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IMPROVING THE ACCURACY OF COMPUTED SINGULAR YVALUES®
I. 1. DOMGARRAL

Abstract. This paper describes a computaitsonal method for improving the accaracy of & given singular
value and its sssociated left and right singular sectors. The method is analogous to lerslive improvemsnt
[or the sodution of linear systems. That i, by means of a low-precision compatation, an iterative algorithm
is applied to increase the accuracy of the singular value and vectons; extended precision compulations are
used in the residual caloalation. The method is related to Newton's method applied to the singular value
problem and inverse iteration for the eigenvalue problem.
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1. The basic algorithm. In a recent paper, Dongarra, Moler and Wilkinson [1]
described an algorithm for improving an approximation to a simple eigenvalue and
the corresponding eigenvector. In this paper we extend and modify the algorithm to
cover the singular value problem. We know that the singular values of a matnx are
well conditioned in the sense that small changes in the matrix result in small changes
in the singular values. The singular vectors may not be well determined and may vary
drastically with small changes in the matrix. In [3], Stewart describes a somewhat
analogous procedure for determining error bounds and obtaining corrections (o the
singular values and vectors assocated with invariant subspaces. Here we describe a
procedure for improving a single or arbitrary singular value and singular vectors using
the previously computed factorization,

We begin with a brief description of the basic algorithm.

Ciiven an m X n rectangular matrix A, we are interested in the decomposition

(1.1) A=UEvT,
where [F and V are unitary matrices and X is a rectangular diagonal matriz of the

sime dimension as A with real nonnegative diagonal entries. The equations can also
be written as

(1.2} Avy = oy
and
(1.3} A'u; =ow,; for each singular value o,

If er, &, and ¢ have been derived from some computation on a computer with finite
precision or by some insight into the problem, they are generally not the true singular
value and vectors, but approximations. We know, however, that there exist gy, o,
¥, and z such that

(1.4) Alp+yl=lo+p)iu+z)
and
(1.5 AT(u+z)= (e +pualie +y),

where gy, gy, ¥, and z, when added to computed o, &, and v, give the exact left and
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right singular vectors and the exact singular value. The corrections py amnd ws come
about by the separate nature of (1.2) and (1.3). We compute the cormection to o as
=g+ sl

The above equations can be expanded to obtain

Ay—egz —pqu=ou—Ap +p,z

and

(1.6} ATz —a'].'—pgu=ml—.-4Tu + L.
If the orthogonality conditions

(1.7 fw+y) v+y)=1

and

w+z) u+z)=1

are included, we then have m +n +2 equations in m + 1 + 2 unknowns. We can now
rewrite the equations in matrix notation to obtain

|'_"-""f A -u 0\/z\ Jou- Au"'.th.r
AT —af 0 -—u|| ¥ ot — AT+ gy
2w’ D 0 0| l-uu-2"z |
| T i1 | I ]
1 0 2o 0 0 el \ 1l=p =y _l.?

(1.8)

Mote that this is a mildly nonlinear matrix equation. We can determine the unknowns
(z, ¥, o1, oz} iteratively by solving

- A —H:"” 0 \ 't"””l'l | o =A™ "'H'ipll'lp.'l
A g.] | ATT _ﬂl;:; ﬂ _Hl.rf' _'Ii":p+ll 5 'I:rl\.[l'l il :-4]' I|!'I 1.|5?'-"__'.|.II
e II"IH‘ i i 0 F-l:ipul ] =g H-:rll =_IH tIrll Il
\ 0 T 3™ 6 U T U T =y
to obtain corrections to &', ', and &' by the updates
#lpﬂ -y +_:':nﬂl
Il|I;:---I.'\--IIFI +}I|‘.--|_'|

o " =g (W 4 g 2

If A is m * n, then this is an (m +n + 2) % (m +n + 2) system to be solved. If this system
is solved, we can compute corrections u, v, and z to the singular value and the singular
vectors, thereby obtaining & more accurate value for the singular value and singular
vectors.

