
Parallel Computing 3 (1986) 25-34 25
North-Holland

Implementation of some concurrent
algorithms for matrix factorization *'**

J.J . D O N G A R R A

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S,A.

A.H. SAMEH
Department of Computer Science, University of Illinois, Urbana /Champaign, IL 61801, U.S.A.

D.C. SORENSEN
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

Received August 1985

Abstra~. Three parallel algorithms for computing the QR-factorization of a matrix are presented. The discussion
is primarily concerned with implementation of these algorithms on a computer that supports tightly coupled
parallel processes sharing a large common memory. The three algorithms are a Householder method based upon
high-level modules, a Windowed Householder method that avoids fork-join synchronization, and a Pipelined
Givens method that is a variant of the data-flow type algorithms offering large enough granularity to mask
synchronization costs. Numerical experiments were conducted on the Denelcor HEP computer. The coml: ra-
tional results indicate that the Pipelined Givens method is preferred and that this is primarily due to the number
of array references required by the various algorithms.

Keywords. Denelcor HEP, performance analysis.

I. Introduction

This paper discusses implementations of various forms of the QR factorization on the
Denelcor HEP. The motivation for examining these implementations was to investigate perfor-
mance issues that we might expect to face in developing mathematical software for linear
algebra problems on emerging parallel architectures. The Denelcor HEP is particularly well
suited for such a study because it offers the possibility of very fine grain parallelism through low
overhead synchronization primitives. We point out certain synchronization problems that arise
within the more tightly coupled variations of the algorithm and offer a comparison of the
performance of these variations.

2. The Deneleor HEP computer

Our experiments were carried out on Denelcor HEP computers located at Argonne National
Laboratory, Los Alamos National Laboratory, and the Ballistics Research Laboratory. The

* An earlier version of this paper appeared in the proceedings of the Eighteenth Annual Hawaii International
Conference on System Sciences in January 1985.

** Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.
Department of Energy under Contract g-31-109-Eng-33.

0167-8191/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

26 J. Dongarra et al. / Concurrent algorithms for matrix factorization

Denelcor HEP is the first commercially available machine of the MIMD variety. It supports
t i~ t ly coupled parallel processing, and is quite different from an SIMD machine (i.e., a vector
or array processor). The fully configured computing system offered by Denelcor consists of up
to 16 processing elements (PEMs) sharing a large global memory through a crossbar switch.
Within a single PEM, parallelism is achieved through pipelining independent serial instructions
streams called processes. The principal pipeline that handles the numerical and logical oper-
ations consists of synchronous functional units that have been segmented into an eight-stage
pipe. The storage functional unit (SFU) operates asynchronously from this execution pipeline.
Processes are synchronized through marking memory and register locations with the full or
empty state. This means that a process requesting access to a memory location may be blocked
until that location is marked full by another process. Such suspension of a process takes place
only in the SFU and therefore does not interfere with other processes that are ready to execute
instructions. The reader is referred to the article [6] by Jordan for further details on the HEP
architecture.

3. Variations of the QR-factorization

We examined three variations of the QR factorization. They were the Householder, Windowed
Householder, and Pipelined Givens methods. Concurrency was exploited in the Householder
method by expressing the factorization in terms of two high-level modules: a matrix times
vector operation and add a rank one matrix to a matrix operation. Column operations involved
in these two computations were performed in parallel using a fork-join synchronization. The
Windowed Householder method is an attempt to reduce the serial bottleneck introduced
through the fork-join synchronization required at the beginning and end of each major
reduction step. The method creates a fixed number of processes that compete to either compute
or apply Householder transformations in a round-fashion to appropriate columns of the matrix.
The Pipelined Givens method represents an attempt to capture the efficiency of a dataflow
algorithm in utilizing processes at a level of granularity that is coarser than more traditional
dataflow algorithms.

4. ~ e Householder method

The problem that each of these methods is designed to solve is the following. Given a real
m x n matrix A, the routine must produce an m x rn orthogonal matrix Q and an n x n upper
triangular matrix R such that

On serial machines, Householder's method is preferred because its complexity in terms of
floating point operations is roughly half that of Givens' method. However, this is at the expense
of rou~ly twice as many array references as in Givens' method, and this effect is noted on
many serial machines where there is a nontrivial cost associated with an array reference. This
aspect of the two algorithms becomes extremely important on machines that have memory
accesses through some switching mechanism, because array references begin to dominate the
calculations in these situations.

