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1. Dnfrocluction

This paper describes the use of a collection of Fortran loops to test the analysis capabilities
of automatic vectonzng compilers, An aulemane vectonzing compiler iz one that takes code
wrilten in @ #%erial language {usually Fortran) and translates it into vector instructions. The
veolor instructions may be maching-specific or in a source form such as the propesed Fortran
90 array extensions or as subroutine calls to a vector library.

Most of the loops in the 1221 suile were written by people invelved in the development of
vectorizing compilers, although several we wrote ourselves, All of the loops test a compiler for a
specific feature, These loops reflect constructs whose vectorization ranges from easy o
challenging to extremely difficult. We have collected the results from compiling and executing
these loops wang commercially available, vectorizing Fortran compilers.

The results reported here expand on our earlier work [3] In thal paper, we focused
principally on analvang esch compiler’s output listing. For the present study, we ran the loops
in both scalar and vector modes. In addition, the =21 of loops has been expanded,

The remainder of this paper is organized into cight sections. Section 2 describes our
classification scheme for the loops wsed 1 the test, In Section 3 we describe the structure of the
test program, In Section 4 we describe the methodology used to perform the test, Section 5
reports on the number of leops that vectorized according to the compiler’s output listing.
Section 6 presents two aspocts of the speedup results. In Section 7 we discozs our model of
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oplimal vector performance and present the results of comparing the actual performance with
the medel. Bection & discusses several aspects of the west. In Section 9 we make some remarks
aboat fulere wark,

2. Classification of loops

The ohjective of the test suite is 1o lest four broad areas of a vectorizing compiler;
dependence analysis, vectorization, idiom recognition, and language completeness, All of the
loops in this suite are classified into one of these calegories.

We define all 1erms and transformation names but discuss dependence analysis and program
transtormation only bricfly. Recent discussions of these topics can be found in Allen and
Beonnedy [2), Padua and Wolle [12]. and Wolfe [15]. For a praciical exposition of the
application of these techniques, see Levesque and Williamson [6].

2. Depengence aralysis

Dependence analysis comprises two areas: global data-Mow analvsis and dependence testing,
Global data-flow analysis refers (o the process of collecting information ahout array subscripls,
Dependente testing refers 1o the process of testing for memory overlaps between pairs of
variables in the context of the global data-flow information.

Dependence analysis 15 the heart of vectorization, but it can be done with very different
levels of sophistication ranging from simple pattern matching o complicated proceduras that
salve systems of linear eguations. Many of the loops in this section tes1 the apgressiveness of
the compiler in normalizing subseript expressions inte linear form for the purpose of enhanced
dependence Lesting,.

1. Linegr dependence festing, Given a pair of array references whose subscripts are linear
Munctions of the loop control varables that enclose the references, decide whether the two
references ever access the same memory location. When the refercnces do interact, ad-
ditional information can be derived to establish the safety of loop restructuring transforma-
Lisns.

2. frduction wariolde recognition. Recognize auxiliary induction variables (e.g. variables defined

by stalements such as &= K+ 1 inside the loop). Once recognized, occurrences of the

induction variable can be replaced with expressions involving loop control variables and
lpop invanant expressions.

Gefobal dat-flow aralysis. Collect global (entire subroutine) data-flow informartion, such as

constant propagation or linear relationships among variables, 1o improve the precision of

dependence tesing,.

4, Newlinear dependence festing. Given a pair of array refercnces whose subscripls are not
linear functions. test for the existence of data dependencies and other information.

3. Tnterprocedural datg-ffow arolysis, Use the context of a subroutine in a particular program (o
improve vectonzation. Possibilities include in-line expansion, summary information (e.g.
which variables may or musl be modified by an external routine), and interprocedural
COnSLANT PropuLgation.

G, Cevrad Toe, Test 1o see whether cortain vectonization hazards cxist and whether there are

implied dependencics of a stalement on statements that conteol 18 execution.

Spebalics. Test 10 s2¢ whether subscripls are linear after certain symholic information s

factored out or whether the results of dependence testing da nat, in fact, depend on the

value of symhbolic variables,

tad

|



A wtwly off peciorizine compilers 1225
22 Feerarizaiton

A zsimple vectorizer would recognize single-staternent Fortran DO loops that are equivalent
e hardware vector mstructions, When this steicl svataclic requirement 15 nol satshed, more
zophisticated vectorizers can restructure programs so that it is. Here, program restructuring is
divided into two categories: ransformations fo enhance wectorization and idicm recognilicn.
The first 15 descrbed here, and the other in the next section.

I, Stavenent reordering. Reorder statements in a loop body o allow vectarizaticn.

2. Loop dissribegion. Split a loop inta twe or maore loops 1o allow partial vectorizallon or more
effective vectorization.

i Loop interchange. Change the order of loops in o loop nest o allow or improve veclorizi-
tien, T particular, make a vectorizable outer loop the innermost in the loop nest.

4, MNode spiiviing, Break up a statement within 3 loop to allow {partial) vectorization,

5 Sealar and grray expansion. Expand a scalar into an array or an array inio a higher-dimen-
stonal arcay 10 allow vectorzaton and loop distnbution.

. Sealar reviarung. Fename instances of a scalar vanahle, Scalar renaming climinaies some
imteractions that exzt enly because of rewse of a wemporary varlable and allows more
cifective scalar expansion and loop distribution.

To Comtrad flow, Converl forward branching i a loop e masked veclor operalions; recog-
nize loop invanant [F's (loop unseatching).

B, Crossing thresholds (index set splivsing). Allow vectorization by blocking inte two sets, Faor
example, vectornze the statement ALY = A{N — [J by splitting iterations of the | loop into
itgrations with T less than ™ /2 and iterations with [ greater than N2,

9. Loop peefing. Unroll the first or last neration of a loop o eliminate anomalies in contral
flowwe o attribuies of scalar variahles,

10, DNagonalz. Vectorze diagonal accesses (eg AL I

11, Weaeefrowss, YVectorize two-dimensional loops with dependencies in both dimensions by
restructuring the loop for diagonal access,

2.3 Ndiemy recagnition

Idiom recognition refers o the wentification of parbicular program lTooms that have {pre-

sumably faster) special implementations.

. Reduciioss, Compute 3 scalar value or values from g wvector, such as sum reduections,
minSmax reductions, dot products, and product reductions.

2. Recoreences, Idennly special first- and second-crder recurrences that have logacitbarmcally
fuster selutions or hardware support.