If we handle this as we do in the eigenvalue case [1], we will improve the accuracy
of e, u, and v. The accuracy obtained by the algorithm will be full working precision,
with only the residual calculations (the right-hand side of (1.9)) done in extended
precision.

2. Relationship to Newton's method. The algorithm as described above can be
derived by the use of Newton's method applied to (1.2) and (1.3). We define functions
i and f as follows:

_{1[ur 7, E'!.l,'.f';:|=iq||'.|_ll.'.|";|ﬂ| f!l:“- o, ﬂl]l;rl]:“TH_l-
(2.1}

i T —'1—1—
folu, v, oy, o0l =A u—oryn,  falu, v, 0, 021 =00 1,
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and
Fleh={folxd, f2lx]), Falx), Falx),

where

=

v
x —
oy
I_g:lll

The approach is to find the zeros of fix). Newton's method applied to this problem is

(2.2} Fixexsen = x)==f(x),
where
I'.Hlill
|:,I”"
Ay il
oy
Lerk' |
The derivative of fix} is
|I_-ﬂ"1||r A =i ﬂ'
J AT —el D —p
(2.3) Fix)= - 0 0 ﬂ\'
e g oy wicig

The above method expressed in matrix notation is then just a restatement of (1.8),
ignoring the second order terms in the right-hand side.

Natice that since the method is equivalent to Newton's method, we could compute
the left and right singular vectors, given a close approximation to the singular value.

3. Effects of various factorizations, Il we have computed the singular value
decomposition and retained the matrices produced during the factorization, each
singular value and the corresponding singular vectors can be improved in 2(mn )
operations. We will assume that the matrices [, E, and V are available such that
A = L'EV". Then the coefficient matrix in {1.8) can be decomposed into the form

(U 0 0 \|—of X =-¢ 0ljU"™ 0 o0 o0

- |u vV 0 n\ I -od 0 —e,\ 0 vT oo
: 0 0 1 0 £ 0 o 0jle o ‘1 of
o 0@ 1flinie e w0 of oo 0,0 1]

where ¢, is the sth column of the identity matrix and e, is the approximation being
improved.

This factored form can be used to simplify (1.8). Since L7 and V are orthogonal,
systems of equations involving the left and the right matrices of (3.1) can be easily
solved by simply multiplying by the transposes, Systems of equations involving the
matrix in the center can be handled by solving 2 x 2 or 4 % 4 subsystems of equations
as ¢an be seen from the nonzero structure of the matrix:
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e -
-
(3.2)
"
L ]
-, - -

If we have a bidiagonal factorization of A, say A = UBV ", where B is bidiagonal,
then we can improve the accuracy in OYimna ) operations. Let us assume we have the
matrices V and 8 from the bidiagonalization procedure. We will concentrate only
on the matrix

f A
(3.3) {;; —-:rf}'

This matrix is the interesting part of the one in (1.8) and can be thought of as a rank
2 modification of that equation. The matrix can then be written as

[

'1

[T 0|

4)
|.3 ] |—1AT l"-r]-:ll
1 &F I

| —arf 0 —1 '
i

—

|
0 -ol+—B'B 0
o
Note that solving systems based on this factored form is a simple task since V™' = V7,
The only actual need for an equation solver comes from

1
(3.5) —r.rf--;HrB,

and this matrix is tridiagonal. Thus, given the bidiagonal matrix and the V' matrix of
the transformation, we can improve the accuracy of the singular values.

If we have instead the QR factorization of A, namely A = QR, where R is upper
triangular and O is orthogonal, then we can improve the accuracy of the singular
value in Olmn +n’) operations, provided we have some approximation to it. We will
concentrate on the matrix in (3.3). This matrix can be rewritten in factored form as

1
SR |

I 0\ [—el i \ I
o 3
g

(3.6) | R | B g L

III-J i1 a I

As in (3.4) it becomes a matter of solving equations with a matrx of the form
lor
(3.7} -of+—R R,
g
Unlike (3.5), this matrix is full and, unfortunately, the factor B cannot be used to

simplify the process since the matrix R 'R is being modified by a rank » matrix, o7,
Equation (3.7) requires a further factorization to solve systems based upon it.
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4, Convergence of the update process. The convergence results for this method
are the same as for the eigenvalue case. We state the results here but omit the proof
which can be found in [1].