The version of Householder's method we present here provides a good example of an
approach to programming linear algebra libraries in such a way that they are transportable
across a wide variety of architectures and yet are reasonably efficient on a given machine. This

J. Dongarra et al. / Concurrent algorithms for matrix factorization 27

approach-- the high-level module approach-- is described in detail in [2,4]. Within this scheme a
library is restructured in terms of a few modules that are targeted for efficiency on a given
machi~,e. All of the special coding necessary to take advantage of parallelism or vectorization is
contained within the modules. Householder's method consists of constructing transformations
of the form

1 - 2ww T

with the unit vector w constructed to transform the first column of a given matrix into a
multiple of the first coordinate vector e~. At the kth stage of the algorithm one has

(Rk_, Sk- ,)
QT-1A= 0 Ak- i "

and w k is constructed such that (0 sT)
The factorization is then updated to the form

This is the basic algorithm used in U N P A C K [31 for computing the QR factorization of a
matrix. It should be noted that this algorithm can be made efficient on a gi,en machine if we
have good routines for the following two operations:

z T - wTA (vector X matrix)

and

- A - 2wz T (rank-one-modification).

One might choose a higher level module than this, but it turns out that one more operation,

z - Aw (matrix x vector),

is all that is needed to obtain all of the major routines in LINPACK. Thus, efficient coding of
these three routines is all that is needed to transport the entire package from one machine to
another. For a vector machine such as the CRAY-I the vector times matrix operation should be
coded in the form

Z T ¢'-" Z T -I-co, a~, i - - 1, 2 , . . . , m,

where a~ is the ith row of A and o~, is the ith component of w. For an MIMD machine such as
the Denelcor HEP, this operation should be coded in the form

~'j - wThj, j = 1, 2 , . . . , n (in parallel),

where hj is the j t h column of A and ['j is the jth component of z. This coding has been done,
and it has been possible to achieve super-vector speeds on the CRAY-1 and near-maximum
speedup on the Denelcor HEP. Far more spectacular results are possible on the HEP if one
codes the modules for efficiency in assembly language. This is partially due to the inefficient
FORTRAN compiler currently in use under HEP/OS. However, one can do a very good job of
managing index calculations and memory references if the matrix vector product is written in
assembly language. Details of these techniques are reported in [8].

In this paper we consider only FORTRAN implementations. Within this framework, it is
possible to achieve a 20~ increase in performance on the HEP by more sophisticated scheduling

28 J. Dongarra et al. / Concurrent algorithms for matrix factorization

of the creation and application of the Householder transformations. That is the subject of the
next section. However, in evaluating the merit of such a performance increase, one must
consider that each subroutine of the package would require such a recoding effort and that
maintainability and integrity of the package would suffer from the process.

5. Windowed Householder method

The Windowed Householder method performs the same numerical operations as the stan-
dard Householder method but attempts to keep all available processors busy by executing from
a pool of tasks consisting of two types: 'compute a transformation' and 'apply a transforma.
tion'. The task of computing a transformation has precedence over the task of applying a
transformation during the selection process. However, synchronization is required to ensure that
the transformation for the k th column gets computed before the transformation for the k + 1st
column and to ensure that the k + 1st transformation is not applied to a column until the k th
transformation has been applied.

One may think of a window of fixed width moving down the diagonal of the unreduced
matrix, as illustrated in Fig. 1. When this window is positioned over column k of the matrix, the
transformation to zero out the k th column is computed and applied to the remaining columns
in the window. The index k is recorded as the last transformation computed, and the window is
moved to the k + 1st column. At the same time, additional processes are competing to apply the
transformations that have been computed by the window to the remaining columns of the
matrix that lie to the right of the current window position.