3 Search Joops. Search for the first or last instance of a condition, possibly saving index
valuei=s),

4. Packing. Scatter or gather a sparse vector from or intg 2 dense vector under the contrel of a
bit mask or an indirection vecior,

5. Losp reralling. Vectorize loops where the inner loop has been unrolled.

24, Language comipleieness

This section tests howr effectvely the compilers understand the complete Fortran langoage.
simple vestonzers might mit analvas o D loops containing enly floating poant and integer
assignments. More sophisticated compilers wall analyze all loops and vectorize whercver
possible,

1. Losp recegnition. Becopnize and vectonze loops formed by backward GO TO's,
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2. Borpge clusses and egeealencing, Understand the scope of local va common storage:
correctly handle sguivalencing,
3, Poaramerers. Analyze symbolic named constants, and vectorize statements that refer to
them.
4, Nonlsgiesd IF's. Vectorize loops containing computed GO TOs and arthmenc 155
3. Iwtrinsic junctions. Veclonze functions that have elemental {(vectory versions such as 51
and CO5 or known side effects.
6. Call stavements, Yeotorize statements in leops that contain CALL statemenis or external
function invocations.
Nonloeal GO TO%, Branches oet of loops, RETURN statements or STOP statements
inside of loops.
8. Vector semandics, Load belore store, and preserve arder of stores.
0. Irdirecr addressing. Vectorize subscnpiled subscripl references (eg, AINDEX(TN as
Gather / Scanter.
10, Eraremen: functions. Veclomnze statements that refer 1o Fortean statement funciicns,

=]

X Test program structure

The 1231 program consists of 122 loops that represent different constructs intended to test
the analysis capabilities of a vectorizing compiler, Using the classification scheme in Section 2,
there are 29 loops in the Dependence Analysis category, 41 loops in the Veclorzalion category,
24 loops m the Idicm Recopmition category, and 28 leops in the Language Completcness
category. Also included are 13 additional ‘control’ loops we expect all compilers o be able 1o
vectonize, These allow us (o mepsure the rates of certain hazic operations for use with the model
dizeussed in Section 7.

The majority of the test loops operate on one-dimensional arravs; a small number operate
on two-dimensional arravs. Most of the loops o the test are Garly short;, many are a single
statement and others vsually no more than several statements. Many of the loops access
memaory with a stride of one. Each loop is contained in a separate subrouting, A driver routine
callz each subroutine with vector lengths of 10, 100, and 1000,

subroutine 2111 (ntimes.ld,n.ctime . dtine,a, b, c d. e a0k, o)
integer ntimes, ld, n, i, nl
real adnd, bind, cinld, dind, elnd, aalld, nd, bbild nd, ccild, nl
real t1, t2, second, chksun, ctime, dtime, czid
call infwdld,n,a,b,c,d,e,aa,bb,cc,. 511172
tl=secondl}
de 1 nl=1,2*ntines
do 10 i=2,.n,2
a{id=ali-1¥+b{il
10 continue
call dumpyild,n.a,b,c.d,e,an, bbo,c0.1.1
1 continue
tZ=gecond{l-tl-ctine-{ diime = fleat{d*ntimes) )
chksumscsidin,al
call check (chksum,Z*ntimes*(n/2),.n, 82, 5111 "}
return
end

Fig. 1. Example Loop.



A sy af vectarizing compiiers 1EET
L welarized
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Fig. 2. Key to symhbals far Tahles 1-&, 12-13.

An example loop is shown in Fig. /. Relevant operands are initialized once at the start of the
loop, An ouler repetition loop is used 1o increase the granularity of the calculation, thereby
avoiding problems with clock resolution. A call 10 a Jummy subrouting 15 incluoded in gach
ieration of the repetition loop so that, in cases where the inner loop calculation 15 invarnant
with respect to the repetition leop, the compaler is sull required W execute each ileration rather
tham just recognizing that the caleulation needs to be done only once.

After execution of the loop 15 complete, 3 checkzum 12 computed by vaing the result arcay(s).
The checkzum and the time used are then passed io a check subroutine. The check subrouting
verifies the checksum with a precomputed result and printz out the me o execute the leop.
The time is calculated by calling a timer at the start of the loop and again at the end of the loop
and taking the difference of these times minvs the cost of the uming call and the cost of the
miultiple callz o the dummy subroutine.

d. Test methodologry

The test program is distnibuted in two fles: a driver program in one file, and the test loops
in the other. The files were distributed to interested vendors, who were asked 10 compile the
loops without making any changes ! using only the compiler options for antomatic vectoriza-
tion, Thus, the use of compiler directives or interactive compilation features (o gain additional
vectonzalion was not tested, Vendors were asked 1o make two separate runs of the test: one
using scalar optimizations only, and the other wsing the same scalar optimizations and. in
addition, all awtomatic vectorization options. Vendors with multiprocessor computers sub-
mitted uniprocessor results only, Appendix A contains detals of the exact machineg configura-
tions and versions of the software vsed.

The rules require separate compilation of the two files, The roles lor compilaton of the
driver file require that no compiler optimizations be used and that the file not be analyzed
interprocedurally to gather information wseful in oplimizing the tesl loops,

The fle containing the loops was compiled twice - once for the scalar run and once for the
vector run. For the scalar run, global (scalar) optimieations were used, For the vector min, in
addition to the same global optimizations specified in the scalar run, vectorzation and — af
avallable — amtomatic call generation o optmized library tl:rulmf:ﬁ, function inlining, and
interprocedural analysis were used.

Al files were compiled 1o vse 6d-bit arithmetic, Most runs were made on standalone
systemns. © For virtual memory computers, the runs were made with a physical memory and
working-sel size large enough that any performance degradation from page faults was negligi-
ble. In all cases the tmes reported to us were yser CPU Lime,

Aler compiling and execoting the loops, the vendors sent back the compiler’s nuipui listing
(source ocho, diagnostics, and messages) and the cutput of both the scalar and vector runz. We

U e vendor was ollawed o (1) separzie a 13%way [F-THEN-ELSEIF-ELSE consirucl in order L cacrcome a

sell-imnpasied lmin, and (23 inclade the array declarations in a comman block in ihe driver program (only) in order 1o
overcome 2 self-imposed limit on memory allecation size. Meither modifcaton bad any mngact an perleaman,
Ihe CRAY Computer and Hitachi runs were not.
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then examined the compilers output hstings to see which loops had been veclonzed., and
analvzed the scalar and vector resuliz. In addition to measuring the execution time of the loops,
wie checked the numencal result in order 10 venly correciness, However, the check was sirictly
for correciness of the numerical result; no attemptl was made o sce whether possibly unsafe
translformations had been used.

5. Mumber of leops vectorized

In this section we discuss the number of loops that were vectorized, as reported by the
compiler’s oulput Listing, All of the loops in our 1est are amenable to some degres of
vectorization. For some loops, this may only be partial vectonization; for others, vectorization
may require the vse of oplimized library routines or special hardware.

S Definition of veciorization

We deling o stodementy a5 vectorizable il one or more of the expressions in the statement
involve array references or may be converted to that form. We defing three possible results for
a compder attempling 0 vectorize a loop, A loop is pecforized 1T the compiler generates vector
instructions for all vectorizable statements in the loop. A loop 15 partiolly sectorized 10 the
compiler generales vector instructions for some, but not all, vectorizable statements in the loop.
Mo threshold 15 defined for what percentage of a loop needs 10 be veotorzed 1o be listed in (s
category, only that some cxpression in a statement in the loop is vectonzed. A loop is mer
pectorized 1f the compiler does nod generate vector instrections for any veclorzable slatements
within the loop,

For some loops the Cray BEesearch, FPE Computing, 1BM, and NEC compilers generated a
runtime [IF-THEM-ELSE test which execuied cither a scalar loop or a vectorized loop. These
loops have besn scored as enther seciorized or mor vectorized according 10 whether or no
vectorized code was zctually executed at runtime.

