INTRODUCTION

LINPACK — A PACKAGE FOR SOLVING LINEAR SYSTEMS

Chapter 2

J. J. Dongarra*
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439

G. W. Stewartt 1
Department of Computer Science
University of Maryland
College Park, Maryland 20742

LINPACK is a collection of Fortran subroutines that analyze and solve

linear equations and linear least squares problems. The package solves linear sys-
tems whose matrices are general, banded, symmetric indefinite, symmetric posi-
tive definite, triangular, and tridiagonal. In addition, the package computes the
OR and singular value decompositions of rectangular matrices and applies them
to least squares problems.

or

The software for LINPACK can be obtained from either

National Energy Software Center (NESC)
Argonne National Laboratory

9700 South Cass Avenue

Argonne, Illinois 60439

Phone: 312-972-7250

Cost: Determined by NESC policy

IMSL

Sixth Floor, NBC Building
7500 Bellaire Boulevard
Houston, Texas 77036
Phone: 713-772-1927

Cost: $75.00 (Tape included).

Requestors in European Organization for Economic Cooperation and Develop-
ment countries may obtain the software by writing to

* Work supported in part by the Applied Mathematical Sciences Research Program
(KC-04-02) of the Office of Energy Research of the U.S. Department of Energy un-
der Contract W-31-109-Eng-38.

F Work supported in part by the Computer Science Section of the National Science

Foundation under Contract MCS 7603297.

J. J. Dongarra and G. W. Stewart 21

NEA Data Bank

B.P. No. 9 (Bat. 45)
F-91191 Gif-sur-Yvette
France

Cost: Free.

The documentation for the codes is contained in the following book:

J.J. Dongarra, J.R. Bunch, C.B. Moler, G.W. Stewart,
LINPACK Users’ Guide

Society for Industrial and Applied Mathematics (1979)
Cost: $17.00.

HISTORY

In June 1974 Jim Pool, then director of the Research Section of the
Applied Mathematics Division (AMD) at Argonne National Laboratory, initiated
informal meetings to consider producing a package of high-quality software for
the solution of linear systems and related problems. The participants included
members of the AMD staff, visiting scientists, and various consultants and
speakers at AMD colloquia. It was decided that such a package was needed and
that a secure technological basis was available for its production.

In February 1975 the participants met at Argonne to lay the groundwork
for the project and hammer out what was and was not to be included in the pack-
age. A proposal was submitted to the National Science Foundation (NSF) in
August 1975. NSF agreed to fund such a project for three years beginning Janu-
ary 1976; the Department of Energy also provided support at Argonne.

The package was developed by four participants working from their respec-
tive institutions:

J.J. Dongarra Argonne National Laboratory

J.R. Bunch University of California at San Diego
C.B. Moler University of New Mexico

G.W. Stewart University of Maryland

Argonne served as a center for the project. The participants met there summers
to coordinate their work. In addition Argonne provided administrative and techn-
ical support; it was responsible for collecting and editing the programs as well as
distributing them to test sites.

22 LINPACK — A Package for Solving Linear Systems

In the summer of 1976 the members of the project visited Argonne for a
month. They brought with them a first draft of the software and documentation.
It became clear that more uniformity was needed to create a coherent package.
After much discussion and agonizing, formats and conventions for the package
were established. By the end of that summer an early version of the codes
emerged, along with rough documentation.

The fall of 1976 and winter of 1977 saw the further development of the
package. The participants worked on their respective parts at their home institu-
tions and met once during the winter to discuss progress.

During the summer of 1977 the participants developed a set of test pro-
grams to support the codes and documentation that were to become LINPACK.
This set was sent to 26 test sites in the fall of 1977. The test sites included
universities, government laboratories, and private industry. In addition to run-
ning the test programs on their local computers and reporting any problems that
occurred, the sites also installed the package at their computer centers and
announced it to their user communities. Thus, the package received real user
testing on a wide variety of systems.

As a result of the testing, in mid 1978 some changes were incorporated
into the package, and a second test version was sent to the test sites. The pro-
grams were retested and timing information returned for the LINPACK routines
on various systems.

By the end of 1978 the codes were sent to NESC and IMSL for distribu-
tion, and the users’ guide was completed and sent to SIAM for printing. At the
beginning of 1979 both the programs and the documentation were available to
the public.

LINPACK AND MATRIX DECOMPOSITIONS

LINPACK is based on a decompositional approach to numerical linear alge-
bra. The general idea is the following. Given a problem involving a matrix 4,
one factors or decomposes A into a product of simpler matrices from which the
problem can easily be solved. This divides the computational problem into two
parts: first the computation of an appropriate decomposition, then its use in solv-
ing the problem at hand. Since LINPACK is organized around matrix decomposi-
tions, it is appropriate to begin with a general discussion of the decompositional
approach to numerical linear algebra.

Consider the problem of solving the linear system
Ax = b,

J. J. Dongarra and G. W. Stewart

where A4 is a nonsingular matrix of order n. In older textbooks this problem is
treated by writing (1) as a system of scalar equations and eliminating unknowns
in such a way that the system becomes upper triangular (Gaussian elimination)
or even diagonal (Gauss-Jordan elimination). This approach has the advantage
that it is easy to understand and that it leads to pretty computational tableaus
suitable for hand calculation. However, it has the drawback that the level of
detail obscures the very broad applicability of the method.

In contrast, the decompositional approach begins with the observation that
it is possible to factor 4 in the form
A=LU, ()

where L is a lower triangular matrix with ones on its diagonal and U is upper tri-
angular. * The solution to (1) can then be written in the form

x=A"=U'L"p=Uc,
where ¢ = L~!p. This suggests the following algorithm for solving (1):
1: Factor A in the form (2);
2: Solve the system Lc = b; 3)

3: Solve the system Ux = c.

Since both L and U are triangular, steps 2 and 3 of the above algorithm are
easily done.

The approach to matrix computations through decompositions has turned
out to be quite fruitful. Here are some of the advantages. First, the approach
separates the computation into two stages: the computation of a decomposition
and the use of the decomposition to solve the problem at hand. These stages are
exemplified by the contrast between statement 1 and statements 2 and 3 of (3).
In particular, it means that the decomposition can be used repeatedly to solve
new problems. For example, if (1) must be solved for many right-hand sides b,
it is necessary to factor 4 only once. This may represent an enormous savings,
since the factorization of 4 is an O(n®) process, whereas steps 2 and 3 of (3)
require only O(n?) operations.

Second, the approach suggests ways of avoiding the explicit computation
of matrix inverses or generalized inverses. This is important because the first
thing a computationally naive person thinks of when faced with a formula like
x = A7'b is to invert and multiply; and such a procedure is always computation-
ally expensive and numerically risky.

* This is not strictly true. It may be necessary to permute the rows of 4 (a process called
pivoting) in order to ensure the existence of the factorization (2). In finite precision arith-
metic, pivoting must be done to ensure numerical stability.

24 LINPACK — A Package for Solving Linear Systems

Third, a decomposition practically begs for new jobs to do. For example,
from (2) and the fact that det(L) = 1, it follows that

det(A) = det (L) det(U) = det(U).

