
75
Lapack

Bai
University of California/Davis

Demmel
University of California/Berkeley

Dongarra & Langou
University of Tennessee

Wang
University of Caifornia/Davis

75.1 Introduction . 75-1
75.2 Linear System of Equations . 75-2
75.3 Linear Least Squares Problems . 75-4
75.4 The Linear Equality-Constrained Least Squares

Problem . 75-6
75.5 A general Linear Model Problem 75-8
75.6 Symmetric Eigenproblems . 75-9
75.7 Nonsymmetric Eigenproblems . 75-11
75.8 Singular Value Decomposition . 75-13
75.9 Generalized Symmetric Definite Eigenproblems 75-15
75.10 Generalized Nonsymmetric Eigenproblems 75-17
75.11 Generalized Singular Value Decomposition 75-20
References . 75-24

75.1 Introduction

LAPACK (linear algebra package) is an open source library of programs for solving the most commonly
occurring numerical linear algebra problems [LUG99]. Original codes of LAPACK are written in Fortran
77. Complete documentation as well as source codes are available online at the Netlib repository [LAP].
LAPACK provides driver routines for solving complete problems such as linear equations, linear least
squares problems, eigenvalue problems, and singular value problems. Each driver routine calls a sequence
of computational routines, each of which performs a distinct computational task. In addition, LAPACK
provides comprehensive error bounds for most computed quantities. LAPACK is designed to be portable
for sequential and shared memory machines with deep memory hierarchies, in which most performance
issues could be reduced to providing optimized versions of the Basic Linear Algebra Subroutines (BLAS).
(See Chapter 74).

There have been a number of extensions of LAPACK. LAPACK95 is a Fortran 95 interface to the
Fortran 77 LAPACK [LAP95]. CLAPACK and JLAPACK libraries are built using the Fortran to C (f2c) and
Fortran to Java (f2j) conversion utilities, respectively [CLA], [JLA]. LAPACK++ is implemented in C++ and
includes a subset of the features in LAPACK with emphasis on solving linear systems with nonsymmetric
matrices, symmetric positive definite systems, and linear least squares systems [LA+]. ScaLAPACK is a
portable implementation of some of the core routines in LAPACK for parallel distributed computing [Sca].
ScaLAPACK is designed for distributed memory machines with very powerful homogeneous sequential
processors and with homogeneous network interconnections.

The purpose of this Chapter is to acquaint the reader with 10 essential numerical linear algebra problems
and LAPACK’s way of solving those problems. The reader may find it helpful to consult Chapter 74, where
some of the terms used here are defined. The following table summarizes these problems and sections that
are treated in version 3.0 of LAPACK.

75-1

75-2 Handbook of Linear Algebra

Type of Problem Acronyms Section
Linear system of equations SV 75.2
Linear least squares problems LLS 75.3
Linear equality-constrained least squares problem LSE 75.4
General linear model problem GLM 75.5
Symmetric eigenproblems SEP 75.6
Nonsymmetric eigenproblems NEP 75.7
Singular value decomposition SVD 75.8
Generalized symmetric definite eigenproblems GSEP 75.9
Generalized nonsymmetric eigenproblems GNEP 75.10
Generalized (or quotient) singular value decomposition GSVD (QSVD) 75.11

Sections have been subdivided into the following headings: (1) Definition: Defines the problem, (2)
Background: Discusses the background of the problem and references to the related sections in this
handbook, (3) Driver Routines: Describes different types of driver routines available that solve the same
problem, (4) Example: Specifies the calling sequence for a driver routine that solves the problem followed
by numerical examples.
Data structures and naming conventions. All LAPACK routines are available in four data types, as
indicated by the initial letter “x” of each subroutine name: x = “S” means real single precision, x = “D”, real
double precision, x = “C”, complex single precision, x = “Z”, complex∗16 or double complex precision. In
single precision (and complex single precision), the computation are performed with an unit roundoff of
5.96 × 10−8. In double precision (and complex double precision) the computation are performed with an
unit roundoff of 1.11 × 10−16.

All matrices are assumed to be stored in column-major format. The software can also handle submatrices
of matrices, even though these submatrices may not be stored in consecutive memory locations. For
example, to specify the 10–by–10 submatrix lying in rows and columns 11 through 20 of a 30–by–30
matrix A, one must specify� A(11, 11), the upper left corner of the submatrix,� 30 = Leading dimension of A in its declaration (often denoted LDA in calling sequences)� 10 = Number of rows of the submatrix (often denoted M, can be at most LDA)� 10 = Number of columns of submatrix (often denoted N)

All matrix arguments require these 4 parameters (some subroutines may have fewer inputs if, for example,
the submatrix is assumed square so that M = N). (See Chapter 74, for more details.)

Most of the LAPACK routines require from the users to provide them a workspace (WORK) and its
dimension (LWORK). The optimal workspace dimension refers to the workspace dimension, which enables
the code to have the best performance on the targeted machine. The computation of the optimal workspace
dimension is often complex so that most of LAPACK routines have the ability to compute it. If an LAPACK
routine is called with LWORK=-1, then a workspace query is assumed. The routine only calculates the
optimal size of theWORKarray and returns this value as the first entry of theWORKarray. If a larger workspace
is provided, the extra part is not used, so that the code runs at the optimal performance. A minimal
workspace dimension is provided in the document of routines. If a routine is called with a workspace
dimension smaller than the minimal workspace dimension, the computation cannot be performed.

75.2 Linear System of Equations

Definitions:

The problem of linear equations is to compute a solution X of the system of linear equations

AX = B , (75.1)

where A is an n–by–n matrix and X and B are n–by–m matrices.

Lapack 75-3

Backgrounds:

The theoretical and algorithmic background of the solution of linear equations are discussed extensively
in Chapter 37 through Chapter 41, especially Chapter 38.

Driver Routines:

There are two types of driver routines for solving the systems of linear equations — simple driver and
expert driver. The expert driver solves the system (Equation 75.1), allows A be replaced by AT or A∗ and
provides error bounds, condition number estimate, scaling, and can refine the solution. Each of these types
of drivers has different implementations that take advantage of the special properties or storage schemes
of the matrix A, as listed in the following table.

Routine Names
Data Structure (Matrix Storage Scheme) Simple Driver Expert Driver
General dense xGESV xGESVX
General band xGBSV xGBSVX
General tridiagonal xGTSV xGTSVX
Symmetric/Hermitian positive definite xPOSV xPOSVX
Symmetric/Hermitian positive definite (packed storage) xPPSV xPPSVX
Banded symmetric positive definite xPBSV xPBSVX
Tridiagonal symmetric positive definite xPTSV xPTSVX
Symmetric/Hermitian indefinite xSYSV/xHESV xSYSVX/xHESVX
Symmetric/Hermitian indefinite (packed storage) xSPSV/xHPSV xSPSVX/xHPSVX
Complex symmetric CSYSV/ZSYSV CSYSVX/ZSYSVX

The prefix GE (for general dense), GB (for general band), etc., have standard meanings for all the BLAS
and LAPACK routines.

Examples:

Let us show how to use the simple driver routine SGESV to solve a general linear system of equations.
SGESV computes the solution of a real linear Equation 75.1 in single precision by first computing the LU
decomposition with row partial pivoting of the coefficient matrix A, followed by the back and forward
substitutions. SGESV has the following calling sequence:

CALL SGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

Input to SGESV:

N: The number of linear equations, i.e., the order of A. N ≥ 0.

NRHS: The number of right-hand sides, i.e., the number of columns of B . NRHS ≥ 0.

A, LDA: The N–by–N coefficient matrix A and the leading dimension of the array A.
LDA ≥ max(1, N).

B, LDB: TheN–by–NRHSmatrix B and the leading dimension of the arrayB.LDB ≥ max(1, N).

Output from SGESV:

A: The factors L and U from factorization A = P LU ; the unit diagonal elements of L are
not stored.

IPIV: The pivot indices that define the permutation matrix P ; row i of the matrix was
interchanged with row IPIV(i).

B: If INFO = 0, the N–by–NRHS solution X .

INFO: = 0, successful exit. If INFO = − j , the j th argument had an illegal value. If
INFO = j , U (j, j) is exactly zero. The factorization has been completed, but the
factor U is singular, so the solution could not be computed.