The Cray Computer compiler ‘conditicnally vectorized” certain loops. That is, for loops with
ambiguous subscripts, a runtime test was compiled that selected a sale vector length, ' These
lpops have been scored as cither pectorized if the safe vector length was greater than one,
otherwise not reciorized.

For a number of loops, the Fujitsu compiler generated scalar code even though the compiler
indicated that partial vector code could be generated. In these cases, the compiler hsting
contaned the message Y Partial vectorization overhead 15 too large”, indicating that although
partial vectomzation was passible, Tor these loops the compiler considered scalar code maore
efficient, These loops have heen scored as pardadily vectorized.

Our definition of veclonzation counts 35 vectonzed those loops thal are recognized by the
compiler and autormarically replaced by calls to optimized library routines. In some cases a
compiler may generate a call 1o an optimized library routing rather than explicitly generating
vector code. Typical examples are for certain reduction and recurrence loops. Often the library
routines use o mix of scalar and vector instructions; while perhaps not as fast as pure vector
loops, since the construct itself is not fully parallel, they are uswally [aster than scalar
execulion, In all cazes where the compiler automatically generated a call to a library routine, we

have scored the loop as veclorzed.
! A sale vecror lengeh is one that allows the compiler to exscule vector instructions and stll produce the correct resull
For example. the stateznent AN = A(L-7) with leop increment one may he executed in vector mode with oy vector
lengih bes= than or equal & 7.
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I'ahle 1
Full ve¢lomsation (122 kops)

Compurs W P M
COMNVEX C210 &R0 (33) 10.7 (13) 21.3 (24
COC CRAY-2 6017 (74 L6 {2 37,7 (44)
CRICRAY Y-MP T (5] B2 (00 13.8 (17}
DEC VAKX S0M-210 &7 (T4 33 {4 i1 (44
FIS MS1IEA-2 T2, (58] 4% (&) 230 (28)
Fujitsu VP2600,/10 T1.3 (87 164 (200 12.3 (15)
Flitzchi 5520480 T1LE (A7) T4 (9 31,3 (25)
TEM SIS TTA (U] 40 (8) 17.2 (21}
MEC SX-X /14 721 (BB 57 (T 2210270
Anerage T2 [H5) TA (8 128 (27} ¥
52 Resuls

Tablez J-6 list the resulis of analyzing the compilers’ listings. Each table contains the
percentage of loops in each column, followed by the actual number in parentheses. Tale [
summarizes the resulis for all 122 loops. Talde 2 05 also a summary of all the loops; here,
however, the column ¥V /F counts the loops that were either fully or partially vectorized. Tables
J—¢ contain results by catepory as defined in Section 2.

5.4 Aralysiz of resulis

The average number of loops vectorized was T0%, and vectorized or partially vectorized was
TT%. The best results were T8% and 23%, respectively. OF the 122 loops, only two were not
vectorized o partially vectorized by any of the compilers; both loops are veclonzable, There 15
probably no significant difference between compilers within a few percent of cach other. Slight
differences may be doe to different hardware, the availability of special software libranes, the
architecture of 2 machine being better suited to executing scalar or parallel code Tor cortain
consirecis, of the makeup of the loops used in our 1est,

From Tabie J we see that the Cray Eessarch and 1BM compilers vectorized the most loops.
A large number of other compilers are grouped closely together and only a few loops behind
these two, Companng Toble J o Table 2, we see that counting partially vectorized loops in the
totals allows the Fujitsu compiler to vectorize the mast loops. [ is interesting 10 notg, however,

Tahle 2
Full and parial vectomizatian (123 loeps)

Camputer Y/ ™

COMYEX (210 TRT (9a) Z1.3 (26}
COC CRAY-2 2.3 {T6) 177 (de)
CRICRAY Y-MP B0 (1050 129017}
EC VAR S00-214 H3.% (TR a0 [dd)
FPS MES11EA-2 T {52 s
Fugitse VEIHELIO BT (107 123 (13)
Hilackd 5220780 TR.T () T (26)
IHM EE-SEL B2E (1013 17.2 (21}
MWEC EX-X /14 T8 {95 121 (2T

ANETREE TNE 118 (27}
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Tahle 3

Dhependencs analvas {23 leops)

Compiter v o P M
CONVYEX CZ1) A3.5 (15 19345 102 5
COC CRAYD G800 (20} [0 310
CRLCRAY Y-MP B2 (25} 163 1 138 &
DEC VAN S000-210 G800 (20 [0 iy A
FPS M311BEA2 BLE (M) {0 i) 17.2 (5)
Fujatzu Y F2600,/ 10 a3, (15} 24,147 10,3 {5
Hitachi §=E20/80 552016} TLE {3 FHA(1m
TER 30S0L R0 Efi.2 (25) {0 i) 138 (4)
NEC 5X-X 14 75,5 (22} T 172 (%
Average TR B.54{1) T (6
Table d

Yectorization (41 loaps)

:.':l.'-mpu1l.'r W P M
COMNYEX C210 73.1 (30) 146 {6 122 {5
CCC CRAY-2 3114} 45 {2 1A (2%
CRI CRAY Y-MPF 56.1 (23} 220 %) 2L W
DEC VAX 00210 56,5 (24) 73 (% 4.1 (14)
FP5 M311EA-2 S1.00 (25} 14,6 {4 2410
Fujitsn VE2EE0/10 8.3 (28) 2.4 {10 73 (%)
Hitachi 5-521k 5 THAF (33 a2 122 (5
TR 306000 5.6 (3L} 122 {5) 122 (5)
HWECSR-X14 LER v 122 {5 prd U )
Average 3.4 (26) 136 (%) 30 (M
Tabic 5

Idiom: recognitien (24 keogps)

Computer v P M
COMYEX CI10 &5.7 (16} 4.2 {1} 2 T
OO0 CRAY-2 WA (LT 0.0 () 1 (T
CR1 CRAY Y-MI' BTS2} 42 (01) 83 (&
B WAl W2 10 54.2 (12} 4.3 {1y 41.7 (10
FF5 Mil11EA-2 TLE 0T L i e A
Fujiisu YP2600,/140 B1.5(21) B.3{Z) 42 (1)
Hinachi $-520,750 91,7 (23 4201 43 (1)
1Tkt 30%0-6000 SB3 (14 LR N 41.7 (100
NEC SX-X /14 £1.5(21) 0.0 {0y 125 (%)
Avwerage TS (17} 2.8 {0 E22 (5)

that of the 20 leops we counted as partally vectorized by the Fujitsu compler, only two
actually resulted in (partial) vector code being executed al runtime. For the other 18 loops the
Fupitsu compiler made the decision that it would not be cost effective o partially vectorize
them. The Convex compiler also did 2 sigmificant amount of partial veclonzation.