In the presence of round-off error, i the iniifal ervor in the singular value is smaill
enough in some sense and the singular value is an isolated one, the iteratfve process will
COMDENgE.

If working precision is used in computing the approximate singular values and
extended precision (5 used in the residual caleulation, then when the method conperges,
I produces resulls thal are accurate to ar least full working precizion.

The method is equivalent to Newton's method ; therefore, the comvergence is
gquadratic,

The method just described has a deficiency: When there are multiple singular
villues, the matrix in (1.8) becomes ill-conditioned. The degree of ill-conditioning is
related to the separation between the singular value being improved and its closest
neighbor. Existence of close or multiple singular values can be monitored by examining
the condition number of the matrix in (1.8}, If the matrix of (1.8) has a large condition
number, then the iteration will converge with a less than quadratic rate. For identical
singular values, the matrix involved is exactly singular.

This deficiency can be illustrated by an example. For a 2% 2 system the matrix
has the form

{'—JJ" [ ] jl
oy ot

where o is an approximation to o,. If any o, is close to o, then this system will be
ill-conditioned, and the conditioning depends upon 1/{e =¢r;). In this situation one
cannod improve just one singular value but must work with a cluster of them, as well
as the invariant subspace of singular vectors,

5. Results, The following numerical tests were run on a VAX 11/780. The initial
reduction was performed in single precision; double precision was used only to compute
the residuals and to add the correction to the previous result. In single precision, the
working accuracy is 27"; in double precision, the accuracy is 2°*,

The matrices used here come from the original paper by Golub and Reinsch [2].
The first matrix has the form

{22000 2 3

Amp gt SR
it de it X
| guosigrizigen § 1
\ BTN L qt P

with singular values
or=v1248, ;a=120, =384, oy=es=0.
The results from the improvement algorithm on this problem are given in Table 1.

All results were achieved using single precigion computations except o accumulate
the residuals. The method used was based on the factored form of (3,10,
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TanLe 1
Nerglion o uTu L:Tr.

1] 353270149 (L9078 (.9090010551

| 35 12T 46531 5658 1 OO0 O 1O O3 04

i A5 3274346531 1387 1 OO OO DR O 1. OO RO RO O
true FEA2TMMH655L1IRTA1D

] 15 SQuT ) (LGN (L.909009 124

1 20O ONG04E L OO0 262 | 1, OO0 3411

i 20, DO 1 OO BOHOR O B 1. CHCCH OO OO O
lrus 20.0

i 15, 5938881 0, 9GS0 3 090959937

il 1959501 1942277176 1003250 1. ODOTOO3 1R

2 1959501 T4 2265425 1 OGO 1, O
TS 1839501 T4 2265424 78S

il OG0T ES352RS .90008454 (L T et

1 =10, (OO ] 63 1O T 4 5 1. DO OO0 D

2 00, DO OO0 1L OGO0005 3 30598 1. OO 2 & 307
irie (1K}

1] OO0 L 20505354 (1.9 R0E R0 0.909 000515

1 — 0, OO OO0 75 1 OGO 4 PRI T |

a O, DO O R D 1L OHICHHN ] 54 TRI0H 1. OO0 L 164373
true oo

The results in Table 1 show the iteration converging very rapidly. The singular values
are initially correct to working precision, and two iterations have gained full extended
precision,

For the next example we use a standard symmetric eigenvalue problem. The
matrix, W, [4], is symmetric tridiagonal, and has some pathologically close eigen-
values and singular values. It is defined by the relations

oy =k+1—1, i=1,--- k+1,
o= f=k=1, i=k+2, -, 2k+1,
Bi=1, fmd - 2k+1,

where & =5, a, is the ith diagonal element, and #; is the {th subdiagonal element.
See Tahle 2,

TagLE 2
[eration o W' eE

] 5. T4622 10 LARIRGROTY (L9ouTTT ]

