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Abstra~. Three parallel algorithms for computing the QR-factorization of a matrix are presented. The discussion 
is primarily concerned with implementation of these algorithms on a computer that supports tightly coupled 
parallel processes sharing a large common memory. The three algorithms are a Householder method based upon 
high-level modules, a Windowed Householder method that avoids fork-join synchronization, and a Pipelined 
Givens method that is a variant of the data-flow type algorithms offering large enough granularity to mask 
synchronization costs. Numerical experiments were conducted on the Denelcor HEP computer. The coml: ra- 
tional results indicate that the Pipelined Givens method is preferred and that this is primarily due to the number 
of array references required by the various algorithms. 
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I. Introduction 

This paper discusses implementations of various forms of the QR factorization on the 
Denelcor HEP. The motivation for examining these implementations was to investigate perfor- 
mance issues that we might expect to face in developing mathematical software for linear 
algebra problems on emerging parallel architectures. The Denelcor HEP is particularly well 
suited for such a study because it offers the possibility of very fine grain parallelism through low 
overhead synchronization primitives. We point out certain synchronization problems that arise 
within the more tightly coupled variations of the algorithm and offer a comparison of the 
performance of these variations. 

2. The Deneleor HEP computer 

Our experiments were carried out on Denelcor HEP computers located at Argonne National 
Laboratory, Los Alamos National Laboratory, and the Ballistics Research Laboratory. The 
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Denelcor HEP is the first commercially available machine of the MIMD variety. It supports 
t i~ t ly  coupled parallel processing, and is quite different from an SIMD machine (i.e., a vector 
or array processor). The fully configured computing system offered by Denelcor consists of up 
to 16 processing elements (PEMs) sharing a large global memory through a crossbar switch. 
Within a single PEM, parallelism is achieved through pipelining independent serial instructions 
streams called processes. The principal pipeline that handles the numerical and logical oper- 
ations consists of synchronous functional units that have been segmented into an eight-stage 
pipe. The storage functional unit (SFU) operates asynchronously from this execution pipeline. 
Processes are synchronized through marking memory and register locations with the full or 
empty state. This means that a process requesting access to a memory location may be blocked 
until that location is marked full by another process. Such suspension of a process takes place 
only in the SFU and therefore does not interfere with other processes that are ready to execute 
instructions. The reader is referred to the article [6] by Jordan for further details on the HEP 
architecture. 

3. Variations of the QR-factorization 

We examined three variations of the QR factorization. They were the Householder, Windowed 
Householder, and Pipelined Givens methods. Concurrency was exploited in the Householder 
method by expressing the factorization in terms of two high-level modules: a matrix times 
vector operation and add a rank one matrix to a matrix operation. Column operations involved 
in these two computations were performed in parallel using a fork-join synchronization. The 
Windowed Householder method is an attempt to reduce the serial bottleneck introduced 
through the fork-join synchronization required at the beginning and end of each major 
reduction step. The method creates a fixed number of processes that compete to either compute 
or apply Householder transformations in a round-fashion to appropriate columns of the matrix. 
The Pipelined Givens method represents an attempt to capture the efficiency of a dataflow 
algorithm in utilizing processes at a level of granularity that is coarser than more traditional 
dataflow algorithms. 

4. ~ e  Householder method 

The problem that each of these methods is designed to solve is the following. Given a real 
m x n matrix A, the routine must produce an m x rn orthogonal matrix Q and an n x n upper 
triangular matrix R such that 

On serial machines, Householder's method is preferred because its complexity in terms of 
floating point operations is roughly half that of Givens' method. However, this is at the expense 
of rou~ly twice as many array references as in Givens' method, and this effect is noted on 
many serial machines where there is a nontrivial cost associated with an array reference. This 
aspect of the two algorithms becomes extremely important on machines that have memory 
accesses through some switching mechanism, because array references begin to dominate the 
calculations in these situations. 

