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Abstract—The objective of this paper is to analyze the
dynamic scheduling of dense linear algebra algorithms
on shared-memory, multicore architectures. Current nu-
merical libraries, e.g., LAPACK, show clear limitations
on such emerging systems mainly due to their coarse
granularity tasks. Thus, many numerical algorithms need
to be redesigned to better fit the architectural design of the
multicore platform. The PLASMA library (Parallel Linear
Algebra for Scalable Multi-core Architectures) developed at
the University of Tennessee tackles this challenge by using
tile algorithms to achieve a finer task granularity. These
tile algorithms can then be represented by Directed Acyclic
Graphs (DAGs), where nodes are the tasks and edges are
the dependencies between the tasks. The paramount key
to achieve high performance is to implement a runtime
environment to efficiently schedule the DAG across the
multicore platform. This paper studies the impact on the
overall performance of some parameters, both at the level
of the scheduler, e.g., window size and locality, and the
algorithms, e.g., Left Looking (LL) and Right Looking
(RL) variants. The conclusion of this study claims that
some commonly accepted rules for dense linear algebra
algorithms may need to be revisited.

I. INTRODUCTION

The scientific high performance computing commu-
nity has recently faced dramatic hardware changes with
the emergence of multicore architectures. Most of the
fastest high performance computers in the world, if
not all, mentioned in the last Top500 list [1] released
back in November 2009 are now based on multicore
architectures. This confronts the scientific software com-
munity with both a daunting challenge and a unique
opportunity. The challenge arises from the disturbing
mismatch between the design of systems based on
this new chip architecture – hundreds of thousands of
nodes, a million or more cores, reduced bandwidth
and memory available to cores – and the components
of the traditional software stack, such as numerical
libraries, on which scientific applications have relied for

their accuracy and performance. The state of the art,
high performance dense linear algebra software libraries,
i.e., LAPACK [4] have shown limitations on multicore
architectures [3]. The performance of LAPACK relies
on the use of a standard set of Basic Linear Algebra
Subprograms (BLAS) [20], [14] within which nearly
all of the parallelism occurs following the expensive
fork-join paradigm. Moreover, its large stride memory
accesses have further exacerbated the problem, and it
becomes judicious to efficiently develop existing or new
numerical linear algebra algorithms suitable for such
hardware.

As discussed by Buttari et al. in [9], a combination of
several parameters define the concept of tile algorithms
and are essential to match the architecture associated
with the cores: (1) Fine Granularity to reach a high
level of parallelism and to fit the core small caches;
(2) Asynchronicity to prevent any global barriers; (3)
Block Data Layout (BDL), a high performance data rep-
resentation to perform efficient memory access; and (4)
Dynamic Data Driven Scheduler to ensure any queued
tasks can immediately be processed as soon as all their
data dependencies are satisfied.

The PLASMA library (Parallel Linear Algebra for
Scalable Multi-core Architectures) [25] jointly developed
by the University of Tennessee, the University of Cali-
fornia Berkeley and the University of Denver Colorado,
tackles this challenge by using tile algorithms to achieve
high performance. These tile algorithms can then be
represented by Directed Acyclic Graphs (DAGs), where
nodes are the tasks and edges are the dependencies
between the tasks. The paramount key is to implement
a runtime environment to efficiently schedule the DAG
across the multicore platform.

This paper studies the impact on the overall perfor-
mance of some parameters, both at the level of the sched-



uler, e.g., window size and locality, and the algorithms,
e.g., Left Looking (LL) and Right Looking (RL) variants.
The conclusion of this study claims that some commonly
accepted rules for dense linear algebra algorithms may
need to be revisited.

The reminder of paper is as follows: Section II
recalls the mechanisms behind block algorithms (e.g.,
LAPACK) and explains the different looking variants
(LL and RL). Section III describes the concept of tile
algorithms. Section IV introduces the dynamic scheduler
of DAGs. Section V shows some performance results.
Related work in the area is mentioned in Section VI.
Section VII summarizes the paper and presents future
work.

