-

S

‘FEATURE: 'CLUSTER AND NETWORK COMPL

gy = i ST

INTEGRATED PYM FRAMEWORK SUPPORTS
HETEROGENEOUS NETWORK COMPUTING

“..;_ ...-.t} o HLI:I!I;!...-:,,E&.-' :|1 5,. ' i 'n".'_"."!l"'t].T_H?

I o BT R R R |

Jack Dongarra, G. A. Geist, Robert Manchek, and V. S. Sunderam

wi developments promise to revolutionize scientific

peoblem solving. The first is the development of
massively parallel computers. Massively parallel systems
offer the enormous computational power needed for
solving Grand Challengs problems. Unfortunately, soft-
ware development has not kept pace with hardware
sdvances. In order 1o exploit fully the power of these
massively parnllel machines, new programming para-
digms, languages, scheduling and partioning techniques,
and algomithms are nesded.

The second major development affecting scientific
problem solving is distributed computing, Many scientists
are discovering that their computational requirements sce
best served not by a single, monolithic machine, but by a
variety of distributed computing resources, linked by
high-speed natworks.

Heterogeneons nelwork computing offers several
advantages. By using existing hardware, the cost of this
computing can be kept very low. Performance can be
optimized by assigning cach individual task to the most
appropriate architecture. Network computing also offers
e potential For partioning a compoting task along lincs
of service funciions, Typically, network compuating cnvi-
ronments possess a varicty of capabilities; the ablity to
execule subiasks of a computation on the processor most
suited to 3 particular function both enhances performance
and improves otilization.

Another advantage in network-based concurrent
computing is the ready availability of development and
debugging tools, and the potential fault tolerance of the
network(s) and processing elements, Typically, systems
that operate on locsely coupled networks permif the direct
use of editors, compilers, and debuggers that are available
on individual machines, These individual machines are
quite stable, and substantial expertise in their use is readily
available. These foctors franslate into redoced develop-
ment and debugging time for the user, reduced contention

Jack Dongama i both Disbnguisbed Profpssor of Compulor Soancs
al th Unfearsty of Tonnesses (U] and Dislingrslad Sasabial o
M Matharnatics! Sciences Section &f Dak Aidkhe Matons! Laboraie-
e Al Gads! B2 @ compater Soeniisl i the Mathematcal Soionces
Saction of Oak Akge Mavons! Lebonrlory, Robar? Mancholk i o
Hesoanch Assocabe ot e Univgrsly of Teanasess, Kncnalls, TH
Vany Suvdaram & 5 Professor in the Depeniment of Malthemaiics
and Computor Soance &t Emoy Uiivergily, GA

164 COMPUTERS W PHYHCE, WOL T, MO, L HARSARE 1590

Ketica: This Matertal Ry
Ba Protected By Coprrigh
Law (Tithe 17 0.5, Codw)

Parallel Virtual Machine (PVM)
software lets scientists exploit
collections of networked
machines when performing
mmpfﬂr Lﬂmpumrmns

e L L RPE] P

for resources, and possibly more efective implementa-
tions of the application.

Yet another attractive feature of loosely coupled
compuling envicoments is the potential for vser-level or
program-level fawlt tolerance that can be implemented
with littlz efort in cither the application or the underlying
operating system. Most multiprocessors do not support
such a facility; hardwars or software failures in one of the
processing clements often Jead f0 a complets coash.

Despite the advantages of belerogensous network
computing, however, many issues remain to be addressed.
OF especial imporiance are isuss relating to the user
interface, efficiency, compatibility, and administcanon. In
some cases, individual ressarchers hawe attempted g
address these issues by developing ad hoo approaches 1o
the implementation of concurrent applications, Recogniz-
ing the growing nesd for o more systematic approach,
several ressarch groups have recently attempied to
develop programming paradigms, lanpusges, scheduling
and partitioning techigues, ard algonithms

Car approach is more pragmatic. We discuss the
development of an fntegrared framewark for Reterogenesys
mefwork computing, in which a collection of interrelnted
components provides a coherent hiph-performance com-
puting environment. In particular, we analyze several of
the design features of the Parallsl Virwal Mochine
(PVM) (see Fig. 1),

In this article, we look boefly at the genecal feld of
heterogenesus network computing, and discuss some of
the research ssues that must be addressed bebore network-
based heterogencous computing can become truly effec-
tive. Mext, we focus on the PYM system, which is designed
to help scientists write programs for such heterogeneous
systems. Finally, we discuss a recent extension of PYM

that further assisis in the implementation of concurrent
applications.

Connecting heterogeneous computers

In the past, researchers have conducted ezperiments
linking workstations that operate at speeds of approxi-
mately 1-10 MIPS, Such experiments have included
remote execution, computer farms, and migration of
computations.

Mares recently, experiments have focused on linking
higher-performance workstations (those performing ap-
proximately 10-100 Mflops) together with multiproces-
sors and conventional supercomputers.

To exploit these multiple computer configurations
fully, resenrchers have developed various software pack-
ages that enable scientists Lo write truly heterogeneous
programs. Such software packages include Express, P4,
Linda, and PVM, Each of these packages is layered over
the native operaling systems, exploits distributed concuor-
rent processing, and s flexible and general-purposs; all
exhibit comparable performance, The differences lie in
their programming model, implamentation schemes, and
cificiency.