75-4 Handbook of Linear Algebra

Consider a 4–by–4 linear system of Equation (75.1), where

A =

⎡⎢⎢⎢⎣
5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

⎤⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎣
23
32
33
31

⎤⎥⎥⎥⎦ .

The exact solution is x =
[
1 1 1 1

]T
. Upon calling SGESV, the program successfully exits with INFO = 0

and the solution X of (75.1) resides in the array B

X =

⎡⎢⎢⎢⎣
0.9999998
1.0000004
0.9999998
1.0000001

⎤⎥⎥⎥⎦ .

Since SGESV performs the computation in single precision arithmetic, it is normal to have an error of
the order of 10−6 in the solution X . By reading the lower diagonal entries in the array A and filling the
diagonal entries with ones, we recover the lower unit triangular matrix L of the LU factorization with row
partial pivoting of A as follows:

L =

⎡⎢⎢⎢⎣
1 0 0 0

0.8571429 1 0 0
0.7142857 0.2500000 1 0
0.7142857 0.2500000 −0.2000000 1

⎤⎥⎥⎥⎦ .

The upper triangular matrix U is recovered by reading the diagonal and upper diagonal entries inA. That is:

U =

⎡⎢⎢⎢⎣
7.0000000 10.0000000 8.0000000 7.0000000

0 −0.5714293 3.1428566 2.9999995
0 0 2.5000000 4.2500000
0 0 0 0.1000000

⎤⎥⎥⎥⎦ .

Finally, the permutation matrix P is the identity matrix that exchanges its i-th row with row IPIV(i), for
i = n, . . . , 1. Since

IPIV =
[

2 3 4 4
]

,

we have

P =

⎡⎢⎢⎢⎣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎦ .

75.3 Linear Least Squares Problems

Definitions:

The linear least squares (LLS) problem is to find

min
x

‖b − Ax‖2, (75.2)

where A is an m–by–n matrix and b is an m element vector.

Lapack 75-5

Backgrounds:

The most usual case is m ≥ n and rank(A) = n. In this case, the solution to the LLS problem (75.2) is
unique, and the problem is also referred to as finding a least squares solution to an overdetermined system
of linear equations. When m < n and rank(A) = m, there are an infinite number of solutions x that
exactly satisfy b − Ax = 0. In this case, it is often useful to find the unique solution x that minimizes ‖x‖2,
and the problem is referred to as finding a minimum norm solution to an underdetermined system of linear
equations. (See Chapter 5.8 and Chapter 39 for more information on linear least squares problems.)

Driver Routines:

There are four types of driver routines that solve the LLS problem (75.2) and also allow A be replaced by
A∗. In the general case when rank(A) < min(m, n), we seek the minimum norm least squares solution x
that minimizes both ‖x‖2 and ‖b − Ax‖2. The types of driver routines are categorized by the methods
used to solve the LLS problem, as shown in the following table.

Type of Matrix Algorithm Routine Names
General dense QR or LQ factorization xGELS
General dense Complete orthogonal factorization xGELSY
General dense SVD xGELSS
General dense Divide-and-conquer SVD xGELSD

xGELSD is significantly faster than xGELSS, but it demands somewhat more workspace depending
on the matrix dimensions. Among these routines, only xGELS requires A to be full rank while xGELSY,
xGELSS, and xGELSD allow less than full rank.

Note that all driver routines allow several right-hand side vectors b, and corresponding solutions x to
be handled in a single call, storing these vectors as columns of matrices B and X , respectively. However,
the LLS problem (75.2) is solved for each right-hand side independently; that is not the same as finding a
matrix X which minimizes ‖B − AX‖2.

Examples:

Let us show how to use the simple driver routine SGELS to solve the LLS problem (75.2). SGELS computes
the QR decomposition of the matrix A, updates the vector b and then computes the solution x by back
substitution. SGELS has the following calling sequence:

CALL SGELS(TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, INFO)

Input to SGELS:

TRANS: = 'N' or 'T', solves the LLS with A or AT .

M, N: The numbers of rows and columns of the matrix A. M ≥ 0 and N ≥ 0.

M, NRHS: The number of rows and columns of the matrices B and X . NRHS ≥ 0.

A, LDA: TheM–by–Nmatrix A and the leading dimension of the arrayA,LDA ≥ max(1, M).

B, LDB: The matrix B and the leading dimension of the array B, LDB ≥ max(1, M, N).

If TRANS = 'N', then B is M–by–NRHS. If TRANS = 'T'. then B is N–by–NRHS.

WORK, LWORK: The workspace array and its dimension.LWORK ≥ min(M, N) + max(1, M, N, NRHS).

If LWORK = −1, then a workspace query is assumed; the routine only calculates the op-
timal size of theWORK array, and returns this value as the first entry of theWORK array.

Output from SGELS:

B: It is overwritten by the solution vectors, stored columnwise.� If TRANS = 'N' and M ≥ N, rows 1 to N of B contain the solution vectors of the LLS
problem minx ‖b − Ax‖2; the residual sum of squares in each column is given by the
sum of squares of elements N + 1 to M in that column;

75-6 Handbook of Linear Algebra

� If TRANS = 'N' and M < N, rows 1 to N of B contain the minimum norm solution
vectors of the underdetermined system AX = B ;� If TRANS = 'T' and M ≥ N, rows 1 to M of B contain the minimum norm solution
vectors of the underdetermined system AT X = B ;� If TRANS = 'T' and M < N, rows 1 to M of B contain the solution vectors of the
LLS problem minx ‖b − AT x‖2; the residual sum of squares for the solution in each
column is given by the sum of the squares of elements M+1 to N in that column.

WORK: If INFO = 0, WORK(1) returns the optimal LWORK.

INFO: INFO = 0 if successful exit. If INFO = − j , the j th input argument had an illegal
value.

Consider an LLS problem (75.2) with a 6–by–5 matrix A and a 6–by–1 matrix b:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−74 80 18 −11 −4
14 −69 21 28 0
66 −72 −5 7 1

−12 66 −30 −23 3
3 8 −7 −4 1
4 −12 4 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

51
−61
−56

69
10

−12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The exact solution of the LLS problem is x =
[

1 2 −1 3 −4
]T

with residual ‖b− Ax‖2 = 0. Upon

calling SGELS, the first 5 elements of B are overwritten by the solution vector x

x =

⎡⎢⎢⎢⎢⎢⎣
1.0000176
2.0000196

−0.9999972
3.0000386

−4.0000405

⎤⎥⎥⎥⎥⎥⎦ ,

while the sixth element of B contains the residual sum of squares 0.0000021. With M = 6, N = 5, NRHS = 1,

LWORK has been set to 11. For such a small matrices, the minimal workspace is also the optimal workspace.

75.4 The Linear Equality-Constrained Least Squares Problem

Definitions:

The linear equality-constrained least squares (LSE) problem is

min
x

‖c − Ax‖2 subject to Bx = d, (75.3)

where A is an m–by–n matrix and B is a p–by–n matrix, c is an m-vector, and d is a p-vector, with

p ≤ n ≤ m + p.

Backgrounds:

Under the assumptions that B has full row rank p and the matrix

[
A
B

]
has full column rank n, the LSE

problem (75.3) has a unique solution x.

Lapack 75-7

Driver Routines:

The driver routine for solving the LSE is xGGLSE, which uses a generalized QR factorization of the matrices
A and B .

Examples:

Let us show how to use the driver routine SGGLSE to solve the LSE problem (75.3). SGGLSE first computes
a generalized QR decomposition of A and B , and then computes the solution by back substitution. SGGLSE
has the following calling sequence:

CALL SGGLSE(M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, INFO)

Input to SGGLSE:

M, P: The numbers of rows of the matrices A and B , respectively. M ≥ 0 and P ≥ 0.

N: The number of columns of the matrices A and B . N ≥ 0. Note that 0 ≤ P ≤ N ≤
M+P.

A, LDA: The M–by–N matrix A and the leading dimension of the array A. LDA ≥
max(1,M).

B, LDB: The P–by–N matrix B and the leading dimension of the array B. LDB ≥
max(1,P).

C, D: The right-hand side vectors for the least squares part, and the constrained equation
part of the LSE, respectively.

WORK, LWORK: The workspace array and its dimension. LWORK ≥ max(1, M + N + P).