Tabies 3-6 show that some compilers did particularly well in certain categories. The Cray
Research, FES Computing, and [EM compilers had the best resultz in the Dependence Analysis
category, The Conwvex, Hitachi, and TBM compilers had the best results in the Vectorization
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Tahle &

Languape compleiensss (25 loops)

Camputer ¥ P . M
COMVEX C210 Gd 5 (18] 3401 121 (%)
OO CRAY-2 LER R FE] (.0} 178 (5
CRICRAY Y-MP QLA 26) Ak T2
DEC VAX S0K-214 0T 0.0 0y A
FPS MS1TEA2 TEA(22) DR 14 (&
Fugitsu VERHEE10 G7A11% RN IR (5
Flitachi 5820780 LT ERNY 357 (103
A BEHI-EL 9.3 (23] KN Tl 43
MEC 5X-X /14 H25018) 0.0 0 35.7(00)
Averags TiA (200 1.6 {10 AL T

catcgory. The Cray Research, Fujitsu, Hitachi, and NMEC compilers had the best results in the
[diom Recognition catcgory. In the Language Completeness category the Cray Research and
[BEM compilers had the best resulis, The Vectorization category seemed the most difficult, with
approximately 10% fewer loops vectorized overall than for the other sections.

Cerlain sections seemed fairly casy, with most vendors veclonzing or partially vestonizing
almaost all of the loops. Using the classification scheme of Section 2 these sections were linsar
dependence testing, global data-flow analysis, statement réordering, loop distribution, node
splitting, scalar renaming, control flow, diagonals, loop rerolling, parameters, intrinsic fung-
tons, imdirect addressing, and statement functions.

In some sections, while many vendors vectorized or partially vectonzed most loops, VATIOUS
imdividual vendors did not do particulacly well. These zections were induction variable
recognition, interprocedural data-flow analysis, symbolics, scalar and array expansion, reduc-
tions, search loops, packing, and nonlogical 1F's.

Some sections were difficult for many compilers. Typically, at least half the vendors missed
ab least some, and sometimes most, of the loops in these sections, These sections were control
flow, loop interchange, indes selsplitting, loop pecling, recurrences, loop recognition, storage
classes and equivalencing, and nonlocal G0 IS,

A few sections were particulacly difficulr, with only one or two compilers doing any
vectorization al all, These sections were nonlinear dependence testing, wavelronis, and call
stalements.

We found that some vendors with approximately egual resulis did muoch better in one
section than another. Certain indection variable tests, interprocedural data-flow analysis, loop
interchange, recurrences, loop recognition. storage classes and eguivalence statements, and
loops with exits were the sections that showed the greatest variation. We conclude that the
compiler vendors have focused their efforts on particular subsets of the features tested by the
suite. Possible reasons might include hardware differences or (self-imposed) limits on compila-
tion lime, compilation memory use, or the size of the generated code,

Complete results, on o loop-by=loop baziz, may be found in [T].

h. Bpeedup

The goal of vectorization is for the vectorized program to execute in less time than the
unvectorized program. The metric used 15 the speedup, s, defined as 5, =1/, where ¢, 15 the
scalar time and f, 1% the vector time, In this section we look at two aspects of speedup. First,
does the vector code run slower than the corresponding scalar code? Second, how large a
specdup can be gained with vectorization?
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Table 7

Loaps vectorized {r, = 095, wectar length = 10, 121 locps)

Campaler W P ™
CORVEX C210 R0 83 S0 (1L 130 (28)
COCCRAY-2 EOT ) 08 i} TES 4Ty
CRICERAY ¥-MP TTR5) T4 (%) 148 (18}
DEC YAX 500210 492 (6 25 (1) 454 (59
FiS ME11EA-T TR 3.3 (4} A
Fujitsu VE2E00,10 G592 [Bd) 151 (16} 150 (22}
Hitachi 5-220,/80 9T [R5 16 (2 157135y
1B 30601 TL3ET) 21 (3 4.4 (30
MEC EX-X /14 T1.1(EE) 25 (3 154 (31}
AvEraps &7 D 24 i) TAIN
Tabl: 2

Loops sectorized (5, = {55, vector length = 10K, 122 loops)

Lot W P "
COMVEN C210 BR.0(E3) £2 (10) 115 (28
COC CRAY-1 BT (72) g (1) 8.5 (47)
CRI CRAY Y-MFP 1T.9{95) T4 W 14.5 (18]
DR VAN HHO-210 4.9 (5T X5 (1 42650
FPS M511EA-2 TL3{ET) 4.1 (5} 24.6 {30
Fujitsn VF2E00 /10 (5. T {£5) 156 (1% 14.2 {18)
Hitachy 5-820 /5 M (EG) 1.5 (2] 278 034)
1ER 3090 E00] T1.0{En 4.1 (5] 230428
HECSX-X 12 T (EE) 15 (1 54030
Average 62T {83) 32 (6] 26.1 {311

&, Vevrorized foops repisred

Ideally the specdup from vectorization (or partial vectorization) should be as large as
possible. AL a minimum, though the vecior code should run at least az fast as the scalar code,
Howcever, this minimum is not always achicved, particularly at short vector lengths where there
may nol be enough work an the loop o overcoms the veclor starlup cost,

Taldes 7 and & revisit the resulis in Table 7. The number of loops in cach of the differeni
calegories 15 again aken from the compaler listing, In Tobfer 7 and & however, we have not
counted as vectonzed or partially vectorized any loops where 5, = (1L95. 4 The results in Tahle 7
are lor vector length 100, and the results in Table & are for vector length 1000, %We have not
presented these results for vector length ten since almost all vendors suffer some performance
degradation for short vecions,

The resultz in Tables 7 and & are mostly consistent with Tadle . Four of the compilers show
no degradation on any of the vectorized loops, Three others show a degradation on only one or
twor Joops, Only two compilers show a degradation on any significant number of loops. The
results for partial wectorization are also fairly consistent with Talde [, with only cne compiler
showing any serous number of loops being degraded. There 15 a large vanance in the test suite
a5 to which leops have degraded performance. Mo particular trend is obvicus.

Two compalers alse sulfered noticeable perflormance degradations (below 90%) for a signifi-
cant number of loops (10 or more) that were ol secforized. We believe somchow that the

Ve e (095 instesd of 1 5o allow far the prasihiliny of measurcment Srion,
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Tablz &

Agprepate spoadup resulls by seclion (122 loops)

Sectiom 1 1Kl T{KHE All WL

Data depemdena: L4 0.54 5100 L&Y 1225 213 16 1.4Z
‘ectprization 1,37 ik =11 1.74 Il.32 Rl 0.27 1.41
Idican reeopation .55 0.73 b 1.73 11.52 226 5,38 1,36
Language completensss 1.55 107 472 1,501 943 213 530 1.55
All segtions 1.35 a2 473 1.20 14.55 208 LR | 1.41

atlempl o veclorize interfered with the genecation of good scalar code. We view this as a
performance bug and have advised the vendors. Other than these cases, the vectorizers rarely
generated code that was inferior to the scalar code on vector lengths of 100 or more. An
exception is the mne loops the CRAY -2 compiler-generated vector code for with a safe vectar
length of one. These loops, although scored as rar pecforized, had veclor execution Lmes that
were frequently twice the scalar execution limes.

f 2 Agpregaie speedup restlis

The speedup that can be achieved on a particular vector computer depends on several
lactors: the speed of the vector hardware relative (o the speed of the scalar hardwars, the
inherent vector parallelism in the code of interest. and the sophistication of the compiler in
detecting opporiunitics to generate code to run on the vector hardware, From the perspective of
our test, we would like (o measure the speedup achieved just from the compiler’s vectorization
capabilities, However, speedups are too strongly influenced by architeciure and implementation
to be meaningful indicators of compiler performance. Therefore, we prefer not to give speedup
results for indmvidual vendors which may e misinterpreted as representing compiler perfor-
mance galy, Instead, we present speedup statistics using the aggregate results from all vendors,

Talle ¥ presents a summary of the speedup results of all vendors, The licst [our rows present
results according to the classification scheme in Section 2. Results are given for vector lengths
of 10, 100, and 1000 and. in the last column, the sum over all three vector lengths. Each column
containg the arithmetic and harmonie means of the speedups for the loops in that section, The
resulls i the last row are summed over all four sections.