The procesdings of recent conferences, as well as
informal discussioms, sesm to indicate that specialists in
high-performance scientific computing are focusing most

Fig. 12 With PvM sottware, a hatarogencaus callection of natwarked
sorial, parallel, and vecior compulers appoars as ona lange
computar. The sottware supplics © ard Fordran roudings Tor
asyncheonois massage passing and process control. |Lia amal and
povtabie, but &ble fo handio large-scale scienlific applcations.

of their attention an the four software packages mentioned
above.

Wi present brief outlines of each of the first three of
thess packages before beginning & detailed description of
PY¥M. We wish to emphasize, however, that these systems
are by no means the only software packapes in existence,
and that the descriptions that follow are not detailed amd
formal eritiques, but rather boief synopses alstracted from
cur understanding of the systems and the developers” own
articles ar communications.

Linda

" Linda® is a concurrent programming model that has

evolved from a Yale University research project. The
primary concept in Linda is that of the “{uple-space,’” an
abstraction by means of which cooperating processss
communicate. This central theme of Linda has been
proposed as an alternative paradigm to the two traditional
metheds of parallel processing, namely those based on
shored memory and message passing. The tuple-space
concept s essentially an abatraction of distributed shared
mermory, with one important diference (e, that tuple-
spaces are asjociative), and several minor distinciions
{destructive and nondestroctive reads, and diferent
coherency semantics, are posaible). Applications use the
Linda model by explicitly embedding, within cooperating
serquential programs, consiructs that manipulate {inseris
retrieve tuples) the tople space.

From the point of view of applications, Lincda® is & set
of programming language extensions for facilitating
parallel progromming. The Linda model i a scheme built
upon an associative memory referred to as tuple-space, I
provides a shared memory abstraction for process com-
munication without requiring the underlying hardwars 10
physicafly share memory. The Linda environment is
illustrated in Fig. 2.'

Tuples are collections of fields logically “welded™ o
form persistent storage items. These collections of fislds
are the basic tuple-space storage units. Parallel processes
exchange data by generating, reading, and consuming
them. To update a tuple, it is removed from tuple-space,
modified, and returned to tople-space. Restricting tuple-
spoce modification in this manner creates an implicit
locking mechanizm, ensuring proper synchronization of
multiple accesses.

The fallowing are the four basic operalions, of
primitives, which are added to a languags to produce a
Linda dialect {=ee Fig. 2.

{11 rd(§) pacforms a nondestructive read from tuple-
space. If the desired tuple ¢35 oot found, the invoking pro-
cess is suspended until an appropriate tuple is created by
another process.

(2] im(¢) behaves in a fashion similar to rdQ), cxcept
that the read i3 destroctive and the tople is consumed,

(31 our{sy writes 2 tuple ¢ to tuple-space,

(4] eval{expression) writes a tuple o tuple-space
after arguments in the expression are evaluated by creating
mew procosses that perform their tasks independently.

Tuples are selected by the rd() or in(} primitives on
the basis of their feld values. There are no tupls addresses
in an aszociative memory. Consider the following tuple:

pul{*a string”, 1500, 17, “snother siring™)

A wariety of access routes to this tuple are possible,
e.g., any one of the following operations suffices:

rd{"a steing', MWval, Tival, Tstoval)

COMMITIES M FRYSICS, VOL T, HO. I, MAR/ARE 1993 1o

SREN LS TEr AND Bl ROLR G

Linda Address Space

Hotes:
Basie unit of storage la fuple.

Tuples are asociatively addressed.
Tuples are persistent.
Duplicate: permitted,

®a string”
150
17
“anather string”

N
)

Application Address Space

Nates:
Input waits if tuple unavailable.

out{“a string™,15.01,17, “another string™)

rd Tatrvall,Tival, LT, Pstrval2)
iondestructive Input

§
inf“a string” Fival Tival TstrvalZ)

Destructive gt

eval{ “roots™ agri{4).aqrt{16))
Farailel cm’:npu:agr"gn

Fig. 2: Cooperating processes communicabe in tha “luphespace™ of the programming erdrenmant Linda.

rd(Tstoval, 1501, Tival, “ancther stong™)
rd(Pstoval-1, Mval, 17, ?stewal-23

The “* operator designates a value returned from a
matching tuple. Fields marked by the operator do not
participate in the [(asociative-memory) matching pro-
cesg, Any of the three example rd{) operations results in a
nondestructive reading of the original tople. IF the
operation were an inf), the tuple wouold be removed from
teple-space.

To illustrate the eval{} primitive, consider the
following:

eval{ "roots™ sqrr(4),8qri(16}).