Since U is triangular, det(4) is just the product of the diagonal elements of U.
As another example, consider the problem of solving the transposed system
ATx = b.Since x = A"Tb = (LU) Tb= L-TU Tp, this system may be solved
by replacing statements 2 and 3 in (3) with

2" Solve UTc= b,
3" Solve LTx=

Note that it is not at all trivial to see how row elimination as it is usually
presented can be adapted to solve transposed systems.

Fourth, the decompositional approach introduces flexibility into matrix
computations. There are many decompositions, and a knowledgeable person can
select the one best suited to his application.

Fifth, if one is given a decomposition of a matrix 4 and a simple change
is made in 4 (e.g., the alteration of a row or column), one frequently can com-
pute the decomposition of the altered matrix from the original decomposition at
far less cost than the ab initio computation of the decomposition. This general
idea of updating a decomposition has been an important theme during the past
decade of numerical linear algebra research.

Finally, the decompositional approach provides theoretical simplification
and unification. This is true both inside and outside of numerical analysis. For
example, the realization that the Crout, Doolittle, and square root methods all
compute LU decompositions enables one to recognize that they are all variants
of Gaussian elimination. Outside of numerical analysis, the spectral decomposi-
tion has long been used by statisticians as a canonical form for multivariate
models.

LINPACK is organized around four matrix decompositions: the LU
decomposition, the (pivoted) Cholesky decomposition, the OR decomposition,
and the singular value decomposition. The term LU decomposition is used here
in a very general sense to mean the factorization of a square matrix into a lower
triangular part and an upper triangular part, perhaps with some pivoting. These
decompositions will be treated at greater length later, when the actual LINPACK
subroutines are discussed. But first a digression on nomenclature and organiza-
tion is necessary.

J. J. Dongarra and G. W. Stewart ‘ 25

NOMENCLATURE AND CONVENTIONS

The name of a LINPACK subroutine is divided into a prefix, an infix, and
a suffix as follows:

TXXYY

The prefix T signifies the type of arithmetic and takes the following values:

S single precision
D double precision
C complex

Where it is supported, a prefix of Z, signifying double precision complex arith-
metic, is permitted.

The infix XX is used in two different ways, which reflects a fundamental
division in the LINPACK subroutines. The first group of codes is concerned
principally with solving the system Ax = b for a square matrix 4, and inciden-
tally with computing condition numbers, determinants, and inverses. Although
all of these codes use variations of the LU decomposition, the user is rarely
interested in the decomposition itself. However, the structural properties of the
matrix, such as symmetry and bandedness, make a great deal of difference in
arithmetic and storage costs. Accordingly, the infix XX in this part of LIN-
PACK?* is used to designate the structure of the matrix.

In the square part the infix can have the following values:

GE General matrix — no assumptions about the structure
GB General banded matrix
PO Symmetric positive definite matrix
PP Symmetric positive definite matrix in packed storage format
PB Symmetric positive definite banded matrix
SI Symmetric indefinite matrix
SP Symmetric indefinite matrix in packed storage format
HI Hermitian indefinite matrix (with prefix C or Z only)
HP Hermitian indefinite matrix in packed storage format
(with prefix C or Z only)

GT General tridiagonal matrix
PT Positive definite tridiagonal matrix

/

* Because this part deals exclusively with square matrices, it will be called the square part.

LINPACK — A Package for Solving Linear Systems

The second part of LINPACK is called the least squares part because one
of its chief uses is to solve linear least squares problems. It is built around sub-
routines to compute the Cholesky decomposition, the QR decomposition, and
the singular value decomposition. Here nothing special is assumed about the
form of the matrix, except symmetry for the Cholesky decomposition; however,
it is now the decomposition itself that the user is interested in. Accordingly, in
the least squares part of LINPACK the infix is used to designate the decomposi-
tion. There are three options:

CH Cholesky decomposition
QR QR decomposition
Sy Singular value decomposition

The suffix YY specifies the task the subroutine is to perform. The possi-
bilities are

FA® Compute an LU factorization.

co’ Compute an LU factorization and estimate the condition number.
DC’ Compute a decomposition.

SL Apply the results of FA, CO, or DC to solve a problem.

DI’ Compute the determinant or inverse.

UD Update a Cholesky decomposition.

DD Downdate a Cholesky decomposition.

EX Update a Cholesky decomposition after a permutation (exchange).

One small corner of LINPACK, devoted to triangular systems, is not
decompositional, since a triangular matrix needs no reduction. Codes in this part
are designated by an infix of TR, and the only two suffixes are SL and CO.

In addition to the uniform manner of treating subroutine names, there are
a number of other uniformities of nomenclature in LINPACK. A square matrix
is always designated by A (AP and ABD in the packed and banded cases), and
the dimension is always N. Rectangular input matrices are denoted by X, and
they are always N x P. The use of P as an integer is the sole deviation in the
calling sequences from the Fortran implicit typing convention; it was done to
keep LINPACK in conformity with standard statistical notation.

Since Fortran associates no dope vectors with arrays, it is necessary to pass
the first dimension of an array to the subroutine. This number is always denoted
by LDA or LDX, depending on the array name. A frequent, though unavoidable,
source of errors in the use of LINPACK is the confusion of LDA (the leading
dimension of the array A) with N (the order of the matrix A), which may be
smaller than LDA.

Since many LINPACK subroutines perform more than one task, it is
necessary to have a parameter to say which tasks are to be done. This parameter

i Square part only.
Least squares part only.

J. J. Dongarra and G. W. Stewart 27

is always called JOB in LINPACK, although the method of encoding options
varies from subroutine to subroutine. (The JOB parameter in SQRSL, which
has a lot to do, is of Byzantine complexity, although it is very easy to use once
the trick is known.)

The status of a computation on return from a LINPACK subroutine is
always signaled by INFO. The name was deliberately chosen to have neutral
connotations, since it is not necessarily an error flag. As with JOB, the exact
meaning of INFO varies from subroutine to subroutine.

THE SQUARE PART OF LINPACK

The square part of LINPACK is well illustrated by the codes with the infix
GE, i.e., those codes dealing with a general square matrix. The basic decomposi-
tion used by the GE codes is of the form

PA=LU,

where L is a unit lower triangular matrix and U is upper triangular. The matrix
P is a permutation matrix that represents row interchanges made to ensure
numerical stability. The algorithm used to determine the interchanges is called
partial pivoting (cf. Forsythe and Moler [1967] or Stewart [1974]). The decompo-
sition is computed by the subroutine SGEFA,* which uses Gaussian elimination
and overwrites 4 with L and U. (This is typical of the LINPACK codes; the
original matrix is always overwritten by its decomposition.) Information on the
interchanges is returned in IPVT.

There are two GE subroutines to manipulate the decomposition computed
by SGEFA. SGESL solves the system Ax = b or the system A7x = b, as
specified by the parameter JOB. The solution x overwrites the right-hand side 5.
The subroutine SGEDI computes the determinant and inverse of 4. Because the
value of a determinant can easily underflow or overflow (f 4 is 50x50,
det(10*4) = 10°%det (4)), the determinant is coded into an array DET of length
two in the form

det(4) = DET (1)*10** DET (2).