The version of Householder's method we present here provides a good example of an 
approach to programming linear algebra libraries in such a way that they are transportable 
across a wide variety of architectures and yet are reasonably efficient on a given machine. This 
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approach-- the  high-level module approach-- is  described in detail in [2,4]. Within this scheme a 
library is restructured in terms of a few modules that are targeted for efficiency on a given 
machi~,e. All of the special coding necessary to take advantage of parallelism or vectorization is 
contained within the modules. Householder's method consists of constructing transformations 
of the form 

1 -  2ww T 

with the unit vector w constructed to transform the first column of a given matrix into a 
multiple of the first coordinate vector e~. At the kth  stage of the algorithm one has 

( Rk_,  Sk- ,  ) 
QT-1A= 0 Ak- i  " 

and w k is constructed such that (0 sT) 
The factorization is then updated to the form 

This is the basic algorithm used in U N P A C K  [31 for computing the QR factorization of a 
matrix. It should be noted that this algorithm can be made efficient on a gi,en machine if we 
have good routines for the following two operations: 

z T -  wTA (vector X matrix) 

and 

- A - 2wz T (rank-one-modification). 

One might choose a higher level module than this, but it turns out that one more operation, 

z - Aw (matrix x vector), 

is all that is needed to obtain all of the major routines in LINPACK. Thus, efficient coding of 
these three routines is all that is needed to transport the entire package from one machine to 
another. For a vector machine such as the CRAY-I the vector times matrix operation should be 
coded in the form 

Z T ¢'-" Z T -I-co, a~, i - -  1, 2 , . . . ,  m, 

where a~ is the ith row of A and o~, is the ith component of w. For an MIMD machine such as 
the Denelcor HEP, this operation should be coded in the form 

~'j - wThj, j = 1, 2 , . . . ,  n (in parallel), 

where hj is the j t h  column of A and ['j is the jth component of z. This coding has been done, 
and it has been possible to achieve super-vector speeds on the CRAY-1 and near-maximum 
speedup on the Denelcor HEP. Far more spectacular results are possible on the HEP if one 
codes the modules for efficiency in assembly language. This is partially due to the inefficient 
FORTRAN compiler currently in use under HEP/OS.  However, one can do a very good job of 
managing index calculations and memory references if the matrix vector product is written in 
assembly language. Details of these techniques are reported in [8]. 

In this paper we consider only FORTRAN implementations. Within this framework, it is 
possible to achieve a 20~ increase in performance on the HEP by more sophisticated scheduling 
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of the creation and application of the Householder transformations. That is the subject of the 
next section. However, in evaluating the merit of such a performance increase, one must 
consider that each subroutine of the package would require such a recoding effort and that 
maintainability and integrity of the package would suffer from the process. 

5. Windowed Householder method 

The Windowed Householder method performs the same numerical operations as the stan- 
dard Householder method but attempts to keep all available processors busy by executing from 
a pool of tasks consisting of two types: 'compute a transformation' and 'apply a transforma. 
tion'. The task of computing a transformation has precedence over the task of applying a 
transformation during the selection process. However, synchronization is required to ensure that 
the transformation for the k th column gets computed before the transformation for the k + 1st 
column and to ensure that the k + 1st transformation is not applied to a column until the k th 
transformation has been applied. 

One may think of a window of fixed width moving down the diagonal of the unreduced 
matrix, as illustrated in Fig. 1. When this window is positioned over column k of the matrix, the 
transformation to zero out the k th column is computed and applied to the remaining columns 
in the window. The index k is recorded as the last transformation computed, and the window is 
moved to the k + 1st column. At the same time, additional processes are competing to apply the 
transformations that have been computed by the window to the remaining columns of the 
matrix that lie to the right of the current window position. 