II. BLOCK ALGORITHMS

In this section, we review the paradigm behind the
state-of-the-art numerical software, namely the LAPACK
library for shared-memory. In particular, we focus on
three widely used factorizations in the scientific commu-
nity, i.e., QR, LU and Cholesky, which are the first steps
toward solving numerical linear systems. All the kernels
mentioned below have freely available reference imple-
mentations as part of either the BLAS or LAPACK.

A. Description and Concept

The LAPACK library provides a broad set of linear
algebra operations aimed at achieving high performance
on systems equipped with memory hierarchies. The
algorithms implemented in LAPACK leverage the idea
of blocking to limit the amount of bus traffic in favor
of a high data reuse that is present in the higher
level memories which are also the fastest ones. The
idea of blocking revolves around an important property
of Level-3 BLAS operations (Matrix-Matrix multiplica-
tion), the so called surface-to-volume property, that states
that (θ(n3)) floating point operations are performed on
(θ(n2)) data. Because of this property, Level-3 BLAS
operations can be implemented in such a way that data
movement is limited and reuse of data in the cache is
maximized. Block algorithms consist of recasting linear
algebra algorithms in a way that only a negligible part
of computations is done in Level-2 BLAS operations
(Matrix-Vector multiplication, where no data reuse pos-
sible) while most is done in Level-3 BLAS. Most of
these algorithms can be described as the repetition of
two fundamental steps (see Fig. 1):

• Panel factorization : depending of the linear algebra
operation that has to be performed, a number of
transformations are computed for a small portion
of the matrix (the so called panel). These trans-
formations, computed by means of Level-2 BLAS
operations, can be accumulated.

• Trailing submatrix update : in this step, all the
transformations that have been accumulated during
the panel factorization step can be applied at once
to the rest of the matrix (i.e., the trailing submatrix)
by means of Level-3 BLAS operations.

Although the panel factorization can be identified as a
sequential execution that represents a small fraction of
the total number of FLOPS performed (θ(n2)) FLOPS
for a total of (θ(n3)) FLOPS, the scalability of block
factorizations is limited on a multicore system. Indeed,
the panel factorization is rich in Level-2 BLAS opera-
tions that cannot be efficiently parallelized on currently
available shared memory machines. Moreover, the paral-
lelism is only exploited at the level of the BLAS routines.
This methodology complies a fork-join model since the
execution flow of a block factorization represents a
sequence of sequential operations (panel factorizations)
interleaved with parallel ones (updates of the trailing
submatrices).

(a) Right Looking Variant. (b) Left Looking Variant.

Fig. 1. Block Algorithm Steps.

B. Block Cholesky Factorization

The Cholesky factorization (or Cholesky decomposi-
tion) is mainly used as a first step for the numerical
solution of linear equations Ax = b, where A is symmetric
and positive definite. Such systems arise often in physics
applications, where A is positive definite due to the
nature of the modeled physical phenomenon.

The Cholesky factorization of an n×n real symmet-
ric positive definite matrix A has the form A = LLT ,
where L is an n× n real lower triangular matrix with
positive diagonal elements. In LAPACK, the double
precision algorithm is implemented by the DPOTRF
routine. A single step of the algorithm is implemented
by a sequence of calls to the LAPACK and BLAS
routines: DSYRK, DPOTF2, DGEMM, DTRSM. Due
to the symmetry, the matrix can be factorized either as
upper triangular matrix or as lower triangular matrix.

C. Block QR Factorization

Generally, a QR factorization of an m×n real matrix
A is the decomposition of A as A = QR, where Q is



an m×m real orthogonal matrix and R is an m×n real
upper triangular matrix. QR factorization uses a series
of elementary Householder matrices of the general form
H = I− τvvT , where v is a column reflector and τ is a
scaling factor.

Regarding the block algorithms as performed in LA-
PACK [4], by the DGEQRF routine, nb elementary
Householder matrices are accumulated within each panel
and the product is represented as H1H2...Hnb = I −
V TV T . Here V is a n× nb matrix in which columns
are the vectors v, T is a nb×nb upper triangular matrix
and nb is the block size. A single step of the algorithm is
implemented by a sequence of calls to the LAPACK and
BLAS routines: DGEQR2 (panel factorization kernel),
DLARFT (computation of the structure T) and DLARFB
(trailing submatrix update kernel).