Using Linda terminoclogy, this creates a five tuple,
The square-root operations are performed independently
of the onginating process, with the {two) numeric results
combined 1o form a thres-clement tuple saved in tuple-
space. The eval(} primitive is a mechanism capable of
creating fine-grain parallelism,

The “Lindn System® uvsvally refers to a specific
[zometimes portable} implementation of software that
supports the Linda programming model. System software
thar establishes and maintains taple spaces is provided and

b COMPUTERS W FHTEICE VOL 7, BO. 3, MALJAFE F#R)

15 used in conjunction with libraries that interpret and
execute Linds primitives appropriately. Depending on the
environment (shared-memory multiprocessors, message-
passing paralle] compoters, networks of workstations,
ete), the tuple-space mechanism 15 Implemented using
different technigues and with varying depress of efii-
ciency. Fecently, 3 new system techmigue bos besn
propased, at least nominally related to the Linds project
Thiz schems, termed “Piranha,” proposss an aclive
approach to copcurrent computing—the idea being that
compuiationa] resources [viewed g active agents) seize
computational tasks from a well-known location, based on
availability ond suitability, Again, this scheme may be
implementsd on multiple platforms, and manifested ac a
“Firanba sysiem® or “Linda-Piranha system.”

P4 and Parmacs

P4 is o libmoy of macros and subeoutines developed at Ar-
gonne National Laboratory for programming a variety of
parallel machines. The P4 system supports both the
shared-memory model (bosed on monifers) and the
distributed-memory model (using message-passing). For
the shared-memory model of parallel computation, P4
provides a sed of useful monditors, as well as a set of primi-

e

s Sakaman A TEn T G e o2

tives from which monitors can be constructed, For the
distributed-memory model, P4 provides typed send and
receive operations, and allows for the creation of processes
according to a text file describing group and process
structure. P4 is intended to be portable, simple 0o install
and use, and efficient. It can be used (o program networks
of workstations, advanced parallsl supercomputers such
as the Intel Touchstome Delta and the Alliant Campus
HiPPI-based system, and single shared-memory mulii-
processors, It has already been installed on most uni-
processor workstations, shared-memory muitiprocessors,
and several high-performance parallel machines,

Process manggement in the P4 system 15 based on o
configuration filz that specifies the host pool, the object
file to be ecxecuted on each machioe, the oumber of
processes to be started on each host (intended primarily
for multiprocessor systems), and other auxiliary informa-
tion, An expmple of a configuration filz is

f start one slave on each of sun2 and sunl
logal O

sun? 1 Jhome/mylogin/Spapoms/s_test

sund 1 Jhomemylogin/pdpgms /s test

Two issues are worth noting with regard to the
process-management mechanism in P4, Fiest, there is the
notion of a “master” process and of “slave™ processes;
multilevel hierarchies may be formed to implement a
“cluster” model of computation. Second, the primary
mede of process ereation is statie, vin the configuration
file; dynamic process creation is possible only by means of
a statically created process that must invoke a special P4
function, which spawns & new process on the local
machine. However, despite these restnictzons, a vasiety of
application paradigms may be implemented in the P4
system in a fairly straightforward manner.

Messapge-passing in the P4 sytem i achiowved
through the use of traditional send and recvy]:l.l'.I.I]:I:ItI'-ﬂE.
parameterized almest exactly as in other message-passing
systems. Several variants are provided for semantics such
is heterogeneous exchange and blecking or nonblocking
tranafer. A significant proportion of the burden of buffer
allocation and management, however, i3 left to the wser,
Apart from basic message passing, P4 offers a variety of
global operations, including broadeast, global maximao
and minima, and barmer synchronization.

Shared-memory support via oronitors is a facility that
distinguishes P4 from other systems. Howswver, this
feature is not the same as distributed shared memosy, but
rather is & portable mechanism for shared-address-space
programming in true shared-memory muhupmu:csmm
The abstraction provided 1:-:.- P4 for managing data in
shared memory is monitors® P4 provides several useful
moniters (pd barrier &, pd_getsub monitor t.pd_
ankfor monitor_t), as well as a general monitor Lype
to help users in constructing their own monitors {(pd.
menitor_t),

P4 also supports a vadety of auxiliary and suppori
Minmctions, for timing porposes and for debupging. The

debugping functions are essentiolly printing facilities that
identify the source of a debugging message. A choice of
different “'levels™ of debugging allows the user to control
the volume of debugging information that is printed.
Finally, the P4 system also contains a package known as
ALOG for creating logs of time-stamped events. This
package i5 of general utility outside of P4. The timestamps
are ahtained from varions tmers, with microsscond-level
resolution on warious machines. These log files are
primarily intended for use with a separate tool termed
Upshot® that visually depicts events and the ordering of
thete events from a P4 application mon.

The Parmacs project is closely related to P4
Essentially, Parmacs i a set of macro extensions
developed at G.:ae]]sc]taf* fiir Mathematik und Dateovor-
arbeitung (GMD).* It originated in an effort to provide
Fortran interfaces to the P4 gystem, but it 15 now a
significantly enbanced package that providss a varisty of
high-level abstractions, mostly dealing with global opera-
tions. Parmacs provides macros for bopically configuring a
set of P4 processes; for example, the macro borus
produces o suitable comfiguration Ale for use by P4 that re-
s1ulis in a logical process configuration corrssponding to a
three-dimensional {3-D) tomas. Other logical topologies,
incleding general graphs, may also be implemented, and
Parmocs provides macros used in conjunction with send
ond reov o achieve opology-specific communications
within execuling programs.