As was indicated earlier, an explicit matrix inverse is seldom needed for
most problems. Consequently, SGEDI should be used to compute the inverse
only when there is no alternative. The inverse overwrites the LU decomposition,
so that the array 4 cannot be used in subsequent calls to SGESL and SGEDI. It
is technically possible to recover 4 by factoring A~! (SGEFA) and inverting it
(SGEDI); but, owing to rounding errors, the matrix obtained in this way may
differ from the original.

* For definiteness the prefix S will be used for all LINPACK codes, it being understood that
D, C, and Z are also options.

28 LINPACK — A Package for Solving Linear Systems

A perennial question that arises when linear systems are solved is how
accurate the computed solution is. The answer to this question is usually cast in
terms of the condition number, k(A4), defined by

x(4) = 141|471, 4)

where ||-|| is a suitable matrix norm. For example, if the system Ax = b is
solved by SGEFA and SGESL in ¢-digit decimal arithmetic and x is the com-
puted solution, then

lx =Xl o rmncario,)
[1x]]

where f(n) is a slowly growing function of the order n of 4 [Wilkinson, 1963].

The LINPACK subroutine SGECO, in addition to factoring A, returns an
estimate of x(4). Because k(4) can become arbitrarily large, SGECO actually
returns the reciprocal of k(4) in the parameter RCOND. The user can inspect
this number to determine the accuracy of the purported solution. However, it
must be borne in mind that the interpretation of the condition number depends
on how the problem has been scaled, a point that will be discussed further in the
section on Numerical Properties.

Most of the remaining square part of LINPACK can be regarded as adap-
tations of the GE routines to special forms of square matrices. One of the most
frequently occurring forms is the positive definite matrix, where the matrix A is
symmetric (47 = A) and satisfies x” Ax > 0 whenever x # 0. In this case the
LU factorization can be written in the form

A=RTR, 6)

where R is upper triangular.* This Cholesky factorization is what the subroutine
SPOFA computes. The advantage of SPOFA over SGEFA is that it requires
half the storage and half the work. Specifically, since 4 is symmetric, only its
upper half need be stored. Likewise, the upper triangular factor R in (6) can
overwrite the upper half of 4. The lower part of the array containing 4 is not
referenced by SPOFA and hence can be used to store other information. The
PO routines include an SL subroutine to solve linear systems and a DI subrou-
tine to compute the determinant or the inverse.

One conventional way of storing a symmetric matrix is to pack either its
lower or upper part into a linear array. The LINPACK subroutine SPPFA com-
putes the Cholesky factorization of a positive definite matrix with its upper part
packed in the order indicated below:

* This decomposition is often written 4 = LT L. where L is lower triangular. The upper
triangular form was chosen for its consistency with the QR decomposition.

J. J. Dongarra and G. W. Stewart 29

1 2 4 7 11
3 5 8 12
6 9 13

10 14

15

The Cholesky factor R is returned in the same order. There are corresponding
SPPCO, SPPSL, and SPPDI subroutines.

When a symmetric matrix is indefinite (i.e., there are vectors x and y
such that yT 4y < 0 < x7 Ax), it has no Cholesky factorization. However, there
is a permutation matrix P such that P” AP can be decomposed stably in the form

PTAP = UDUT, @)

where U is triangular and D is block diagonal with only 1x1 or 2X2 blocks. The
subroutines SSIFA and SSICO compute this factorization, and SSISL and
SSIDI apply it, as usual, to solve systems or compute determinants and inverses.
SSIDI also computes the inertia of 4. There are corresponding packed-storage
subroutines.

There are two exceptional aspects of symmetric indefinite programs. First,
the matrix U in (7) is upper triangular, giving the factorization the appearance

NN
N

as opposed to

AN

for the classical LU factorization (2). This unusual factorization is required so

LINPACK — A Package for Solving Linear Systems

that the algorithm can both work with the upper half of 4 (which keeps it con-
sonant with the PO routines) and also remain column oriented for efficiency
(more on this later).

The other aspect concerns the passage from real to complex arithmetic. A
complex positive definite matrix is generally required to be Hermitian (i.e., equal
to its conjugate transpose); hence there is no ambiguity in the properties of 4 for
the CPOYY routines. In the indefinite case, a complex matrix may be either
symmetric (47 = 4) or Hermitian. This point was resolved by letting the
CSIYY routines handle complex symmetric matrices and devising a new infix HI
for Hermitian matrices.

In many applications the nonzero elements of 4 are clustered around the
diagonal of A. Such a matrix is called a band matrix. The distance m, to the left
along a row from the diagonal to the farthest off-diagonal element is the
lower band width, the distance m, to the right from the diagonal to the farthest
element is the upper band width. The structure of an 8x8 matrix with lower band
width one and upper band width two is iltustrated below:

By storing only the nonzero diagonals of a band matrix 4, the matrix may
be placed in an array of dimensions nx(m; + m, + 1), where n is the order of
A. Thus, if m; and m, are fixed, the storage requirements grow only linearly with
increasing n, and it is possible to represent very large systems in a modest
amount of memory. The amount of work required to solve band systems also
grows linearly with n.

LINPACK provides routines SGBFA, SGBCO, SGBSL, and SGBDI to
manipulate band matrices. Because pivoting is required for numerical stability,
the user must arrange the nonzero elements in an nx(2m; + m, + 1) array.
Several possible schemes for storing band matrices were considered for LIN-
PACK. The final choice was dictated by a decision to have the GB routines
reflect the loop structure and arithmetic properties of the GE routines. For
matrix elements within the band structure, the two sets of routines perform the
same arithmetic operations in the same order. The computed solution to a band
system obtained by SGBSL and the solution to the same system stored as a full
matrix and computed by SGESL should agree to the last bit.

J. J. Dongarra and G. W. Stewart 31

Some users of LINPACK have found that its approach to storing band
matrices is complicated and unnatural. However, a simple program, listed in the
LINPACK Users’ Guide, will automatically place the elements where they belong.
The subroutine SGBDI computes only the determinant, since the inverse of a
band matrix is not itself a band matrix.

There are corresponding routines with infix PB for banded positive
definite matrices. Since these are symmetric and require no pivoting, the storage
requirement is reduced to nX(m, + 1), and the work is correspondingly reduced.
For the important case of tridiagonal matrices (m; = m, = 1), two special sub-
routines, SGTSL and SPTSL, are provided. The latter subroutine employs the
“Millay”’ algorithm, which simultaneously factors the matrix from each end to
save looping overhead.*

THE LEAST SQUARES PART OF LINPACK

Although the least squares part of LINPACK has many and varied applica-
tions, it will unify the exposition if we concentrate on the linear least squares
problem. Here we are given an nXp matrix X and an n-vector y and wish to
determine a p-vector b such that

lly — Xb|| = min, (8)
where ||-|| denotes the usual Euclidean norm. It can be shown that any solution
of (8) must satisfy the normal equations

Ab=c, 9)
where

A=X"X, c=XTy (10)

At any solution the vector Xb is the projection of y onto the column space of X,
and the residual vector r = y — Xb is the projection of y onto the orthogonal
complement of the column space of X.