6. Pipelined Givens method

The Pipelined Givens method is the most highly tuned method of the three algorithms
discussed here. It is influenced by the more traditional data flow and systolic array algorithms
proposed and investigated in [5,7]. The idea is to construct an algorithm with chunks of
computation that are at a granularity level of a few FORTRAN statements rather than at the
binary operation level present in more traditional data flow algorithms. The concept is quite
similar in spirit to the large grained data flow techniques proposed by Babb [1]. However, the
details of the implementation are quite different from Babb's systematic approach. The method
we present assumes a globally shared memory together with a low overhead synchronization
mechanism as attributes of the target architecture for this algorithm. The HEP is, of course, the
machine that is principally considered. However, the algorithm would be applicable to any
architecture that would support a model of computation containing these two features.

The technique might be contrasted with the Householder method based on high-level

mm t am

RA
m m m l m ~ m i i m q ¢

0 ~'/ Ak

i

WINDOW Fig. 1. Windowed Householder method.

J. Dongarra et al. / Concurrent algorithms for matrix factorization 29

modules. If one were to raise the level of 'module" to the highest level subroutine calls within a
linear algebra library, then this method would be the method of choice on machines supporting
the low overhead synchronization and shared data requirements mentioned above. The reason
for this is twofold. As we shall demonstrate with our computational results, memory references
are likely to play a far more important role in accessing algorithm performance than they have
on serial machines. This algorithm requires half as many array roferences as the Householder
method. In addition, the Pipelined Givens method offers a greater opportunity to keep many
(virtual) processors busy because it does not employ a fork-join synchronization mechanism.
Moreover, there is the opportunity to adjust the level of granularity through the specification of
a given parameter in order to property mask synchronization costs with computation.

The serial variant of Givens' method that we consider is as follows. Given a real m x n
matrix A, the goal of the algorithm is to apply elementary plane rotations G u which are
constructed to zero out the / j th element of the matrix A. Such a matrix may be thought of as a
2 x 2 orthogonal matrix of the form

o

where o 2 + 72 _ 1. If

/~ b T

represents a 2 x n matrix, then a zero can be introduced with left multiplicatibn by G into the fi
position through proper choice of 7 and o. When embedded in the n × n identity, the matrix
G u is of the form

Gij = l + Dij,

where all elements of D u are zero (with the possible exception of the ii, ij, j i , and j j entries).
The matrices G u are used to reduce A to upper triangular form in the following order:

(~ , , _ i . , , . . . G2 , , (~ ln) (G , t_ 2 .n_ I . . . G 2 . , , _ i G , . , _ I) . . . (G 2 3 G i s) (G I 2) A - - R.

The order of the zeroing pattern may be seen in the following 5 × 5 example:

X X X X X
®t X X X X

®2 ®3 X X X

®4 ®~ ®6 X X

®7 @s @9 @lo X

where the symbol ®j means that entry was zeroed out by the j th transformation. This order is
important if one wishes to "pipeline' the row reduction process. This pipelining may be achieved
by expressing R as a linear array in packed form by rows and then dividing this linear array
into equal-length pipeline segments. A new row may enter the pipe immediately after the row
ahead has been processed by the first segment. Each row proceeds one behind the other until
the entire matrix has been processed. However, because of data dependencies, at no time can
these rows get out of order once they have entered the pipe. Moreover, at a particular location
within a segment, one of two operations must be done: compute a transformation or apply one.

The method is more easily grasped if one considers the following three diagrams. In Fig. 2 we
represent the matrix A in a partially decomposed state. The upper triangle of the array contains
the current state of the triangular matrix R. The entries ((~ a a a a) and the entries (fl fl fl fl fl)
represent the components of the next two rows of A that must be reduced. In Fig. 3 we see the
row (a a e a a) being passed through the triangle R during the reduction process. The first

30 J. Dongarra et al. / Concurrent algorithms for matrix factorization

B B B B B
X X X X)l ~ _

l ®°°°°1 X X X X

* * x

B B B B x x
. X

Fig. 2. Partially reduced matrix, l:ig. 3. Pipelined row reduction.

entry has been zeroed by computing and applying the appropriate Givens transformations as
described above, and we are ready to zero out the second entry. In a serial algorithm this row
would be completely reduced to zero before the row (/~ ,8/~/~/~) could be referenced. In the
parallel version the processing of this row is begun immediately after the a-row. The first row of
R is modified during the introduction of a zero in the first position of the a-row so it is
important that the processing of the/~-row is suitably synchronized with the processing of the
a-row.