D. Block LU Factorization

The LU factorization (or LU decomposition) with
partial row pivoting of an m× n real matrix A has the
form A = PLU , where L is an m× n real unit lower
triangular matrix, U is an n× n real upper triangular
matrix and P is a permutation matrix. In the block
formulation of the algorithm, factorization of nb columns
(the panel) is followed by the update of the remaining
part of the matrix (the trailing submatrix) [15], [13]. In
LAPACK the double precision algorithm is implemented
by the DGETRF routine. A single step of the algorithm
is implemented by a sequence of calls to the follow-
ing LAPACK and BLAS routines: DGETF2, DLASWP
(apply pivoting), DTRSM, DGEMM, where DGETF2
implements the panel factorization and the other routines
implement the updates.

E. Block Looking Variants

Algorithmic variants exist for the factorizations ex-
plained above. The two main ones are called Left
Looking (LL) and Right Looking (RL). They only differ
on the location of the update applications with regards
to the panel. The RL variant operates on the current
panel and applies the corresponding updates to the right
(see Fig. 1(a)). On the contrary, the LL variant (also
called the ”lazy” variant) applies all updates coming
from the left up to the current panel (see Fig. 1(b)) and
therefore delays subsequent updates of the remaining of
the matrix.

III. TILE ALGORITHMS

In this section, we describe a solution that removes
the fork-join overhead seen in block algorithms. Based
on tile algorithms, this new model is currently used
in shared memory libraries, such as PLASMA and
FLAME (University of Texas Austin) [2].

A. Description and Concept

A solution to this fork-join bottleneck in block algo-
rithms has been presented in [10], [11], [22], [17], [19].
The approach consists of breaking the panel factorization
and trailing submatrix update steps into smaller tasks that
operate on a block-column (i.e., a set of b contiguous
columns where b is the block size). The algorithm can
then be represented as a Directed Acyclic Graph (DAG)
where nodes represent tasks, either panel factorization
or update of a block-column, and edges represent de-
pendencies among them.

Fig. 2. Translation from LAPACK Layout to Block Data Layout

The execution of the algorithm is performed by asyn-
chronously scheduling the tasks in a way that depen-
dencies are not violated. This asynchronous scheduling
results in an out-of-order execution where slow, sequen-
tial tasks are hidden behind parallel ones. The following
sections describe the tile algorithm paradigm applied to a
class of factorizations, i.e., Cholesky, LU and QR where
finer granularity of the operations and higher flexibility
for the scheduling can be achieved.

B. Tile Cholesky Factorization

The tile Cholesky algorithm described in Figure 3 is
identical to the block Cholesky algorithm implemented
in LAPACK, except for processing the matrix by tiles.
Otherwise, the exact same operations are applied.

C. Tile QR Factorization

Here a derivative of the block algorithm is used called
the tile QR factorization. The ideas behind the tile QR
factorization are well known. The tile QR factorization
was initially developed to produce a high-performance
“out-of-memory” implementation (typically referred to
as “out-of-core”) [16] and, more recently, to produce
a high performance implementation on “standard” (x86
and alike) multicore processors [10], [11], [12] and on
the CELL processor [19].

The algorithm is based on the idea of annihilating
matrix elements by square tiles instead of rectangular
panels (block columns). The algorithm produces “es-
sentially” the same R factor as the classic algorithm,
e.g., the implementation in the LAPACK library (el-
ements may differ in sign). However, a different set



(a) Left looking tile Cholesky factorization algorithm. (b) Right looking tile Cholesky factorization algorithm.

Fig. 3. Tile Cholesky factorization left v.s. right looking algorithm.

of Householder reflectors is produced and a different
procedure is required to build the Q matrix. The tile
QR algorithm described in Fig. 4 relies on four basic
operations implemented by four computational kernels:

CORE DGEQRT: The kernel performs the QR factor-
ization of a diagonal tile and produces an upper
triangular matrix R and a unit lower triangular
matrix V containing the Householder reflectors. The
kernel also produces the upper triangular matrix
T as defined by the compact WY technique for
accumulating Householder reflectors [6], [23]. The
R factor overrides the upper triangular portion of
the input and the reflectors override the lower
triangular portion of the input. The T matrix is
stored separately.

