HeNCE: A Heterogeneous Network

Computing Environment

ADAM BEGUELIN!, JACK J. DONGARRA?, GEORGE AL GEIST®, ROBERT MANCHEK*, AND

KEITH MOORE?

Vaeheal of Compueer Science ard Pinsbargh Supercompiting Center, Cemegic Mellon University, Fisburgh, PA 15213
) niversify .L!II.. Teaneszer amd Oak Hf.;{g--:- Nagional Lebarziory, Mnexrille, TY

"ﬂﬂ.l.' Rr.q'p_' ";lr.'.:lln-::u' .|I.|'.'IIIII|'I?.'I:A.'_'|. K ol I."l. Jredd
*iniversity of Tennenee, Knexille, T 3700

ABSTRACT

Metwork computing seeks to utilize the eggregate resources of many networked com-
puters to salve a single problam, In sa deing il is often possible to obtain supercomputer
performonce from on inedpensive local area netwark, The drawback iz that nebwark
compuling is complicoled ond errar prone when done by hand, especially if the com-
pulers have differenl cperafing systems and dolo formals and are thus helercgeneous.
The heterogeneaus netwark compuling environment (HeMCE] is an infegroled graphical
environmeni for creafing and running parallel pregrams over a hefercgenaous collec-
tion of camputers. It is buill on a lower level pockege called porallel virual machine
{PYM). The HeMCE philosaphy of parollel progromming is to hove the programmer
graphically specify the perallelism of o computation and to eulomate, os much as
possibla, the tasks of writing, compiling, executing, debugging, and fracing the network
campulation, Key to HaMCE iz o grophical longuage bosed on direcled graphs thal
describa the parallelism and dato dependencies of an application. Modes in the graphs
represent convenlional Foriran or C subrowtines and the eres represent dola and control
flow. This arficle describes the present slate of HeNCE, its copabilifies, limitotions, end

areas af fulure research.  © 1594 by Jobe Wiley & San, Ing

1 INTRODUCTION

Computer networks have become a basic parn of
teday’s computing infrastruciure. These networks
connect a varety of machines, presenting an
enormous computing resource. The heteroge-
necus nemwork computing environment (HeNCE]
project focuses on developing methods and wools

Beeerved December 1992

Revized November 1993

£ 1994 by John Wiley & Sons, [ne.

Seventific Progronuning, Vel, 3, pp. 49-60 (199+]
O 1058- 92449400 (kg 5- 12

that allow & progrommer 1o tap into this resource.
In thiz article we deseribe a tool and methodology
that allow a programmer to write a single program
and execute it in parallel on a nerworked group of
heterogeneous machines,

The HeNCE programmer explicitly specifies
the parallelism of 8 computation and the environ-
ment aids the programmer in designing. compil-
ing, exceuting, debugging, the analyzing the par-
allel computation. HeNCE provides progromming
suppont through a graphical imterface that the
programmer uses 1o perform  various  tasks.
HeNCE supporis visual representations of many
of its funcrions.

49



o) BEGUELI™ ET AL.

In HeNCE the programmer specifies directed
graphs where the nodes in the graphs represen
gither procedures or special tvpes of contral flow
and the edges denote dependencies. These pro-
gram graphs are inpist by the programmer using &
HeNCE graph editor. (There is also a texmal in-
teeface allowing a programmer to create a program
graph using a conventional rext editor.) The pro-
eedures represented by the nodes of the graph are
written in cither C or Fortran. In many cases these
procedures can be taken from existing code. This
ability of software reuse is a grear advantoge of
HeMCE. The environment: provides facilities for
editing and compiling these procedures on the
various architectures of the user-defined collec-
tions of computers. alse called a virtual machine.

A unique capability of HeNCE is the ability lor
the wser 1o specily multple implementstions of
HeMCE nodes based on the targer architecture. [f
a node in the HeMCE graph is exeeuted on s Cray
then eode written explicitly for that machine can
be used. However, il the node is executed on &
distributed memory multicomputer then another
algorithm may be used which has been mined for
that architecture. During execution of a HeNCE
program, He™CE dvnamically chooses which ma-
chine executes a node. Scheduling choices are
based on programmer input and the current
HeMNCE-related load on a machine. This combi-
nation of graph specilication and multiply defined
node implementation is a departure from current
single program multiple data [SPMD} approaches
to massively parallel programming svatems.

Onee a HeNCE program graph has been writ-
ten and compiled it can then be executed on the
user's virtual machine, Using HeNCE the pro-
grammoer specifies the various machines on which
the program is to run. Each machine is specified
by itz interner name. This collection of machines
can be widely varving, A warget machine could be
anything from a single processor workstation o o
G4k processor CM-2, Beeause of the nature of the
interconnection network, HeMCE procedures are
intended to be large grain. The programmer may
also specily a cost matnix showing the relative
costs of running procedures on various architec-
tures, HeNCE will automatically schedule the pro-
gram procedures on particular machines hased on
this user-defined cost marrix and program graph.

As the program is executing, HeNCE  can
graphically display an animated view of its pro-
gram's state based on the compuimional graph.
Various statistics recorded during program execu-
tion may also be stored and animared postmer-

tem. Debugging supporn is available, Bevond the
postmortem analysis, HeMCE can exeeure shells
and other debugging waols on user-specific ma-
chines.

HeNCE i implemented on wp of o system
called Parallel virtwal machine (PVM) [1-37. PYM
is a software package that allows the wiilization of
a heterogeneous network of parallel and serial
computers as a single computational resouree,
PVM provides Tacilities for spawning, communi-
cation, and synchronization of processes over a
network of heterogensous machines. PYM differs
from HeMCE in that it provides the low-level tools
for implemenong parallel programs, whereas
HeNCE provides the programmer with a higher-
level abstruction for specifving parallelism and o
comprehensive environment for developing, run-
ning, and tuning programs.