If the columns of X are independent, the normal equations (9) are posi-
tive definite. Consequently, the solution b can be obtained by first calling
SPOFA to compute the Cholesky factorization of 4 and then calling SPOSL to
solve (9). In fact, any least squares problem involving an initial set of columns of
X can be solved in this manner. To see this, partition X in the form
X = (X; X,), where X; is nxk, and consider the problem

[ly — X,b|| = min. (11)
Then the normal equations assume the form
Ayb = ¢y,

* My candle burns at both ends;/ It will not last the night;/ But, ah my foes, and, oh, my friends —/
It makes a lovely light. Edna St. Vincent Millay, 1892-1950.

LINPACK — A Package for Solving Linear Systems

where 4;; = X7X;. Moreover, if the Cholesky factor R of A is partitioned in the

form
Ry Ry
R = 0 R22 5 (12)

where R is kX k, then
Ay = RfiRy;.

Thus, R;; is the Cholesky factor of 4,;. From the point of view of LINPACK,
this means that once the Cholesky factor of 4 has been obtained from SPOFA,
the reduced problem (11) can be solved by calling SPOSL with k replacing p as
the order of the matrix.

It frequently happens that the columns of the least squares matrix are
linearly dependent, or nearly so. In this case it is necessary to stabilize the least
squares solution in some way. The subroutine SCHDC provides one way by
effectively moving the dependent columns to the end of X. Specifically, when
SCHDC is applied to A4, it produces a permutation matrix P and a Cholesky fac-
torization

PTAP=RTR (13)

that satisfies

rkk 2’1} .] = k,k+l, Tt ,p).

Thus in the partition (12), if the leading element of Rj, is small, all the ele-
ments are small, and the last columns of XP are nearly dependent on the first
ones. These may then be discarded, and a least squares solution involving the
initial columns of XP may be obtained by calling SPOSL as described above.
Incidentally, the ratio (ry,/r,,)? from the pivoted Cholesky factorization is a reli-
able estimator of the condltlon number of A, and its reciprocal may be used in
place of the number RCOND produced by SPOCO [Stewart, 1980].

In some applications, it is necessary to add or delete rows from a least
squares fit. For the addition of a row x7, this amounts to computing the Chole-
sky factorization of

A=A+ xT,
where 4 is defined in (10). The subroutine SCHUD (UD = update) provides a
way of computing the Cholesky factor R of A from that of A. This procedure is
cheaper [0 (p)] than computing 4 from A and factoring with SPOFA [0 (p®)].
SCHUD may also be used to solve least squares problems for which » is too

large to allow X to fit into high-speed memory. The trick is to bring in X one
row at a time and use repeated calls to SCHUD to incorporate the rows into R.

J. J. Dongarra and G. W. Stewart 33

_ The deletion of a row amounts to computing the Cholesky decomposition
of A=A — xxT from that of 4, a process that is sometimes called downdating.
The subroutine SCHDD accomplishes this; however, it is important to realize
that while updating is a very stable numerical procedure, downdating is not, and
the uncritical use of SCHDD can result in anomalous output.

In data analysis and model building it is often necessary to compare the
least squares approximations corresponding to different subsets of columns of X.
We have seen that this can be done if the subset in question can be moved to
the beginning of X, that is, if the Cholesky decomposition of PT AP can be com-
puted from that of 4, where P is a permutation matrix such that XP has the
selected columns at the beginning. The subroutine SCHEX (EX = exchange)
does this for a class of permutations from which all others can be built up.

It is a commonplace in numerical linear algebra that whenever possible
one should avoid using the normal equations to solve linear least squares prob-
lems. One way of accomplishing this is by the row-wise formation of R described
above. Another way is to use the LINPACK subroutines SQRDC and SQRSL to
compute and manipulate the QR decomposition of X. This decomposition has
the form

o'x =R,
where Q is an orthogonal matrix and R is upper triangular. From the orthogonal-
ity of Q it follows that

RTR = XQ0TXx = XTXx,

which implies that the R factor in the QR decomposition of X is just the Chole-
sky factor of X7 X. It can further be shown that if Q is partitioned in the form

p n—p
0=(0x Qv
then the least squares solution b satisfies
Rb = 2z,

where z = Qfy. Moreover,
Xb=QXza ’=y—Xb=QLS,

where s = Qfy. Thus the least squares approximation to y and its residual vec-
tor can be obtained from the QR decomposition.

Since Q is an nXn matrix, it will be impossible to store it explicitly, even
when the nXp matrix X can be stored. To circumvent this difficulty, SQRDC
computes Q in the form

34 LINPACK — A Package for Solving Linear Systems

Q=H1H2“'Hp’

where each H; is a Householder transformation requiring only n— j+1 words of
storage for its representation. Thus the entire QR decomposition, consisting of
R and the factored form of Q, can be stored in X and an auxiliary array of
length p.

SQRSL manipulates the QR decomposition computed by SQRDC. Under
the control of the JOB parameter, SQRSL can return the vectors 7y, Qy, b,
Xb, and r. Moreover, it can return the analogous quantities corresponding to the
first k columns of X, in the same way as can be done with the Cholesky decom-
position; cf. (10) and the following discussion.

SQRDC also has a pivoting option, which results in the computation of
the QR decomposition of the permuted matrix XP. In the absence of rounding
errors, the permutation matrix P is the same as the one produced by the pivoting
Cholesky decomposition of X7 X; cf. (13). Thus the pivoting option in SQRDC
can be used to estimate condition numbers and detect near-degeneracies in rank.
When n < p, the pivoting option can be used to collect a well-conditioned nxn
submatrix of X, providing one exists.

The final decomposition computed by LINPACK is the singular value
decomposition. As above, let X be an nxp matrix where, for definiteness,
n 2 p. Then there are orthogonal matrices U and V such that

UTXV = [%]
where X = diag(oy, - - - ,0,) with
T P> 2o, 20

This decomposition is a supple theoretical tool that is widely used in analysis
involving matrices. If X is known, it can be used to detect degeneracies and com-
pute the condition number, which is o /o » in the 2-norm. The decomposition is
also required in many kinds of statistical computations — ridge regression,
canonical correlations, and cross validation, to name just three.

The singular value decomposition is computed by SSVDC, which imple-
ments the only iterative algorithm in LINPACK. In addition to £, SSVDC will
return at the user’s request any of V, U, or the first p columns of U.

NUMERICAL PROPERTIES

The previous four sections addressed the question ‘“What does LINPACK
do?”’ Here we shall consider the related question ‘“How well does it do it?”’ In

J. J. Dongarra and G. W. Stewart 35

other words, how do LINPACK codes behave on actual computers? It will be
convenient to divide this question into two parts and ask, first, how LINPACK
codes perform in the presence of inexact arithmetic and, second, how efficient
the LINPACK codes are. The first question will be treated in this section and
the second in the next.