If LWORK = −1, then a workspace query is assumed; the routine only calculates the
optimal size of the WORK array, returns this value as the first entry of the WORK array.

Output from SGGLSE:

C: The residual sum of squares for the solution is given by the sum of squares of elements
N-P+1 to M of vector C.

X: The solution of the LSE problem.

WORK: If INFO = 0, WORK(1) returns the optimal LWORK.

INFO: = 0 if successful exit. If INFO = − j , the j th argument had an illegal value.

Let us demonstrate the use of SGGLSE to solve the LSE problem (75.3), where

A =

⎡⎢⎢⎢⎣
1 1 1
1 3 1
1 −1 1
1 1 1

⎤⎥⎥⎥⎦ , B =
[

1 1 1
1 1 −1

]
, c =

⎡⎢⎢⎢⎣
1
2
3
4

⎤⎥⎥⎥⎦ , d =
[

7
4

]
.

The unique exact solution is x = 1
8 [46 −2 12]T . Upon calling SGGLSE with this input data and

M = 4, N = 3, P = 2, LWORK = 9, an approximate solution of the LSE problem is returned in X:

X = [5.7500000 −0.2500001 1.4999994]T .

The array C is overwritten by the residual sum of squares for the solution:

C = [4.2426405 8.9999981 2.1064947 0.2503501]T .

75-8 Handbook of Linear Algebra

75.5 A general Linear Model Problem

Definitions:

The general linear model (GLM) problem is

min
x,y

‖y‖2 subject to d = Ax + By, (75.4)

where A is an n–by–m matrix, B is an n–by– p matrix, and d is a n-vector, with m ≤ n ≤ m + p.

Backgrounds:

When B = I , the problem reduces to an ordinary linear least squares problem (75.2). When B is square
and nonsingular, the GLM problem is equivalent to the weighted linear least squares problem:

min
x

‖B−1(d − Ax)‖2.

Note that the GLM is equivalent to the LSE problem

min
x,y

∥∥∥∥∥ 0 −
[

0 I
] [

x
y

] ∥∥∥∥∥
2

subject to
[

A B
] [

x
y

]
= d.

Therefore, the GLM problem has a unique solution of the matrix

[
0 I
A B

]
has full column rank m + p.

Driver Routines:

The driver routine for solving the GLM problem (75.4) is xGGGLM, which uses a generalized QR factor-
ization of the matrices A and B .

Examples:

Let us show how to use the driver routine SGGGLM to solve the GLM problem (75.4). SGGGLM computes
a generalized QR decomposition of the matrices A and B , and then computes the solution by back
substitution. SGGGLM has the following calling sequence:

CALL SGGGLM(N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, INFO)

Input to SGGGLM:

N: The number of rows of the matrices A and B . N ≥ 0.

M, P: The number of columns of the matrices A and B , respectively. 0 ≤ M ≤ N and
P ≥ N-M.

A, LDA: The N–by–M matrix A and the leading dimension of the array A. LDA ≥
max(1,N).

B, LDB: The N–by–P matrix B and the leading dimension of the array B. LDB ≥
max(1,N).

D: The left-hand side of the GLM equation.

WORK, LWORK: The workspace array and its dimension. LWORK ≥ max(1,N+M+P).

If LWORK = -1, then a workspace query is assumed; the routine only calculates the
optimal size of the WORK array, and returns this value as the first entry of the WORK
array.

Lapack 75-9

Output from SGGGLM:

X, Y: Solution vectors.

WORK: If INFO = 0, WORK(1) returns the optimal LWORK.

INFO: INFO = 0 if successful exit. If INFO = − j , the j th argument had an illegal value.

Let us demonstrate the use of SGGGLM for solving the GLM problem (75.4), where

A =

⎡⎢⎢⎢⎢⎢⎣
1 2 1 4

−1 1 1 1
−1 −2 −1 1
−1 2 −1 −1

1 1 1 2

⎤⎥⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎣
1 2 2

−1 1 −2
3 1 6
2 −2 4
1 −1 2

⎤⎥⎥⎥⎥⎥⎦ , d =

⎡⎢⎢⎢⎢⎢⎣
7.99
0.98

−2.98
3.04
4.02

⎤⎥⎥⎥⎥⎥⎦ .

Upon calling SGGGLM with this input data, N = 5, M = 4, P = 3, LWORK = 12, the program successfully
exits and returns the following solution vectors:

X = [1.002950 2.001435 −0.987797 0.009080]T

and

Y = [0.003435 −0.004417 0.006871]T .

75.6 Symmetric Eigenproblems

Definitions:

The symmetric eigenvalue problem (SEP) is to find the eigenvalues, λ, and corresponding eigenvectors,
x �= 0, such that

Ax = λx, (75.5)

where A is real and symmetric. If A is complex and Hermitian, i.e., A∗ = A, then it is referred to as the
Hermitian eigenvalue problem.

Backgrounds:

When all eigenvalues and eigenvectors have been computed, we write

A = X�X∗, (75.6)

where � is a diagonal matrix whose diagonal elements are real and are the eigenvalues, and X is an orthog-
onal (or unitary) matrix whose columns are the eigenvectors. This is the classical spectral decomposition of
A. The theoretical and algorithmic background of the solution of the symmetric eigenvalue problem are
discussed in Chapter 42.

Driver Routines:

There are four types of driver routines for solving the SEP (75.5) and each has its own variations that take
advantage of the special structure or storage of the matrix A, as summarized in the following table.

75-10 Handbook of Linear Algebra

Types of Matrix Routine Names
(Storage Scheme) Simple Driver Divide-and-Conquer Expert Driver RRR Driver

General symmetric xSYEV xSYEVD xSYEVX xSYEVR
General symmetric

(packed storage) xSPEV xSPEVD xSPEVX –
Band matrix xSBEV xSBEVD xSBEVX –

Tridiagonal matrix xSTEV xSTEVD xSTEVX xSTEVR

The simple drivers compute all eigenvalues and (optionally) eigenvectors. The expert drivers compute
all or a selected subset of the eigenvalues and (optionally) eigenvectors. The divide-and-conquer drivers
have the same functionality as, yet outperform, the simple driver, but it requires more workspace. The
relative robust representation (RRR) drivers compute all or a subset of the eigenvalues and (optionally)
the eigenvectors. The last one is generally faster than any other types of driver routines and uses the least
amount of workspace.

Examples:

Let us show how to use the simple driver SSYEV to solve the SEP (75.5) by computing the spectral
decomposition (75.6). SSYEV first reduces A to a tridiagonal form, and then uses the implicit QL or QR
algorithm to compute eigenvalues and optionally eigenvectors. SSYEV has the following calling sequence:

CALL SSYEV(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO)

Input to SSYEV:

JOBZ: = 'N', compute eigenvalues only;

= 'V', compute eigenvalues and eigenvectors.

UPLO: = 'U', the upper triangle of A is stored in the array A; if UPLO = 'L', the lower
triangle of A is stored.

N: The order of the matrix A. N ≥ 0.

A, LDA: The symmetric matrix A and the leading dimension of the array A. LDA ≥
max(1,N).

WORK, LWORK: The workspace array and its dimension. LWORK ≥ max(1, 3 ∗ N − 1).

If LWORK = −1, then a workspace query is assumed; the routine only calculates the
optimal size of the WORK array, and returns this value as the first entry of the WORK
array.

Output from SSYEV:

A: The orthonormal eigenvectors X , if JOBZ = 'V'.

W: The eigenvalues λ in ascending order.

WORK: If INFO = 0, WORK(1) returns the optimal LWORK.

INFO: = 0 if successful exit. If INFO = − j , the j th input argument had an illegal value.
If INFO = j , the j off-diagonal elements of an intermediate tridiagonal form did not
converge to zero.

Let us demonstrate the use of SSYEV to solve the SEP (75.5), where

A =

⎡⎢⎢⎢⎣
5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

⎤⎥⎥⎥⎦ .

Lapack 75-11

The exact eigenvalues are 1, 2, 5, and 10. Upon calling SSYEV with the matrix A andN = 4,LWORK = 3 ∗ N−
1 = 11, A is overwritten by its orthonormal eigenvectors X .