In this article we will expand the points intro-
duced here. Section 2 presents an in-depth expla-
nation of the HeNCE paradigm and how proce-
dures and graphs are interfaced. In Section 3 the
environment’ s major features are presented along
with sereen dumps showing HeNCE in action. We
compare HeMCE w related work in Section 4. In
Sections 5 and & we diseuss some future direc-
tions for this work and provide pointers for retriesv-
ing the software. Finally in Section 7 a summary is
given of the project’s eurrent status and the direc-
fions of our continuing work.

2 THE HeMCE PARADIGM

In developing software, the initial definitions and
specifications are often  performed graphically:
low charts or dependency graphs are well known
examples. The overall structure of the problem
can be visualized far more casily from these
graphical representations than From textunl -
fications; from the development point of view,
such & representation enhances the quality of the
resulting software. However, in order 1o be exe-
cuted. such a descrdption must be converted o
progrum  form. tvpically manifesied as source
code. These graphical representations therelore,
must eventually be ranslated w opertional pro-
grams—the graphical depiction of a concurrent
application and straregies for its suceessful exeon-
tion on a heterorensous network are the two fun-
domental inputs 1o the HeNCE environment,
With the use of a graphics interface. imple-
mented on a workstation for example, n user can
develop the parallel program as a compumational



graph. where the nodes in the graph represent the
computation 1o be perflormed and the ares repre-
sent the dependencies berween the computations.
From this graphical representation. a lower-level
portable program can be generated, which when
executed will perform the compurations specified
v the graph in an order consistent with the de-
pendencics specified, This p-rrrgrammmﬂ CIVITOTL
ment allows or a high-level deseription of the par-
allel algorithm  and. when the  high-level
description i ranslated inwo a common program-
ming language, permits portable program execu-
ticr. This environmem presents the algorithm de-
veloper with an abstract maodel of computation
thot can bind effectively 1o a vanew of existing
parallel processors. Specific machine intrinsics
may be confined 1o the internal workings of such a
ool i order 1o provide a commeon vser interface 1o
these parallel processors.

Another problem facing the developers of algo-
rithms and software for parallel compurers is the
analvsis of the performance of the resuling pro-
grams. (Mien performance bugs are far more dith-
cult 1o deteet and overcome than the syvochroniza-
ton and data  dependeney  bugs  normally
associated with parallel programs. We have devel-
aped a fairly sophisticated posiprocessing perfor-
manece analyvsis ool associated with the graphics
programming interface just described [see Section
3.4). This ool 1= quite uselul in understanding the
Now of execution and processor wilization within
a paralle] program.

In HeCE, the programmer explicily specifies
a computation’s parallelism by drawing a graph
that expresses that p.-am]'.-?lu-nh HeNCE graphs
provide a usable yet flexible way for the program-
mer 1o specily parallelism. The user direcily in-
puts the graph using the HelNCE compose 1ol

0

FeMCE 51

HeNCE graphs consist of subroutine nodes thai
represent subroutines (written in Fortran or C)
and special nodes that denote four different types
control fow: conditionals, loops, fans, and pipes.
Arcs between subroutine nodes represent depen-
deneies. It is the user’s responsibility 1o specify
these dependencies. There exist tools such as
Parascope [4] and Forge®0 [5] that can help the
programmer discover parallelism in a sequential
code, HeNCE helps the user deseribe and run a
parallel program but it does not find parallelism
for the programmer. For instance if there is an arc
from node & to node B then node 8 must complets
cxecuten belore node b may begin execution.
During the execution of a HeNCE graph. proce-
dures are automatically executed when their pred-
eeessors, as defined by the geaph. have ecom

pleted. Functions are mapped 10 machines based
on o user-defined cost matrix, The costs are also
used as an indication of machine load. The sum of
the costs of the functions currently mapped 10 a
machine eonstitute a machine's HeNCE orgi-
nated load, This load is considered when mapping
a new function wo o machine.

Figure 1 shows a simple HeNCE graph contain-
ing only dependency ares. This graph represents a
fractal computation. The start node reads input
parameters denoting which par of the complex
plane the computation should cover. After the
start node completes, the dependency ares from it
to the tie nodes are satisfied and they may begin
execution, computing the pixel tle assizned 10
them via the parameter list. In this case they are
invoked on dilferent pants of the complex plane,
Onee all of the compute nodes are finished the
colfect node can execute and display the resulung
fractal.

When a subrowtine pode executes, s parame:

lactipix, widih, height)

iladrmps, 1,y e my2 e mybhd)
v, 22 my womyht) "

stan(pix, width, hight

FIGURE 1 Simple HeNCE graph with dependency wres.



32  BEGUELI ET AL.

70 sumipartial, num_procs)

4 () panial[p] = integratefx1, x2)

E ¥ p=0TOnum_procs

1 Chinit(x, max_pars, num_procs)

FIGURE 2 HeXxCE prosram for numerical integra-
dasrn.

ters are taken from its immediate predecessors,
Parameter marching is done on the named vari-
ables in the parameter list anached 10 o subrou-
tine node, IF two or more predecessors have a
nodde’s parameter then one of the paramerars is
chosen randomly, If o parnmeter does nor exise
among the predecessors 1o a node, then the pro-
gram will deadlock. When these conditions can be
checked a priori they will produce warnings.