Tabde M} containg aggregate stanstics for three different levels of vectorzation. The format
of the lable 15 similar 1o Table 9 The first row contains speedup statistics for the 771 loops
seored as fully vectorized. The second row contains speedup zlatzstics for the 248 loops scored
as either fully or partially vectorized. The last row contains spoedup statistics for the 77 loops
that were partially veciorized,

6.1 Discussion of speedup

As might be expected, at the relatively short vector length of 10, the speedups were not very
large. This 1= particulacly true of the Idiom Becognition section, where the methods used 1o

Tabkle 10

Aggregate speedup results by 1ype of veclanzanen

Veclorizalxm level ':I:I e 104 1M All VL

Full veglonizatian 154 06 6.2% in 20.20 448 934 1,50
Full ar parial vedloriealon 147 093 5.83 161 18.5¢6 4R A3 1.72

Pariial vectorization 0E 68 1.41 1.0} 24 1407 1.4% .88
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veclorize some of the loops are not amenable 1o the full speedup that can be provided by the
hardwars. At vector length 100 most spesdups were between three and =six. At the longest
vector length, 1M, the individual speedups were slightly higher for maost, Three vendaors
hoowever, had very large average spesdups (294, 332, and 39.8) aver the scalar spead.

The chaice of mean clearly affects the resulis. In the Vectonizaton section, the arithmetic
mean af vector length TG s 21,32, while the harmome mean 15 only 1,91, These resulls show
that a relatively small number of large speedups can greatly affect the anthmetic mean.
Mchahon [11] and Smath [13] dizcuss the different means.

If we compare the last row of Tabie & with the first too rows in Talde [ we sce better
speedups at all vector lengihs when we consider only the leops fully or partally vectorized, Of
course which loops were included, and how many, varies for cach vendaor.

In zeveral loops in the test suite, nol all statements can be vectonized. A compiler can sl
improve performance by partial vectorization — vectonzing some, but not all, of the statements.
An Table 10 shows, the speedups from partial wectorization are significantly less than those
from full vectonzation. Thers are several reasons for this result. Ficst, since by definition partial
veclorzation vectorizes only some of the statements in a loop, others sill mem at scalar speeds,
Zecond, our defimtion of partial vectonzation classifies as such a loop that uses any vectlor
mstrections, no matter bow muoch of the loop s executed in scalar mode Finally, many
technigues for partoal vectonzation imiroduce extra work, such as exira loads and stores and
additienal loop overhbead, which is not required in the ariginal loop,

Even with these caveats we see from the last row in Tabde 10 that thers 15 stll o benefit to be
gained from partial vectorization, but primarily at the longer vector lengths. Even more 30 than
with full vectonzation, partial vectorization — al least on e est loops — degrades performance
al vector length of ten.

T, Percent vectorization

In this scction we focus on the performance of the compiler independent of the computer
archieciure, We do this by developing a maching-specific model of what optimal vectar
performance 35 for each of the loops in our test suite. We then compare the optimal
perlormance predicted by this model wath the actual vector execution resulls o determne the
percent of the optimal vector performance actually achieved.

T A A medel af compiler perfermance

A simple model of vector performance as a function of vector length is given by the formula
1]

=g+ i, I:”

whers 115 the ume 10 execute a vector loop of length &, 55 15 the vectar startup time, and 1 1s

the time o execuie a particular vector element. Equivalent 1o (1) 15 the well-known model of
Hockney {zee Hockney amd Jesshope [3]),

I—'."__;I{.re *Hy Al (2}

where r, 15 the asymptotic performance rate and n, ., is the vector length necessary to achieve
cog hall the asympiotic rate. Equations (17 and (2} can be shown to ke equivalent if we use the
definitions r, = 7" and w5 = 171, [3).

Az Lubeck [E] points out, aeither equation medels the stripmining process used by compilars
on register-to-register veclor compulers. Alse, (1) and (2) may noet reflect the behavior of
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Table 11

Basic opration classe:

Class CrperaLicn

i Load e

0 Crather (Logd indinaen)

1 Slare

] Scanrer (Srone indirect)

. Artburetic (Add, Multiply)
1 Reduaciions

cache-bazed machines under increasing veclor lenglhs (see, for example [1]1. Nevertheless, for
the purposss of our model we believe (1) and (2) o be sufficient.

By analogy with »_. for each loop, we define three rates: » lor the optimized zcalar code, r,
for the vector code, and 7, for optimal vector code for the target machine. These rates are
defined in units of the number of iterations per second of the loop, We asseme r, = r,, and we
expect r, =, € 1, although (as the previous section indicated) it is possible to have &, < r,.

Using the scalar and vector data collected, we can selve (2}, for each loop, for roand r,
respeciively. Since we cannol necessarily assume r, = r,, we must eximaie v, To do thizs, we
assume that the execution time of a loop is determined by the basic operations in the loop, To
determine the rate at which basic operations {eg. addition or lead) can be performed, we use
the control loops, which we assume can be optimally vectorized,

We divide the basic operations mte classes. Each class contains operations that utilize a
specific functional unit. For example, Table 17 lists the basic operations in each ¢lass for a
generic compuier with separate load and store pipes, *

The st of which operations belong to which classes varies by vendaor, primanly with respect
o the memory operations, For example, on a maching wath separate lond and store pipes, the
load and gather operations are in one class (they compete for the load pipe), and the store and
seatter cperations are in ancther class (they compete for the store pipe). For machines with
only one pipe for all memory accesses the four memory aperations are all in the same class,
Even though these operations all bave their own execolion rales, when they compete for the
sume resources they are in the same class.

To model contrel flow, we assume an ‘execute under mask’ model in which every operation
1 assumed to be executed in vector mode, and the results of varous control paths are merged
together. Alternative strategics are possible, such as using compress and expand 1o perform
anthmete only where selected, but we found that execute under mask was sufficient for our
PLUIPOsEE.

O each compulter, and for each loop L. we estimate its optimal execution rate r,, using the
algorithm shown in Fig 3. Here © represents the sel of classes defined for a particular
computer, ¢ the operations in a ¢lass, &, the number of instances of ¢ in L, and R the rate
for operation o (in units of operations per second) meazured with the control leops, The
algonthm assumes that cperaticns i different classes execute concurrently while operations in
the same class execuie sequentcially.