6. Pipelined Givens method 

The Pipelined Givens method is the most highly tuned method of the three algorithms 
discussed here. It is influenced by the more traditional data flow and systolic array algorithms 
proposed and investigated in [5,7]. The idea is to construct an algorithm with chunks of 
computation that are at a granularity level of a few FORTRAN statements rather than at the 
binary operation level present in more traditional data flow algorithms. The concept is quite 
similar in spirit to the large grained data flow techniques proposed by Babb [1]. However, the 
details of the implementation are quite different from Babb's systematic approach. The method 
we present assumes a globally shared memory together with a low overhead synchronization 
mechanism as attributes of the target architecture for this algorithm. The HEP is, of course, the 
machine that is principally considered. However, the algorithm would be applicable to any 
architecture that would support a model of computation containing these two features. 

The technique might be contrasted with the Householder method based on high-level 
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WINDOW Fig. 1. Windowed Householder method. 
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modules. If one were to raise the level of 'module" to the highest level subroutine calls within a 
linear algebra library, then this method would be the method of choice on machines supporting 
the low overhead synchronization and shared data requirements mentioned above. The reason 
for this is twofold. As we shall demonstrate with our computational results, memory references 
are likely to play a far more important role in accessing algorithm performance than they have 
on serial machines. This algorithm requires half as many array roferences as the Householder 
method. In addition, the Pipelined Givens method offers a greater opportunity to keep many 
(virtual) processors busy because it does not employ a fork-join synchronization mechanism. 
Moreover, there is the opportunity to adjust the level of granularity through the specification of 
a given parameter in order to property mask synchronization costs with computation. 

The serial variant of Givens' method that we consider is as follows. Given a real m x n 
matrix A, the goal of the algorithm is to apply elementary plane rotations G u which are 
constructed to zero out the / j th  element of the matrix A. Such a matrix may be thought of as a 
2 x 2 orthogonal matrix of the form 

o 

where o 2 + 72 _ 1. If 

/~ b T 

represents a 2 x n matrix, then a zero can be introduced with left multiplicatibn by G into the fi 
position through proper choice of 7 and o. When embedded in the n × n identity, the matrix 
G u is of the form 

Gij = l + Dij,  

where all elements of D u are zero (with the possible exception of the ii, ij, j i ,  and j j  entries). 
The matrices G u are used to reduce A to upper triangular form in the following order: 

( ~ , , _  i . , ,  . . . G2 , , (~ ln  ) (  G , t_  2 .n_  I . . . G 2 . , , _  i G , . , _  I ) . . . ( G 2 3 G i s  ) (  G I 2  ) A - -  R.  

The order of the zeroing pattern may be seen in the following 5 × 5 example: 

X X X X X 
®t X X X X 

®2 ®3 X X X 

®4 ®~ ®6 X X 

®7 @s @9 @lo X 

where the symbol ®j means that entry was zeroed out by the j th transformation. This order is 
important if one wishes to "pipeline' the row reduction process. This pipelining may be achieved 
by expressing R as a linear array in packed form by rows and then dividing this linear array 
into equal-length pipeline segments. A new row may enter the pipe immediately after the row 
ahead has been processed by the first segment. Each row proceeds one behind the other until 
the entire matrix has been processed. However, because of data dependencies, at no time can 
these rows get out of order once they have entered the pipe. Moreover, at a particular location 
within a segment, one of two operations must be done: compute a transformation or apply one. 

The method is more easily grasped if one considers the following three diagrams. In Fig. 2 we 
represent the matrix A in a partially decomposed state. The upper triangle of the array contains 
the current state of the triangular matrix R. The entries ((~ a a a a) and the entries (fl fl fl fl fl) 
represent the components of the next two rows of A that must be reduced. In Fig. 3 we see the 
row (a  a e a a) being passed through the triangle R during the reduction process. The first 
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Fig. 2. Partially reduced matrix, l:ig. 3. Pipelined row reduction. 

entry has been zeroed by computing and applying the appropriate Givens transformations as 
described above, and we are ready to zero out the second entry. In a serial algorithm this row 
would be completely reduced to zero before the row (/~ ,8/~/~/~) could be referenced. In the 
parallel version the processing of this row is begun immediately after the a-row. The first row of 
R is modified during the introduction of a zero in the first position of the a-row so it is 
important that the processing of the/~-row is suitably synchronized with the processing of the 
a-row. 