Mext, we use an integration program o demon-
strate the dynamic behavior of HeNCE graphs.
Figure 2 shows the graph for computing the inte-
gral of a funcion. This program uses the rectan-
gular rule for computing the integral. Avached 1o
node 1 is the it function. init will initialize the
array X with the values arwhich £ (2) will be eval-
uated for integration. The paramerers max_parts
and num_procs indicate the number of maxi-
mum number of x values and the number of pro-
cesses 10 be used in the parallel compuation.

The triangular nodes 3 and & are special nodes
that specily that node 4 will be replicated dynami-
colly at munidme. The statement atached o
node 5 specifies that noede 4 will be replicated
nunm_proecs £ 1 times. Each O ol node 4 will
compute a partial ineeral of the fupetion £ on the
interval from x1 to x2. In this example only node
4 iz rephicated. It 12 possible that an entire sub-
graph be replicared ar runtime.

Besides strict dependencies and dvnamie con-
struets, HeNCE also supports pipelining, looping.
and conditionals. Each of these constructs is used
in a manner gimilar to thot of the fan construer.
Begin and end nodes mark the affected subgroph.

HeMWCE nodes are stateless. Inpun and outpu
from these nodes oecur only via the parameter list.
In this way HelNCE is very similar 1o programming
in a sequential languoge with no global variables.
HeXNCE does not prohibit the node from creating
external state, for instance in the form of files.
However. internal state is nor preserved hevond
the node’s parameter list, For example. if a node
d:.'nﬂmif:i]]x‘ allocares ALOTAgE. 1his storage will no
b aceessible 1o other nodes in the sverem nor will
it be accessible o futare invecations of the same
node. Irag in this sense thar HeNCE nodes are
stateless,

HexCE nodes may aceess fles. However,
HeNCE makes no special provisions for file ac-
cess, Because nodes are mapped 10 machines ar
runtime, anv files would need ro he accessible
from the targer machines. 17 all the machines are
using the same file svstem via NFS or AFS then
files will be globally accessible and thus not a
problem. Il a global file svstem is not available the
programmer can conteol the mapping of nodes w
rmachines via the HeXCE cost marrix described in
Section 3.2

In general, any combination of constructs may
b J:rl"l'lj'h!":l:'l:l' nested. When expressions ore evilu-
ated or subroudines called. their paramerers al-
WAYE come from their E'II'\'E'I'tI‘.l;'IE'.i.‘-IIr‘:\ mn the graph,

2.1 Parameter Passing in HeMCE

Subroutines are attached o nodes in a HeMNCE
graph simplv by specifving the subroutine call as
i conventonal Fororan or O, Thiz approach o
automarically passing parameters makes the
HeMCE programs easy 1o build Trom pieces of
code that have already been written. Reusability is
erhanced,

When a procedure is amached w a particular
riele, the parameters to be uzed when the node is
invoked are also specified. Parameters can be in-
put, cutput, or input/output. Input parameters
take their values from ancestors in the graph. Our-
put parameters pass their values on w descend-
ents in the :.:.!:l"'..'I.E'I]'I. =calar. vecior, and rwo-dimen-
sional arrays of all base tvpes are supported. For
nonacalar parvameters, the rmow and column spes
must be input. If only a cemain subarrav is
needed., l.‘:-l:‘.l]}' the upper and lower bounds for the
subarray need w be specihed. For instance.,

NEW = float local_x[a] = x[0:a-1]

specifies that a new local variable called local _x



will contmin the valuss of the varable % i the in-
dex range 0 toa — 1.

2.2 Heterogeneous Function
Implementation

Ancther strength of HeMNCE = s abalioy w0 ge io-
gether different architectures into & virtual paralle]
supercomputer. In fact, the mochimes that make
up this virtnal parallel supercompuer mayv them-
selves be parsllel supercompuaters, We  hoave
ahown thar HeMsCE f_'11||:1|:'|.=~ dezcribe 1he _|'l:1.|':|.||1'|-
izm ool a =et of procedures, Each procedure moa
HeMCE graph mav be implemented by several al-
morithms. Forinstance. computing the LU decom-
position of o matrix on an Ingel iPSCSS00 s ek
different from compuring the same procedure on o
Cray U9, HeMCE supports the .%J'lnP:l‘:i.ﬁ-:'."lli-:'.lsl of
different procedure implementations and invokes
the appropoate implementation when a proce-
dure is executed on a particular machine, Thus o
complete HeMNCE program consistis of a set of pro-
cedures represented by nodes in the program
graph and. for each procedure. a set of implemen-
tations of that procedure for vanous architectures,
HeXNCE  provides mechanisms for specifving
which zource files implement which procedores
for which architectures. Facilities for compiling
souree files on various architcetures are also sup-
ported. In the fumre we hope o add facilities thar
visually represent the status of o user’s virtual ma-
chine with re apet T the machines that are able to
cxecute HeMCE nodes,

3 THE HEMNCE TOOL

HeMCE provides an X window-based vzer inver-
face for using HleNCE facilitics. This interfaee aids
the user in creating HeNCE graphs, configuring
virrnal machines. visualizing trace information.