To accomplish this synchronization and also achieve a way to adjust the level of granularity
of the algorithm, we consider the matrix R as a linear array. In Fig. 4 we depict this linear array
with natural row boundaries marked with:and pipe segments marked with I. The length of a
segment is

I n(n + l)/2 1
number of segments "

The number of segments is a parameter to the program. The a and ,8 arrays are represented as
in Fig. 3 with the a array entering the second segment and the ,8 array entering the first
segment. A row must gain entry to the next segment before releasing the current segment in
order to keep the rows in order. If the number of segments is equal to the number of nonzero
elements of R, then this algorithm reduces to a variant of the more traditional data flow
algorithm presented in [5]. The subroutine ROWRED in the Appendix shows how this is
accomplished on the HEP in FORTRAN. The variables in ROWRED that are preceded by a $
(e.g. $KWHERE) are asynchronous variables. These variables are in a full or an empty state
during execution. If an asynchronous variable appears to the left of an assignment statement it
must be empty in order for the statement to execute. If it appears to the right of an assignment
statement it must be full before the statement will execute. This mechanism allows concurrent
processes to communicate and synchronize through data memory.

Table 1 indicates the effect of adjusting the number of segments in the array R. The first
column contains the number of segments. The remaining columns give the corresponding
execution time (in seconds) of the factorization of a matrix with n - 50, 100, 150, 200 columns
respectively.

The results of these experiments seem to indicate that the performance of the algorithms is
not extremely sensitive to the number of segments, but that it does appear desirable to get the

B B B ' B B

I 1 X X X l X X ' X l X X Xl:X X Xl:X X:Xl
Fig. 4. R as a segmented pipe.

J. Dongarra et ai. / Concurrent algorithms for matrix factorization 31

1 6 -

14 ~ O U S E H O L I) E R

12 - J W l N I) O W
I0--

• PIPELINED
~" 6 - GIVENS

4
Z
0 Fig. 5. A comparison of parallel QR-fac-

It=~O 300 400 500 600 ?00 800 gO0 I000 torizations.

Table i
Adjusting number of segments in R

Segments N = 50 N = 100 N = 150 N = 200

10 3.83 13.17 27.95 47.79
20 3.15 10.92 22.79 38.40
30 2.83 10.11 21.44 36.39
40 2.84 10.09 21.33 35.11
50 2.85 !,0.08 21.28 35.99
60 2.85 10.07 21.26 35.93
70 2.86 10.08 21.24 35.90
80 2.88 10.08 21.23 35.87
90 2.88 10.09 21.24 35.86

100 2.90 !0.10 21.25 35.85

length of a segment roughly equal to n (the number of columns). The optimum time for each n
seems to be around n/2 segments. The results shown here have the number of rows of the
matrix fixed at m - 500 and the number of active processes set at 20. This number of processes
appeared to give the best performance, however, the results were fairly insensitive within the
range of 10 to 20 processes.

7. Comparison of the methods

While extensive runs were made with these codes, their relative performance is best
summarJ~d with a graph. In Fig. 5 we represent the performance in terms of execution time of
the three QR factorization variants on matrices of order m x 200 where m - 200, 300 1000.
The experiinents show the Pipelined Givens method to be roughly twice as efficient as the
Householder method. The Windowed Householder method achieved roughly a 20% reduction in
execution over the Householder method.

8. Conclusions

Experiments were carried out in the relatively well understood setting of linear algebra in
order to isolate peculiarities of the I-IEP environment in particular and to gain understanding

32 J. Dongarra et al. / Concurrent algorithms for matrix factorization

about efficiency of algorithms on parallel processors in general. Some recent work on efficient
use of the HEP register memory to construct vector operations in software [4,8] can improve the
performance of the Householder routine tremendously but similar coding of the Pipelined
Givens method has not yet been carried out. Comparable increases in performance are expected
when this has been done. To obtain fair comparisons, we stuck to FORTRAN for these
experiments. This decision may affect the results in that array references totally dominate the
performance of these algorithms.