For the nonexpert there is perhaps no more bewildering subject than
rounding-error analysis. The attitudes about rounding error generally range from
exaggerated fears that it hopelessly contaminates everything to unjustified
confidence that it is never really important. This is not the place to enter into a
detailed discussion of rounding-error analysis, which has been exhaustively
treated by Wilkinson [1963, 1965] and others. However, it is impossible to
describe how rounding-error affects LINPACK codes without presenting some
technical background.

The natural question to ask about a computed solution to a problem is
how accurate it is. In numerical linear algebra, however, the question is best
asked in two stages. The first stage is to ask if the solution is stable. The term
stable is used here in a very specific sense, which can be illustrated by consider-
ing the problem of solving the system Ax = b. Suppose that this system is
solved in z-digit decimal floating-point arithmetic to give a computed solution Xx.
Then X is said to be stable if there is a small matrix £ such that

(4+ E)x=b, (14)

i.e., x satisfies the slightly perturbed system (14). The matrix E is required to be
small in the sense that if « = max(|a;]) and €= max(|e;[), then
e/a = 0(107"). Thus if eight digits are carried in the computation and A4 is
scaled so that its largest element is one, then the largest element of £ must not
exceed about 1078,

The notion of stability is useful because it frequently makes the problem
of accuracy moot. Suppose, for example, that a user of LINPACK must solve a
linear system A;x; = b, where Ay is the true value of the matrix and xr is the
true solution. Suppose, further — as often happens in practice — that owing to
measurement or computational errors the matrix actually given to the LINPACK
code is

A=A;+ F. 15)

Then there are three ‘‘solutions’’ floating around: the true solution xr; the exact
solution x of Ax = b; and finally the computed solution x of Ax = b, which
satisfies (14). Now often E in (14) will be smaller than F in (15), and conse-
quently x and x will be nearer to each other than either is to xy. In this case,
the noise in the true matrix has already altered the solution more than the subse-
quent errors made by the LINPACK codes. If the user is unhappy with the

36 LINPACK — A Package for Solving Linear Systems

answer, further computational refinements will not relieve the situation; the user
must go back and get more accurate data, i.e., a better approximation to Ay.

_ All the decompositions computed by LINPACK are stable. For example, if
R denotes the computed Cholesky factor of the positive definite matrix 4, then
RTR is equal to 4 + E for some small matrix E. Again, the output of SQRDC

is the numbers that would be obtained by performing exact computations on
X + E, where E is small.

It is not to be expected that all things computed by LINPACK are done
stably, although most of them are. The solutions of linear systems and linear
least squares problems are stable, as are determinants. The updating routines are

stable, with the exception of SCHDD. The most widespread unstable computa-
tion is that of the inverse.

Turning now from the question of stability to that of accuracy, we note
that the inequality (5) already provides an answer in terms of the condition
number «(4). Problems with large values of x(4) are said to be il conditioned,
and their solutions are very sensitive to perturbations in the matrix 4. For the
LINPACK routines, a rule of thumb is that if x(4) = 10%, one can expect to
lose about k decimal digits of accuracy in the solution. It is important to
remember that this rule accounts only for rounding errors made by LINPACK
itself, and that it compares x and X defined as above; cf. (14). The relation
between x and the true value x; can be assessed only if the user is willing to
provide additional information about the error F in (15).

The condition estimate provided by the LINPACK routines with suffix CO
is generally reliable, although it can be fooled by highly contrived examples
[O’Leary, 1980). For large systems it is cheap to use, requiring only O{(n?
operations as opposed to O(n®) for the factorization of 4. The condition esti-
mate obtained from the pivoted Cholesky decomposition is about as reliable
[Stewart, 1980]. The singular value decomposition provides a completely reliable
computation of k (4) in the spectral matrix norm.

We close this discussion of stability and condition estimates with a caveat.
Bounds like (5) attempt to summarize the behavior of computed solutions to
linear systems with a few numbers, and it is not surprising that something can be
lost in this compression of the data. In particular, neither the condition number
(4) nor the interpretation of the bound (5) is invariant under the scaling of the
rows and the columns of 4. Exactly what is the proper scaling is a complicated
matter that at present is imperfectly understood. The LINPACK Users’ Guide
offers some advice, which must, however, be regarded as tentative.

w = o

J. J. Dongarra and G. W. Stewart 37

The focus of the discussion up to this point has been on the effects of
finite precision arithmetic on the LINPACK routines. However, something must
also be said about how LINPACK deals with the finite range of the arithmetic,
i.e., with underflow and overflow. The ideal in this regard would be to produce
programs that succeed when both the problem and its answer are representable in
the computer. Although the LINPACK programs do not attain this austere goal,
they come near it by scaling strategic computations in such a way that overflows
do not occur and underflows may be set to zero without affecting the results.
Unfortunately this is not true everywhere, and some LINPACK programs can be
made to fail by giving them data very near the underflow and overflow points.
However, it is safe to say that LINPACK goes far in freeing the user from many
of the difficulties associated with scaling.

EFFICIENCY

The efficiency of programs for manipulating matrices is not easy to dis-
cuss, since features that speed up a program on one system may slow it down on
another. In this section we shall discuss in some detail the effects of two aspects
of LINPACK on efficiency: the column orientation of the algorithms and the use
of Basic Linear Algebra Subprograms (BLAS).

There was a time when one had to go out of one’s way to code a matrix
routine that would not run at nearly top efficiency on any system with an optim-
izing compiler. Owing to the proliferation of exotic computer architectures, this
situation is no longer true. However, one of the new features of many modern
computers — namely, hierarchical memory organization — can be exploited by
some algorithmic ingenuity.

Typically, a hierarchical memory structure involves a sequence of com-
puter memories, ranging from a small but very fast memory at the bottom to a
capacious but slow memory at the top. Since a particular memory in the hierarchy
(call it M) is not as big as the memory at the next higher level (M), only part
of the information in M’ will be contained in M. If a reference is made to infor-
mation that is in M, then it is retrieved as usual. However, if the information is
not in M, then it must be retrieved from M’, with a loss of time. In order to
avoid repeated retrieval, information is transferred from M’ to M in blocks, the
supposition being that if a program references an item in a particular block, the
next reference is likely to be in the same block. Programs having this property
are said to have locality of reference.

LINPACK uses column-oriented algorithms to preserve locality of refer-
ence. By column orientation is meant that the LINPACK codes always reference
arrays down columns, not across rows. This works because Fortran stores arrays

38 LINPACK — A Package for Solving Linear Systems

in column order. Thus, as one proceeds down a column of an array, the memory
references proceed sequentially. On the other hand, as one proceeds across a row
the memory references jump, the length of the jump being proportional to the
length of a column. The effects of column orientation are quite dramatic; on sys-
tems with virtual or cache memories, the LINPACK codes will significantly out-
perform comparable codes that are not column oriented.