To accomplish this synchronization and also achieve a way to adjust the level of granularity 
of the algorithm, we consider the matrix R as a linear array. In Fig. 4 we depict this linear array 
with natural row boundaries marked with:and pipe segments marked with I. The length of a 
segment is 

I n(n + l)/2 1 
number of segments " 

The number of segments is a parameter to the program. The a and ,8 arrays are represented as 
in Fig. 3 with the a array entering the second segment and the ,8 array entering the first 
segment. A row must gain entry to the next segment before releasing the current segment in 
order to keep the rows in order. If the number of segments is equal to the number of nonzero 
elements of R, then this algorithm reduces to a variant of the more traditional data flow 
algorithm presented in [5]. The subroutine ROWRED in the Appendix shows how this is 
accomplished on the HEP in FORTRAN. The variables in ROWRED that are preceded by a $ 
(e.g. $KWHERE) are asynchronous variables. These variables are in a full or an empty state 
during execution. If an asynchronous variable appears to the left of an assignment statement it 
must be empty in order for the statement to execute. If it appears to the right of an assignment 
statement it must be full before the statement will execute. This mechanism allows concurrent 
processes to communicate and synchronize through data memory. 

Table 1 indicates the effect of adjusting the number of segments in the array R. The first 
column contains the number of segments. The remaining columns give the corresponding 
execution time (in seconds) of the factorization of a matrix with n - 50, 100, 150, 200 columns 
respectively. 

The results of these experiments seem to indicate that the performance of the algorithms is 
not extremely sensitive to the number of segments, but that it does appear desirable to get the 

B B B ' B B  

I 1 X X X l X  X ' X l X  X Xl:X X Xl:X X:Xl 
Fig. 4. R as a segmented pipe. 
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Table i 
Adjusting number of segments in R 

Segments N = 50 N = 100 N = 150 N = 200 

10 3.83 13.17 27.95 47.79 
20 3.15 10.92 22.79 38.40 
30 2.83 10.11 21.44 36.39 
40 2.84 10.09 21.33 35.11 
50 2.85 !,0.08 21.28 35.99 
60 2.85 10.07 21.26 35.93 
70 2.86 10.08 21.24 35.90 
80 2.88 10.08 21.23 35.87 
90 2.88 10.09 21.24 35.86 

100 2.90 !0.10 21.25 35.85 

length of a segment roughly equal to n (the number of columns). The optimum time for each n 
seems to be around n/2 segments. The results shown here have the number of rows of the 
matrix fixed at m - 500 and the number of active processes set at 20. This number of processes 
appeared to give the best performance, however, the results were fairly insensitive within the 
range of 10 to 20 processes. 

7. Comparison of the methods 

While extensive runs were made with these codes, their relative performance is best 
summarJ~d with a graph. In Fig. 5 we represent the performance in terms of execution time of 
the three QR factorization variants on matrices of order m x 200 where m - 200, 300 . . . . .  1000. 
The experiinents show the Pipelined Givens method to be roughly twice as efficient as the 
Householder method. The Windowed Householder method achieved roughly a 20% reduction in 
execution over the Householder method. 

8. Conclusions 

Experiments were carried out in the relatively well understood setting of linear algebra in 
order to isolate peculiarities of the I-IEP environment in particular and to gain understanding 
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about efficiency of algorithms on parallel processors in general. Some recent work on efficient 
use of the HEP register memory to construct vector operations in software [4,8] can improve the 
performance of the Householder routine tremendously but similar coding of the Pipelined 
Givens method has not yet been carried out. Comparable increases in performance are expected 
when this has been done. To obtain fair comparisons, we stuck to FORTRAN for these 
experiments. This decision may affect the results in that array references totally dominate the 
performance of these algorithms. 