CORE DTSQRT: The kernel performs the QR factor-
ization of a matrix built by coupling the R factor,
produced by CORE DGEQRT or a previous call
to CORE DTSQRT, with a tile below the diagonal
tile. The kernel produces an updated R factor, a
square matrix V containing the Householder reflec-
tors and the matrix T resulting from accumulating
the reflectors V . The new R factor overrides the
old R factor. The block of reflectors overrides the
corresponding tile of the input matrix. The T matrix
is stored separately.

CORE DORMQR: The kernel applies the reflectors cal-
culated by CORE DGEQRT to a tile to the right of
the diagonal tile, using the reflectors V along with
the matrix T .

CORE DSSMQR: The kernel applies the reflectors cal-
culated by CORE DTSQRT to two tiles to the right
of the tiles factorized by CORE DTSQRT, using
the reflectors V and the matrix T produced by
CORE DTSQRT.

D. Tile LU Factorization

Here a derivative of the block algorithm is used
called the tile LU factorization. Similarly to the tile QR

algorithm, the tile LU factorization originated as an “out-
of-memory” (“out-of-core”) algorithm [22] and was re-
cently rediscovered for the multicore architectures [11],
[12].

Again, the main idea here is the one of annihilating
matrix elements by square tiles instead of rectangular
panels. The algorithm produces different U and L factors
than the block algorithm (e.g., the one implemented in
the LAPACK library). In particular we note that the L
matrix is not lower unit triangular anymore. Another
difference is that the algorithm does not use partial
pivoting but a different pivoting strategy. The tile LU
algorithm relies on four basic operations implemented
by four computational kernels:

CORE DGETRF: The kernel performs the LU factor-
ization of a diagonal tile and produces an upper
triangular matrix U , a unit lower triangular matrix
L and a vector of pivot indexes P. The U and L
factors override the input and the pivot vector is
stored separately.

CORE DTSTRF: The kernel performs the LU factor-
ization of a matrix built by coupling the U fac-
tor, produced by DGETRF or a previous call to
CORE DTSTRF, with a tile below the diagonal
tile. The kernel produces an updated U factor
and a square matrix L containing the coefficients
corresponding to the off-diagonal tile. The new U
factor overrides the old U factor. The new L factor
overrides the corresponding off-diagonal tile. An
new pivot vector P is created and stored separately.
Due to pivoting, the lower triangular part of the
diagonal tile is scrambled and also needs to be
stored separately as L′.

CORE DGESSM: The kernel applies the transforma-
tions produced by the DGETRF kernel to a tile to
the right of the diagonal tile, using the L factor and
the pivot vector P.

CORE DSSSSM: The kernel applies the transforma-
tions produced by the CORE DTSTRF kernel to



(a) Left looking tile QR decomposition algorithm. (b) Right looking tile QR decomposition algorithm.

Fig. 4. Tile QR decomposition left v.s. right looking algorithm.

the tiles to the right of the tiles factorized by
CORE DTSTRF, using the L′ factor and the pivot
vector P.

The tile LU algorithm is similar to the tile QR algorithm
in Fig. 4, but with different kernels.

One topic that requires further explanation is the issue
of pivoting. Since in the tile algorithm only two tiles
of the panel are factorized at a time, pivoting only
takes place within two tiles at a time, a scheme which
could be described as block-pairwise pivoting. Clearly,
such pivoting is not equivalent to the “standard” partial
row pivoting in the block algorithm (e.g., LAPACK). A
different pivoting pattern is produced, and also, since
pivoting is limited in scope, the procedure could poten-
tially result in a less numerically stable algorithm. More
details on the numerical stability of the tile LU algorithm
can be found in [11].

E. Tile Looking Variants

The algorithmic principles of the RL and the LL vari-
ants with tile algorithms are similar to block algorithms
(see Section II-E). The panel and update regions of the
matrix are now split into tiles. The update operations,
whether for LL or RL variants, may concurrently run
with the panel operations. Those variants actually high-
light a trade-off between degree of parallelism (RL)
and data reuse (LL) and can considerably affect the
overall performance. For example, for block algorithms,
Cholesky factorization is implemented with the LL vari-
ant on shared-memory (LAPACK), while for distributed
memory (ScaLAPACK [7]) the RL variant is used. This
paper studies whether this common rule still holds with
tile algorithms on current multicore architectures.