* This tahle sould he extended by subdividing elazsses inlo special cases. For gaample, the arithmelic class could he
davided inte separate addiven and muliplication classes. For machines that can execute adds and muliplies
cancurrenily - 2ll machines in this svady - these muliiple funciicnal wniiz are medeled as simply 3 higher
ariibmerie-processing rate, The differcncs in ciecution fimes belecen compuling the elementwise sum of three
veciors and the elementwise product was insignificant for 2ll computers. This fact &5 not sarprising, sines the rage
limiting step for alneass all koeps in the swie s memory references, and a0 this distingtaen would ned change our
risulls sggnilxeantly,
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i o= 0
foreach ¢ = oocurring in L
Fianpe =1l
Toreach o = ¢
e o= e 4+ N, SR
wallar
SlEk e = el mariie)

cindfar

ro— 0 S

Fig. 3, Algerihm for esiimaning oprimal cxesnen rae,

Thiz model is hased on the notion of a resource limit, similar 1o the model vsed 1o caleulate
performance bounds in [10,14], We asseme that for each loop there exist= a particular class of
operations that wse the same function unit and that the time o execute these operations
provides a lower bound on the gme 10 execote the loop, The algenthm in Figure 3 caloulates
that bound, and we use its reciprocal as r.

[ addition 1o messurng the basic veclor operation rales, we alse meazure the basic scalar
aperation rates. For each loop, we then determine which operations can be cxecuted in vector
mede and which must be executed in scalar mode, We then madily the algonithm m fg 3 1o
use the appropriate rate {vector or scalar) for & for cach operation.

For each loop and each vendor, we have now determined the three execution rates: r, vang
the algorithm given in Fig 2, and r, and 7, using §23. All three rates were computed by using
the data for vector leagths of 100 and 1ER. We now define percent vectorizaiian, p, by the
formula

po=-" (1)

With thas delinition, if 8 loop’s vector execution rate is the same as the scalar rate, p, = 0%, and
if & loop’s vector execution rate 15 the same as the optimal vector execution rate, g, = 100%. We
can now classily a loop as veotorized, partially vectorized, or not vectorized according 10 the
value of p . We do thiz according 1o the rule

fn po= 0%
Fesult =4 p 10 5 p, = 0% id)
o b p,

7.2 Example

In thos zection we zhow an exampls of the computation of g, for two computers, O and O
We assume that ©, has two load pipes and a store pipe and that & has one pipe used for bath
leads and stores,

The example used 15 the loop shown in S F. For this loop we have the following profile of
basic operation, N

Load Store  Gather  Scatier  Anthmetic  Reductions
D2 al nn 00 0l an

The first number in cach pair is the number of scalar cperations, and the second is the
number of vectorizable operations. In this example, executing the loop requirss twvo vector
loads, one vector store, and & vector addition, No scalar operations are required {our medel
takes into account scalar operations that occur wathin the loop body, but not scalar operations.
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Table 12

Full wectanization according v (3) and (4 {122 loops)

Computer : i i (]
COMVER C210 16 (65 145 (18] 36 (41)
OO CRAY-2 6 {44 246 (300 303 (48
ORI CEAY Y-MP 540 {55) 254 131) 2005 {25
DVEC VAR S00-210 451 {55) 520 46T (5T
FPS W511EAD 515 {54 180122} 205 (36)
Fupitan VL0 365 121 1) EERAETN
Hitachi 5-220,/50 515 {64 156114 32003
TRM LT SLE53) 159 (23] 205 {36
MEC 5X-% /14 4.7 {47 23 26) 300030
Average T 4.3 (&) 178(21) 33.0 {40

such as mecrementing the loop control varable or esting for loop termination, that have to do
with the loop conirol 1i=eif).

Uzing the resuliz of the control loops, we have calewlated the following basic weotor
operation rates. The units are in mullion of cperations per second.

Computer  Load  Stere Arithmetic
e 227 1500 2469
L 186 207 284

Using these values and the loop profile above, we can estimate 1, with the algorithm shown
im Fig 3. The result of these caleulations is that, for O, the optimal vector execution rate is 114
million iterations per second, and for & it is &4 million derations per second.

Uzing the scalar and vector results for vectar lengths 100 and 1000, we determined the
follwing results for », and r, by solving (2):

Compuler r, 3
i 123 1154
G 10,7 19.3

Substituting the appropriate values of r. r, and r,, into (3), we caloulated p, = 100% for C,
and p, = 17% lor O, Applving (4}, we determined that O fully vectorizes this loop and that O
partially vectorizes this loop.

7.3 Resuilrs

Table 12 15 simular e Toble [, except here the number of loops vectorized or partially
vectorized has been determined by applyving (3) and (2) as opposed 1o analyeing the compiler's
cutpul Lising,

In comparing Table 12 1o Table ] we obzerve that the resultz are mosily consizient with
Tobde I, with a somewhat tighter grouping among vendors with the most loops vectonzed. Most
compilers vectorzed between 20 and 30 loops which did not acheve full vector performance
[ p, = 0%

Casual inspection of the data indicates that there are a number of loops for which ar mast
one vendor successfully achieved vector performance and all other vendors that vectorized did
not. Approcamately 23 loops account for most of the differences between the two measures of
veclorization. For the most part, these loops are scattered across calegonies bul they include
most of the scalar expansion loops, the search loops, the packing loops, and the loops with
multiway hranching.
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Factors other than simple detection of vectorizablility are reflected in the computation of
vectorization percentages. In particular, tradinonal opimizations such as common subexpres-
sion elimination, register allocation, and instruction scheduling wall all influsnce the quality of
the generated code and hence the percentage of vectorization. In this sense, the percentage is
more 4 measure of the overall guality of the compler zenerated code,

Optimal code generation and, in particular, instruction scheduling for very simple loops are
extremely difficult. For loops with largs bedies, heonstic algorithms will vsually get within a
small sumber of instructions of what is optimal. When the loop body contains only five or ten
instructions, however, being off by a “small” number could cost 25% of achievable performance.
Thus, since almost all of the loops in the suite are very simple, the compilers may perform
substantially better on “real’ codes than is suggested by Teble 12,

That the measured exccution rates are lower than what might be expected from *vector’ code
may be due o medel Lhmitaions, For example, the model treas unit and nonunit steide vector
accesses as equal in cost: there was no convincing evidence that nonunit stride was a factor
worth adding te the operation clazses listed in Talde 11 The other major factor not modeled is
the presence of a data cache, its size and its organization. This 1= discussed in Section 8.2,

One issue than biases the resulis presented here is that we used the measured performance on
simple loops to calibrate the model. Thus our “optimal rales’ may be sigmlcantly below
‘miachine peaks” since those peaks may be achicvable only assuming optimal compilation.
Further, if the code generation capabilities of one compiler are generally poar compared with
another, then itz ability to vectorize may appear inflated, since our estimate of optimal
execution rate may be oo low, This sitwation can be corrected by replacing the control loops
with numbers derived from hand-crafted assembly routines that would provide estimates of
‘achievable peaks’. We did not have the resources 1o generate these numbers for each machine.

f. Dhiscussion
L1, Validity of the tesr suite

How zood is this test suite? The guestion can be answered in several ways, but we will
address three specific areas: coverage, stress, and acouracy.