N Fitaiod

HeMCE 34

compiling. executing. and debugging HeNCE pro-
grams. Although the graphical from end makes
the use of these facilities easier. for portability rea
sons it is still possible to utilize HeMNCE withour ic's
eraphical interface. All essential HeMNCE facilities
have texmal counterpars

Figure 3 shows HeNCE's main menu. The up-
per par of the window is a scrollable window that
disrlivs varous HesCE-related informarion. The
[directory | button allows the user 1o change direc-
tores, he |-|:r:||:.l!'|:—|. |l:'l:.-:-l.-'.' | and El.i'_u_l.:“_l."_lgi_ﬂ_\'.'_.J bouai -
LS 43]_!2'._-._' the user wo load the azsociared Rles.
The | ]:muuaém: | button specifies whether the node
subroutines will be written in C or Fortran. The
[compose . [config]. [build]. and [trace] buttans
are for entering those related modes of HeNCE
operation. In the compose mode the user draws o
program graph. Config mode allows the user w
configure a virtual machine and w specify the
hosts involved in executing the distrbuted pro-
grarm. Build made will compile node programs for
cxecution on the virtwal machine. Trace allows the
programmer o0 animate  aspects of  program
cxecution, The | st ]p.';.rll buteon will siarr exe-
cuting PVM on the user-specified vinual machine
|E_~:n:r_'1|!c_-_! runs the cument HeMCE program on
the virtual machine. Finally, the |1:-_ri:|1| prints o
displavs a

copy of the HeNCE graph and | legend
useful legend of HeMCE symbaols.

3.1 Compose

The compose mode of He™CE allows the user 1o
interactively create HeMNCE  graphs. Figure 4
shows HeNCE in compose mode. Varions nodes
may be drawn and connected with arcs, For each
p]’r'u.n:':_'r_hlrl_- noules in the graph the user must specify
a procedure thar will be called when that node’s
dependencies have been satisfied. For control
flow construces, loops. and so on, the regquired
expressions and  varables must be specified.

HeMNCE tool +1.2

current directory iz now “/usrl/edomb”

|d1re:tnrH: Erdalbil p;raphT”custEZH Lru:.:EFﬂ_i_i-E5..f‘;=.3=:ﬂﬂ.tr‘ﬂr:&'j[language? ':l

[ CONpOSE | | config | | build | | trace |

isl,urt p'-'_-“ E:Etzutelgprint || lel:[en-:ll

[auit]

FIGURE 3 HeXCE main menu



o4 BEEGUELIMN ET AL.

[ htool m&lﬁ?—"

HEmlﬂﬂﬂFurpﬂmEﬂH}

conpose modda .
“conp, " Loaded,

currerd directory iz now “Fafzs,reactefhupe . psc.edufusrddibegue] infalphad denns/ demaS®

|_:_I'lr_:=l.-=ru: Ml_r_’-l_l'll'- e, '|__=n~l!.-i||t-r-u-:ef“.ih: hence,brace || Lan |

[start pvn|[ns

EEITEERY conig | [build | [trace ]

e || print || Legend |

[aquie ]

ll:l-u_”ur.-:ru |[clear | [cr;t;ﬂl—]mm
.l_ —|DviAl[?][3]

[® Compose help e
i mouse button 1| |
lefi middie right |
. i._. none _ add node draw arc | edi m.ﬁ!t:_ program |
etrl delete node | delete arc undefined
.3 hift : move node move arc | edit source 5

FIGLURE 4

When a procedure is attached to g node the acoal
parameters are specified. From compose mode
the user ean also open an edit window for a partic-
ular node’s subroutine source code.,

3.2 Configure a Virtuval Machine

In order to compile and execute a HeNCE pro-
gram, a set of machines must be specified. In
HeNCE this is called configuring a virtwal ma-
chine. Any machine where the user has a login

HeNCE in compose made,

and vig @ nelwark e sed]
FleMCE makes use of PV for most funections. If
the PYM daemon is not running on a machine. then
HeXCE can stam it The user mav add hosis 1o the
virlual maching simply by .1=J|F[TI|:|.'ir'|E_' an Iniermnet
name or address. HeWCE can be customized via
X resources to handle difterent login names on
different machines. [X resoueces are variables
supporied by the X windowing environment. ]

In configure mode the user may also specify
costs for running nodes on different architeciures.

accesailnliny A



HeMCE

—

“corp.pr” lesded,

“comp,prT praph wrilbem,

e Funchions Ernﬂ graph added Lo cosk matrix,
conllp nods.

|r Conpoze Aode,

‘dirsckecys |,I-ruq.5_:|_-p_'-.-|pi'|: cnhp,ir'r_n:q:gs.:_..:.i'._ |Lr-:-cef“ilu: Mﬂ:u.trmlllunw: |.'-_|

hr.:;p:s.e.i I|I:-I|.|:I.1|1 ||Lr-:l:e | |z=_l-n'_l._-vm||_ =ecul.e || prink ”lﬂ‘ﬂ?ﬂﬂ |qu:|.t |

[1uad | [store | [new entey |[Left |[Soun ] [up | [righ: ]

| e T R T A SR RN R L T o

¥

L 3 Lonpute SkLart. [ ¥ R

sofea) X 100 o0, _ '___ 100

{____ sofeb 1on, Lon, Lo,

anplea) 30, 30, TFD

L coieml ET] .

e | SR 25, =
anpl __ 25

anp? 3 - piti] -
P, AR 25

FIGUKE 5 HeMCE in confimirs maode.

For a particular node. costs are ordered pairs of
machines and integers. The higher the integer, the
more expensive it 1% o run that node on that host.
He™CE will use these costs when mapping a pro-
cedure 1o a machine at run-time. Figure 5 shows
HeNCE in configure mode where the cost and
configure information is imput by the user.