IV. DYNAMIC DATA DRIVEN EXECUTION

A. Runtime Environment for Dynamic Task Scheduling

Restructuring linear algebra algorithms as a sequence
of tasks that operate on tiles of data can remove the fork-
join bottlenecks seen in block algorithms. This is ac-
complished by enabling out-of-order execution of tasks,

FOR k = 0 . . TILES−1
A [k ] [k ] <− DPOTRF(A [k ] [k ] )
FOR m = k+ 1 . .TILES−1

A [m ] [k ] <− DTRSM(A [k ] [k ] , A [m ] [k ] )
FOR n = k+ 1 . .TILES−1

A [n ] [n ] <− DSYRK(A [n ] [k ] , A [n ] [n ] )
FOR m = n+ 1 . .TILES−1

A [m ] [n ] <− DGEMM(A [m ] [k ] , A [n ] [k ] , A [m ] [n ] )

Fig. 5. Pseudocode of the tile Cholesky factorization (right-looking)
version).

which can hide the work done by the bottleneck (sequen-
tial) tasks. We would like to schedule the sequence of
tasks on shared-memory, many-core architectures in a
flexible, efficient and scalable manner. In this section,
we present an overview of our runtime environment
for dynamic task scheduling from the perspective of an
algorithm writer who is using the scheduler to create and
execute an algorithm. There are many details about the
internals of the scheduler, its dependency analysis, mem-
ory management, and other performance enhancements
that are not covered here. However, information about
an earlier version of this scheduler can be found in [18].

As an example, we present the pseudocode for the tile
Cholesky factorization in Fig. 5 as an algorithm designer
might view it. Tasks in this Cholesky factorization ex-
ample depend on previous tasks if they use the same
tiles of data. If these dependencies are used to relate the
tasks, then a directed acyclic graph (DAG) is implicitly
formed by the tasks. A small DAG for a 5x5 tile matrix
is shown in Fig. 6.

B. Determining Task Dependencies

a) Description of Dependency Types: In order for a
scheduler to be able to determine dependencies between
the tasks, it needs to know how each task is using
its arguments. Arguments can be VALUE, which are
copied to the task, or they can be INPUT, OUTPUT, or
INOUT, which have the expected meanings. Given the
sequential order that the tasks are added to the scheduler,
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Fig. 6. DAG for a small Cholesky factorization (right looking version)
with five tiles (block size 200 and matrix size 1000). The column on
the left shows the depth:width of the DAG.

and the way that the arguments are used, we can infer
the relationships between the tasks. A task can read a
data item that is written by a previous task (read-after-
write RAW dependency); or a task can write a data item
that is written by previous task (write-after-write WAW
dependency); a task can write a data time that is read
by a previous task (write-after-read WAR dependency).
The dependencies between the tasks form an implicit
DAG, however this DAG is never explicitly realized in
the scheduler. The structure is maintained in the way
that tasks are queued on data items, waiting for the
appropriate access to the data.

b) From Sequential Nested-Loop Code to Parallel
Execution: Our scheduler is designed to use code very
similar to the pseudocode described in Fig. 5. This is
intended to make it easier for algorithm designers to
experiment with algorithms and design new algorithms.
In Fig. 9 we can see the final C code from the Cholesky
algorithm pseudocode. Each of the calls to the core linear
algebra routines is substituted by a call to a wrapper that
decorates the arguments with their sizes and their usage
(INPUT, OUTPUT, INOUT, VALUE). As an example, in
Fig. 7 we can see how the DPOTRF call is decorated for
the scheduler.