1 5 TA6231R4TIR1 203 1015360382803 16 1001 53602 32 T TH
a S TAG231RIIGOST T4 10D 300 3486084 1003309 1480725
3 53, 146351833805 36T 1R T29E 13 1.ODOODN0T 20813
4 S 74623183 3IB0ABGS 1L OGO RS 1, OO0 2
5 5462 31RIIRNE6S 1 OO OO 1. OO OO DN
il 57461471 0909000 2 OG0T 1

1 5. 4615755582260 1LOIEG3TI] 344640 1.OMMIBAAT45222RTS
k4 546157545424 549 1000 69 16083231 1O 69 R84S
k] 5. T4B15T54557T390 1R 525 1 O e 5525
4 5746157 5455380572 1 RO O OO L L OO RO OO0 1
3

3. T46157545580572 1 OO OO PR
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The singular values displayed in Table 2 are the largest ones of W, and happen to
be the closest, The matrix has a condition number of 10°, as a result, each iteration
makes an improvement of approximately three digits, Note the contrast to the previous
case where the matrix was well conditioned and each iteration gained a full seven digits.

6., Multiple singular values, We are interested in improving more than one
singular value at a time. We are motivated to do so since the approach for improving
one singular value breaks down when there are multiple singular values with close
numerical values. For simplicity we will restrict the discussion initially to two singular
values oy and o; and the corresponding vectors &y, v and u;, va.

We know that the two-space in which wy and w2 and v, and ¢; lie is numerical
well determined. Hence we have

61 Algy+y)=lo +palu + 20+ paglus+ 23,
b Alva+ya)=palug + 2+ o+ paadluz + 12)
and

AT{uy+z)=loy +pivg + ¥ )+ pniva+y2),
AT{ua+23) = pyales + i)+ (o + maadive + ya),

where the corrections vy, 2, and gy, are expected to be small,
From above we form

o+ gy [TRE! }
1)

Alpy+yifvz+ya) = “i;"‘1||uz"'3:'”i
H1 Fz +Ezz

(6.2)

; : ory e Mz
ATl.u1--zl:u=+z-.-J=l.|:.+}':.E1*-_'r'zFL }

FTET ry = B2z
We will require in addition that the orthogonality conditions

) 0 ifi=j
(5.3} [u,ﬂ-_-.-,]r[v..+,'r'_-:"{1 i.{i'i*;'l:

and
; D ifimj,
+ 27 (g, - {
oy + 2,07 (0 + 24) 1 i
be satisfied. For simplicity we will assume that the 2 % 2 matrix of (6.2) which contains
the correction to the singular values is symmetric, therefore, wiz= g In order to
produce the improved singular values this 2 = 2 matrix must be diagonalized.
Equation (6.2) together with (6.3) give rise to 2n + 2m + 6 equationsin 2n +2m +6
unknowns, This matrix equation has the form

j—od A —k3 -y R -'-"LH:I_A1"2I+H:.:I='1+FIEI:2'_
| AT -5y By -y III I ¥ | | ogtig=Avg+pigs+ uizey |
| -yl A —wy —li; £ | I"-"I'-:I_Arul_i":l:fl"'l‘f?]‘!
AT =gyl =g =vgl| ¥z oyvy=ATup s ulay +uliy,

w3 g1 pyz |= W1 — 212

el H uiz ~vivz=yivz

2uj #::| | |—“;“z_1;fz
| 2] | i | | 1=vio=yin |I
| Juj | I_.H:'z,' I', L —uiwy =212 ,'I

] i) 1 T T
L 3z I=tz62=¥1¥z
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As in the case of a single singular value, if one has access to the matrix factorization
then the matrix problem can casily be solved,
In general, if we extend the procedure to handle & close singular values we have

Alpi+yy, - vy )= [u + 25,0+ 2z [diag (o) + M
and
ATluy+zy, -, ue +ze)=[o+ ¥, 00 o, vy ldiag (o) + M,

where my = pu, and M = M7 anditis expected that y,. z,. and p,; will be small. These
equations together with (6.3) lead to a system of equations of order &{m +n) =Lk = 1)
and an eigenvalue problem of order k.
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