
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 1, 22-31 (1984)

Multiprocessing Linear Algebra Algorithms on the
CRAY X-MP-2: Experiences with Small Granularity

STEVEN S. CHEN

CRAY Research Inc., Chippewa Falls, Wisconsin 54729

JACK J. DONGARRA*

Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois 60439

CHRISTOPHER C. HSIUNG

CRAY Research Inc., Chippewa Falls, Wisconsin 54729

This paper gives a brief overview of the CRAY X-MP-2 general-purpose multi-
processor system and discusses how it can be used effectively to solve problems that
have small granularity. An implementation is described for linear algebra algorithms
that solve systems of linear equations when the matrix is general and when the matrix
is symmetric and positive definite.

OVERVIEW OF THE SYSTEM

“Multiprocessor” is a term that has been used for years. Our definition
follows those of [8], [9], and [lo].

The CRAY X-MP is a follow-up to the CRAY-1S system offered by
CRAY Research, Inc. The CRAY X-MP family is a general-purpose multi-
processor systeln. It inherits the basic vector functions of CRAY-lS, with
major architectural improvements for each individual processor. The inter-
processor communication mechanism and the provision of Solid-State Disk
device(SSD) are new designs that create tremendous potential in the realm of
high-speed computing.

The CRAY X-MP-2 system is the first product of the CRAY X-MP family.

*Work supported in part by the Applied Mathematical Sciences Research Program (KC-04-
02) of the Office of Energy Research of the U.S. Department of Energy under Contract
W-31-109-Eng-38.

0743-7315184 $3.00 22

MULTIPROCESSING LINEAR ALGEBRA ALGORITHMS 23

It is a dual processor model that is housed in a physical chassis identical to
that of the CRAY-1S. Each processor occupies half of the space of the
original CRAY-1S. This is achieved through larger IC integration, denser
packaging, and much improved cooling capacity.

The system is designed specifically to handle computation-intensive and
I/O-intensive jobs in an efficient way. It can be used to perform simultaneous
scalar and vector processing of either independent job streams or independent
tasks within one job. Hardware in the X-MP enables multiple processors to
be applied to a single Fortran program in a timely and coordinated manner.
(See Fig. 1.)

All processors share a central bipolar memory (of up to 4 million words),
organized in 32 interleaved memory banks. Each processor has four memory
ports: two for vector fetches, one for vector store, and one for independent
II0 operations. In other words, the total memory bandwidth of the two
processors is up to eight times that of the CRAY-1S system. The added
memory bandwidth provides a balanced architecture for memory-to-memory
vector operations as typified by scientific Fortran codes.

Other features of the machine include hardware automatic “flexible
chaining” [11. This feature allows each individual processor to have simulta-
neous memory fetches, arithmetic, and memory store operations in a series
of related vector operations. The elimination of “chain slot time” guarantees
“super-vector” speed in all vector operations. It contrasts with the “fixed
chaining” and unidirectional vector fetch/store of the CRAY-IS [7]. The
balance between CPU speed and memory bandwidth makes the CRAY X-MP
more friendly to Fortran codes. The need to resort to assembly level hand

STORAGE
DATA PATH

----CONTROL PATH

FIG. 1. Cray X-MP-2 system organization.

24 CHEN, DONGARRA, AND HSIUNG

coding is drastically reduced. Other improved features of the CPU include
multiple data paths and increased instruction buffer size. The machine has a
faster central clock with improved cycle time, 9.5 nsec as compared with 12.5
nsec on the CRAY- 1. The result is a much improved scalar and vector speed
over the CRAY - 1 S .

In addition, a new, optional, CPU-driven Solid-State Storage Device
(SSD) offers an extended central memory, an important element to buffer
between fast central memory and slow disk devices. The SSD can be used as
a fast-access device for large prestage or intermediate files generated and
manipulated repetitively by user programs, or it can be used by the system for
job swapping space and temporary storage of frequently used system pro-
grams.

