
after parallel work will greatly impact the overall execution time of the 
program. Since the processors have to wait for one another instead of doing 
useful computation, it is obviously better to minimize that overhead. In the 
situation where segments of parallel code are executing in vector mode, 
typically at ten to twenty times the speed of scalar mode, granularity becomes 
an even more important issue, since communication mechanisms are imple- 
mented in scalar mode. 

Granularity is also closely related to the degree of parallelism, which is 
defined to be ,the percentage of time spent in the parallel portion of the code. 
Typically, a small granularity job means that parallelism occurs in an inner 
loop level (although not necessarily the innermost loop). In this case, even the 
loop setup time in outer loops will become significant without even men- 
tioning frequent task synchronization needs. 

For the CRAY X-MP family, granularity on the order of milliseconds is 
considered large. Many reports [ 1,4,5] have shown significant speedups for 
multitasking of large granularity problems on the CRAY X-MP-2. For exam- 
ple, speedups of 1.8 to 1.9 were seen when two processors were used instead 
of one to run a particle-in-cell code, a weather forecasting model, and a 
three-dimensional seismic migration code. For these problems, the multi- 
tasking library is used to implement parallel tasks. The reported successes 
indicate that, for large granularity codes that have high degrees of parallelism, 
the payoff of doing multitasking on the CRAY X-MP-2 is very significant. 
The use of the CRAY multitasking library to handle inter-task commu- 
nications proves to be very powerful. It will be interesting to see, however, 
how far we can push the granularity down and still get a descent speedup. As 
will be shown later, even when the library appears to be too coarse for small 
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granularity tasks, the hardware capability still allows efficient handling of 
them. For our purposes, we would like to use matrix vector operation to test 
the machine behavior for small granularity tasks. 

THE ALGORITHMS 

Employment of automatic compilation techniques to identify parallel work 
[ 111, [12] is an approach with general applications. In linear algebra code, it 
may have greater payoff if we can change the algorithm to exploit structures 
with bigger parallel blocks. 

We have chosen matrix vector operation for two reasons. First, we can 
easily construct the standard algorithms in linear algebra out of these types of 
modules. Second, matrix vector operations provide simple modules for paral- 
lel execution [2, 31. We will describe an implementation for standard LU 
factorization with partial pivoting for a general square matrix. 

The algorithm can be described as having basically three distinct parts 
within a loop: 

doi= 1,n 
perform the ith matrix vector product (forms part of L) 
search for a pivot and interchange 
perform the ith vector matrix product (forms part of U) 

end 

The algorithm organized storage so that the original matrix is overwritten with 
the factorization. The amount of work required to perform the factorization 
is approximately 2/3n 3 floating point operations (here we count both additions 
and multiplications as operations). The factored matrix can then be used to 
solve systems of equations. In order to maintain stability in the algorithm, a 
partial pivoting scheme is used. This helps in avoiding problems with small 
divisors which can cause inaccurate computations. The pivot is chosen to be 
the element of largest absolute value in a column. The method used is a 
simple variant of Crout reduction [6], but the algorithm has been expressed 
in terms of modules that are easy both to understand and to implement. 

The algorithm described above allows for a number of alternatives for 
parallel implementation. That is, the available processors can be assigned to 
each of the three steps, allowing for multiprocessing within each. This avenue 
has not been investigated since the pivoting does not take as much time as the 
other steps. Instead, each processor will be given the task of performing one 
of the matrix vector operations concurrently. The algorithm can be easily 
modified so each matrix vector operation is independent and can proceed in 
parallel. The pivoting is handled by one of the two processors in a sequential 
fashion. 

Depicted graphically, the processing of the matrix by the algorithm at the 
ith stage would look like the following (the matrix factors overwrite the 
original matrix): 
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TASK 1 

Y1' Y, + 4x1 

TASK 2 

ix1 I . 
4 X ;; I M2 

Iai 
Y2' 

4 

I 
YI 

The algorithm is modified slightly to allow independent operations to be 
performed in parallel. The modified algorithm in no way increases the number 
of operations or complexity over the original algorithm. The modified algo- 
rithm just rearranges the computation within the loop to expose independent 
operations. The resulting modified algorithm is of the following form: 

perform the 1st matrix vector product 
do i = 1, n-l. 
search for a pivot and interchange 
perform the ith vector matrix product 
perform the (i+ 1)st matrix vector product 

end 
perform the nth vector matrix product 
It is now easy to see how to partition the work between two processors: 

each matrix vector operation within an iteration is independent of the other. 
The two cooperating tasks need to synchronize 2(n - 1) times during the 
course of the calculation (once before a task is started and once after). There 
is, however, a slight imbalance in the work of each task. At the ith step, the 
amount of work for each task is O((n - i + 1) * i) and O((n-i) * i) oper- 
ations. 