X =

⎡⎢⎢⎢⎣
0.7071068 −0.0000003 0.3162279 0.6324555

−0.7071068 0.0000001 0.3162278 0.6324555
0.0000002 0.7071069 −0.6324553 0.3162278

−0.0000001 −0.7071066 −0.6324556 0.3162278

⎤⎥⎥⎥⎦ .

The eigenvalues that correspond to the eigenvectors in each columns of X are returned in W:

W = [0.9999996 1.9999999 4.9999995 10.0000000].

75.7 Nonsymmetric Eigenproblems

Definitions:

The nonsymmetric eigenvalue problem (NEP) is to find the eigenvalues, λ, and corresponding (right)
eigenvectors, x �= 0, such that

Ax = λx (75.7)

and, perhaps, the left eigenvectors, y �= 0, satisfying

y∗ A = λy∗. (75.8)

Backgrounds:

The problem is solved by computing the Schur decomposition of A, defined in the real case as

A = ZT ZT ,

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1–by–1 and 2–by–2
diagonal blocks, the 2–by–2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the
complex case, the Schur decomposition is

A = ZT Z∗,

where Z is unitary and T is a complex upper triangular matrix.
The columns of Z are called the Schur vectors. For each k (1 ≤ k ≤ n), the first k columns of Z form

an orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal
of T . It is possible to order the Schur factorization so that any desired set of k eigenvalues occupy the k
leading positions on the diagonal of T . The theoretical and algorithmic background of the solution of the
nonsymmetric eigenvalue problem is discussed in Chapter 43.

Driver Routines:

Both the simple drivers xGEEV and expert drivers xGEEVX are provided. The simple drivers compute all
the eigenvalues of A and (optionally) the right or left eigenvectors (or both). The expert drivers perform
the same task as the simple drivers plus the additional feature that it balances the matrix to try to improve
the conditioning of the eigenvalues and eigenvectors, and it computes the condition numbers for the
eigenvalues or eigenvectors (or both).

Examples:

Let us show how to use the simple driver SGEEV to solve the NEP (75.7). SGEEV first reduces A to an upper
Hessenberg form (a Hessenberg matrix is a matrix where all entries below the first lower subdiagonal are

75-12 Handbook of Linear Algebra

zeros), and then uses the implicit QR algorithm to compute the Schur decomposition, and finally computes
eigenvectors of the upper quasi-triangular matrix. SGEEV has the following calling sequence:

CALL SGEEV(JOBVL, JOBVR, N,A, LDA,WR, WI, VL, LDVL, VR, LDVR,WORK,
LWORK, INFO)

Input to SGEEV:

JOBVL, JOBVR: = 'V', the left and/or right eigenvectors are computed;

= 'N', the left and/or right eigenvectors are not computed.

N: The order of the matrix A. N ≥ 0.

A, LDA: The matrix A and the leading dimension of the array A. LDA ≥ max(1, N).

LDVL, LDVR: The leading dimensions of the arrays VL and VR if the left and right
eigenvectors are computed. LDVL, LDVR ≥ N.

WORK, LWORK: The workspace array and its dimension.LWORK ≥ max(1, 3 ∗ N). If eigen-
vectors are computed, LWORK ≥ 4 ∗ N. For good performance, LWORK must generally
be larger.

If LWORK = −1, then a workspace query is assumed; the routine only calculates the
optimal size of the WORK array, and returns this value as the first entry of the WORK
array.

Output from SGEEV:

WR, WI: The real and imaginary parts of the computed eigenvalues. Complex conju-
gate pairs of eigenvalues appear consecutively with the eigenvalue having the positive
imaginary part first.

VL: If the j th eigenvalue λ j is real, then the j th left eigenvector y j is stored in VL(:, j).
If the j th and (j + 1)-st eigenvalues λ j and λ j+1 form a complex conjugate pair,
then VL(:, j) + i · VL(:, j + 1) and VL(:, j) − i · VL(:, j + 1) are the corresponding left
eigenvectors y j and y j+1.

VR: If the j th eigenvalue λ j is real, then the j th right eigenvector x j is stored in VR(:, j). If
the j th and (j + 1)-st eigenvalues λ j and λ j+1 form a complex conjugate pair, then
VR(:, j) + i · VR(:, j + 1) and VR(:, j) − i · VR(:, j + 1) are the corresponding right
eigenvectors x j and x j+1.

WORK: If INFO = 0, WORK(1) returns the optimal LWORK.

INFO: = 0 if successful exit. If INFO = − j , the j th argument had an illegal value. If
INFO = j , the QR algorithm failed to compute all the eigenvalues, and no eigenvectors
have been computed; elements j + 1 : N ofWR andWI contain eigenvalues, which have
converged.

Let us demonstrate the use of SGEEV for solving the NEP (75.7), where

A =

⎡⎢⎢⎢⎣
4 −5 0 3
0 4 −3 −5
5 −3 4 0
3 0 5 4

⎤⎥⎥⎥⎦ .

The exact eigenvalues are 12, 1 + i · 5, 1 − i · 5 and 2. Upon calling SGEEV with this matrix and
N = 4, LWORK = 4 ∗ N = 16, each eigenvalue, λ j , is retrieved by combining the j th entry in WR and WI

Lapack 75-13

such that λ j = WR(j) + i · WI(j). If WI(j) is 0, then the j th eigenvalue is real. For this example, we have

λ1 = 12.0000000

λ2 = 1.000000 + i · 5.0000005

λ3 = 1.000000 − i · 5.0000005

λ4 = 1.9999999.

The left eigenvectors are stored in VL. Since the first and fourth eigenvalues are real, their eigenvectors
are the corresponding columns in VL, that is, y1 = VL(:, 1) and y4 = VL(:, 4). Since the second and
third eigenvalues form a complex conjugate pair, the second eigenvector, y2 = VL(:, 2) + i · VL(:, 3) and
the third eigenvector, y3 = VL(:, 2) − i · VL(:, 3). If we place all the eigenvectors in a matrix Y where
Y = [y1, y2, y3, y4], we have

Y =

⎡⎢⎢⎢⎣
−0.5000001 0.0000003 − i · 0.4999999 0.0000003 + i · 0.4999999 0.5000000

0.4999999 −0.5000002 −0.5000002 0.5000001
−0.5000000 −0.5000000 − i · 0.0000002 −0.5000000 + i · 0.0000002 −0.4999999
−0.5000001 −0.0000003 + i · 0.5000000 −0.0000003 − i · 0.5000000 0.5000001

⎤⎥⎥⎥⎦ .

The right eigenvectors x j can be recovered from VR in the way similar to the left eigenvectors. The right
eigenvector matrix X is

X =

⎡⎢⎢⎢⎣
−0.5000000 0.5000002 0.5000002 0.5000001

0.4999999 −0.0000001 − i · 0.5000000 −0.0000001 + i · 0.5000000 0.5000000
−0.5000000 −0.0000001 − i · 0.4999999 −0.0000001 + i · 0.4999999 −0.5000000
−0.5000001 −0.5000001 −0.5000001 0.5000000

⎤⎥⎥⎥⎦ .

75.8 Singular Value Decomposition

Definitions:

The singular value decomposition (SVD) of an m–by–n matrix A is

A = U�V T (A = U�V∗ in the complex case), (75.9)

where U and V are orthogonal (unitary) and � is an m–by–n diagonal matrix with real diagonal elements,
σ j , such that

σ1 ≥ σ2 ≥ . . . ≥ σmin(m, n) ≥ 0.

The σ j are the singular values of A and the first min(m, n) columns of U and V are the left and right
singular vectors of A.

Backgrounds:

The singular values σ j and the corresponding left singular vectors u j and right singular vectors v j satisfy

Av j = σ j u j and AT u j = σ j v j (or A∗uj = σ j vj in complex case),

where uj and vj are the j th columns of U and V respectively. (See Chapter 17 and Chapter 45 for more
information on singular value decompositions.)

75-14 Handbook of Linear Algebra

Driver Routines:

Two types of driver routines are provided in LAPACK. The simple drivers xGESVD compute all the singular
values and (optionally) left and/or right singular vectors. The divide and conquer drivers xGESDD have
the same functionality as the simple drivers except that they are much faster for larger matrices, but use
more workspace.