While multiprocessing is not a new concept, the CRAY X-MP multi-
processor design is unique in many ways. It differs from most other con-
ventional multiprocessors (see, for example, [lo], [131) in its multilevel
parallelism (vectorization in the inner most loop and multiprocessing in outer
loops) and its tightly coupled interprocessor communication control (sharing
of registers, for example).

Additional hardware in the X-MP enables efficient and coordianted appli-
cation of multiple processors to a single user program. All processors as-
signed to a task share a unique set of synchronization and communication
registers. There are three kinds of shared registers: a set of binary sema-
phores, a set of index registers, and a set of data registers. These registers,
in cooperating with the shared central memory, allow processors to signal
each other, wait for each other, and transfer data between each other. Pro-
cessors can also interrupt each other through the interprocessor interrupt.
These basic hardware functions provide a basic mechanism for efficient
communication and synchronization between processors.

Other than hardware instructions, software support for multitasking is at
the library level, where the user makes calls to ask the system for multitasking
functions. Three categories of routines provide different mechanisms for
parallel processing [5]. First, a task can be created to be scheduled for
execution through the TSKSTART call. The calling task may wait for the
termination of a created task with the TSKWAIT routine. Task is a sched-
ulable unit that the user expects to be executed in a serial manner. It is a
software entity that the programmer deals with, as the physical processor is
concealed from him.

Second, tasks may need to communicate or synchronize with one another
as they execute concurrently. Producing tasks may signal consuming tasks
through an EVPOST routine. A consuming task may wait for the signal
through an EVWAIT routine. As the signal is consumed, it may be reset
through an EVCLEAR call.

In the third category, the LOCKON and LOCKOFF routines are used to
protect the integrity of code segment or shared resources (e.g., data) among
tasks.

MULTIPROCESSING LINEAR ALGEBRA ALGORITHMS 25

Based on these three categories, other synchronization and communication
mechanisms can be developed. Since the multitasking library employs a
queuing mechanism (among others) to handle general situations, it is very
flexible. Of course, the user always has the option of hand coding his own
synchronization routines through the use of hardware instructions.

GRANULARITY OF TASKS

A number of factors influence the performance of an algorithm in multi-
processing. These include the degree of parallelism, process synchronization
overhead, load balancing, interprocessor memory contention, and modifica-
tions needed to separate the parallel parts of an algorithm.

The size of the work performed in parallel, the granularity of the task, is
the first critical factor in matching a parallel algorithm to an architecture
which should be addressed. By “granularity,” we mean the amount of time
the cooperating tasks execute concurrently on related codes in between syn-
chronization points. The need to synchronize and to communicate before and
after parallel work will greatly impact the overall execution time of the
program. Since the processors have to wait for one another instead of doing
useful computation, it is obviously better to minimize that overhead. In the
situation where segments of parallel code are executing in vector mode,
typically at ten to twenty times the speed of scalar mode, granularity becomes
an even more important issue, since communication mechanisms are imple-
mented in scalar mode.

Granularity is also closely related to the degree of parallelism, which is
defined to be ,the percentage of time spent in the parallel portion of the code.
Typically, a small granularity job means that parallelism occurs in an inner
loop level (although not necessarily the innermost loop). In this case, even the
loop setup time in outer loops will become significant without even men-
tioning frequent task synchronization needs.

For the CRAY X-MP family, granularity on the order of milliseconds is
considered large. Many reports [1,4,5] have shown significant speedups for
multitasking of large granularity problems on the CRAY X-MP-2. For exam-
ple, speedups of 1.8 to 1.9 were seen when two processors were used instead
of one to run a particle-in-cell code, a weather forecasting model, and a
three-dimensional seismic migration code. For these problems, the multi-
tasking library is used to implement parallel tasks. The reported successes
indicate that, for large granularity codes that have high degrees of parallelism,
the payoff of doing multitasking on the CRAY X-MP-2 is very significant.
The use of the CRAY multitasking library to handle inter-task commu-
nications proves to be very powerful. It will be interesting to see, however,
how far we can push the granularity down and still get a descent speedup. As
will be shown later, even when the library appears to be too coarse for small

26 CHEN, DONGARRA, AND HSIUNG

granularity tasks, the hardware capability still allows efficient handling of
them. For our purposes, we would like to use matrix vector operation to test
the machine behavior for small granularity tasks.