Appendix 

SUBROI/rlNE ROWRED (N, N, R, ACOL, PTAG, KUSH, KTASK, MARK) 
C 
C PURPOSE: 
C THIS SUBROUTINE TAKES THE COLUMN VECTOR ACOL 
C AND PULLS IT THROUGH THE TRIANGLE R REDUCING ACOL TO ZERO 
C AND MODIFYING R BY THE GIVENS METHOD. 
C 
C INPUT PARAMETERS 
C 
C M INTEGER 
C 
C N AN INTEGER VARIABLE DEFINING THE LENGTH OF ACOL AND DIMENSION OF 
C THE TRIANGULAR MATRIX CONTAINED IN R. 
C 
C R A REAL LINEAR ARRAY CONTAINING AN N BY N UPPER TRIANGULAR MATRIX 
C IN PACKED FORM. STORAGE SCHEME IS CONCATONATION OF SUCCESSIVE ROWS 
C OF R. 
C 
C ACOL IS A REAL LINEAR ARRAY OF LENGTH AT LEAST N CONTAINING 
C THE VECTOR TO BE REDUCED BY GIVENS TRANSFORMATIONS. 
C 
C PTAG IS AN INTEGER VARIABLE CONTAINING THE IDENTIFIER OF THE CALLING 
C WORK ROUTINE. 
C 
C KUSH IS A POSITIVE INTEGER DEFINING THE LENGTH OF A PIPELINE SEGMENT 
C KUSH SHOULD BE LARGE ENOUGH TO ABSORB THE COST OF PIPELINE 
C SYNCHRON I ZATION. 
C 
C KTASK IS THE INDEX OF THE VECTOR PASSED. IT IS ASSUMED THAT KTASK 
C REFERS TO THE NUMBER OF THE COLUMN OF THE MATRIX A(TRANSPOSE) 
C THE VALUE OF KTASK IS USED TO SET A STOP VALUE ON THE REDUCTION 
C AND TO INDICATE THE NEXT TASK TO THE FOLLOWING CALL TO ROWRED. 
C 
C MARK CONTAINS THE INDEX OF THE LAST SEGMENT OF REFERENCED BY THIS 
C COPY OF ROWRED DURING THE PERFOI~IANCE OF KTASK. THE SEGMENTS ARE 
C CONTROLLED BY SKWHERE("~) ROWRED MUST OWN (IE HAVE READ) SKWHERE(J) 
C IN ORDER TO MODIFY SEGMENT J OF THE ARRAY R. 
C 
C D.C. SORENSEN 
C MCSD 
C ARGONNE NATIONAL LABORATORY 
C OCT 198A 
C 

INTEGER M, N, PTAG, KUSH, KTASK, ~IARK 
C REAL ACOL(~) ,R(*) 
C SET UP THE SYNCHRONIZATION BLOCK 
C 

IHIEGER K, SLOCK, $START, SNACT, $1~HERE 
CO~IONI SYNC/K, SLOCK, $ START, SNACT, SKWlIERE (450) 
O0~ON/DBG/$WLOCK,WLOCK, SDLOCK,DLOCK, ICOUNT,WARRAY(5,500) 

C 
C DECLARE LOCAL VARIABLES 
C 

INTEGER DUMMY, IJSTOP, NEXT, L, LSTOP, J j LL, INC, KTP I 
I~I~.AL GAMMA, SIGMA j ONE ~ ZERO D TAU, TNAX, AA, RR 
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DATA ONE,ZERO / 1 . 0 , 0 . 0 /  
LSTOP = MINO(KTASK,N) 
N&RKP1 -- MARK 
KTPI = KTASK + 1 
L - - 1  
I J  = I 
IJSTOP = IJ  + KUSH 
J = I J  
I N C - N  
L L = O  