Examples:

Let us show how to use the simple driver SGESVD to compute the SVD (75.9). SGESVD first reduces A to
a bidiagonal form, and then uses an implicit QR-type algorithm to compute singular values and optionally
singular vectors. SGESVD has the following calling sequence:

CALL SGESVD(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
LWORK, INFO)

Input to SGESVD:

JOBU: Specifies options for computing all or part of the left singular vectors U :

= 'A', all M columns of U are returned in the array U:

= 'S', the first min(M,N) columns of U are returned;

= 'O', the first min(M,N) columns of U are overwritten on the array A;

= 'N', no left singular vectors are computed. Note that JOBVT and JOBU cannot
both be 'O'.

JOBVT: Specifies options for computing all or part of the right singular vectors VT:

= 'A', all N rows of V T are returned in the array VT;

= 'S', the first min(M,N) rows of V T are returned;

= 'O', the first min(M,N) rows of V T are overwritten on the array A;

= 'N', no right singular vectors are computed.

M, N: The number of rows and columns of the matrix A. M, N ≥ 0.

A, LDA: The M–by–N matrix A and the leading dimension of the array A. LDA ≥
max(1,M).

LDU, LDVT: The leading dimension of the arrays U and VT. LDU, LDVT ≥ 1;

If JOBU = 'S' or 'A', LDU ≥ M.

If JOBVT = 'A', LDVT ≥ N; If JOBVT = 'S', LDVT ≥ min(M, N).

WORK, LWORK: The workspace array and its dimension. LWORK ≥ max(3 min(M, N) +
max(M, N), 5 min(M, N)).

If LWORK = -1, then a workspace query is assumed; the routine only calculates the
optimal size of the WORK array and returns this value as the first entry of the WORK
array.

Output from SGESVD:

A: If JOBU = 'O', A is overwritten with the first min(M, N) columns of U (the left
singular vectors, stored columnwise);

If JOBVT = 'O', A is overwritten with the first min(M,N) rows of V T (the right
singular vectors, stored rowwise);

S: Singular values of A, sorted so that S(i) ≥ S(i + 1).

U: If JOBU = 'A', U contains M–by–M orthogonal matrix U . If JOBU = 'S', U con-
tains the first min(M,N) columns of U . If JOBU = 'N' or 'O', U is not referenced.

Lapack 75-15

VT: If JOBVT = 'A', VT contains right N–by–N orthogonal matrix V T . If JOBVT =
'S', VT contains the first min(M,N) rows of VT (the right singular vectors stored
rowwise). If JOBVT = 'N' or 'O', VT is not referenced.

WORK: If INFO = 0, WORK(1) returns the optimal LWORK.

INFO: = 0 if successful exit. If INFO = − j , the j th argument had an illegal value. If INFO >

0, the QR-type algorithm (subroutine SBDSQR) did not converge. INFO specifies
how many superdiagonals of an intermediate bidiagonal form B did not converge
to zero. WORK(2:min(M,N)) contains the unconverged superdiagonal elements of an
upper bidiagonal matrix B whose diagonal is in S (not necessarily sorted). B satisfies
A = U B V T , so it has the same singular values as A, and singular vectors related by
U and V T .

Let us show the numerical results of SGESVD in computing the SVD by a 8–by–5 matrix A as follows

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

22 10 2 3 7
14 7 10 0 8
−1 13 −1 −11 3
−3 −2 13 −2 4

9 8 1 −2 4
9 1 −7 5 −1
2 −6 6 5 1
4 5 0 −2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The exact singular singular values are
√

1248, 20,
√

384, 0, 0. The rank of the matrix A is 3. Upon calling
SGESVD with M = 8, N = 5, LWORK = 25, the computed singular values of A are returned in S:

S = [35.3270454 20.0000038 19.5959187 0.0000007 0.0000004].

The columns in U contain the left singular vectors U of A:

U =

⎡⎢⎢⎢⎢⎢⎢⎣

-7.0711e-001 1.5812e − 001 −1.7678e − 001 2.4818e − 001 −4.0289e − 001 −3.2305e − 001 −3.3272e − 001 −6.9129e − 002
-5.3033e-001 1.5811e − 001 3.5355e − 001 −6.2416e − 001 2.5591e − 001 −3.9178e − 002 3.0548e − 001 −1.3725e − 001
-1.7678e-001 −7.9057e − 001 1.7677e − 001 3.0146e − 001 1.9636e − 001 −3.1852e − 001 2.3590e − 001 −1.6112e − 001

0 1.5811e − 001 7.0711e − 001 2.9410e − 001 3.1907e − 001 4.7643e − 002 −5.2856e − 001 7.1055e − 002
-3.5355e-001 −1.5811e − 001 −1.0000e − 006 2.3966e − 001 −7.8607e − 002 8.7800e − 001 1.0987e − 001 −5.8528e − 002
-1.7678e-001 1.5812e − 001 −5.3033e − 001 1.7018e − 001 7.9071e − 001 −7.0484e − 003 −9.0913e − 002 −8.3220e − 004

0 4.7434e − 001 1.7678e − 001 5.2915e − 001 −1.5210e − 002 −1.3789e − 001 6.6193e − 001 7.9763e − 002
-1.7678e-001 −1.5811e − 001 −1.0000e − 006 −7.1202e − 002 1.3965e − 002 −2.0712e − 002 4.9676e − 002 9.6726e − 001

⎤⎥⎥⎥⎥⎥⎥⎦ .

The rows in VT contain the right singular vectors V T of A:

V T =

⎡⎢⎢⎣
−8.0064e − 001 −4.8038e − 001 −1.6013e − 001 0 −3.2026e − 001

3.1623e − 001 −6.3246e − 001 3.1622e − 001 6.3246e − 001 −1.8000e − 006
−2.8867e − 001 −3.9000e − 006 8.6603e − 001 −2.8867e − 001 2.8868e − 001
−4.0970e − 001 3.4253e − 001 −1.2426e − 001 6.0951e − 001 5.7260e − 001

8.8224e − 002 −5.0190e − 001 −3.3003e − 001 −3.8100e − 001 6.9730e − 001

⎤⎥⎥⎦ .

75.9 Generalized Symmetric Definite Eigenproblems

Definitions:

The generalized symmetric definite eigenvalue problem (GSEP) is to find the eigenvalues, λ, and corre-
sponding eigenvectors, x �= 0, such that

Ax = λBx (type 1) (75.10)

75-16 Handbook of Linear Algebra

or

ABx = λx (type 2) (75.11)

or

B Ax = λx (type 3) (75.12)

where A and B are symmetric or Hermitian and B is positive definite.

Backgrounds:

For all these problems the eigenvalues λ are real. The matrix Z of the computed eigenvectors satisfy
Z∗ AZ = � (problem types 1 and 3) or Z−1 AZ−∗ = I (problem type 2), where � is a diagonal matrix
with the eigenvalues on the diagonal. Z also satisfies Z∗ B Z = I (problem types 1 and 2) or Z∗ B−1 Z = I
(problem type 3). These results are consequences of spectral theory for symmetric matrices. For example,
the GSEP type 1 can be rearranged as

B− 1
2 AB− 1

2 y = λy,

where y = B
1
2 x.

Driver Routines:

There are three types of driver routines for solving the GSEP, and each has variations that take advantage
of the special structure or storage of the matrices A and B , as shown in the following table:

Types of Matrix Routine Names
(Storage Scheme) Simple Driver Divide-and-Conquer Expert Driver

General dense xSYGV/xHEGV xSYGVD/xHEGVD xSYGVX/xHEGVX
General dense

(packed storage) xSPGV/xHPGV xSPGVD/xHPGVD xSPGVX/xHPGVX
Band matrix xSBGV/xHBGV xSBBVD/xHBGVD xSBGVX/xHBGVX

The simple driver computes all the eigenvalues and (optionally) the eigenvectors. The expert driver
computes all or a selected subset of the eigenvalues and (optionally) eigenvectors. The divide-and-conquer
driver solves the same problem as the simple driver. It is much faster than the simple driver, but uses more
workspace.

Examples:

Let us show how to use the simple driver SSYGV to compute the GSEP (75.10), (75.11) and (75.12).
SSGYV first reduces each of these problems to a standard symmetric eigenvalue problem, using a Cholesky
decomposition of B , and then computes eigenvalues and eigenvectors of the standard symmetric eigenvalue
problem by an implicit QR-type algorithm. SSYGV has the following calling sequence: CALL SSYGV(

ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO) Input to SSYGV:

ITYPE: Specifies the problem type to be solved:

JOBZ: = 'N', compute eigenvalues only;

= 'V', compute eigenvalues and eigenvectors.