Express

In contrast 1o the other parallel-processing systems
deseribed in this section, Express® toolkit is a collection of
tools that individually address various aspects of concur-
rent computation. The toolkic was developed, and iz
marketed commercially, by ParaSoft Corporation, a
company that was started by some members of the
Caltech concurrent-computation project. A second dis-
tinction is that Express supports PCs in addition to the
usial high-performance computing platforms and work-
stations.

Thke philosophy behind computing with Express is
based on beginning with a sequential version of an
application, and following & recommended development
lifie cyele that culminates in & parallel version tuned for op-
timality. Typical development cycles begin with the use of
VTOOL, a graphical program that allows the progress of
sequential algorithms to be displayed in a dynamic
manner. Updites and references to individual data
siructures can be displayed, to demonstrate algorithm
structoze explicitly and provide the detailed knowledge
necessary for parallelization.

Related to the above is FTOOL, which provides in-
depth analysis of a program, including variable-use
analysiz, Aow structure, and feedback regarding potential
parallelization. FTOOL operates on both sequential and
parallel versions of an application. A third ool called
ASPAR is then used: this is an nutomated parallelizer that
comverts sequential © and Fortran programs for parallsl

COMPUTIES 4 PHYRCY, WOL F, HO. 5. MARAFE 0971 B#¥

§ ;.. ia '..; ..1! Al P TN TETF N iy I:.l._ _'.
ERCLUSTERND KETWORKEOMPUTINGAER:

S e . it

e —

e o —— e e e n—

e

or distributed execution using the Express programming
madels,

The core of the Express system 15 o sed af libracies for
communication, inputSootput (LAD), and paralle] graph-
ics. The communication primitives are akin to those found
in other systems, and include a variety of global operations
and data-distribution primitives. Extended 10 routines
allow parallel input and output, and a similar set of
routine is provided for gruphical displays from multipls
coneurrent processes. Express also contains the NDB tool,
a paralle]l debugger that wes commands based on the
popular “dbx* interface. These debugging commands ean
be issued to single processors or groups of nodes
simultansously.

Finally, Express contains a set of “back-end™ tools
intended to assist performance monitoring and tuning.
CTOOL analyzes high-level overhend issues such as the
relative amount of time spent computing, performing L0,
and communicating between processors. ETOOL shows
the relationships between various computing elements,
and may be used to understand overheads and cause-and-
effect relationships between actions in different proces-
sors, ATOOL profiles CPU wsage On & pef-poocessor
basis, and may be used at different levels of grannlarity.

Ongoing trends

In the next ssction of this paper, we focus on the basic fea-
tures of PVM and discuss our cxperiences with that
system. PVM and the other systems described above have
evolved over the past several years, but none of them can
be considered to be fully mature. The fisld of network-
based concurrsnt eomputing is relatively young, and
research on varous aspects iz in progress. Although basic
infrastructures have been developed, necessary refine-
ments ore still evolving. Some of the ongoing research
projects related to heterogeneous network-based compat-
ing are outlined briefly here

Standalone systems delivering several tens of millions
of operations per second are commonplace, and continu-
ing increases in power are predicted. For network
compuling systems, thiz presents many challenges. One
consideration involves scaling to hundreds and pechaps
thousands of independent machines; specialists conjecture
that functionality and performanse equivalent to to those
of magsively parallel machines can be supported on cluster
environments. A project at Fermilab has demonstrated
the feasibility of scaling to hundreds of processors for
some classes of problems (sce article on p. &x in this
izsuc). Resenrch into protocels to suppert scaling and
other system isspes is currently under investigation.
Furthermmore, under the right circumstances, the network-
hased approach con be effective in coupling several similar
multiprocessors, resulting in a configuration that might be
economically and technically difficult to achieve with
hardwares,

Applications with large execution times will benefit
greatly from mechanisms that make them resilient to
failures. Currently, few platforms (especially among

BT COMBUTERE DN FHYIECY, WOL T, MO L MARSARE 1901

multiprocessors) support spphcation-leve] fault tolerance.
In a network-based computing environment, application
resilience to failures can be supported without specialized
enhancements to hardware or operating systems, Be-
scarch is in progress to investigate and develop strategies
for enabling applications to run to completion, in the
presence of hardwars, system-software, or network faults.
Approachss based on checkpointing, shadow execution,
and process migration are being investigated.

The performance and efectiveness of network-based
coneurrent-computing environments depend o a large
extent on the eficiency of the support software and on the-
minimization of overheads. Baperiences with the FYM
system [s2e below) have identifted several key factors in
the system that are being further analyzed and improved
%0 as (o increase owerall efficiency. Bfficient protocals to
support high-level concurrency primitives are a subgoal of
the work being performed in this area

Particular attention is being given to exploiting the
full potential of fberoptic connections. In preliminary
experiments on an experimental Gberoplic network,
several important issues have been identified, Ior exam-
ple, with fiberoplics the operating-system interfaces
network relishility characteristics, and factors such as
maximum piacket size are significantly different from
those for Ethernet, When the concurreni-computing
environment is exscited on a combination of both types of
network, the system alporithms have to be meslified o
cater to these differences in an optimal manner, and with
minimized overheads.