To perform the synchronization between tasks, we have used task control 
(TSKSTART) to start a second task before the LU decomposition routine is 
entered. This task waits until it is directed to start up. Event control (EV- 
POST, EVWAIT, and EVCLEAR) is used to start and synchronize the work 
within the algorithm. 

Table I describes the performance for this implementation of LU decom- 
position. The column labeled “Degradation from code change” reflects the 
loss of performance when the sequential algorithm was restructured to sepa- 
rate independent tasks. The numbers are obtained by running the original 
algorithm and the modified algorithm using no multitasking features on a 
single processor and taking the percentage difference. Measurements were 
also made of the total time spent in the parallel portion of the algorithm. As 
expected, small-order matrices consume a greater percentage of time in 
nonparallel parts than do larger matrices. Even for matrices of order 50, 
however, over 75% of the time is used in the parallelizable portim. 



28 CHEN, DONGARRA, AND HSIUNG 

TABLE I 
PARALLEL VERSION OF LU DECOMWSITION 

n 

50 
100 
300 
600 

Degradation from Percentage of 
code change parallel code 

(%I (%) 

6.5 75.1 
4.9 82.0 
2.0 87.5 
0.7 97.0 

We also measured the speedup of the algorithm when two processors were 
used. Table II shows the comparison between the modified (but without 
multitasking mechanism) one-processor version and the multitasked two- 
processor version. The column labeled “Mean granularity” is the average time 
spent in each of the matrix vector calls for that particular order problem. In 
other words, it is the average time in between synchronization calls. 

The “Optimal” column is an attempt to filter out the time required to 
synchronize the processors and the time introduced by memory contention 
caused by multitasking on the two processors. These numbers were generated 
by running the program twice. The first run was a sequential process, using 
no multitasking constructs. In the second run the call to the shorter of the two 
parallel tasks was removed; thus, in some sense, this is the best situation (the 
calculation, of course, does not produce the correct results, but it provides a 
good measure of the overhead). The third column is the result of using the 
standard multitasking routines in the Multitasking (MT) library. As an alter- 
native, there are assembly language (CAL) routines that use hardware in- 
struction directly. These CAL routines perform the minimum synchronization 
function required by the code and are faster than the general-purpose multi- 
tasking library routines. ’ 

TABLE II 
SPEEDUP OF ALGORITWM ON 2 PROCESSORS vs 1 PROFESSOR 

Mean 
granularity 

n Optimal MT library calls MT CAL calls We4 

50 1.44 0.86 1.39 40 
100 1.57 1.05 1.54 66 
300 1.77 1.60 1.79 250 
600 1.91 1.80 1.86 800 

‘The MT library routines keep track of additional information on the activities of other tasks. 
They are better suited for larger and more tasks and are quite flexible for different programming 
styles. For this particular small granularity job that information is not needed; hence the CAL 
mechanism is more amenable. The difference in the implementation is 0( 1) clocks for the CAL 
version and 0( 100) to 0( 1000) clocks for the multitasking library, depending on mechanism 
used. 
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With this algorithm the work partition is well matched for two processors. 
The overhead in multitasking is essentially wiped out as the problem size 
increases, and for small problems it is not a great penalty. The imple- 
mentation comes very close in the limit to attaining the optimum per- 
formance . 

We now focus on another algorithm for dealing with a system of equations 
where the matrix is symmetric and positive definite: Cholesky factorization. 
The algorithm can again be described in terms of a matrix vector operation, 
but in this case because of symmetry only half the matrix is referenced. 

As before, we can graphically describe the algorithm at the ith stage as 
follows: 

TASK 1 

t, -  1, + M, l x, 

TASK 2 
12’) t2 + ML ’ x2 

THEN 
Y-t, + t2 

In this case, the algorithm does not divide naturally into two parts as in the 
previous algorithm. To distribute the work between the processors, we take 
the naive approach of just splitting the matrix vector operation in half, letting 
one processor take the left half and the other processor the right half, and then 
put the two parts back in a sequential part. Table III shows the results. 

As before, the percentage given here is for the modified code before the 
multitasking mechanism is put in. The degradation in code performance is the 
result of the additional subroutine calls to perform the matrix vector product 
and the fact that one more work array has to be initialized and added to the 
other half in each iteration. In Table IV, the modified (but without multi- 
tasking mechanism) one-processor version is compared against the multi- 
tasked two-processor version. 