The tasks are inserted into the scheduler, which stores
them to be executed when all the dependencies are
satisfied. That is, a task is ready to be executed when
all parent tasks have completed. The execution of ready
tasks is handled by worker threads that simply wait
for tasks to become ready and execute them using
a combination of default tasks assignments and work
stealing. The thread doing the task insertion, i.e., the
thread handling the code in Fig. 9, is referred to as the
master thread. Under certain circumstances, the master

i n t DSCHED dpotrf ( Dsched ∗dsched , char uplo , i n t n ,
double ∗A, i n t lda , i n t ∗ i n f o )

{
DSCHED Insert Task ( dsched , TASK core dpotrf , 0x00 ,

s i z e o f ( char ) , &uplo , VALUE,
s i z e o f ( i n t ) , &n , VALUE,
s i z e o f ( double )∗n∗n , A, INOUT | LOCALITY ,
s i z e o f ( i n t ) , &lda , VALUE,
s i z e o f ( i n t ) , i n f o , OUTPUT,
0 ) ;

}
void TASK dpotrf ( Dsched ∗dsched )
{

char up lo ; i n t n ; double ∗A; i n t l d a ; i n t ∗ i n f o ;
d s c h e d u n p a c k a r g s 5 ( dsched , uplo , n , A, lda , i n f o ) ;
d p o t r f ( &uplo , &n , A, &lda , i n f o ) ;

}

Fig. 7. Example of inserting and executing a task in the scheduler. The
DSCHED doptrf routine inserts a task into the scheduler, passing it
the sizes and pointers of arguments and their usage (INPUT, OUTPUT,
INOUT, VALUE). Later, when the dependencies are satisfied and
the task is ready to execute, the TASK dpotrf routine unpacks the
arguments from the scheduler and calls the actual dpotrf routine.

thread will also execute computational tasks. Fig. 8
provides an idealized overview of the architecture of the
dynamic scheduler.

Fig. 8. Idealized architecture diagram for the dynamic scheduler.
Inserted tasks go into a (implicit) DAG based on their dependencies.
Tasks can be in NotReady, Queued or Done states. Workers execute
queued tasks and then determine if any descendants have now become
ready and can be queued.

c) Scheduling a Window of Tasks: For the appli-
cations that we are considering, the number of tasks
(θ(n3)) grows very quickly with the number of TILES
of data. A relatively small example of LU factorization
using 20× 20 tiles generates 2870 tasks (see Fig. 10),
whereas using 50× 50 tiles generates 42925 tasks. If
we were to unfold and retain the entire DAG of tasks
for a large problem, we would be able to perform some
interesting analysis with respect to DAG scheduling and
critical paths. However, the size of the data structures
would quickly grow overwhelming. Our solution to this
is to maintain a configurable window of tasks. The
implicit DAG is then traversed through this sliding
window, which should be large enough to ensure all
cores are kept busy. When this window size is reached,
the core involved in inserting tasks does not accept any



f o r ( i = 0 ; i < p ; i ++ ) {
DSCHED dpotrf ( dsched , ’L ’ , nb [ i ] , A[ i ] [ i ] , nb [ i ] , i n f o ) ;
f o r ( j = i +1 ; j < p ; j ++ )

DSCHED dtrsm ( dsched , ’R ’ , ’L ’ , ’T ’ , ’N’ , nb [ j ] , nb [ i ] , 1 . 0 , A[ i ] [ i ] , nb [ i ] , A[ j ] [ i ] , nb [ j ] ) ;
f o r ( j = i +1 ; j < p ; j ++ ) {

f o r ( k = i +1 ; k < j ; k++ ) {
DSCHED dgemm( dsched , ’N’ , ’T ’ , nb [ j ] , nb [ k ] , nb [ i ] , −1, A[ j ] [ i ] , nb [ j ] , A[ k ] [ i ] , nb [ k ] , 1 , A[ j ] [ k ] , nb [ j ] ) ;

DSCHED dsyrk ( dsched , ’L ’ , ’N’ , nb [ j ] , nb [ i ] , −1.0 , A[ j ] [ i ] , nb [ j ] , + 1 . 0 , A[ j ] [ j ] , nb [ j ] ) ;
}}

Fig. 9. Tile Cholesky factorization that calls the scheduled core linear algebra operations.
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Fig. 10. DAG for a LU factorization with 20 tiles (block size 200
and matrix size 4000). The size of the DAG grows very fast with the
number of tiles.

more tasks until some are completed. The usage of a
window of tasks has implications in how the loops of an
application are unfolded and how much look ahead is
available to the scheduler. This paper discusses some of
these implication in the context of dense linear algebra
applications.

d) Data Locality and Cache Reuse: It has been
shown in the past that the reuse of memory caches
can lead to a substantial performance improvement in
execution time. Since we are working with tiles of data
that should fit in the local caches on each core, we
have provided the algorithm designer with the ability
to hint the cache locality behavior. A parameter in a call
(e.g., Fig. 7) can be decorated with the LOCALITY
flag in order to tell the scheduler that the data item
(parameter) should be kept in cache if possible. After
a computational core (worker) executes that task, the
scheduler will assign by-default any future task using
that data item to the same core. Note that the work
stealing can disrupt the by-default assignment of tasks
to cores.