The costs are used ar runtime when mapping
nodes to machines. These costs reflect the relative
rmantimes for HeMOE nodes execuring on varoos
machines. The user should estimare these costs
based on what he or she knows of the mochines
ability 10 execute a HeNCE node. This should re-
flect not only the tvpe of machine but its expected
load. For instance, an unloaded DEC Alpha
workstation may be faster than a heavily loaded
Cray C90. In this case it may make sense for a
node to hove o lower cost on the Alpha than the
Cray. HeNCE keeps track of where nodes are exe-
cuting. Using the cost marrix, HeNCE can decide
on the least cosily process placement. This place-
ment only takes into account HeNCE processes,
ignoring other external load factors. We are ex-
ploring more comprehensive methods of load bal-
ancing. The advamage of this method 5 tha i is
simple and the user can easily une & set of costs of
a particular combination of application and vir-
al machine.

While n HeNCE program is executing, the ma-
chine configuration may not be changed by the
user, However, betwesn program executions ma-

chines may be added and removed ar will. Ma-
chine configurations can be stored in files for easy
retrieval. Forinstance, a different cost matrix may
be uged late in the evening rather than during the
daytime when certain machines are more heavily

loaded,

3.3 Compiling for a Virtval Machine

Fach HeNCE pode muest he ulimarely imple-
mented by a binary exccutable file. The build
mode of HeNCE supports compiling HeNCE
nades for different architectures in the user’s vir-
tual machine [zee Fig 6.

For each subroutine in the HeNCE graph a
wrapper iz _automatically generated when the

[write wrappers | button is pressed. This wrapper

code is linked into user subroutines. The wrappers
hondle the spawning. svnchronization, and com-
munication necessary o execule s HeNCE pro-
rram, Pressing the [write makefile | bution couses
a custom makefile to be generated for compiling
the program’s source eode. Specialized libranes
li.e., Xlib) can also be included in the makefile by
setting the correct X resounce. it

Make can be invoked by elicking [make clean |
[make |, or [make install|. HeNCE will carry out
the make operation locally or on all machines in
the current cost matrix depending on the local/

world toggle. In Figure 6 this wggle, just 1o the
right of the [make install] button, is set 10 world,




30 BLCGLULELIN BT AL

b £ ET

Teanp gl praph wribien,

neu Tunctions froa graph added Lo cost malris,
cenfig mode,

TPSC-CcOSL, nalTr edal mablrid weeitben,

budld mods,

| directory; d"Enﬂ'iLE_I‘j_m-ﬂl: I-'nnp.ul'”_:rrﬂ-:: pac=cost_mat || tracefile; I.'-en:t,l'.rm:e”1 H I:|

[compase || conflg m [trace | [sLart gun |[ooectn | [print. || Lagand | |_-§|uir._|

|urike H':]".Ftl'i ”'lﬂ"'i Le nakellle || nake clpan ”nalne-_:n,nl:l- install ”EE

FIGURE & HeXCE build mode,

E Bocy]l . e AL i
Q001 015 379 READY F o
(000001 G 350 RUNMING F
lJ?ﬂ:ﬂﬂ:ﬂ?.ﬂi? 351 RUNHIMG F

=
¢ 9
¢ 9

directory: dtlﬂﬁ_l groph: dprodd :_EI:“GEIBT.E:: dEI:D.l&L” tracefile: hence ,tragﬂllanguaﬂg - I:i

compose|[config]|butld | [IEEN [stort pve||execute|[print | |[INREE]
[ IO ] (] - | B (000002017

& Ucilization oraph

[outpt 5 ] |

D000 0 00205 0007, 5

tdprod) 3 % 2r il

!

| £ "-“f

ﬂ Function Cweouting

@ Funotion Conpleted

Hode Eslbed
esatd 1 (@ oe 11 ® et
G Harning in Graph Propras

@ Errar in Graph Progres

e
——

FIGURE 7 Tracing o program in HeXsCE



When compiling on muliple machines, HeMNCE
uses a program called pymrsh for carving o the
remote makes. This global make handles cases
when the user’s home directory 15 and is not cross
el

3.4 Visuval Execution Analysis Tools

HeNCE provides wals for visualizing the perlor-
mance of HeNCE programs. HeNCE can emit
trace informarion during a progrion’s execution.
This trace information mav he either displaved as
the program is running or stored 1o be displayed
later. Figure 7 shows trace mode in action. Trace
information is displaved as an animation  se-
quence. Replay of this sequence can be controlled
by the user: rewind. stop. single step. and contin-
uous play modes are supported.

The main window shows the graph, drawn us-
ing different shapes and colors 1o indicate the
araph’s state of execution, These shapes and col-
ors are explained in the legend window. In Figure
7 the dprod node iz actually inside a fan con-

struct, This means there may be several copies of

this node execuring. The 2r0i annotation signi-
fies there are two copies of this node running and
zere copies idle. The Host Map window displays
icons for cach maching in the virual machine.
These icons change color indicating that host is
gither performing hous_keeping duties or cxecut-
ing 0 user's subroutines. The icons for burgundy
and concord are also annotated with 370 and 371
indicating instances 0 and 1 of node 3 are running
on these machines, Finallv, the uiilization graph
shows the state of the machines over time. The red
line indicares the lecation of the current time in
the animation sequence. The tme scale of the uri-
lization graph can be chonged by clicking on the
EIFTIR .

Tracing is optional and may be termed off [or
efficiency during production mns of a program.
However, il the granularity of the computation iz
conrse encugh then the trace evenis will not add
significant overhead.