UPLO: = 'U', the upper triangles of A and B are stored;

= 'L', the lower triangles of A and B are stored.

N: The order of the matrices A and B . N ≥ 0.

Lapack 75-17

A, LDA: The symmetric matrix A and the leading dimension of the array A. LDA ≥
max(1,N).

B: The symmetric positive definite matrix B and the leading dimension of the array B.
LDB ≥ max(1,N).

WORK, LWORK: The workspace array and its length. LWORK ≥ max(1, 3 ∗ N − 1).

If LWORK = −1, then a workspace query is assumed; the routine only calculates the
optimal size of the WORK array, and returns this value as the first entry of the WORK
array.

Output from SSYGV:

A: Contains the normalized eigenvector matrix Z if requested.

B: If INFO ≤ N, the part of B containing the matrix is overwritten by the triangular
factor U or L from the Cholesky factorization B = U T U or B = L L T .

W: The eigenvalues in ascending order.

WORK: If INFO = 0, WORK(1) returns the optimal LWORK.

INFO: = 0, then successful exit. If INFO = − j , then the j th argument had an illegal value.
If INFO > 0, then SSYGV returned an error code:� INFO ≤ N: if INFO = j , the algorithm failed to converge;� INFO > N: if INFO = N + j , for 1 ≤ j ≤ N, then the leading minor of order j of

B is not positive definite. The factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

Let us show the use of SSYGV to solve the type 1 GSEP (75.10) for the following 5–by–5 matrices A and
B :

A =

⎡⎢⎢⎢⎢⎢⎣
10 2 3 1 1

2 12 1 2 1
3 1 11 1 −1
1 2 1 9 1
1 1 −1 1 15

⎤⎥⎥⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎢⎢⎣
12 1 −1 2 1

1 14 1 −1 1
−1 1 16 −1 1

2 −1 −1 12 −1
1 1 1 −1 11

⎤⎥⎥⎥⎥⎥⎦ .

Upon calling SSYGV with N = 5, LWORK = 3 ∗ N − 1 = 14, A is overwritten by the eigenvector matrix Z:

Z =

⎡⎢⎢⎢⎢⎢⎣
−0.1345906 0.0829197 −0.1917100 0.1420120 −0.0763867

0.0612948 0.1531484 0.1589912 0.1424200 0.0170980
0.1579026 −0.1186037 −0.0748390 0.1209976 −0.0666645

−0.1094658 −0.1828130 0.1374690 0.1255310 0.0860480
0.0414730 0.0035617 −0.0889779 0.0076922 0.2894334

⎤⎥⎥⎥⎥⎥⎦ .

The corresponding eigenvalues are returned in W:

W =
[

0.4327872 0.6636626 0.9438588 1.1092844 1.4923532
]
.

75.10 Generalized Nonsymmetric Eigenproblems

Definitions:

The generalized nonsymmetric eigenvalue problem (GNEP) is to find the eigenvalues,λ, and corresponding
(right) eigenvectors, x �= 0, such that

Ax = λBx (75.13)

75-18 Handbook of Linear Algebra

and optionally, the corresponding left eigenvectors y �= 0, such that

y∗ A = λy∗ B , (75.14)

where A and B are n–by–n matrices.

Backgrounds:

Sometimes an equivalent notation is used to refer to the GNEP of the pair (A, B). The GNEP can be solved
via the generalized Schur decomposition of the pair (A, B), defined in the real case as

A = QS ZT , B = QT ZT ,

where Q and Z are orthogonal matrices, T is upper triangular, and S is an upper quasi-triangular matrix
with 1-by-1 and 2-by-2 diagonal blocks, the 2-by-2 blocks corresponding to complex conjugate pairs of
eigenvalues. In the complex case, the generalized Schur decomposition is

A = QS Z∗, B = QT Z∗

where Q and Z are unitary and S and T are both upper triangular. The columns of Q and Z are called left
and right generalized Schur vectors and span pairs of deflating subspaces of A and B . Deflating subspaces
are a generalization of invariant subspaces: For each k, 1 ≤ k ≤ n, the first k columns of Z span a right
deflating subspace mapped by both A and B into a left deflating subspace spanned by the first k columns
of Q. It is possible to order the generalized Schur form so that any desired subset of k eigenvalues occupy
the k leading position on the diagonal of (S, T). (See Chapter 43 and Chapter 15 for more information on
generalized eigenvalue problems.)

Driver Routines:

Both the simple and expert drivers are provided in LAPACK. The simple drivers xGGEV compute all
eigenvalues of the pair (A, B), and optionally the left and/or right eigenvectors. The expert drivers xGGEVX
perform the same task as the simple driver routines; in addition, they also balance the matrix pair to try
to improve the conditioning of the eigenvalues and eigenvectors, and compute the condition numbers for
the eigenvalues and/or left and right eigenvectors.

Examples:

Let us show how to use the simple driver SGGEV to solve the GNEP (75.13) and (75.14). SGGEV first
reduces the pair (A, B) to generalized upper Hessenberg form (H, R), where H is upper Hessenberg (zero
below the first lower subdiagonal) and R is upper triangular. Then SGGEV computes the generalized Schur
form (S, T) of the generalized upper Hessenberg form (H, R), using an QZ algorithm. The eigenvalues
are computed from the diagonals of (S, T). Finally, SGGEV computes left and/or right eigenvectors if
requested. SGGEV has the following calling sequence:

CALL SGGEV(JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, VL,
LDVL,

VR, LDVR, WORK, LWORK, INFO)

Input to SGGEV:

JOBVL, JOBVR: = 'N', do not compute the left and/or right eigenvectors;

= 'V', compute the left and/or right eigenvectors.

N: The order of the matrices A and B . N ≥ 0.

A, LDA: The matrix A and the leading dimension of the array A. LDA ≥ max(1,N).

B, LDB: The matrix B and the leading dimension of the array B. LDB ≥ max(1,N).

Lapack 75-19

LDVL, LDVR: The leading dimensions of the eigenvector matricesVLandVR.LDVL, LDVR ≥ 1.
If eigenvectors are required, then LDVL, LDVR ≥ N.

WORK, LWORK: The workspace array and its length. LWORK ≥ max(1, 8 ∗ N). For good
performance, LWORK must generally be larger.

If LWORK = −1, then a workspace query is assumed; the routine only calculates the
optimal size of WORK, returns this value in WORK(1) on return.

Output from SGGEV:

ALPHAR, ALPHAI, BETA: (ALPHAR(j) + i · ALPHAI(j))/BETA(j) for j = 1, 2, . . . , N,
are the generalized eigenvalues. If ALPHAI(j) is zero, then the j th eigenvalue is real;
if positive, then the j th and (j + 1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j + 1) negative.

VL: If JOBVL = 'V', the left eigenvectors y j are stored in the columns of VL, in the
same order as their corresponding eigenvalues. If the j th eigenvalue is real, then
y j = VL(:, j), the j th column ofVL. If the j th and (j+1)th eigenvalues form a complex
conjugate pair, then y j = VL(:, j)+ i ·VL(:, j +1) and y j+1 = VL(:, j)− i ·VL(:, j +1).

VR: IfJOBVR = 'V', the right eigenvectors x j are stored one after another in the columns
of VR, in the same order as their eigenvalues. If the j th eigenvalue is real, then x j =
VR(:, j), the j th column of VR. If the j th and (j + 1)th eigenvalues form a complex
conjugate pair, then x j = VR(:, j)+ i ·VR(:, j +1) and x j+1 = VR(:, j)− i ·VR(:, j +1).

WORK: If INFO = 0, WORK(1) returns the optimal LWORK.

INFO: INFO = 0 if successful exit. If INFO = − j , the j th argument had an illegal
value. IfINFO = 1,...,N, then the QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) should be correct for j =
INFO + 1, . . . , N. If INFO = N+1, then other than QZ iteration failed in SHGEQZ.
If INFO = N+2, then error return from STGEVC.