Another isswe to be addressed concerns data conver-
gions that are necessary in networked heterogeneoas
systems. Heurdstics that perform conversions only when
necessary, and while minimizing overhesds, have been
developed, and their effectiveness is being evaluated.
Recent axperiences with & Cray-2 have also identified the
ne=d 1o handle differences in ward size and precision when
operating in a heterogeneoes environment; general mech-
aniwms to deal with arbiteary precision anthmetic {(when
desired by applications) are alse being developed. Athird
consideration involves the eficient implementation of
inherently expensive parallel-computing operaticns such
as barrier synchronization. Particularly in an irregular
environment [(where injerconnections within hardware
multiprocessors are much faster than network channels,
Bath in terms of bandwidih and latency), such operations
can cause bottlenecks and severs load imbalances, Cither
distributed primitives for which algorithm development
and implementation strafegiss are being investigated
include polling, distrivuted fetch-and-add, global opera-
tions, automatic data decomposition and distroibution, and
routual exclusion.

PVM

PVM' was produced by the Heterogencous MNetwork
Project—a collaborative effort by researchers at Oak
Ridge Mational Laboratory (ORNL), the University of
Tenneswee, and Emory University—specifically to facili-

ol

o LTS

-
:
i
1

tate heterogeneous parallel computing, FYM was ome of
the first software systems 0o enable machines with widely
diffarent architectures and Aoating-point representations
to work together on a single computational task. FYM can
be wsed on its own, or as a foundation upon which other
heterogensous network software can ke built

The PVM package is small (about 1 Mbyte of C
source code) and easy to install. It nesds to be installed
only once on each machine to be accessible to all users,
Moreover, installation doss not require special privileges
on any of the machines, and can thus be performed by any
user,
The P¥M user intecface requires that all message
data be explicitly typed. FYM performa machine-indepen-
dent data conversions when required, thus allowing
mazhines with different integer and floating-point repre-
sentations to pass data,

Levels of heterogeneity

PVM supports heterogeneity at the application, machine,
and network level. At the application level, subtasks can
exploit the architecture best suited to their solution. At the
mackine level, computers with different data formats are
supported, as well as different serial, vector, and paratlel
architeciures. AL the network level, different network
types can make up a Parallel Virtual Machine, eg.,
Ethernet, FDIDM, token ring. With PYM, o user-defined
collection of sertal, parallel, and vector compulers appears
ns one large distributed-memory computer; we use the
term ““virtual machine” to designate this logical distribat-
ed-memory computer. The hardware that composes the
user's personmal PVM may include any Unix-based
machine on which the user has a valid login, and which s
aceessible over some network.

Individual PVM users can configure their owmn
parallel virtual machines, which can overlap with other
users’ virtual machines. Configuring a personal parallel
virtual machine invalves simply listing the names of the
machines in a file that is read when FYM is started.
Applications, which can be sritten in Fostran 77 or C, can
be parallelized by using message-passing constructs
common to most distributed-memaory computers. By
sending and receiving messages, multipls tasks of an
application can cooperate to solve a problem in parallel.

PVM supplies the functions for automatically start-
ing up tasks on the virtual machine and for allowing the
tasks to communicate and synehronize with sach ather. In
particular, P¥M handles all message conversions that
may be required il two computers use different data
representations. PVM also includes many control and
debugging fentures in its user-friendly interface. For
instance, PV ensures that error messages generated on
some pemote computer get displayed on the user’s Jocal
SCTeET,

Components of PYM

The PVR system is composed of two parts. The first part
is & daemon, called puned 3, which resides in all the

computers that make wp the wvirtual computer. (An
example of o desmon progeam is sendeail, which handles
all the incoming and outgoing electronic mail on & Unix
system.) pumd 3 is designed so that any user with o valid
login can install this daemen on a machine. When o user
wishes to ron a PVM application, she or he execules
pumd 3 on one of the computers which, in turn, starts op
pumd 3 on each of the computers making up the user-
defined virtual machine. A PYM application can then be
started from a Unix prompt on any of these computers.

The second part of the system is o brary of PYM in-
terface routines. This library confains wser-callable ron-
tines for passing messages, SpPAWNINE proceises, coordinat-
ing tasks, and modifying the virtunl machine. To use
FVM, application programs must be linked with this
library.

Applications

Application programs that use PVM are composed of
subtasks at & moderately high level of granulanty. The
subtasks can either be generic serial codes or br specific to
a particular machine. In PYM, resources may be nccessed
at three different levels: the transparent meods, in which
subtasks are automatically located at the most appropriate
sites: the architeciure-dependent mode, in which the user
may indicate specific architectures on which particular
subtasks are executed; and the machine-specific mode, in
which a particular machine may be specified. Such
flexibility allows different subtasks of o belerogensous
application to exploit particular strengths of individual
machines on the network.

Applications access PY resources via calls to PYM
routines through a PYM library of standard interface
routines. These routines allow the initdation and termi-
nation of processes across the network, as well as
communication and synchronization belwesn processes.
Communication constructs include those for the exchange
of dara structures as well as high-level primitives sach as
broadeast, barrier synchronization, and event synchroni-
zation.

Application programs in FYM may process arbitrary
contre] and dependence structures. In other words, at any
point in the execution of a concurrent application, the
processes in existence may have arbitrary relationships
with =ach other; furthermore, any process may Comomuni-
cate and/or synchronize with any other.