Appendix

SUBROI/rlNE ROWRED (N, N, R, ACOL, PTAG, KUSH, KTASK, MARK)
C
C PURPOSE:
C THIS SUBROUTINE TAKES THE COLUMN VECTOR ACOL
C AND PULLS IT THROUGH THE TRIANGLE R REDUCING ACOL TO ZERO
C AND MODIFYING R BY THE GIVENS METHOD.
C
C INPUT PARAMETERS
C
C M INTEGER
C
C N AN INTEGER VARIABLE DEFINING THE LENGTH OF ACOL AND DIMENSION OF
C THE TRIANGULAR MATRIX CONTAINED IN R.
C
C R A REAL LINEAR ARRAY CONTAINING AN N BY N UPPER TRIANGULAR MATRIX
C IN PACKED FORM. STORAGE SCHEME IS CONCATONATION OF SUCCESSIVE ROWS
C OF R.
C
C ACOL IS A REAL LINEAR ARRAY OF LENGTH AT LEAST N CONTAINING
C THE VECTOR TO BE REDUCED BY GIVENS TRANSFORMATIONS.
C
C PTAG IS AN INTEGER VARIABLE CONTAINING THE IDENTIFIER OF THE CALLING
C WORK ROUTINE.
C
C KUSH IS A POSITIVE INTEGER DEFINING THE LENGTH OF A PIPELINE SEGMENT
C KUSH SHOULD BE LARGE ENOUGH TO ABSORB THE COST OF PIPELINE
C SYNCHRON I ZATION.
C
C KTASK IS THE INDEX OF THE VECTOR PASSED. IT IS ASSUMED THAT KTASK
C REFERS TO THE NUMBER OF THE COLUMN OF THE MATRIX A(TRANSPOSE)
C THE VALUE OF KTASK IS USED TO SET A STOP VALUE ON THE REDUCTION
C AND TO INDICATE THE NEXT TASK TO THE FOLLOWING CALL TO ROWRED.
C
C MARK CONTAINS THE INDEX OF THE LAST SEGMENT OF REFERENCED BY THIS
C COPY OF ROWRED DURING THE PERFOI~IANCE OF KTASK. THE SEGMENTS ARE
C CONTROLLED BY SKWHERE("~) ROWRED MUST OWN (IE HAVE READ) SKWHERE(J)
C IN ORDER TO MODIFY SEGMENT J OF THE ARRAY R.
C
C D.C. SORENSEN
C MCSD
C ARGONNE NATIONAL LABORATORY
C OCT 198A
C

INTEGER M, N, PTAG, KUSH, KTASK, ~IARK
C REAL ACOL(~) ,R(*)
C SET UP THE SYNCHRONIZATION BLOCK
C

IHIEGER K, SLOCK, $START, SNACT, $1~HERE
CO~IONI SYNC/K, SLOCK, $ START, SNACT, SKWlIERE (450)
O0~ON/DBG/$WLOCK,WLOCK, SDLOCK,DLOCK, ICOUNT,WARRAY(5,500)

C
C DECLARE LOCAL VARIABLES
C

INTEGER DUMMY, IJSTOP, NEXT, L, LSTOP, J j LL, INC, KTP I
I~I~.AL GAMMA, SIGMA j ONE ~ ZERO D TAU, TNAX, AA, RR

J. Dongarra e! al. / Concurrenl algorilhms for malrix faclorization 33

DATA ONE,ZERO / 1 . 0 , 0 . 0 /
LSTOP = MINO(KTASK,N)
N&RKP1 -- MARK
KTPI = KTASK + 1
L - - 1
I J = I
IJSTOP = IJ + KUSH
J = I J
I N C - N
L L = O

C
C l:qH£ THE COLUMN A THROUGH R
C

150 COMTINU£
IF (IJSTOP .GT. I J)

1 THEN
C
C
C DECIDE HERE TO COMPUTE OR TO APPLY REFLECTOR
C IF I J .EQ. L THEN A NEW REFLECTOR SHOULD BE COMPUTED
C OTHERWISE THE OLD ONE SHOULD BE APPLIED.
C

IF (L .GT. I J)
1 THEN

C APPLY A REFLECTOR
C
C INPUTS ARE I J - RUNNING INDEX IN R
C J - RUNNING INDEX IN ACOL
C
C GAMMA AND SIGMA DEFINE THE CURRENT REFLECTOR
C
C