&1 Coverage

By ‘coverage’ we refer to how well the test suite represents typical, common, or imporiani
Fortran programming practices. We would like to assert that high effectivensss on the test suite
will correspond 1o high elfectvensss in general. Unfortunately, there iz no accepted suite of
Fortran programs that can be called representative, and seowe have no quaniilaiive way of
determining the coverage of our suite. We believe, however, that the method wsed 1o select the
tests has vielded reasonable coverage, This method consisted of two phases,

In the first phase, a large number of loops were collected from several vendors and interested
parties. This gave a diverse set of vewpoints, each with a different machine architecture and
henee somewhat different priorities. [n some cases the loops represented “real” code from
programs that had been benchmarcked. The majority, however, were specifically written 1o 1231 a
veclorizing compiler for a particular feature. Independently, the categonzation scheme used in
Section 2 was developed bazed on expenence and on publizhed literature about vectorization.

In the second phase, the fest suite was culled from the collected loops by claszilving each
loop into one or more catepories and then selecting a few representative loops from cach
calegory, Our interest was in coverage; and since ‘representative’ is not well defined, we made
no atlempt to weight seame of the subcategones more than others by changing the number of
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Table 13
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T L L LA LS L R LR L AL AL A S R R A B s AR T, e ST, LT, L
T = P P L T T T T P T PP S P S P P e w e L 1w ¥ AT Lis
T R P T R R NSNS TS N NN NI TR WL R L M"-"'l' S N
e LU T
[ELLELE . TSI TN SIS PSFOSRASIAIN R ISR I WLV e e YL LWL
T T S A YR LY LY T T L b L L R L L
Cita et e L L R DR LT Tl Sty WA SRR RN SIS, YL TSRS AT, enend, 0 P 'hl'\"u"nl B
L e C N Lo T L AL AL B T A BT BT R L i LU | Tl g L, L S .'-' o I-'. I-'. o T
B L L T L LI L, R L T -I'W-'u'- SAri ot e

ARSI S S A e G R S R I I S T A N A AR AR R T AT T T AT T NI P A VA GRS RS 2SI SN A R R R R IT130

loops, Whers we felt that 1esting & subcategory required a range of situations, we included
several loops; in other cases we felt that one or two loops suffliced, There is significant
weighling belween major categorics. For example, the test suite places greater emphasis on
basic vectorization {41 loops) than on idiom recogniticn (34 loops). This weighting was an
artifact of the selected categorics and was reflected in the original collection of samples. We felt
that this weighting was reasonable and made no atlempl o adjust i,

B2 Biress

By “stress” we refer to how effectively the tes1 suile tests the hmits of the compilers, We wish
the 1e51 10 be difficult but not impossible. Again there is no absolute metric against which we
can measures the test suite, bul we can use the performance of the compilers as a measure. Table
43 listz the resulis for the various compilers. In this table, each row corresponds o a particular
compiler. Rows arg sorted in order of decreasing full and partial vectonization {see Table 2}
Each column corresponds to a particolar loop, and the columns are sorted in order of
increasing difficulty.

The loop scores at the bottom of Table /3 are based on the number of compilers that
veclonzed or partally vectonzed the loop, Many of the loeps are inherently only partially
veclorizable, and so we have not attempted 1o weight [ull wversws partial vectorizalion, We
interpret o low score a8 an indication of & difficult test. From the table we observe a skewed
distribution of results, with many of the leops ‘ensy’ {everyone vectarizes) and only a few
“difficult” {(only one or two vendors even partially vectorizes).

Viewed from a lustorical perspective, the test appears less stressful now than it did
originally, We can see this qualitatively from Table 4, which is reprinted from [3]. Here there
seems o be a more balanced distribution of tests between “eazy” and “difficult’” when compared

Table: 14
Loops soried by difficulty, from [3]
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i Talle 3. Btatistics also support this view. In |3] the average number of loops vectornized was
25%, and vectorized or partally vectonized was &1%. Even if we restricl ourselves 1o just the
eight vendors also participating in this test, the previous results are sull only 59% and 64%,
respectively In this test the average number of leops vectorized was 705, and vectorized or
partially vectorized was 7%, an improvement of aboul 13%

Spveral factors may be at work. First, compilers have evolved and improved over time.
Second, specalized third-party compiler technology 15 now readily avalable 1o imterested
vendors, Third, for various reasons approximately half the vendors who participated in the
previous est did not paricpate this ome. While those whe did nol particapate span the
spectrum of previous resulis, most had results in the lower or middle part of the previouws test.
W hile we added new loops 1o this 1251 fand alse deleted a small number], this does not seem Lo
have provided adequate stress. Since one valid use of this test soite s For compiler writers o
diagnose system deliciencies, we expect over ime that the test will lose s elfectiveness Lo siress
commpilers.

&1 Y Accuracy

By *accuracy” we refer 1o how well the test can measure the qualicy of a vectorizing compiler,
Since the difficulty of the esis was determined by the performance of the compilers, 11 would
be circular now to judge the absclute gquality of the compilers by their performance on this
suite, What abowt relative performance? To is tempting to distll the results for each compiler
into 4 single number and use that o compare the systems. Such an appreoach, however, is
clearly incorrect, singe these compilers cannot be compared in isclation from the machine
environment and target apphcation arsa for which they were designed.

We conclude that the suite represenis reasonable coverage, that the stress may oo longer be
adequate, and that we cannot determine the accuracy of the suite.

8.2, Beating the tes

Soane of the loops were vectorized in ways that defeated the intent of the 1esl, One example
15 the use of 4 runtime test, IF the compiler cannot determine at compile tme whether a loop is
safe o vectorize, because of, say, an unknown parameter valuee, it must either nol vectonze the
loop or else generate an alternative code runtime test. At runtime, based on the value of the
unknown parameter, the test execules cither a scalar or a vector version of the leop, as
approprate. In general, we view ruontime testing as a good thing to do. It allows veclomzation of
loops that would not otheredse be vectorized and allows cost-effectiveness decisions o be
deflerred wnnl runtime, However, 11 has a negative side. First, the cost of the 1es1 15 incurred
cach time the loop i= executed. Second, for large loop nests, i 15 possible to have a
combinaterial explosion in the number of 12215 generated. All of the loops in our 1est sule can
be determined to be vectonzable at compile ume, and thus runtime testing 15 nod necessary. The
Cray Fescarch, FPS, [BM, and NEC compilers, however, can generate runtime tests amd in a
fewr cazes were able to “beal the test” this way.

A technique similar to runtime testing is conditional vectorization, which was used by the
Cray Computer compiler, With conditional vectonzation, a safe vector length ® is calculated at
runtime. While conditional vectorization is also good for a compiler o be able 1o do, it also has
o megative side, First, thers 12 the overhead involved in calculating the safe vector length at
runtime. Sccond, if the calenlated safe vector length is one, it is more efficient o execule a
sealar imstruction rather than a vector instruction. Mone of the loops in owr lest cegquire

* fpe Section 5.1,
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conditional vectorization. MNevertheless, the Cray Computer compiler conditionally vectorized
20 loops, 11 of which resulted in a safe vector length greater than one.