PVM applications

Owver the past few vears, PYM applications have besn
developed in the following nrens:

Materials sciznce

& Global climate modeling

& Atmospheric, oceanic, and space studies

& Meteorologion] forecasting

3D groundwater modeling

& Weather modeling

Supereonductivity

COMPUTIES [H PHTISE, WOl 7, B3, 3, MARAFE 199 M

r R A R T TR
FEATURE: CLUSTER AND NETWORK COMPUTINE

@ Molecular dynamics

Monte Carle CFD

2-I0 and 3-D selsmic imaging

3-D underground flow fields

Particle simulation

Distrbuted AVS Mow visualization

These implementations have been realized on various
platiorms.

Becently, ORNL material scientists and their colla-
horators st the Univessity of Cincinnati, the Science and
Engineering Research Council at Daresbury, UK, and the
University of Bristol, UK, have been developing an
algerithm for studying the physical properties of complex
substitutionally disordered materials. Physecal systems
and situations in which substitutional disorder plays o
critical eole in determining material properties includs
high-strength alloys, high-temperature supercenduciors,
magnetic phase transitions, and metalAnsulator transi-
tions. The algorithm under development is an implemen-
tation of the Kormngs, Kohn, and Rostoker cohesent-
potential-ppprozimation (KER-CPA) method for caleu-
lnting the electronic properties, energetics, and other
ground-state properties of substitutionally disordered
allovs.® The KER-CPA method extends the usual
implementation of deasity-functional theory (LDA-
DFT)* 1o substitutionally disordered materials,'® In this
sense, il 18 a completely first-principles theory of the
properties of substitutionally disordered materials, requir-
ing a3 input only the atomic numbers of the species
making up the sclid

The KEKR-CPA algorithm contains several locations
where parallelism can be exploited. These locations
correspand 1o integrations in the KKR-CPA algorithm.
The evaluation of integrals typically involves the indepen-
dent evaluaticn of a function at different locations and the
merging of these independent evaluations into a final
value. The integration over energy is then parallelized.
The parallel implementation is based on a master/slave
paradigm that reduces memory reguirements and syo-
chronization overhead. In the implementation, one pro-
cessor is responsible for reading the main input file, which
contains the number of nodes to be uwsed on cach
multiprocessor, as well as the number and type of
workstations, the problem deseription, and the location of
relevant data files. This master processor also manages
dynamic load balancing of the tasks through a simple
pocd-of-dasks scheme.

Using P¥M, the EER-CPA code has achieved over
200 Mflops utilizing a network of ten TBM RS/G000
workstations, Given this capability, the KER-CPA code
is being used as 3 resemrch code to solve important
materials-soience problems. Since its development, the
EER-CPA cods has been used in vanous ways: (o
compare the electronie structure of two high-temperature
superconductors, Ba{Bi,, Phy; 10y and (Bay ;Ko By
to explain anomalous experimental results from the high-
strength alloy MiAL and to study the effect of magnetic

17T COMPUTIRS H PHYHCE, YOL T, B3 B MGARATR 1973

multilayers in Cr¥ and Crhbdo alloys in connection with
their possible use in magnetic storage devices.

The goal of the groundwater-modeling groop at
ORNL is to develop state-of-the-art paralle] models for
today's high-performance computers, which will enafble
researchers to model Aow with higher resolution and
greater accuracy than ever before. As a fArst step,
researchers at QR ML have developed a parallel 3-Db finite-
element code called PFEM that models water fow
through both saturated and unsaturaded media. FFEM
solvés the system of equations

F-g:-—? - [KKAVR +V2)}] + 4
o

where & is the pressure head, #1s time, £, 15 the satuzated
hydraulic conductivity sensor, £, 15 the relative hydraalic
cangwetivity or relative permeahbility, z is the potential
head, g is the source/sink, and F is the water capacity
{F = d¥ /dl, with & the maoisture content) after neglecting
the compressibility of the water and of the media,

Parallzlization wis aceomplished by partitioning the
physical domain and statically assigning subdomaing to
tasks. The present version uses only static Joad balancing
and relies on the user to define the partitioning. In each
step of the solution, the boundary regiom of each
subdomain is exchanged with that of s neighbosing
FEFINE.]

Originally developed on an Intel (PSCARE0 multi-
proceisor, a PYM version of PFEM was straightforward
i create, taking an undergraduate student less than thres
weeks 1o complete. The PVE version of PFEM has been
delivered 1o several membsrs of the groundwater-maodel-
ing group for wvalidation testing wsing nerworks of
workstations while researchers await the availability of
parallel supsrcomputers,

Status and availability

PVM was publicly released in March 1991 and has gone
through a number of updates. Version 3.0 of the software
has been tested with various combinations of the follewing
machines: Sun 3, SPARCstation, Microvax, DECstation,

Warkstations Paralle] Comnputers
Snnd Tricel Parggon
EP AR s alion Thinking Machines CM35
Pelira® AKX Seqroent Symmetry
MECHslcS Tnde] IFRC/RR0
IAA RSAE000 Thinking Machines Cid2
MEXT Alliasi FXA
Silicon Graphics IR1S Cray ¥YMP and C8)
HP 000 Fugtsu VEI00
JBEMEE Unis boxe: Convex
(BN 300
E.SR-1

Takia, Fortahiity of PR Source Code acroas LI werksiatons and
paralial computers.