TABLE III 
PARALLEL VERSION OF CHOLESKY DECOMPOSITION 

n 

Degradation from Percentage of 
code change parallel code 

(%) (%) 

50 33.1 80.2 
100 24.2 85.4 
300 8.0 91.9 
600 3.5 96.1 
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TABLE IV 
SPEEDUPOF ALCNRITHM ON 2 PROCESSORS vs 1 FR~~ESSOR 

Mean 
granularity 

n optimal MT Library calls MT CAL calls (wet) 

50 1.67 0.76 1.56 30 
100 1.74 0.94 1.54 45 
300 1.85 1.52 1.85 130 
600 1.93 1.80 1.92 400 

As in the previous example, the improvement is substantial when two 
processors are used to partition the work and perform the task. For large 
orders, the parallel program reaches the optimal rate of speedup. 

This experiment is relevant to the case when there are more than two 
processors. The matrix vector operation will then be split across the matrix 
in a fashion similar to that followed here, perhaps going to a block matrix 
scheme to achieve the desired number of parallel tasks. We expect to observe 
the same trend when we can perform a similar experiment with more pro- 
cessors . 

Note that there is certain amount of fluctuation in between runs on the 
CRAY X-MP depending on background activities. The numbers we present 
here should be given a l-3% tolerance. 

CONCLUSIONS 

The multitasking concept on the CRAY X-MP-2 has been shown to be 
advantageous in solving problems with relatively large granularities (that is, 
when there is more than one millisecond of computation that can be per- 
formed in parallel between synchronization points). 

For problems with small granularity with a reasonable degree of parallelism 
that can be exploited, at least from the standpoint of linear algebra solvers 
where the granularity is in the order of microseconds, the situation can be 
handled just as efficiently. In general, the main sources of overhead (other 
than synchronization, load imbalance, and code change) are memory con- 
tention and operating system service. The speedup figures of the examples 
presented here show that the interference from these two factors is 
insignificant. Our experience demonstrates that multitasking with small gran- 
ularity jobs is very promising on the CRAY X-MP-2. 

In the anticipation of more processors, it will be interesting to see the 
performance speedup for these small granularity problems through the use of 
more processors. As we pointed out earlier, the overhead incurred by syn- 
chronization, especially by using hardware instruction directly, is minimal in 
this size of problems. The deciding factor in performance will eventually be 
the degree of parallelism of the code. 
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For the LU factorization code, the degree of parallelism is about 61.1% for 
n = 50 and 95.3% for n = 600. The anticipated speedup by using four 
processors should be approximately 1.7 for n = 50 and 3.5 for n = 600. 

For the Cholesky code, the degree of parallelism is about 80.2% for 
n = 50 and 96.4% for n = 600. The anticipated speedup by using four 
processors should then be 2.4 for n = 50 and 3.6 for IZ = 600. 

REFERENCES 
1. Chen, S. C. Large-scale and high-speed multiprocessor system for scientific applications- 

CRAY-X-MP-2 series. NATO Advanced Research Workshop on High Speed Com- 
putation, Nuclear Research Center, Julich, West Germany, June 1983. 

2. Dongarra, J. J., and Hiromoto, R. A collection of parallel linear equations routines for the 
denelcor HEP. ANL/MCS-TM-15, Sept. 1983. 

3. Dongarra, J. J., and Eisenstat, S. C. Squeezing the most out of an algorithm in Cray 
Fortran. ANUMCS-TM-9, May 1983. 

4. Hsiung, C. C., and Butscher, W. A new numerical seismic 3-D migration model on the 
CRAY X-MP, SIAM Conference on Parallel Processing and Scientific Computing, Nor- 
folk, Va., 1983. 

5. Larson, J. L. An introduction to multitasking on the CRAY X-MP-2 multiprocessor. IEEE 
Comput., in press. 

6. Stewart, G. W. Introduction to Matrix Computations. Academic Press, New York, 1973. 
7. Johnson, P. M. An introduction to vector processing. Comput. Design 17, 2 (Feb. 1978), 

289-197. 
8. Baer, J. L. A survey of some theoretical aspects of multiprocessing. ACM Computing 

Surveys 5, 1 (March 1973), 31-80. 
9. Enslow, P. H., ed. Multiprocessors and Parallel Processing. Wiley-Interscience, New 

York, 1974. 
10. Ensiow, P. H. Multiprocessor organization. ACM Computing Swveys 9, 1 (March 1977), 

103-129. 
11. Padua, D. A., Kuck, D. J., and Lawrie, D. H. High-speed multiprocessors and compilation 

techniques. IEEE Tram on Camp. C-29 (Sept. 1980), 763-776. 
12. Kuck, D. J., Kuhn, R. H., Padua, D. A., Leasure, B. and Wolfe, M. Dependence graphs 

and compiler optimizations. Proc. 8th ACM Symp Principles Programming Languages, 
Jan. 1981, pp. 207-218. 

13. Hwang, K., and Briggs, F. A. Computer Adventure and Parallel Processing. McGraw- 
Hill, New York, 1984. 