Note that the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) may easily over- or underflow, and
BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio. However, ALPHAR
and ALPHAI will be always less than and usually comparable to ‖A‖ in magnitude, and BETA always less
than and usually comparable to ‖B‖.

Let us demonstrate the use of SGGEV in solving the GNEP of the following 6–by–6 matrices A and B :

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

50 −60 50 −27 6 6
38 −28 27 −17 5 5
27 −17 27 −17 5 5
27 −28 38 −17 5 5
27 −28 27 −17 16 5
27 −28 27 −17 5 16

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

16 5 5 5 −6 5
5 16 5 5 −6 5
5 5 16 5 −6 5
5 5 5 16 −6 5
5 5 5 5 −6 16
6 6 6 6 −5 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The exact eigenvalues are 1
2 + i ·

√
3

2 , 1
2 + i ·

√
3

2 , 1
2 − i ·

√
3

2 , 1
2 − i ·

√
3

2 , ∞, ∞. Upon calling SGGEV with
N = 6, LWORK = 48, on exit, arrays ALPHAR, ALPHAI and BETA are

ALPHAR =
[
−25.7687130 6.5193458 5.8156629 5.8464251 5.5058141 11.2021322

]
,

ALPHAI =
[

0.0000000 11.2832556 −10.0653677 10.1340599 −9.5436525 0.0000000
]

,

BETA =
[

0.0000000 13.0169611 11.6119413 11.7124090 11.0300474 0.0000000
]
.

75-20 Handbook of Linear Algebra

Therefore, there are two infinite eigenvalues corresponding to BETA(1) = BETA(6) = 0 and four finite
eigenvalues λ j = (ALPHAR(j) + i · ALPHAI(j))/BETA(j) for j = 2, 3, 4, 5.

(ALPHAR(2 : 5) + i · ALPHAI(2 : 5))/BETA(2 : 5) =

⎡⎢⎢⎢⎣
0.50083 + i · 0.86681
0.50083 − i · 0.86681
0.49917 + i · 0.86524
0.49917 − i · 0.86524

⎤⎥⎥⎥⎦ .

The left eigenvectors y j are stored in VL. Since ALPHAI(1) = ALPHAI(6) = 0, y1 = VL(:, 1) and y6 =
VL(:, 6). The second and third eigenvalues form a complex conjugate pair, the y2 = VL(:, 2) + i · VL(:, 3)
and y3 = VL(:, 2) − i · VL(:, 3). Similarly, y4 = VL(:, 4) + i · VL(:, 5) and y5 = VL(:, 4) + i · VL(:, 5). If we
place all the left eigenvectors in a matrix Y , where Y = [y1, y2, y3, y4, y5, y6], we have

Y =

⎡⎢⎢⎢⎣
−0.1666666 0.2632965 + i · 0.3214956 0.2632965 − i · 0.3214956 −0.4613968 + i · 0.1902102 −0.4613968 − i · 0.1902102 0.1666667

−0.1666666 −0.2834885 − i · 0.7165115 −0.2834885 + i · 0.7165115 0.9231794 − i · 0.0765849 0.9231794 + i · 0.0765849 0.1666667

−0.1666666 0.1623165 + i · 0.7526108 0.1623165 − i · 0.7526108 −0.9240005 − i · 0.0759995 −0.9240005 + i · 0.0759995 0.1666667

−0.1666666 0.0396326 − i · 0.4130635 0.0396326 + i · 0.4130635 0.4619284 + i · 0.1907958 0.4619284 − i · 0.1907958 0.1666666

−0.1666671 −0.0605860 + i · 0.0184893 −0.0605860 − i · 0.0184893 0.0000969 − i · 0.0761408 0.0000969 + i · 0.0761408 0.1666666

1.0000000 −0.0605855 + i · 0.0184900 −0.0605855 − i · 0.0184900 0.0000959 − i · 0.0761405 0.0000959 + i · 0.0761405 −1.0000000

⎤⎥⎥⎥⎦.

The right eigenvectors can be recovered from VR in a way similar to the left eigenvectors. If we place all
the right eigenvectors in a matrix X , where X = [x1, x2, x3, x4, x5, x6], we have

U =

⎡⎢⎢⎢⎣
0.1666672 −0.2039835 − i · 0.5848466 −0.2039835 + i · 0.5848466 0.5722237 − i · 0.0237538 0.5722237 + i · 0.0237538 0.1666672

0.1666664 −0.7090308 − i · 0.2908980 −0.7090308 + i · 0.2908980 0.4485306 − i · 0.5514694 0.4485306 + i · 0.5514694 0.1666664

0.1666666 −0.7071815 + i · 0.2928185 −0.7071815 − i · 0.2928185 −0.0709520 − i · 0.7082051 −0.0709520 + i · 0.7082051 0.1666666

0.1666666 −0.2013957 + i · 0.5829236 −0.2013957 − i · 0.5829236 −0.4667411 − i · 0.3361499 −0.4667411 + i · 0.3361499 0.1666666

1.0000000 −0.2023994 + i · 0.0000001 −0.2023994 − i · 0.0000001 0.0536732 − i · 0.1799536 0.0536732 + i · 0.1799536 1.0000000

0.1666666 −0.2023991 − i · 0.0000002 −0.2023991 + i · 0.0000002 0.0536734 − i · 0.1799532 0.0536734 + i · 0.1799532 0.1666664

⎤⎥⎥⎥⎦.

75.11 Generalized Singular Value Decomposition

Definitions:

The generalized (or quotient) singular value decomposition (GSVD or QSVD) of an m–by–n matrix A
and a p–by–n matrix B is given by the pair of factorizations

A = U�1

[
0 R

]
QT and B = V�2

[
0 R

]
QT . (75.15)

The matrices in these factorizations have the following properties:

� U is m-by-m, V is p-by- p, Q is n-by-n, and all three matrices are orthogonal. If A and B are
complex, these matrices are unitary instead of orthogonal, and QT should be replaced by Q∗ in
the pair of factorizations.� R is r -by-r , upper triangular and nonsingular.

[
0 R

]
is r -by-n (in other words, the 0 is an

r -by-(n − r) zero matrix). The integer r is the rank of

[
A
B

]
.

� �1 is m-by-r and �2 is p-by-r . Both are real, nonnegative and diagonal, satisfying �T
1 �1 +

�T
2 �2 = I . Write �T

1 �1 = diag(α2
1 , . . . , α2

r) and �T
2 �2 = diag(β2

1 , . . . , β2
r). The ratios α j /β j for

j = 1, 2, . . . , r are called the generalized singular values.

�1 and �2 have the following detailed structures, depending on whether m − r ≥ 0 or m − r < 0.

Lapack 75-21

� In the first case, when m − r ≥ 0,

�1 =

⎛⎜⎜⎝
k �

k I 0

� 0 C

m − k − � 0 0

⎞⎟⎟⎠ and �2 =
⎛⎝

k �

� 0 S

p − � 0 0

⎞⎠ . (75.16)

Here k + � = r , and � is the rank of B . C and S are diagonal matrices satisfying C 2 + S2 = I ,
and S is nonsingular. Let c j and s j are the diagonal entries of C and S, respectively. Then we
have α1 = · · · = αk = 1, αk+ j = c j for j = 1, . . . , �, β1 = · · · = βk = 0, and βk+ j = s j for
j = 1, . . . , �. Thus, the first k generalized singular values α1/β1, . . . , αk/βk are infinite and the
remaining � generalized singular values are finite.� In the second case, when m − r < 0,

�1 =
⎛⎝

k m − k k + � − m

k I 0 0

m − k 0 C 0

⎞⎠ and �2 =

⎛⎜⎜⎝
k m − k k + � − m

m − k 0 S 0

k + � − m 0 0 I

p − � 0 0 0

⎞⎟⎟⎠ .

(75.17)

Again, k + � = r , and � is the rank of B . C and S are diagonal matrices satisfying C 2 + S2 = I ,
and S is nonsingular. Let c j and s j are the diagonal entries of C and S, respectively. Then we
have α1 = · · · = αk = 1, αk+ j = c j for j = 1, . . . , m − k, αm+1 = · · · = αr = 0, and
β1 = · · · = βk = 0, βk+ j = s j for j = 1, . . . , m − k, βm+1 = · · · = βr = 1. Thus, the first k
generalized singular values α1/β1, . . . , αk/βk are infinite, and the remaining � generalized singular
values are finite.