C 
C l:qH£ THE COLUMN A THROUGH R 
C 

150 COMTINU£ 
IF (IJSTOP .GT. I J )  

1 THEN 
C 
C 
C DECIDE HERE TO COMPUTE OR TO APPLY REFLECTOR 
C IF I J  .EQ. L THEN A NEW REFLECTOR SHOULD BE COMPUTED 
C OTHERWISE THE OLD ONE SHOULD BE APPLIED. 
C 

IF (L .GT. I J )  
1 THEN 

C APPLY A REFLECTOR 
C 
C INPUTS ARE I J  - RUNNING INDEX IN R 
C J - RUNNING INDEX IN ACOL 
C 
C GAMMA AND SIGMA DEFINE THE CURRENT REFLECTOR 
C 
C 

AA = ACOL(J) 
RE - e ( I J )  
ACOL(J) = GAN~IA-~AA - SIGNA'~RR 
R ( I J )  = SIGNA'~rAA + GANNA'~RR 
IJ = IJ  + I 
J = J + l  

C 
C END APPLY REFLECTOR 
C 
C OUTPUT R(IJ~  MODIFIED 
C ACOL(J) MODIFIED 
C 

ELSE 
C COMPUTE A REFLECTOR 
C 
C INPUTS 
C 
C L - LOCATION OF CURRENT ROW START IN R 
C LL - LOCATION OF CURRENT ROW START IN ACOL 
C INC - INCREMENT TO THE NEXT ROW START IN R 
C LSTOP - REDUCTION IS FINISHED WHEN LSTOP ROWS 
C OF R HAVE BEEN PROCESSED (LL .GT. LSTOP) 
C N - REDUCTION IS FINISHED WHEN THE N-TH REFLECTOR 
C HAS BEEN COMPUTED 
C 
C L AND LL ALIGN ELE~IENTS OF R AND ACOL FOR THE "LL-TH ROW 
C ELIMINATION STEP. 
C 

L L - L L +  1 
IF (LL .GT. LSTOP) GO TO 1000 
SIGMA = ONE 
GAMMA = ZERO 
TMAX= 
SIGN(ONE, R(IJ) )*MAX1 (ABS (ACOL(LL)) ,ABS (R (I J) ) ) 

IF (TNAX .EQ. ZERO) GO TO 250 
TAU = 
TNAX*SQRT((ACOL(LL)/TNAX)*~2 + (R ( I J)/TMAX)a'k2) 

GAMMA = R(IJ) /TAU 
SIGMA = ACOL(LL)/TAU 
R ( I J )  - TAU 



34 3. Dongarra et al. / Concurrent algorithms for matrix factorizotion 

250 CONTINUE 
IJ  z IJ  + 1 
J = L L + I  
L = L +  INC 
INC - INC - 1 
IF (LL .GE. N) GO TO 1000 

C 
C END CONPUTE REFLECTOR 

EI~)IF 
ELSE 

C 
C BEGIN SYNCRONIZATION OF SEGMENTED PIPE 
C 
c INPUT 
C IJ  .EQ. IJSTOP TO GAIN ENTRY 
C KUSH - THE LENGTH OF A SEGMENT 
C MARK - THE INDEX OF THE CURRENT SEGMENT OF R OWNED 
C BY THIS PROCESS. 
C / 

IJSTOP = IJ + KUSH 
C 
C WAIT UNTIL PROCESS AHEAD HAS EXITED THE NEXT SECTION 

C 
~8d~P1 = MARK + I 
DUMMY = $KWHERE(MARKPI) 

C 
C LET THE'NEXT PROCESS ENTER THIS SECTION 
C 

$KWHERE(MARK) = KTP1 
[tARK = MARKP1 

C 
C END SYNCHRONIZATION 
C 

ENDIF 
GO TO 150 

C 
I000 CONTINUE 

C 
C EXIT LEAVING Sk'WltERE FULL 
C 

$14WHERE(MARKPI) = KTPI 
C 

C GO FIND ANOTHER JOB 
C 

RETURN 

C 

C LAST CARD OF ROWRED 
C 

END 
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