Another way compilers defeated the intent of the test was by their ability 1o vectonze
recurrences, vang either brary routinegs or special bardware, Several of the tests call for the
compiler to split up a loop (loop distribution, node splitting) or change the arder of a loop nest
(loop interchange) in order o vectorize a loop confaining an ‘unvectorizable” recurrence.
Zeveral of the compilers — notably those (rom Fupitsu, Hitach, and NEC — were able o
directly vectorize some of these loops.

We emphasize that “beating, the test” is noet 2 bad thing, While there may be more efficient
wiys [0 vectorize the loops, the techniques above are beneficial.

3 Caveais

We caution that the resulis presented here 122t only one aspect of a compiler and should in
na way be used o judge the overall performance of a vectorizing compiler or computer system.
The results reflect only a limited spectrum of Fortran constructs, We do nol claim these loops
are representative of a “real” workload, just that they make an interesting test. Some additional
factors are discussed heloar

&30 Coche effects

Two issucs may impact machines with data caches, Firsl, e ensure a large encugh
granulanty for Gming purposcs, we included a repetition loop around the loop of mterest
While considered a necessary evil for test purposes, thiz artficial repetilion raises an important
question ahout data locality. The concern is that a cache machine will benefit from the reuse of
data loaded intoe cache on the ficst top throwgh the repetition loop and that additional
references o main memaory will not be necessary.

The second 1ssue concerns the data set size relative o the cache size. A small data set wall
alwavs fit in the cache. A large data sot may not 0t in the cache and wall cavse many
performance-degrading cache misses o oocur. The paper by Abu-Sufah and Maloney [1)
contlains a discussion of this ssue and its impact on performance, Their uniprocessor perfor-
manse resulis on an Alliant FX /8 show that there is only a narrow range of vector lengths for
which optimal performance was achieved. Our choice of 10, 1D, and 1000 as the vector lengths
wiks somewhal infuitive and was not made with any particular cache size in mind.

#.3.2 Loop pranulariiy

Because of the small granularity of our loops (3t most a few statements) the speedups
achievable with a certain technique may nol achievable on our particular loops. As an example,
vectorizing the loop shown on the left in Fig. 4 requires splitting the loop into two vectorizable
loops and one scalar loop contaimng the nonlingar recurrence as shown on the right.

do i=2,.n do vecter 1=2,n
atid=atil+bii) atir=atil+biil
BLidysbid=1)rb{i=-1¥alq] enddo
alidy=atil=hii} do i=2,.n
enddo BCiy=bCi-1*B{i=-12%ali)
endda

do vector i=2.n
alir=atir-hiil
enddo

Fig. 4.
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For this transformation (o be successlul, thers needs o be encugh work in the loop to jusufy
the two addittonal loop overheads imiroduced and the extra loads and stores which are not
required in the original loop. For this loop, inspection of the compiler listing showed that eight
of the nine compilers had partially vectorzed the loop, but only three achieved more than 13%
af the estimated aptimal performance, and only ane achieved maore than 505,

&.3.3 Hordware and zoftware

Some of the loops are really tests of the underlying hardware and may not accurcately reflec
the ability of the compiler z2lf, For example, in the statement Al = BIINDEX]) 2 compiler
may detect the indirect addressing of array B but not gencerate vecior insimections because the
computer does not have hardware support (or array references of this [orm. Other examples are
loops containing IF tests thal may reqguire mask registers, or recurrences that require special
library routines,

Several of the computers tested are multiprocessors whose compilers support the generation
of both parallel and vector code {Talde 15). Our test invalved sieictly umiprocessors and may
have penalized vendors who have put considerable effort inte parallel execution. On some of
these machines, parallel execution may be more cfficient than vectorization for certain loops,

Another example where the computer architecture may influence the compiler is on
machines that have a data cache. Compilers for such machines may concentrale on loop
transformations that improve data locality at the expenze of adding “simple” vectorization
capabilites.

Several vendors have sophisticated tools 10 aid the wser i vectorization, For example, both
Fujitsu and NEC offer vectorization tools that interactively assist the wser in wvectorizing a
program. Another example is an interprocedural analysis compiler from Convex, which
analvzes an entire program at once. While all are very sophisticated tools, their use was against
canr rules.

9. Conchision and future work

O resulis indicate that most of the compilers tested are fairly sophisticated, able o use a
wide variely of vectonzation techmiques and transformations. Loops that were considersd
challenging several years age, such as indircct addressing or vectorizing loops containing
multiple IF 12215, now seem routine. While there are sill various vectarization challenges left 1o
be met, we are not sure how much they will be addressed in the future. Our perception is that
mast current compiler work is going inte memary hiearchy management, parallel loop penera-
tion, highly pipelined scalar processors, and interactive and imerprocedural tools. We may well
ke nearing a plateau as far as how much additional work vendors wall pul into veclomzalion
techniques alone.

Olier 1est suite continues o evolve from simple inspection of the compiler’s autpul bsling 10
trying 1o judge the guality of the execution results. To make the test more meaningful, we plan
o add the types of “real’ loops found in applications. Real loops present combinations of
vectorization problems rather than individual challenges. 1t will then be interesting to compare
results on the “simple” loops with those on the real loops,

A copy of the source code used in the t25t 15 avallable from the NETLIE electronic mail
Facility [4] at Oak Ridge National Laboratory. To receive a copy of the code, send electronic
mail 10 wesfibi@ernd gov, In the mail message, Wvpe send veciars fram benchiark or send veciord
Srom benchwiark o get either the EEAL or DOURBLE PRECISNN versions, respectively,
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Company Compiler version K5 wersson

Computer Compiler aptians Main foache memony

CORNYVEX Computer Corp, fe 1 7 S G

COMVEX C210 0 wum eis 128 B Mone

Cray Computer Carp. cli77 4011 UMNIC0E 6.0

CRAY-2 Dilaults TGH Mo

Uray Weséarch, Inc. CFTT 4.0 UMICOS 5.1

CRAY Y-MP B 10 Mane

Lragital Equapaénl Corp. FORTEAM V5.5 HPO V1A YWhis 5.4

VA vector S000-210 AHPOAVBECTOR ABLAS = (INLINE, SI2MES1IRER
MAFPED)/ASEUME = MNOACC AOFT

FEs Comguiling 7743 FI'X. 4.3.2

FPE ME11EAS2 SRS B e T e SR CH A e B LR ZEAMTL LR TE

Fujitsit Forran?TEX AT AVTILLID QSN DMSP AFID &,

WIZEH 10 VECRSOF TR TH LINEEX TS 5155 VPO VIGLIG
VRSO DETALLY LR Mone

Hitaclu fart?7 Shap Y2400 vasd Sas jssd 01402

S-ED0 R sopxlurs sl SI2MBRSGER
hap{modelB0vistLuinline

1BM Corp. VE FORTRAM 240, VAST-Z k2 MYE/ESA SPLIAE

TEAL 3050600 vaplioplan = rl inline = s1515,51525) JES2 5P
copt{apli 3] veo(repxlisi}) 1560B 256 K0

SUEME Bxrended Memory

MEC Conp. T7ax D10 SUFER-UX E1.11

SN 014 -pi *:sl5lks ":sl52s 1GE AR E
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