THE ALGORITHMS

Employment of automatic compilation techniques to identify parallel work
[111, [12] is an approach with general applications. In linear algebra code, it
may have greater payoff if we can change the algorithm to exploit structures
with bigger parallel blocks.

We have chosen matrix vector operation for two reasons. First, we can
easily construct the standard algorithms in linear algebra out of these types of
modules. Second, matrix vector operations provide simple modules for paral-
lel execution [2, 31. We will describe an implementation for standard LU
factorization with partial pivoting for a general square matrix.

The algorithm can be described as having basically three distinct parts
within a loop:

doi= 1,n
perform the ith matrix vector product (forms part of L)
search for a pivot and interchange
perform the ith vector matrix product (forms part of U)

end

The algorithm organized storage so that the original matrix is overwritten with
the factorization. The amount of work required to perform the factorization
is approximately 2/3n 3 floating point operations (here we count both additions
and multiplications as operations). The factored matrix can then be used to
solve systems of equations. In order to maintain stability in the algorithm, a
partial pivoting scheme is used. This helps in avoiding problems with small
divisors which can cause inaccurate computations. The pivot is chosen to be
the element of largest absolute value in a column. The method used is a
simple variant of Crout reduction [6], but the algorithm has been expressed
in terms of modules that are easy both to understand and to implement.

The algorithm described above allows for a number of alternatives for
parallel implementation. That is, the available processors can be assigned to
each of the three steps, allowing for multiprocessing within each. This avenue
has not been investigated since the pivoting does not take as much time as the
other steps. Instead, each processor will be given the task of performing one
of the matrix vector operations concurrently. The algorithm can be easily
modified so each matrix vector operation is independent and can proceed in
parallel. The pivoting is handled by one of the two processors in a sequential
fashion.

Depicted graphically, the processing of the matrix by the algorithm at the
ith stage would look like the following (the matrix factors overwrite the
original matrix):

MULTIPROCESSING LINEAR ALGEBRA ALGORITHMS 27

TASK 1

Y1' Y, + 4x1

TASK 2

ix1 I .
4 X ;; I M2

Iai
Y2'

4

I
YI

The algorithm is modified slightly to allow independent operations to be
performed in parallel. The modified algorithm in no way increases the number
of operations or complexity over the original algorithm. The modified algo-
rithm just rearranges the computation within the loop to expose independent
operations. The resulting modified algorithm is of the following form:

perform the 1st matrix vector product
do i = 1, n-l.
search for a pivot and interchange
perform the ith vector matrix product
perform the (i+ 1)st matrix vector product

end
perform the nth vector matrix product
It is now easy to see how to partition the work between two processors:

each matrix vector operation within an iteration is independent of the other.
The two cooperating tasks need to synchronize 2(n - 1) times during the
course of the calculation (once before a task is started and once after). There
is, however, a slight imbalance in the work of each task. At the ith step, the
amount of work for each task is O((n - i + 1) * i) and O((n-i) * i) oper-
ations.

To perform the synchronization between tasks, we have used task control
(TSKSTART) to start a second task before the LU decomposition routine is
entered. This task waits until it is directed to start up. Event control (EV-
POST, EVWAIT, and EVCLEAR) is used to start and synchronize the work
within the algorithm.

Table I describes the performance for this implementation of LU decom-
position. The column labeled “Degradation from code change” reflects the
loss of performance when the sequential algorithm was restructured to sepa-
rate independent tasks. The numbers are obtained by running the original
algorithm and the modified algorithm using no multitasking features on a
single processor and taking the percentage difference. Measurements were
also made of the total time spent in the parallel portion of the algorithm. As
expected, small-order matrices consume a greater percentage of time in
nonparallel parts than do larger matrices. Even for matrices of order 50,
however, over 75% of the time is used in the parallelizable portim.