3.5 Running a HeNCE Program

Onee a virtual machine has been confizured and
the subroutine mnodes have been  compiled.
HeXNCE can execute the HeNCE graph. First
PVM must be stamed on the conligured vie-
mal machine, This can be done by clicking the

|z=1url '[:m;'; buron. Clicking this buton starts

PVAL and opens a console window lor interactively

r
-1

HeMCE ;

|:_'-::-r:|1n|'|||.ir'|._i; the vimual machine. PYM consaole
commands such as reset and ps can he izsned
in this window. The @l burton stans the
HeNCE program on the currently configured vir-
tual machine. During execution standard cutpt
and error are directed o the PVM console window
Feor the duration of the proseam’s execurtion, Duar-
ing execution the programs progress can be moni-
tored in trace mode by elicking on the monitor
button (which looks like a satellite dish) and then
il rl .|||."|.'|.'| buan,

4 RELATED WORK

Several research projects have goals that overlap
with these of HeMCE, Paralex, Schedule, Phred.
Code, the Cosmic environment, Network Linda.
[sis, and Express are a few examples [6—14].
Paralex [&, 14] is probably the most closely re-
lated project to HeMCE, In Paralex, the program-
mer also explicitly specifies dependency graphs
where the nodes of the graph are subroutines.
Paralex programs alse execute on o heteroge-
necus distributed network of computers. There
are, however, several major differences berween
Paralex and HeMCE. HeMCE requires less sys-
tem-specific code than does Parulex w inerface
subroutines 1o the graph. The HelNCE program-
mer must only specify the types and sizes of the
elements in a procedure’s parameter list. HeNCE
automatically ensures parameters are available
for a procedure when it is called. In Paralex. a
procedure is only allowed o output one value. Al-
:I||_||_|!5h_ this value i= not limited 1o scalars it is the
programmer’s responsibility 1w code  “hler
nodes thar partition procedure cutpur for subse-
quent nodes in the Paralex graph. The require-
ment of user-defined graph-specilic code impairs
the portability and rease of Paralex programs.
The Paralex filler nodes appear to need specific
knowledze of the graph coded inte them ot a low
level. HeNCE's traditional parameter list ap-
proach allows for greater ponability and rewse of
code. HeNCE graphs are richer than those of
Paralex. HeNCE provides conditonal, leop. Fan
indout, and pipeline construets within its graphs.
Paralex graphs do not provide these constructs.
Pipelining is provided in Paralex but a1 the level of
the centire graph. An advanwage of Paralex over
HeNCE is its support of fault toleranee. Fault tol-
erance in Paralex is provided by the user specify-
ing the number of times & node may fail. The cur-
rent version of HeWCE does not support fauh



o8 BECUELIN ET AL.

wolerance, The descroption of future work in Sec-
tion 3 discusses fault olerance for HelNCE.

Paralex is built on Isis [12], Isis is a parollel
progromming toolkit for fauli-tolerant parallel
computing over a network of heterogencous ma-
chines, Compared with lsis, HeNCE i3 a higher-
level programming tool. HeNCE could be built on
Isis rather than PVM, PVM was chosen for several
reasons. [5is is & much larger system. A goal of
HeMCE is to allow the use of machines where one
simply has & login. [sis alone requires on the order
of tens of megabyies of disk storage and a system
administrator 1o install. Comparatively, PYM is a
much smaller svstem. requinng the order of 8 me-
gabyie of disk storage and PYM can be easily in-
stalled by a wser. The main difference beraeen
PVM and lsis is that lsis provides Taul tolerance
and more complicated process communication
and control, Hesearch mio :_||:I|_!:i|1g faule molerance
w PYM is currently undervay [15].

Code [9, 16] is also a graph-based parallel pro-
gramming svstem. It allows the users w specify a
prarlLee] 4_'.4_ur|F_'|1_|I_a'|.l:i{|:|| wsing unified computation
graphs [17]. Code has more advanced rules for
node execution. Code firing rules are akin 1o
guards used in logic programming.

Express [13] suppoeris parallel programming
approximartely ar the same level as FYM. The pro-
grammer writes explicit parallel code which makes
cills 1o the Express libraries for process control
and message passing.

The Cosmic environment [10] is a publicly
gvailable programming environment targeted 1o-
wiird tightly coupled homogeneons groups of local
memory muliple  instruction  multiple  data
(MIMLIY machinegs or |'|'|||.|[il.‘:-:‘:-|:':'l§'|u||?:l".=~. The Cosmic
environment is & lower-level parallel programming
ool than HeMNCE. If HeNCE were targered for a
multicomputer environment then it would be pos-
sible to implement He™CE on L ol the Coamic
environment. Similar o Express and PVM the
Cosmic environment provides o low-level infra-
structure for process contral and communication,
Unlike PYM the Cosmic environment is not tar-
reted toward heterogeneous nerworks of ma-
chines.

Merwork Linda is a commercial implementa-
tion of the Linda primitives [11], which mns over
a network of processors. To effectively use Net-
work Linda the programmer must explicitly wnte
programs that use Linda primitives. This is similar
to writing & program at the PYM level where pro-
cegs initialization and communication are explicit.
This contrasts to HeMNCE where the programmer

specifies  the high-level synchronization and
standard parameter list procedure invocation is
handled automarically.

Firanha [18] is a svstem thart is built on wop of
nerwork Linda, me__rrulia:n:lnl,l_ in Piranha is similar
o Linda programming except the Piranha tasks
migrate around the network. A major goal of
Piranha is o consume unused compute eveles
without disturbing machines that are in use.
Piranha monitors machine uiilization arnd will mi-
grate tasks off of machines thar are being used.

Condor [19] is similar to Piranha in is goals. A
major difference berween Condor and Piranha is
that condor runs single-threaded applications and
Piranha applications are typically muhithreaded.
An advantage of Condor is that programs can uti-
lize the svatern withour changing anv source.
Piranha programs need w be explicitly written 1o
bt psed with the avatem and a rerrear funetion. 1o
be called when a wask is to migrate, must be pro-
vided by the programmer. We are currentdy ex-
ploring the use of Condor with PVM programs,
The main challenge here is w provide efficient
checkpointing for PVM Programs.