There are two comments to be made about column orientation. First, the
textbook examples of matrix algorithms are seldom column-oriented. For exam-
ple, the classical recursive algorithm for solving the lower triangular system
Lx = b is the following:

Jori:=1 fon Joop

X; .= b,;
Jorj:=1i+1 ton loop
X =X - IUXJ;
end loop;
X; = xi/li,‘;
end loop;

On the other hand, the column-oriented algorithm is the following:

x; :=b; (j:=12,...n);
Jorj:=1 ron loop

x; r=x; /13
Jori:=j+1 ton loop
X =X - hixs
end loop;
end loop;

From this example it is seen that translating from a row-oriented algorithm to a
column-oriented one is not a mechanical procedure. An even more extreme
example, cited in the discussion of matrix decompositions, is the algorithm for
symmetric indefinite matrices, where column orientation requires that the under-
lying decomposition be modified.

The second comment is that LINPACK codes should not be translated
into languages such as PL/I or PASCAL, where arrays are stored by rows.
Instead, row-oriented subroutines with the same calling sequences should be pro-
duced. Unfortunately, doing this for all of LINPACK is a formidable task.

Another important factor affecting the efficiency of LINPACK is the use
of the BLAS [Lawson er al, 1979]. This set of subprograms performs basic

J. J. Dongarra and G. W. Stewart 39

operations of linear algebra, such as computing an inner product or adding a mul-
tiple of one vector to another. In LINPACK the great majority of floating-point
calculations are done within the BLAS. The reasons why the BLAS were used in
LINPACK will be discussed in the next section. Here we are concerned with the
effects of the BLAS on the efficiency of the programs.

The BLAS affect efficiency in three ways. First, the overhead entailed in
calling the BLAS reduces the efficiency of the code. This reduction is negligible
for large matrices, but it can be quite significant for small matrices. The point at
which it becomes unimportant varies from system to system; for square matrices
it is typically between n = 25 and » = 100. If this should seem like an unaccept-
ably large overhead, remember that on many modern systems the solution of a
system of order twenty five or less is itself a negligible calculation. Nonetheless,
it cannot be denied that a person whose programs depend critically on solving
small matrix problems in inner loops will be better off with BLAS-less versions
of the LINPACK codes. Fortunately, the BLAS can be removed from the
smaller, more frequently used programs in a short editing session.

The BLAS improve the efficiency of programs when they are run on
nonoptimizing compilers. This is because doubly subscripted array references in
the inner loop of the algorithm are replaced by singly subscripted array references
in the appropriate BLAS. The effect can be seen in matrices of quite small order,
and for large orders the savings are quite large.

Finally, improved efficiency can be achieved by coding a set of BLAS to
take advantage of the special features of the computers on which LINPACK is
being run. For most computers, this simply means producing machine-language
versions. However, the code can also take advantage of more exotic architectural
features, such as vector operations.

An important conclusion to be drawn from the foregoing discussion is that
on today’s computers efficiency is not portable. The modifications that make a
program efficient on one system may make it inefficient on another, and would-
be designers of portable software must be prepared to draw flak no matter what
they do.

DESIGN AND IMPLEMENTATION

One of the aims of LINPACK was to provide easy-to-use software for
solving linear equations and least squares problems. Although such software
existed before LINPACK, the best codes were often difficult to obtain and not
readily transportable across machines. The algorithms in LINPACK are built
around four standard decompositions of a matrix and are not new. The

40 LINPACK — A Package for Solving Linear Systems

contribution of LINPACK has been in the directions of uniformity, portability,
and efficiency.

The software in LINPACK owes its form to a set of decisions made early
in the course of the project. Some of the decisions were determined by the
nature of the package, but others were arbitrary in the sense that other ways of
proceeding would have worked equally well.

Two of the major decisions were already discussed in the section on
efficiency: namely, the use of column-oriented algorithms and the use of the
BLAS. Against the former, one can argue that, in some algorithms, it prevents
the user from obtaining greater accuracy by accumulating inner products in dou-
ble precision. We felt that the sacrifice of this feature, which is not portable, was
a small price to pay for the superior performance of LINPACK on systems with
hierarchical memories. The decision to use the BLAS was more problematical. It
was made in the absence of complete information, and the timings collected sub-
sequently can be used to argue pro or con, depending on one’s application. If
considerations of efficiency are dropped, then the BLAS are a clear plus, since
they reduce the amount of code while they improve clarity.

Two other major decisions are rather controversial. The first concerns the
absence of driver programs to coordinate the LINPACK subroutines. Most prob-
lems will require the use of two LINPACK subroutines, one to process the
coefficient matrix and one to process a particular right-hand side. This modular-
ity results in significant savings in computer time when there is a sequence of
problems involving the same matrix but different right-hand sides. Such a situa-
tion is so common and the savings so important that no provision has been
made for solving a single system with just one subroutine. Actually, this should
cause few problems for the user, since there is nothing in LINPACK as compli-
cated as the EISPACK [Smith et al., 1976; Garbow et al., 1977] codes, where
many routines are needed to solve a given problem. Another reason for not pro-
viding driver programs is to keep the size of the package manageable. Given the
way the package is structured, an extra driver for each matrix structure and
decomposition would have significantly increased the number of routines.

The second controversial decision concerns errotr checking. No checks a5
made on quantities such as the order of the matrix or the leading dimension of
the array. The reason is that, except in the simplest programs, the number of
things to check is very large and the checking would add significantly to the
length of the code. Moreover, an elaborate data structure would have to be
devised to report errors, so elaborate as to be beyond most casual users.
Although the LINPACK programs will inform the user if a computed decomposi-
tion is exactly singular, no attempt is made to check for near singularities, much
less to recover from them. The reason is that what constitutes a near singularity

J. J. Dongarra and G. W. Stewart 41

depends on how the problem has been scaled, a process that is imperfectly
understood at this time. However, the user may monitor the condition number
and do something if it is too large.

The naming conventions and data structures for the package have already
been discussed. By and large, the decisions were easy, either because they were
necessary or because it did not make much difference as long as something was
decided.

Each of the LINPACK routines has a standard prologue:

Subroutine statement

Declaration of subroutine parameters

Brief description of the routine

List of the input arguments, their types and dimensions,
and role in the algorithm

List of the output arguments, their types and dimensions

Date and author of the routine

External user routines needed, such as the BLAS

Fortran functions used

Declaration of variables for internal subroutine usage

The subroutine arguments are arranged in a specific order. The first three
parameters are usually the matrix, A; the leading dimension of the matrix, LDA;
and the order of the matrix, N. As has been pointed out, LDA and N should
not be confused. Information about additional matrices, if any, is entered in the
same way. The last two parameters are the JOB parameter, which tells the sub-
routine what to do, and the INFO parameter, which tells the user what the sub-
routine has done.

The parameters for a subroutine are declared in the order INTEGER,
LOGICAL, REAL, DOUBLE PRECISION, COMPLEX, and COMPLEX*16.
They are arranged in order of appearance within each classification.