I1BM BS/6000, HP-2000, Silicon Graphica IRIS, MeXT,
Sequent Symmetry, Alliant FX, IBM 3000, Intel iPSCY
%60, Thinking Machines Ch-2, KSR-1, Convex, and Cray
Y-MEP (ses table),

Version 3.0 has a number of improvements over the
previous Version 2.4, The new features are iternized
below,

& Funs on Multiprocessors, Verston 3.0 can opetate
on Paragon, CM-3, etc., using efficient vendor-specific
calls,

» Dynamic Process Groups. Version 3.0 allows wser-
defined grouping.

Divnamic Confipuration. Users are to able to add
and delete hiosts.

o Multiple Meszape Buffers. Allows easier davelop-
ment of PVM math librarics, graphical interfices, el

» Feceive by source or type {or user-dsfined contaxt)
spawn multiple tasks with options for debugging and
tracing, as well as packing and unpacking messages with
stride, and more query funclions.

MNew naming convention for roulines retaing
backwards compatibility with PYh2.4.

PYM is available through medih. To obtain a
description of PVM's features, such as a copy of the F¥M
User's Guide or source cods, one simply sends e-mail to
netlibBornl ., gov with the message send index Erom
pvmd .

Future directions

The Heteropeneous Metwork Project is currently building
a second package, called HeMNCE (for Heleropeneous
Metwork Computing Envirenment),'! on top of PYM.

HeMCE simplifies the tasks of writing, compiling,
running, debugging, and analyzing programs on a hetero-
geneous network, The goals are to make network
computing accessible to scientists and engineers without
the need for extensive training in parellel computing, and
to enable users (o use resources best suited for a particular
phase of the computation.

In HeNCE, the programmer i responsible for
explicitly specifying parallelism by drawing graphs that
express the dependences and control flow of o program
[see Fig. 3). HeNCE supplies a class of graphs as a usahble,
yet Aexible, way for the programmer to specify parallel-
ism. The user inputs the graph directly, using a graph
editor, which is part of the HeNCE environment. Each
node in o HeNCE graph represents a subroutine written in
cither Fortran or . Ares in the HeNCE graph represent
dependences and control flow. An are from one acde to
another represents the fact that the tail node of the arc
miust run before the node at the head of the arc. During the
execution of a HeNCE graph, procedures are antomatical-
I¥ executed after their predecessors, as defined by
dependence arss, have been completed, Functions are
mapgped (o machines based on 3 wser-defined cost matrix,

The foces of this work 15 to provide a paradigm and
graphical support ool for programming a beterogenenus

Modles pepresent wser supplisd subroutines

/E,Dw

Arcs represznt data aod comtrol dependencies

ﬂ' Mtight_dymarmics

lo

Fig. 3 Graph language constnects in HeMCE alow usar fo spacy
paralalism by drawing a graph af the applicaton of algorthm,

“Fills a var gap in ihe Brereiere M. Schwerz clearly explaing
rhe Linpuege and rruch mare of the sumbstance of elemertary

pariicle phprics,"—faemon Graswaw, Haavaen Dsneriry

A Tour of the
Subatomic Zoo

An frtrodiction fo Parficle Phiysics

Cindy Schwarz, Vieeser College

nrroduetion by Sheldon Glashow
If wour undersianding of the fundamental particlzs of maller i
codnfimed te the electron, proton, and neutran, lake hear. YWith
hardly & mshematical feemula, s, Schware guides you through
the world of the “subatomis 200" popalaled by some of the mest
dramatic discoveries af modem science——nolably, goaks, lep-
e, and the basic forces that govemn their imeracions. Yool
alsn enconier the aceslersiors and delectors thal are used 1o find
thess cxotic particles, Most impariang, your taur 5 canduzied in
cazily acesssible terme—perfect for shadents and their tewchers.

Ar AlF Book
194002, 128 papes, illustrated, BEI1R-954-2, paper
325,00 Members 52000
T arder, call tall-Free: 1-SH-488-BOOK
{Ien Wermona, BO2-BTRD315)

@ Markering znd Sales
|

%35 Enst 45th Street
Mew Yark, NY 10017

Birnbur pricis s b mrreber of A1 Mevsbed Sodtsa (A PRCI LS AS DISLATTICA!

ARSANPAA Y AO LGRS Te v w8 Feimbed e, pHoe o the wlbiee mambes.

COMPUTERS 1M FHYEICE, VOL 7, BO. 2, MARLAFR 195 i

b oo e g

IFEATURE: CLUSTERAND NETWORK COMi

o e

Fig. 4: Windoa-based erviranment supports programming in HeMNCE.

network of computers as a single resource, HeWCE is the
graphically-based parallel programming paradigm. In
HeMCE, the programmer explicitly specifies the parallel-
wm of a computation by drawing graphs. The nodes in a
graph represent wser-defined subroutines, and the edpes
indicate parallelism and control flow, The HeNCE
programming environment consisls of & set of graphical
mides which aid in the creation, compilation, execution,
and analysis of HeNCE programs. The main components
consist of o graph editor for writing HeMCE programes, a
build tool for creating executables, a configure tool for
specifying which machines o wse, an executioner for
invoking executables, and a trace tool for analyzing and
debugping o program ren. These steps ane integrated into
i window-based progpramming enviconment, as shown in
Fig. 4.