Schedule [7, 20, 21] is similar o HeNCE. Al-
though HeNCE graphs are more complex than
thoae of Schedule, the basic HeNCE dependency
graphs are equivalent, Schedule mns.on a shared
TSI o r'r|.|.:||1i|:‘;-r|_‘:-|_:|1:'-\..‘--:'.lr. not a ]mlremgra.:mmm er-
work of dizribuced meme. v machines, Schedule
priverams alao rely on shared memory semantics
that are unavailable in HeNCE. because it is in-
tencled  For distnbured  memory architecares.,
However, I1eMNCE node that execures on a shared
memery machine may ke advantage of the avail-
ahle shared memorv. If fact. a [TeNCE node cxe-
cuting on o shared .rr|4_=.r|||_rr:.' e hine eould aeio-
ally utilize the Schedule primitives.

Phred [8, 22, 23] 15 also similar 10 HeMNCE.
Fhred graphs are more complicated than those of
HeMCE: they contain sepoarste dats ond control
Now graph constructs. The pipe and fan con-
struces of HeNCE are based on similar constructs
from Phiredd. However, the {'m[‘:-l‘::'l.‘-iﬁ of Fheed is
not heterogeneity bur determinacy.

5 FUTURE WORK

Although HeNCE EUppOrts many facers of the
progromming task, it is stll deficient in several
areas, mainly debugging, fault wlerance, and effi-
CIENCY,

The HeNCE trace mede does a good job with



respect 1o tuning o progeam but more debugging
support is needed. Suppornt for source level de-
bugring in HeNCE would be helpful. I=sues with
respect 1o parallelism and debugring need o be
addressed. It is not suflicient 1o simply open a
window for each node in the graph running dbx,
This would beeome unwieldy all too seon. HeNCE
could support the examination and aleration of
node subroutine parameter lists during runtime.
These parameter lists may be examined either be-
fore or aflier a subroutne executes,

Currently [ault tolerance is not supported. As
the number of computers involved in o computa-
tion grows, o does the chance thar any one ma-
chine may fail. The addition of checkpointing to
HeNCE is a very attractive way of dealing with
fnilures. The stme of a HeNCE node can be de-
scribed by the parameter list it wos sent. [f a node
failz and this parameter list is stored, then a new
version of the node can be stanted. Version 3 of
PVM supports dvnamic configurations of com-
puters in the virtwal machine. HelCE con 1ake
advantage of this [eature by adding new machines
when one fails.

Onee the fault tolerance support is added. it
would be imeresting to extend the system to mi-
grate tasks off of machines under certain cireum-
stances. [ a workstation owner arrives and stors
using the system, HeNCE could migrate that task
b killing it and restarting it on another machine.
HeNCE could also place or move processes based
on other load factors. The cost matnx would need
to be modified so the user could supply informa-
tion abowt how o teeat specific machines,

The execution of HeNCE programs is carried
out by o centralized contraller. This leads o effi-
ciency problems, mainly due 10 boulenecks. kr
would be benelicial 1o explore a more efficient ex-
ecution scheme for HeWNCE programs which elimi-
nated much of this support on a central locus of
comirol.

& AVAILABILITY

An underdving philosophy of our work bas been 1o
emphasize procicality: therefore. our work i= oni-
ented towards sofltware svstems that are realizable
and immediately applicable 1o real-life problems.
The sofltware produced is freely distrbuted 1o re-
senrchers and educators, allowing them w har-
ness their distibured compute power inte com-
prehensive virtunl machines.

At least one Unix workstaton with X -Windows

HeMCE a9

is required to use HeNCE. HeNCE aszumes I'VM
is installed. HeNCE will work with either version 2
or 3 of PVM.

PVM and HeNCE arc available be sending
electronic mail to netlibi@ornl.gov containing the
line ““send index from pym'” or “send index from
hence.”” For version 3 of PYM use “send index
from pyvmd.” Instructions on how to receive the
various parts of the PYM and HeNCE systems will
be sent by return mail.

7 SUMMARY

HeNCE is an integrated graphical environment
designed to simplily the task of writing, compiling,
running. debugging, and analyzing programs on a
heterogenecus network. In HeNCE the user ex-
plicitly specifies parallelism by drawing a graph of
the parallel application and indicating data de-
pendencies. HeNCE then writes the necessary
message passing code (using PVM) and compiles
thig code on the machines the user has requested
in the HeNCE configuration. When HeNCE exe-
cutes an application graph HeNCE dynamically
load halances the parallel 1asks 1aking into ac-
count the heterogeneity in the algorithm and the
machine performance. Dunng execution HeNCE
collects trace information that can be displayed
w.aphically in real dme or saved for replay. The
dm.'.'l.']nl_r,_ writing, 1_'.{|:|!|‘.|_|‘||]!I:‘.|g CRCCULn, and trac-
ing steps are all integrated into a single X-Window
COVITOTITEN|

Future research in HeNCE will focus mainly on
debugging, fault rwolerance. and  efficiency.
Source-level debugging is a uselul feature not
presendy integrated ino HeNCE. Az the number
of computers added o a configuration grows, so
does the need for more robust Fault wlerance, The
nature of HeNCE allows for the straightforward
incorporation of fault wlerance at the apphication
level, The eflficiency of program execution under
HeXCE can be improved and fumre work will look
at better algorithms and protocols to facilitate this.