After a description of the subroutine’s purpose there follows a description
of the parameters passed to and from each subroutine. This section is divided
into two parts: information the routine needs for execution, and information gen-
erated and returned from the routine. These two parts are headed ON ENTRY
and ON RETURN. The parameters listed are typed; dimensioning information is
supplied, -as well as a brief description of the function of the parameters. This
way of specifying the input and output works well when the calling sequence is
short. However, when the parameter list is long and complicated, as in the singu-
lar value routine, the convention is not so clean.

42 LINPACK — A Package for Solving Linear Systems

After the parameter information, the author’s name appears with a date.
This date shows when the routine was last updated and is very important in
maintaining the package.

Next is a list of routines used by the documented routine. This list has the
following order: LINPACK routines used, BLAS used, and Fortran functions
used. Finally, the declarations for the internal variables are given.

Four versions of LINPACK exist, corresponding to the data types single
precision, double precision, complex, and double precision complex. Because the
algorithms are essentially the same for all data types, we decided to write code
for the complex version only. This complex master version was then processed
by an automatic programming-editing system called TAMPR [Boyle, 1980; Boyle
and Dritz, 1974] to produce the other three types of programs. This automatic
processing of the complex version reduced the coding and debugging time while
contributing to the integrity of the package as a whole.

It was decided that the LINPACK programs should follow the canons of
the structured programming school; that is, they should use only simple control
structures, such as if—then—else. Since these structures do not exist in Fortran
IV, it was necessary to simulate them. This process was greatly aided by the
TAMPR system, which has the ability to recognize structure and generate
appropriately indented code.*

The programs in LINPACK conform to the ANSI Fortran 66 Standard
[ANSI, 1966]. We adopted Fortran because it is the language most widely used
in scientific computations. Actually, the codes are restricted to a subset of the
Standard that excludes COMMON, EXTERNAL, EQUIVALENCE, and any
input or output statements. While the use of these excluded forms does not
necessarily lead to unreadable, nonportable programs, it was felt that they should
be avoided if possible [Smith, 1976].

The documentation of LINPACK is designed to serve both the casual user
and the person who must know the technical details of the programs. The LIN-
PACK Users’ Guide treats, by chapter, the various types of matrix problems
solved by LINPACK. In addition, appendices give related information such as
the BLAS, timing data, and program listings.

Each chapter is self-contained and usually consists of seven sections:

Overview

Usage

Examples
Algorithmic Details
Programming Details

* At one point the participants considered publishing the coding conventions by which the struc-
tures were implemented, but the appearance of Fortran 77 made it pointless to do so.

J. J. Dongarra and G. W. Stewart 43

Performance
Notes and References

The first three sections of each chapter contain the user-oriented material. Basic
information on how to use the routines and some examples of common usage
are presented. The technical material is contained in the remaining sections.
These give detailed descriptions of the algorithms and their implementations, as
well as operation counts and a discussion of the effects of rounding error. The
final section gives historical information and references for further reading.

TESTING

Only too often software is produced with little testing and evaluation. In
the development of LINPACK, considerable time and effort were spent in
designing and implementing a test package. In some cases, the test programs
were harder to design than the programs they tested. The chief goal was to
ensure the numerical stability and the portability of the programs.

We have already observed that no program can be expected to solve ill-
conditioned problems accurately. Yet ill-conditioned problems must be included
in any test package, since these problems often cause an algorithm to fail catas-
trophically. This creates the problem of how to judge the solution of an ill-
conditioned problem. The answer adopted for the LINPACK tests was to
demand that the solution be stable — that is, that it be the exact solution of a
slightly perturbed problem. For example, in testing the program for computing
the QR factorization of a matrix X, it was required of the computed Q and R
that QR reproduce X to within a modest multiple of the rounding unit. Similarly,
the computed solution x of b — Ax was required to satisfy

b — Ax|| o
ATl 1]
where € is near the rounding unit. This is equivalent to testing for stability.

In problems such as matrix inversion, which are not done stably, the LIN-
PACK programs were required at least to produce accurate solutions to well-
conditioned problems.

The programs were also tested at ‘‘edge of the machine’’; that is, the pro-
grams were given problems with entries near the underflow point or near the
overflow point of the machine. Our purpose was to test how close LINPACK
came to being free of overflow and underflow problems. An interesting fact that
emerged from these tests is that a 64-bit floating-point word with an 8-bit binary
exponent is a handicap in serious computations.

44 LINPACK — A Package for Solving Linear Systems

An important, though technically unachievable, LINPACK goal was to
produce a completely portable package. Completely portable means that no
changes need to be made to the software to run on any system. The testing pro-
gram was critical in approximating this goal. As the results came back, it was
found that this or that system had unexpected, perverse features. As each of
these problems was circumvented, LINPACK came nearer and nearer to com-
plete portability.

The test programs that were used are distributed with the package. They
will help spot major flaws in the installation of the LINPACK routines, although
they are not designed to test the codes exhaustively. It must be admitted that
the quality of the test programs is not as high as LINPACK itself, although every
effort was made to ensure their portability.

Timing information was collected on a wide range of computer-compiler
combinations. In the multiprogramming environment of modern computers, it is
often very difficult to measure the execution time of a program reliably.
Significant variations can occur, depending on the load of the machine, the
amount of I/0 interference, and the resolution of the timing program. The tim-
ing data were gathered by a number of people in quite different environments.
Our experience with gathering timing data indicates that we can expect a varia-
tion of 10 to 15 per cent if the timings are repeated.

Execution times also vary widely from computer to computer. It was
found that this variability can be reduced by dividing the raw time for a process
by the raw time for another process that involves the same amount of work. For
example, the time required to execute SGESL might be compared to the time
required to compute A*x. By the use of this scaling technique the authors of
LINPACK were able to extract meaningful results from the mass of raw timing
data collected during the testing. These are reported in the LINPACK Users’
Guide.

LINPACK was tested by various people on many different compilers and
operating systems. The authors of LINPACK performed the initial testing on
their own computers to ensure that the programs were working correctly. Then,
the package was sent out to the test sites for further testing. To say that LIN-
PACK would have been impossible without the help of the test sites is not an
exaggeration. They twice nursed our test programs through their systems, made
the routines available to their user communities, commented on the documenta-
tion, and reported results. Listed below are the machines used in the testing:

IR

J. J. Dongarra and G. W. Stewart 45

Amdahl 470/V6 Honeywell 6030
Burroughs 6700 IBM 360/91
CDC Cyber 175 IBM 370/158
CDC 6600 IBM 360/165
CDC 7600 IBM 370/168
CRAY-1 IBM 370/195
DEC KL-20 Itel AS/5

DEC KA-10 Univac 1110

Data General Eclipse C330

As it turned out, few errors were revealed by the testing; on the contrary
most failures were due to errors in compilers and operating systems. The test
package is being used by CRAY as one of their Fortran compiler tests. While the
package does not exercise all of the Fortran language, it does provide a good
check of the numerical environment.

As a result of the extensive testing and our efforts in writing the codes,
LINPACK comes close to being a fully portable package. There are no machine-
dependent parameters or constants. The routines run, without modification, on
all Fortran-based systems we know of.