28 CHEN, DONGARRA, AND HSIUNG

TABLE I
PARALLEL VERSION OF LU DECOMWSITION

n

50
100
300
600

Degradation from Percentage of
code change parallel code

(%I (%)

6.5 75.1
4.9 82.0
2.0 87.5
0.7 97.0

We also measured the speedup of the algorithm when two processors were
used. Table II shows the comparison between the modified (but without
multitasking mechanism) one-processor version and the multitasked two-
processor version. The column labeled “Mean granularity” is the average time
spent in each of the matrix vector calls for that particular order problem. In
other words, it is the average time in between synchronization calls.

The “Optimal” column is an attempt to filter out the time required to
synchronize the processors and the time introduced by memory contention
caused by multitasking on the two processors. These numbers were generated
by running the program twice. The first run was a sequential process, using
no multitasking constructs. In the second run the call to the shorter of the two
parallel tasks was removed; thus, in some sense, this is the best situation (the
calculation, of course, does not produce the correct results, but it provides a
good measure of the overhead). The third column is the result of using the
standard multitasking routines in the Multitasking (MT) library. As an alter-
native, there are assembly language (CAL) routines that use hardware in-
struction directly. These CAL routines perform the minimum synchronization
function required by the code and are faster than the general-purpose multi-
tasking library routines. ’

TABLE II
SPEEDUP OF ALGORITWM ON 2 PROCESSORS vs 1 PROFESSOR

Mean
granularity

n Optimal MT library calls MT CAL calls We4

50 1.44 0.86 1.39 40
100 1.57 1.05 1.54 66
300 1.77 1.60 1.79 250
600 1.91 1.80 1.86 800

‘The MT library routines keep track of additional information on the activities of other tasks.
They are better suited for larger and more tasks and are quite flexible for different programming
styles. For this particular small granularity job that information is not needed; hence the CAL
mechanism is more amenable. The difference in the implementation is 0(1) clocks for the CAL
version and 0(100) to 0(1000) clocks for the multitasking library, depending on mechanism
used.

MULTIPROCESSING LINEAR ALGEBRA ALGORITHMS 29

With this algorithm the work partition is well matched for two processors.
The overhead in multitasking is essentially wiped out as the problem size
increases, and for small problems it is not a great penalty. The imple-
mentation comes very close in the limit to attaining the optimum per-
formance .

We now focus on another algorithm for dealing with a system of equations
where the matrix is symmetric and positive definite: Cholesky factorization.
The algorithm can again be described in terms of a matrix vector operation,
but in this case because of symmetry only half the matrix is referenced.

As before, we can graphically describe the algorithm at the ith stage as
follows:

TASK 1

t, - 1, + M, l x,

TASK 2
12’) t2 + ML ’ x2

THEN
Y-t, + t2

In this case, the algorithm does not divide naturally into two parts as in the
previous algorithm. To distribute the work between the processors, we take
the naive approach of just splitting the matrix vector operation in half, letting
one processor take the left half and the other processor the right half, and then
put the two parts back in a sequential part. Table III shows the results.

As before, the percentage given here is for the modified code before the
multitasking mechanism is put in. The degradation in code performance is the
result of the additional subroutine calls to perform the matrix vector product
and the fact that one more work array has to be initialized and added to the
other half in each iteration. In Table IV, the modified (but without multi-
tasking mechanism) one-processor version is compared against the multi-
tasked two-processor version.

TABLE III
PARALLEL VERSION OF CHOLESKY DECOMPOSITION

n

Degradation from Percentage of
code change parallel code

(%) (%)

50 33.1 80.2
100 24.2 85.4
300 8.0 91.9
600 3.5 96.1

30 CHEN, DONGARRA, AND HSIUNG

TABLE IV
SPEEDUPOF ALCNRITHM ON 2 PROCESSORS vs 1 FR~~ESSOR

Mean
granularity

n optimal MT Library calls MT CAL calls (wet)

50 1.67 0.76 1.56 30
100 1.74 0.94 1.54 45
300 1.85 1.52 1.85 130
600 1.93 1.80 1.92 400

As in the previous example, the improvement is substantial when two
processors are used to partition the work and perform the task. For large
orders, the parallel program reaches the optimal rate of speedup.