An initial version of HelNCE has recently besn mals
available through medlib. To obtmin 2 descoiption of s
features, one should send sl 0 netliblarnl - OV
with the message send index from hence.

Both PYM and HeMCE offer rescarchers powertul
means for aftacking scientific computational problems
through heterogeneous network computing. Confinued
rescarch and development will ensure that this new area
mezts the needs of scientific computing in the 1990s and
thercafter.

IFd COMPUTERS IM FHYHCE, WOL T, HQ, 1, MARSAFRL 189

Referances

1.

2

L. Partersom & &f, ACM SIGAPP, Indianapaolis, 195 (umpob-
lished).

I, Gelernter, 1EEE Trass. Comapur 19033, 12 (1986).

. X Dogle o af, Porieble Progrome for Farellel Processers (Hall,

BEinekart. and Winston, New Yook, 19573,

. ¥. Herrorte and E. Lusk, Argoome Mational Labcratory Beport

Moo ANL-91/15 1981 {unpublished).

% K. Hempel, GMD Report, 1591 (wnpublished).

1
il

A Kaolaws, in Procesdings of the Woekshop on Heterogeneous
Merwork-Based Concorrest Compuling, 1591 (onpublisked).

. A Beguclin ef of, Ouk Rilge Maticsal Laboestory Repom Mo

ORMLATM-11E2S 1991 {uspublishal).

G. M, Stacks, W, M. Temsnezman, and B, L. Gy, Phys. Hew.
Lete, 41, 339 (1974),

. LA vem Barth, in Density Feoeionsl Theary far Sotide, abined by P

Pt &l W T man, NATO Advanced Spxdy Insticote,
Lerles B: Physics (Plenum, New York, [984].

[} [u Fohnson er al, Phys. Rev. T 41, 9901 (1580).

A Bepoelin of al, in Proceedings o ibe FUTE STAM Confermee on
Pargilel Procesrisg, Philadelphio, PA, TP9) adited by Dansy
Sorensen {SIAM, Philasdelphia, 1991},

el

v e

‘Forum develops standard interface for message passing

During the past year there has been guite 4 bit
of activity in the community to develop a
standard interface for message passing.” The
advantages of a message-passing-interface

- (MPI) standard would include portability and
ease of use. In a distributed-memory
communication environment, in which the
higher-level routines and/or abstractions are
built upon lower-level message-passing routines,
standardization is particularly desirable.
Furthermore, definiton of an MPT standard
would provide vendors with a clearly defined
base set of routines that they could implement
efficiently, or in some cases provide hardware
support for, thereby enhancing scalability. The
standards activity goes by the name MPI Forum
and includes the major hardware and software
vendors, as well as researchers from universitics
and laboratories around the world.

Simply stated, the goal of the MPI Forum
is to develop a standard for writing message-
passing programs. The MFI should be a
practical, portable, efficient, and flexible
standard for message passing.

A complete list of goals of the MPI Forum
fiollovws.

Design an application programming
interface (not necessarily for compilers or a
system implementation library).

e Allow efficient communication: Avoid
memory-to-memory copying and allow
sverlapping of computation and communication
and ocfloading to communication coprocessor,
where available,

s Allow (but not mandate) extensions for
use in heterogeneous environments.

Allow convenient C, Fortran 77, Fortran
90, and C+ 4 bindings for interface.

Provide a reliable communication
interface; Users need not cope with
communication failures. Such failures are dealt
by the underlying communication subsystem.

Focus on a proposal that can be agreed
npon in six months.

Define an interface that is not too
different from current practice, as in PVM,
Express, Parmacs, etc.

@ Define an interface that can be guickly
implemented on many vendors” platforms, with
no significant changes in the underlying
eommunication and system software.

» Include only those functions in the MPI
that are really necessary,

This standard is intended for use by anyone
who wants to write portable message-passing
programs in Fortran 77 and/or C. Potential
users include individual application
programmers, developers of software designed to
run on parallel machines, and creators of higher-
level programming languages, environments, and
tools, In order to be attractive to this wide
andience, the standard must provide a simple,
easy-to-use interface for the basic user, while not
semantically precluding the high-performance
message-passing operations available on
advanced machines.

The MPI standard is expected to include
some or all of the following features.

» Point-to-point communication in a variety
of modes, including modes that allow fast
communication and heterogeneons
communication

Collective operations

Process groups

Communication contexts

® A simple way to create processes for the
SPMD model

Bindings for both Fortran and C

A model implementation

A formal specification

Ome of the objectives of the activity is Lo
have a definition completed by Summer 1993, If
you are interested in finding out more about the
MPI effort, contact David Walker [(walker &
msr.epm.ornl .gov) at Oak Ridge National
Laboratory.

1. Tack J. Donpasrs, Boll Hempel, Anthony J. G. Hey, and Dhavid W,
Welker, Cak Bidge National Laboratary Repart M ORML TM-
1233, 1991 (umpublished).

COWFUTIRS I PHYHEE, WOL 7, MO, 1, MARSAFL HL e