CONCLUSIONS

In this final section we should like to offer some subjective conclusions on
the LINPACK project and its implementation. The reader should keep in mind
that these conclusions-are the opinions of the two authors of this paper and do
not necessarily reflect those of the other LINPACK participants.

LINPACK was not funded as a software development project; rather the
National Science Foundation regarded it as research into methods for producing
mathematical software. Although many useful ideas emerged from the project, it
is safe to say the authors were more interested in development of the package
than in software research. The reason for the curious rationale is that the
National Science Foundation is constrained to help ‘‘research,’”” which excludes
software development. We feel that this constraint is detrimental to scientific
endeavors in all fields and should somehow be removed. At the very least, it
could be recognized that software development, by its very nature, involves a
great deal of unstructured research, and this is sufficient justification for support-
ing such projects.

The fact that the LINPACK authors were scattered across the country did
not impede the project. This is important because such an arrangement is a way
of getting senior people from universities and other institutions involved in

LINPACK — A Package for Solving Linear Systems

software development. In these days of computer networks, communications are
not a problem. But the arrangement does require that the participants set aside
two or three weeks a year to meet at a fixed location. There is no substitute for
face-to-face contact.

The major difficulty with the way the project was organized was that there
was no senior member with final authority to decide hard cases. Instead, each
participant was responsible for a specific part of the package, and common
matters — such as nomenclature, programming conventions, and documentation
— were decided by consensus. As might be expected, the process frequently
degenerated into bickering, usually about matters that did not seem very impor-
tant a few months later. Agreements were always reached, and we do not feel
that LINPACK suffered from the compromises. But we would advise anyone
embarking on a project of this sort to set up a court of last resort, especially if
more than three or four people are involved.

It goes without saying that LINPACK could not have succeeded without
the support of the Applied Mathematics Division at Argonne National Labora-
tory. Not only did they provide tangible support in the form of offices, computer
time, and secretarial assistance, but they also handled the many administrative
details associated with the project. Most important of all, the members of the
division treated the project participants with warm hospitality.

Only recently have people become aware of how greatly the development
of mathematical software is aided by appropriate computer tools. We were for-
tunate in having the TAMPR system available to generate code from master
complex programs and format it according to its structure. We also used the

PFORT verifier to check our programs for portability. Although, strictly speak-
ing, it is not a software tool, we found the WATFIV system with its extensive
error checking useful in debugging our programs. We regret that we did not
have one of the mathematical typesetting systems that are now appearing; if we
had, we would undoubtedly have prepared the LINPACK Users’ Guide on it.

At the beginning of the project, we decided to get as much advice from
others as possible. To let people know what we were doing, we distributed infor-
mal reports under the title “LINPACK Working Notes.”” We also made early
versions of the programs available to those who requested them. Although we
had to spend a great deal of time justifying specific decisions to people who
would have done things otherwise, the valuable suggestions we got more than
compensated for the trouble.

We learned not to expect that tests, however extensive, would uncover all
program bugs. By the time a well-written piece of mathematical software has
been run on two or three systems, most of the obvious errors have been

PO TrArmmmmrmm———— e T

J. J. Dongarra and G. W. Stewart 47

detected, and the remaining errors are quite subtle. For example, the shift of ori-
gin in the singular value routine is calculated incorrectly. This was not discovered
during testing because it had no dramatic effect on the convergence of the algo-
rithm and no effect at all on the stability of the result. By no means do we intend
to imply that extensive testing is pointless; we have already noted that the tests
helped improve the portability of LINPACK. But we found that there is consider-
able truth to the inverse of Murphy’s law: If something must go wrong, it won’t.

LINPACK is by no means perfect, and each of the participants has his par-
ticular regrets. The condition estimator would have been more useful if it had
been a 2-norm and null vector estimator. The package should contain programs
for packed triangular matrices and for updating the QR decomposition. We could
have spent more time polishing the test drivers.

But perfection is an elusive thing. We are convinced that LINPACK is a
good package and do not regret the time we spent producing it. We are reminded
of Darwin’s advice to the would-be world traveler:

But I have too deeply enjoyed the voyage, not to recommend any naturalist ... to start.
He may feel assured, he will meet with no difficulties or dangers, excepting in rare
cases, nearly so bad as he beforehand anticipates. In a moral point of view, the effect
ought to be, to teach him good-humoured patience, freedom from selfishness, the habit
of acting for himself, and of making the best of every occurrence. ... Travelling ought
also to teach him distrust; but at the same time he will discover, how many truly kind-
hearted people there are, with whom he never before had, or ever again will have any
further communication, who yet are ready to offer him the most disinterested assis-
tance.

REFERENCES

ANSI [1966]. FORTRAN. ANS X3.9-1966, American National Standards Insti-
tute, New York.

Boyle, J. [1980]. ‘‘Software Adaptability and Program Transformation.” Software
Engineering. Eds. W. Freeman and P. M. Lewis. Academic Press, New
York, pp. 75-90.

Boyle, J., and K. W. Dritz [1974]. ‘“An Automated Programming System to Aid
the Development of Quality Mathematical Software.”” IFIP Proceedings,
North-Holland, Amsterdam, pp. 542-546.

LINPACK — A Package for Solving Linear Systems

Dongarra, J. J., J. R. Bunch, C. B. Moler, and G. W. Stewart [1979]. LINPACK
Users’ Guide. SIAM Publications, Philadelphia.

Forsythe and Moler [1967). Computer Solution of Linear Algebra Systems.
Prentice-Hall, Englewood Cliffs, New Jersey.

Garbow, B. S., et al. [1977). Matrix Eigensystem Routines — EISPACK Guide
Extension. Lecture Notes in Computer Science, Vol. 51. Springer-Verlag, Ber-
lin.

Lawson, C., R. Hanson, D. Kincaid, and F. Krogh [1979]. ‘‘Basic linear algebra
subprograms for Fortran usage.”” ACM Trans. on Math. Soft., 5:308-323.

O’Leary [1980]. ‘‘Estimating matrix condition numbers.”” SIAM Scientific and
Statistical Computing, 2:205-209.

Smith, B. T. [1976]. Fortran Poisoning and Antidotes. In Lecture Notes in Com-
puter Science, Vol. 57. Portability of Numerical Software. Ed. W. Cowell,
Springer-Verlag, Berlin.

Smith, B. T. et al. [1976]. Matrix Eigensystem Routines — EISPACK Guide. Lec-
ture Notes in Computer Science, Vol. 6. 2nd ed. Springer-Verlag, Berlin.

Stewart, G. W. [1974]. Introduction to Matrix Computations. Academic Press,
New York.

Stewart, G. W. [1980]. *The efficient generation of random orthogonal matrices
with an application to condition estimators.”” SIAM Numer. Anal., 17:403-409.

Wilkinson, J. H. [1963]. Rounding Errors in Algebraic Processes. Prentice-Hall,
Englewood Cliffs, New Jersey.

Wilkinson, J. H. [1965]. The Algebraic Eigenvalue Problem. Oxford University
Press, London.