Backgrounds:

Here are some important special cases of the QSVD. First, when B is square and nonsingular, then r = n
and the QSVD of A and B is equivalent to the SVD of AB−1, where the singular values of AB−1 are equal
to the generalized singular values of A and B :

AB−1 = (U�1 R QT)(V�2 R QT)−1 = U (�1�
−1
2)V T .

Second, if the columns of
[

AT B T
]T

are orthonormal, then r = n, R = I and the QSVD of A and B is

equivalent to the CS (Cosine-Sine) decomposition of
[

AT B T
]T

:[
A
B

]
=

[
U 0
0 V

] [
�1

�2

]
QT .

Third, the generalized eigenvalues and eigenvectors of the pencil AT A − λB T B can be expressed in terms
of the QSVD of A and B , namely,

XT AT AX =
[

0 0
0 �T

1 �1

]
and XT B T B X =

[
0 0
0 �T

2 �2

]
.

where X = Q

[
I 0
0 R−1

]
. Therefore, the columns of X are the eigenvectors of AT A − λB T B , and the

“nontrivial” eigenvalues are the squares of the generalized singular values. “Trivial” eigenvalues are those
corresponding to the leading n − r columns of X , which span the common null space of AT A and B T B .

75-22 Handbook of Linear Algebra

The “trivial eigenvalues” are not well defined.1 (See Chapter 15 for more information on generalized
singular value problems.)

Driver Routines:

The driver routines xGGSVD compute the GSVD (75.15) of A and B .

Examples:

Let us show how to use the driver routine SGGSVD to compute the QSVD (75.15). SGGSVD first reduces
the matrices A and B to a pair of triangular matrices, and then use a Jacobi-like method to compute the
QSVD of the triangular pair. SGGSVD has the following calling sequence:

CALL SGGSVD(JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB, ALPHA,
BETA,

U, LDU, V, LDV, Q, LDQ, WORK, IWORK, INFO)

Input to SGGSVD:

JOBU, JOBV, JOBQ: , = 'U', orthogonal matrices U , V and Q are computed;

= 'N', these orthogonal matrices are not computed.

M, N, P: The number of rows or columns of the matrices A and B as defined in (15)

A, LDA: TheM-by-Nmatrix A and the leading dimension of the arrayA.LDA ≥ max(1, M).

B, LDB: TheP-by-Nmatrix B and the leading dimension of the arrayB.LDB ≥ max(1, P).

LDU, LDV, LDQ: The leading dimension of the arrays U, V, and Q if the orthogonal
matrices U , V , and Q are computed, LDU ≥ max(1, M), LDV ≥ max(1, P), LDQ ≥
max(1, N).

WORK: The real workspace array, dimension max(3N, M, P) + N.

IWORK: The integer workspace array, dimension N.

Output from SGGSVD:

K, L: The dimension of the subblocks described in the definition of GSVD. K + L is the

effective numerical rank of the matrix
[

AT B T
]T

.

A: The entire triangular matrix R is stored in A(1:K+L,N-K-L+1:N) if m − r ≥ 0.
Otherwise, contains the subblock R(1 : m, 1 : k + �) of R are stored in A(1:M,N-
K-L+1:N).

B: The subblock R(m + 1 : k + �, m + 1 : k + �) of R are stored in B(M-K+1:L,N+M-
K-L+1:N) if m − r < 0.

ALPHA, BETA: The generalized singular value pairs;

ALPHA(1:K) = 1 and BETA(1:K) = 0.� If M-K-L ≥ 0, then ALPHA(K + 1 : K + L) = C and BETA(K + 1 : K + L) = S.� If M-K-L < 0, then

ALPHA(K + 1 : M) = C and ALPHA(M + 1 : K + L) = 0,

BETA(K + 1 : M) = S and BETA(M + 1 : K + L) = 1;

And ALPHA(K+L+1:N) = 0, BETA(K+L+1:N) = 0.

1If we tried to compute the trivial eigenvalues in the same way as the nontrivial ones, that is by taking ratios of the
leading n − r diagonal entries of XT AT AX and XT B T B X , we would get 0/0.

Lapack 75-23

U, V, Q: Contains computed orthogonal matrices U , V and Q if requested.

INFO: INFO = 0 if successful exit. If INFO = − j , then the j th argument had an illegal
value. If INFO = 1, the Jacobi-type procedure failed to converge.

Let us demonstrate the use of SGGSVD in computing the QSVD of the following 6–by–5 matrices A
and B :

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1 5
0 3 2 0 2
1 0 2 1 0
0 2 3 0 −1
1 0 2 1 1
0 2 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 2 1 1
0 3 0 0 0
1 −2 2 1 1
0 2 0 0 0
2 −4 4 2 2
1 3 2 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Upon calling SGGSVD with M = 6, P = 6, N = 5, LWORK = 20, we have K = 2 and L = 2. The QSVD
(75.15) of A and B falls in the first case (75.16) since M− K− L = 6 − 2 − 2 = 2 > 0. The arrays ALPHA
and BETA are

ALPHA =
[

1.0000000 1.0000000 0.1537885 0.5788464 0.0000000
]

BETA =
[

0.0000000 0.0000000 0.9881038 0.8154366 0.0000000
]

Hence, �1 and �2 have the structure as described in (75.16), namely,

�1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0.1537885 0
0 0 0 0.5788464
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and �2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.9881038 0
0 0 0 0.8154366
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The first two generalized singular values are infinite, α1/β1 = α2/β2 = ∞, and the remaining two
generalized singular values are finite, α3/β3 = 0.15564 and α4/β4 = 0.70986.

Furthermore, the array A(1:4,2:5) contains the 4–by–4 upper triangular matrix R as defined in
(75.15):

R =

⎡⎢⎢⎢⎣
3.6016991 −1.7135643 −0.2843603 1.8104467

0 −2.6087811 −4.2943931 5.1107349
0 0 6.9692163 3.5063875
0 0 0 7.3144341

⎤⎥⎥⎥⎦ .

The orthogonal matrices U , V and Q are returned in the arrays U, V and Q, respectively,

U =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.6770154 −0.4872811 −0.4034495 −0.2450049 −0.2151961 0.1873468
−0.0947438 −0.5723576 0.4163284 0.1218751 0.0785425 −0.6848933

0.2098812 0.0670342 0.2612190 −0.7393155 −0.5670457 −0.1228532
0.6974092 −0.5903998 −0.3678919 0.0010751 −0.0196356 0.1712235
0.0000000 0.0000001 −0.0735656 −0.6152450 0.7822418 −0.0644937

−0.0473719 −0.2861788 0.6744684 −0.0019711 0.1170180 0.6687696

⎤⎥⎥⎥⎥⎥⎥⎦ ,

V =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.3017521 −0.2581125 0.9018297 −0.0002676 −0.1695592 −0.0166328
0.4354534 −0.2679386 0.1028928 0.0704557 0.2595005 −0.8097517

−0.3017520 −0.2581124 −0.1784097 −0.8828155 −0.0002829 −0.1764375
0.2903022 −0.1786257 −0.1298870 −0.0008522 −0.9259184 −0.0980879

−0.6035041 −0.5162248 −0.3568195 0.4625078 −0.0224125 −0.1660080
0.4240036 −0.7046767 −0.0097810 −0.0419325 0.2146671 0.5250862

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Q =

⎡⎢⎢⎢⎢⎣
−0.7071068 −0.2073452 −0.5604916 −0.0112638 −0.3777966

0.0000000 0.0000000 0.0000000 0.9995558 −0.0298012
0.0000001 0.5853096 0.2932303 −0.0225276 −0.7555932
0.7071067 −0.2073452 −0.5604916 −0.0112638 −0.3777965

−0.0000001 −0.7559289 0.5345224 −0.0112638 −0.3777965

⎤⎥⎥⎥⎥⎦ .

75-24 Handbook of Linear Algebra

References

[CLA] http://www.netlib.org/clapack/
[JLA] http://www.netlib.org/java/f2j/
[LUG99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed., SIAM, Philadelphia,
1999.

[LAP] http://www.netlib.org/lapack/
[LAP95] http://www.netlib.org/lapack95/
[LA+] http://www.netlib.org/lapack++/
[Sca] http://www.netlib.org/scalapack/