AA = ACOL(J)
RE - e (I J)
ACOL(J) = GAN~IA-~AA - SIGNA'~RR
R (I J) = SIGNA'~rAA + GANNA'~RR
IJ = IJ + I
J = J + l

C
C END APPLY REFLECTOR
C
C OUTPUT R(IJ~ MODIFIED
C ACOL(J) MODIFIED
C

ELSE
C COMPUTE A REFLECTOR
C
C INPUTS
C
C L - LOCATION OF CURRENT ROW START IN R
C LL - LOCATION OF CURRENT ROW START IN ACOL
C INC - INCREMENT TO THE NEXT ROW START IN R
C LSTOP - REDUCTION IS FINISHED WHEN LSTOP ROWS
C OF R HAVE BEEN PROCESSED (LL .GT. LSTOP)
C N - REDUCTION IS FINISHED WHEN THE N-TH REFLECTOR
C HAS BEEN COMPUTED
C
C L AND LL ALIGN ELE~IENTS OF R AND ACOL FOR THE "LL-TH ROW
C ELIMINATION STEP.
C

L L - L L + 1
IF (LL .GT. LSTOP) GO TO 1000
SIGMA = ONE
GAMMA = ZERO
TMAX=
SIGN(ONE, R(IJ))*MAX1 (ABS (ACOL(LL)) ,ABS (R (I J)))

IF (TNAX .EQ. ZERO) GO TO 250
TAU =
TNAX*SQRT((ACOL(LL)/TNAX)*~2 + (R (I J)/TMAX)a'k2)

GAMMA = R(IJ) /TAU
SIGMA = ACOL(LL)/TAU
R (I J) - TAU

34 3. Dongarra et al. / Concurrent algorithms for matrix factorizotion

250 CONTINUE
IJ z IJ + 1
J = L L + I
L = L + INC
INC - INC - 1
IF (LL .GE. N) GO TO 1000

C
C END CONPUTE REFLECTOR

EI~)IF
ELSE

C
C BEGIN SYNCRONIZATION OF SEGMENTED PIPE
C
c INPUT
C IJ .EQ. IJSTOP TO GAIN ENTRY
C KUSH - THE LENGTH OF A SEGMENT
C MARK - THE INDEX OF THE CURRENT SEGMENT OF R OWNED
C BY THIS PROCESS.
C /

IJSTOP = IJ + KUSH
C
C WAIT UNTIL PROCESS AHEAD HAS EXITED THE NEXT SECTION

C
~8d~P1 = MARK + I
DUMMY = $KWHERE(MARKPI)

C
C LET THE'NEXT PROCESS ENTER THIS SECTION
C

$KWHERE(MARK) = KTP1
[tARK = MARKP1

C
C END SYNCHRONIZATION
C

ENDIF
GO TO 150

C
I000 CONTINUE

C
C EXIT LEAVING Sk'WltERE FULL
C

$14WHERE(MARKPI) = KTPI
C

C GO FIND ANOTHER JOB
C

RETURN

C

C LAST CARD OF ROWRED
C

END

References

[1] R.G. Babb !1, Parallel processing with large grain data flow techniques, IEEE Comput. 17 (7) (1984) 55-61.
[2] J.J. Dongarra and R. Hiromoto, A collection of parallel linear equations routines for the Denelcor HEP, Parallel

Comput. I (2} (1984) 133-142.

[3] J.J. Dongarra, J.R. Bunch, C.B. Moler and G.W. Stewart, LINPACK Users' Guide (SIAM, Philadelphia, 19"/9).
[4] J.J. Dongarra and D.C. Sorensen, A parallel linear algebra library for the Denelcor HEP, Argonne National

Laboratory Report MCS-TM-33, 1984.

[5] M. Gentleman and H.T. Kung, Matrix triangularization by systolic arrays, Proc. SPIE 298 Real-Time Sioonal
Processing IV, San Diego, CA (1981).

[6] H.F. Jordan, Experience with pipelined multiple instruction streams, IEEE Proc (January 1984) 113-123.
[7] A. Sameh, Parallel algorithms in numerical linear algebra, Proc. Crest Conference on Design of Numerical Algorithms

for Parallel Processing, Bergamo, Italy (Academic Press, New York, 1985).
[8] D.C. Sorensen, Buffering for vector performance on a pipelined MIMD machine, Parallel Comput. I (2) (1984)

143-164.