This experiment is relevant to the case when there are more than two
processors. The matrix vector operation will then be split across the matrix
in a fashion similar to that followed here, perhaps going to a block matrix
scheme to achieve the desired number of parallel tasks. We expect to observe
the same trend when we can perform a similar experiment with more pro-
cessors .

Note that there is certain amount of fluctuation in between runs on the
CRAY X-MP depending on background activities. The numbers we present
here should be given a l-3% tolerance.

CONCLUSIONS

The multitasking concept on the CRAY X-MP-2 has been shown to be
advantageous in solving problems with relatively large granularities (that is,
when there is more than one millisecond of computation that can be per-
formed in parallel between synchronization points).

For problems with small granularity with a reasonable degree of parallelism
that can be exploited, at least from the standpoint of linear algebra solvers
where the granularity is in the order of microseconds, the situation can be
handled just as efficiently. In general, the main sources of overhead (other
than synchronization, load imbalance, and code change) are memory con-
tention and operating system service. The speedup figures of the examples
presented here show that the interference from these two factors is
insignificant. Our experience demonstrates that multitasking with small gran-
ularity jobs is very promising on the CRAY X-MP-2.

In the anticipation of more processors, it will be interesting to see the
performance speedup for these small granularity problems through the use of
more processors. As we pointed out earlier, the overhead incurred by syn-
chronization, especially by using hardware instruction directly, is minimal in
this size of problems. The deciding factor in performance will eventually be
the degree of parallelism of the code.

MULTIPROCESSING LINEAR ALGEBRA ALGORITHMS 31

For the LU factorization code, the degree of parallelism is about 61.1% for
n = 50 and 95.3% for n = 600. The anticipated speedup by using four
processors should be approximately 1.7 for n = 50 and 3.5 for n = 600.

For the Cholesky code, the degree of parallelism is about 80.2% for
n = 50 and 96.4% for n = 600. The anticipated speedup by using four
processors should then be 2.4 for n = 50 and 3.6 for IZ = 600.

REFERENCES
1. Chen, S. C. Large-scale and high-speed multiprocessor system for scientific applications-

CRAY-X-MP-2 series. NATO Advanced Research Workshop on High Speed Com-
putation, Nuclear Research Center, Julich, West Germany, June 1983.

2. Dongarra, J. J., and Hiromoto, R. A collection of parallel linear equations routines for the
denelcor HEP. ANL/MCS-TM-15, Sept. 1983.

3. Dongarra, J. J., and Eisenstat, S. C. Squeezing the most out of an algorithm in Cray
Fortran. ANUMCS-TM-9, May 1983.

4. Hsiung, C. C., and Butscher, W. A new numerical seismic 3-D migration model on the
CRAY X-MP, SIAM Conference on Parallel Processing and Scientific Computing, Nor-
folk, Va., 1983.

5. Larson, J. L. An introduction to multitasking on the CRAY X-MP-2 multiprocessor. IEEE
Comput., in press.

6. Stewart, G. W. Introduction to Matrix Computations. Academic Press, New York, 1973.
7. Johnson, P. M. An introduction to vector processing. Comput. Design 17, 2 (Feb. 1978),

289-197.
8. Baer, J. L. A survey of some theoretical aspects of multiprocessing. ACM Computing

Surveys 5, 1 (March 1973), 31-80.
9. Enslow, P. H., ed. Multiprocessors and Parallel Processing. Wiley-Interscience, New

York, 1974.
10. Ensiow, P. H. Multiprocessor organization. ACM Computing Swveys 9, 1 (March 1977),

103-129.
11. Padua, D. A., Kuck, D. J., and Lawrie, D. H. High-speed multiprocessors and compilation

techniques. IEEE Tram on Camp. C-29 (Sept. 1980), 763-776.
12. Kuck, D. J., Kuhn, R. H., Padua, D. A., Leasure, B. and Wolfe, M. Dependence graphs

and compiler optimizations. Proc. 8th ACM Symp Principles Programming Languages,
Jan. 1981, pp. 207-218.

13. Hwang, K., and Briggs, F. A. Computer Adventure and Parallel Processing. McGraw-
Hill, New York, 1984.