ACKNOWLEDGMENTS

We would like to acknowledge the effons of Vaidy
Sunderam and James Plank. Many intense dis-
cussions with both of these scientists helped shape
this rescarch. Vaidy can also be credited with
coming up with the acronym HeNCLE. James
Plank developed the initial version of the execu-



[itl]

f0m

BECUELIN ET AL

system for dynamic HeNCE graphs. This

work was supporied in pan by the Applied Mathe-
matical Sciences subprogram of the Office of En-
ergy Rescarch, U.5. Department of Energy. under
Contrael DE-ACOS-2840R21400 and the Ma-
tional Seicnee Foundation Science and Technol-

Dy

Center Cooperative Agreement No. CUR-

BEODG1S.

REFEREMCES

1

B
ol

G

10]

vV, &, Sunderam. "PVM: A framework for paralle]
distributed computing,”’ Concurrency Practice
Exp, vol. 2, pp. 315-339_ 1990

A. Beguelin, 1. 1. Dongarra, G A, Creise, R. Man-
chek, and V. 5. Sunderam. A users” guide
FVM parallel virmal machine.”™ Technicnl Report
OFEMNLTH-118246, Oak Ridge National Lobora-
tory, July 18491,

A, Beguelin, | ). Dongarma., G. A Geist, B, Man-
chek, and V. 5. Sunderam, Proceedings of £ifth
SIAM Conference on Parallel Processing for Scf-
entific Competing.  Philadelphia. PA:  Siam.
1991, pp. 306-010.

1 1. R. Allen, D, Calluhan, and K. Kennedy, " Auto-

matic decomposition of scientifie programs for
parallel execution.”” POPL, vol. 14. pp. 63=Th,
1987

1. M. Levesque. Software for Parallel Computa-
tion. Berlin, Germany: Springer-Verlag, 1993,
pp. 111=11%

(. Babaoglu, L. Alvisi. A Amorozo. R. Davoli
and L. Alberio Giachini, 1992 lfatersatioeal
Conferepes o Supercomiputing,  New  York:
ACM, 1992, pp. 176-187.

1. ). Dengarra and I, C. Sorensen, The Chanac-
teristics of Parallel Algorithms. Cambridge. MA:
MIT Press, 1987, pp. 3683394,

M. Beguelin and G mutt, Proceedings of the Fifth
EIAM Conferenee o Paraliel Processing for Heis
entifte  Copgpedting.  Philadelphia, PA: SIAML
191, pp. GOZ2-608,

J. Browne, M, Azam., and 2, Sobek. CCODE: A
unified npproach to parallel programming, IEEE
Saftware, vol. 6. pp. 10-18, 1969,

C. L. Seitz. ]. Seizovie, and W.-K. Su, “The C
programmer’s abbreviated guide o mulbeompu -
ter programming.”’ Technical Beport Calech-
CE-TR-88.1, California [nstre of Technology,

[11]

2]

[14]

(21]

“ha
L

(23

Department of Computer Science, Pazadena. CA
G1125, 1968,

M. Cardero and [ Gelerner, “Linda in con-
wext,”’ Comerun. ACM, vol. 32, pp. 444-458,
198,

K. Birman and K. Marzells, ~lsis and the META
project.” Sun Techrol. vol. 2, pp. ChO— 104,

1989,

1 1. Flower, A, Bolawws, and 3. Bharsdway, ““The

pxpress way o dismibuted proceszing,” S
comput, Feo., vol. 4. pp. 34=35. 1991.

0. Babasglu. L. Alvisi. A. Amoroso. and R
Davali., “Poarplex: An envirenment [er parallel
programming in disributed systems, ™ Technical
Heport UR-LCS-91-01, University of Bologna.
Department of Mathematies, Fiazza Porta 5.
Donato, 5, 40127 Bologna, lalv. February 1991.

1 1. Lean. A. L. Fisher. and F. Swenkiste, “Fail-

safe PVM: & pontable package for dissributed pro-
gramming with transparent recovery,” Technical
Heport CMU-C3-93-124, Camegie Mellon Uni-
versity, Febmunry 1993,

P. Wewton and 1. ©. Browne, 1992 International
Canference on  Supercompuling. New  York:
ACM, 1992, pp. 167-1T7.

71 1. . Brown. Proccedings af the Indernatinnal

Conference on Poraliel Processing. Washingron,
D¢ IEEE, 1985, pp, 624-0631.

] I Gelernter and D Kaminsky. 7992 [nlerna-

tional  Conference on Supercomputing. New
York: ACM Press, pp. 417=427, 1992,

| M. Litzkow, M. Livny, and M, Murtks, Proceed-

ings af the Eghth Conference on Distributed
Campeting Svslems. San Jose, CAa, 1988, Wash-
ingron, DC: Computer Society Press, pp. 104
111.

I. ). Dongarra and I, €. Sorensen. A porable
emarcnment for developing parallel FORTRA™
programs.” Porallel Compet., vol. 3, pp 1 79—
186G, 1T9ET,

A, Beguelin, Proceedings of the Third Conference
aet Hyvpercube Concurrent Computers and Appli-
catines. Mew York: ACM, 1988, pp, 468-471.

| A Beguelin and G Nuw, W Collecied papers on

Phred.” Technical Report CU-CE-511-91. Uni-
versity of Colorado, Deparmment of Computer Sei-
pnee. Boulder, GO B0309-0430, January 1991
A. Beguelin and G. Nun, “Visual parallel pro-
gramuning and determinacy: A langunge spedifi-
cartion, an analyzsis echnique. and a progrum-
ming tool.” Technical Reparn CMU-C5-93-166,
Camegie Mellon University, June 1993



