
SIAM J. ScI. STAT. COMPUT.
Vol. 7, No. 1, January 1986

1986 Society for Industrial and Applied Mathematics
023

TIMELY COMMUNICATIONS

This is the first paper to be published under the new "timely communications" policy for the SIAM Journal
on Scientific and Statistical Computing. Papers that have significant timely content and do not exceedfive pages
automatically will be considered for a separate section of this journal with an accelerated reviewing process. It
will be possible for the note to appear approximately six months after the date of acceptance. The editors are

pleased to launch this section with a note on the use ofa new computer organization that is likely to be the start

of a revolution in scientific and statistical computation.

IMPLEMENTING DENSE LINEAR ALGEBRA ALGORITHMS USING
MULTITASKING ON THE CRAY X-MP-4
(OR APPROACHING THE GIGAFLOP)*

JACK J. DONGARRA.’]" AND TOM HEWITT$

Abstract. This note describes some experiments on simple, dense linear algebra algorithms. These
experiments show that the CRAY X-MP is capable of small-grain multitasking arising from standard
implementations of LU and Cholesky decomposition. The implementation described here provides the
"fastest" execution rate for LU decomposition, 718 MFLOPS for a matrix of order 1000.

Introduction. Over the past few months we have been experimenting with some
simple linear algebra algorithms on the CRAY X-MP-4 multiprocessor. The CRAY
X-MP family is a general-purpose multiprocessor system. It inherits the basic vector
functions of CRAY-1S, with major architectural improvements for each individual
processor. The CRAY X-MP-4 system is a four-processor model housed in a physical
chassis identical to the CRAY-1S. The system can be used to perform simultaneous
scalar and vector processing of either independent job streams or independent tasks
within one job. Hardware in the X-MP enables multiple processors to be applied to
a single Fortran program in a timely and coordinated manner.

All processors share a central bipolar memory (of up to 16 million words),
organized in 64 interleaved memory banks. Each processor has four memory ports:
two for vector fetches, one for vector stores, and one for independent I/O operations.
In other words, the total memory bandwidth of the four processors is up to sixteen
times that of the CRAY-1S system.

This note describes results obtained from three experiments: LU decomposition
based on matrix-vector operations, LU based on a "best" implementation for the
architecture, and an implementation ofCholesky decomposition based on matrix-vector
operations.

LU decomposition. The versions of LU and Cholesky factorization, used here,
are based on matrix-vector modules that allow for a high level of granularity, permitting
high performance in a number of different environments, see [2].

The algorithm designed to give the "best" performance on the X-MP architecture
is worth noting. It is based on standard Gaussian elimination with partial pivoting.
The algorithm is organized such that it zeros out three columns (below the diagonal)

* Received by the editors August 17, 1985.
f Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439.

The work of this author was supported in part by the Applied Mathematical Sciences subprogram of the
Office of Energy Research, U.S. Department of Energy, under contract W-31-109-Eng-38.

t CRAY Research Inc., Chippewa Falls, Wisconsin 54701.

347



348 TIMELY COMMUNICATIONS

of the matrix, then applies these transformations to the rest of the matrix. The
application of the transformations to the remainder of the matrix is split up among
the processors. An assembly language kernel is used to apply the three pivot rows for
simultaneous row operations. This reduces memory traffic and allows a single processor
of an X-MP to obtain its theoretical maximum sustainable computation rate of 198
MFLOPS. The assembly language kernel was multitasked in the experiment among
two, three, and four CPUs. Fortran-callable assembly language synchronization sub-
routines were used. These require less than half a microsecond for synchronization.

The process of finding the three pivot rows was not multitasked. However, it was
written as an assembly language kernel to reduce overhead for small problems. As the
factorization proceeds, the size of the relevant vector and submatrix decreases. The
final 15 15 block of the reduction was performed by an unrolled [2] version of
standard Gaussian elimination. This portion is entirely single-threaded Fortran and
runs at two to three times the speed of the Fortran which has not been unrolled.
Synchronization was accomplished through a fork-and-join mechanism using the
cluster (shared) registers of the X-MP.

Listed in Table 1 are the results of the experiments; speedups range from 1.3 on
a problem of size 50 50 to 3.8 for a matrix of order 1000 1000. The performance
ranges from 97 MFLOPS to an impressive 718 MFLOPS for four processors on a
1000 1000 matrix. For small problems, startup times dominate the overall perform-
ance. It is interesting to note that a system of equations of order 1000 can now be
factored and solved in under a second! (The same problem on a VAX 11/780 would
take roughly two hours to complete.)

TABLE
High-performance LU decomposition.

Order

50
100
200
400
600
1000

MFLOPS
#processors
2 3 4

97 124 135 145
145 230 281 325
172 330 426 526
183 353 507 652
186 364 535 689
188 372 550 718

Speedup over processor
#processors

2 3 4

1.28 1.39 1.49
1.64 1.94 2.24
1.81 2.47 3.05
1.93 2.77 3.56
1.96 2.87 3.70
1.98 2.92 3.81

For comparison we give in Table 2 the results for LU decomposition based on
matrix-vector operations. The parallelism here is gained by simply splitting the matrix-
vector operation across the processors (see [1] for details on the algorithm). The

TnBLE 2
LU based on matrix-vector operations.

Order

50
100
200
400
600
1000

MFLOPS
(4 processors)

57
167
343
537
608
675

Ratio of algorithms from
Table 1/Table 2

2.54
1.95
1.53
1.21
1.13
1.06



TIMELY COMMUNICATIONS 349

matrix-vector modules have been coded in assembly language. The same number of
operations is performed here as in the version that gives "best" performance.

As we can see, for lower order matrix problems, the high-performance algorithm
is far more efficient. For large problems, however, there is not too much difference;
for the matrix of order 1000 thereis only a difference of 6% in the running time. This
fact shows one of the strengths in using the matrix-vector design for algorithms of this
nature. The matrix-vector modules can be easily changed as we go to a different
architecture, but the basic algorithm is unaltered.

Cholesky decomposition. A version of Cholesky decomposition for a symmetric
positive definite matrix was implemented on the CRAY X-MP-4 based on matrix-vector
routines (see [2] for algorithm details). Table 3 gives the performance of that routine
when run on 1 and 4 processors. In addition, the algorithm was reorganized to compute
information necessary to perform four steps of the decomposition during the same
step. This results in four independent "full size" matrix-vector multiplications. This
information is listed in the last column of Table 3.

TABLE 3
Cholesky decomposition based on matrix-vector operations.

Order

50
100
200
400
600
1000

MFLOPS
4 processors

processor (MY split)

59 52
117 154
163 345
184 544
189 623
193 689

Speedup

.88
1.32
2.12
2.96
3.30
3.58

MFLOPS
4 processors
(4 MV ops)

97
264
460
631
683
733

Synchronization was accomplished via the X-MP shared registers and semaphores.
Multiprocessing overhead in this case is largely the result of code changes and of the
breaking of a large piece of work into smaller pieces--each of which has essentially
the same startup time as the original large piece.

The apparent overhead for multitasking small problems is largely caused by the
following items:

1. Single-threaded portions of work. Finding pivot rows, scaling rows of the
matrix, the scalar square root in Cholesky decomposition--these are all of
great importance in the current study.

2. Less parallel work per processor in the computational kernel. Even in scalar
operations the X-MP uses a considerable amount of parallelism. In vector
mode, 100 floating-point operations can be performed in the time it takes to
call a subroutine and scores of flops in the time required to initialize a DO loop.

3. Additional memory-bank conflicts. The single CPU times were run with no
activity in the other three CPUs. When four processors are active, additional
conflicts will occur, though in this case the effect is small as the matrix-vector
operations are conflict-insensitive on the X-MP.

4. Synchronization overhead. This is dominated by the time a CPU is waiting for
all of its vector memory references to be completed. Thus, it is generally wise
to complete all vector memory references before synchronization, as it elimi-
nates the possibility of an inter-CPU memory race condition.



350 TIMELY COMMUNICATIONS

Conclusions. The CRAY X-MP is capable of small granularity multitasking. For
large problems that are both vectorized and parallelized, performance of the X-MP-4
should be in the range of 400 to 700 MFLOPS. For smaller problems the startup time
of the parallel processes can dominate the execution time. This feature becomes more
important as more processors are applied to the problem.

Note. Since the time this work was conducted, CRAY Inc. Research has introduced
micro-tasking, which provides a mechanism for the user to conveniently, and with low
overhead, exploit small-granularity parallelism from Fortran programs with compiler
directives.

REFERENCES

[1] STEVE S. CHEN, JACK J. DONGARRA AND CHRISTOPHER C. HSIUNG, Multiprocessing for linear
algebra algorithms on the CRAY X-MP-2: Experiences with small granularity, J. Parallel and
Distributed Computing, (1984), pp. 22-31.

[2] JACK J. DONGARRA AND STANLEY C. EISENSTAT, Squeezing the most out of an algorithm in CRAY
Fortran, ACM Trans. Math. Software, 10 (1984), pp. 221-230.