The next section studies the performance impact of
the locality flag and the window size on the LL and RL
variants of the three tile factorizations.

V. EXPERIMENTAL RESULTS

This section describes the analysis of dynamically
scheduled tile algorithms for the three factorizations (i.e.,
Cholesky, QR and LU) on different multicore systems.
The tile sizes for these algorithm have been tuned and

are equal to b = 200.

A. Hardware Descriptions

In this study, we consider two different shared memory
architectures. The first architecture (System A) is a
quad-socket, quad-core machine based on an Intel Xeon
EMT64 E7340 processor operating at 2.39 GHz. The
theoretical peak is equal to 9.6 Gflop/s/ per core or 153.2
Gflop/s for the whole node, composed of 16 cores. The
practical peak is equal to 8.5 Gflop/s/ per core or 136
Gflop/s for the 16 cores. The level-1 cache, local to the
core, is divided into 32 kB of instruction cache and 32
kB of data cache. Each quad-core processor is actually
composed of two dual-core Core2 architectures and the
level-2 cache has 2× 4 MB per socket (each dual-core
shares 4 MB). The machine is a NUMA architecture and
it provides Intel Compilers 11.0 together with the MKL
10.1 vendor library.

The second system (System B) is an 8 sockets, 6
core AMD Opteron 8439 SE Processor (48 cores total
@ 2.8Ghz) with 128 Gb of main memory. Each core
has a theoretical peak of 11.2 Gflop/s and the whole
machine 537.6 Gflop/s. The practical peak is equal to 9.5
Gflop/s/ per core or 456 Gflop/s for the 48 cores. There
are three levels of cache. The level-1 cache consist of 64
kB and the level-2 cache consist of 512 kB. Each socket
is composed of 6 cores and the level-3 cache has 6 MB
48-way associative shared cache per socket. The machine
is a NUMA architecture and it provides Intel Compilers
11.1 together with the MKL 10.2 vendor library.

B. Performance Discussions

In this section, we evaluate the effect of the window
size and the locality feature on the LL and RL tile
algorithm variants.

The nested-loops describing the tile LL variant codes
are naturally ordered in a way that already promotes
locality on the data tiles located on the panel. Fig. 11
shows the effect of the locality flag of the scheduler on
the overall performance of the tile LL Cholesky variant.
As expected, the locality flag does not really improve
the performances when using small window sizes. The
scheduler is indeed not able to perform enough look-
aheads to anticipate the reuse occurring in the next
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Fig. 11. Cholesky factorization (LL) on System A, 16 threads: effect
of the scheduler data locality parameter.

Fig. 12. The execution trace of the LL Cholesky: large (top) v.s.
small (bottom) window sizes.

panels. With larger window sizes, the scheduler is now
able to acquire knowledge of data reuse in the next
panels and takes full advantage of it. Therefore, the
locality scheduler flag permits the performance of the
LL tile Cholesky variant to increase by up to 5-10%
for large window sizes. The LL tile QR and LU are
expected to behave in the same manner as the LL tile
Cholesky. On the contrary, the RL variants for the three
factorizations are not affected by this parameter. The RL
variant triggers on the right side of the panel so many
parallel independent tasks that the chance for any data
reuse opportunities is significantly decreased.

The next parameter to be optimized for the three tile
factorizations is the window size of the scheduler. Fig. 12
shows how critical the optimization of this parameter can
be. The figure displays the execution trace of the tile
LL Cholesky algorithm with small and large scheduler
window sizes on the System A. We observe that for
a small window size (bottom trace), the execution is
stretched because there are not enough queued tasks to
feed the cores, which makes them turn to an “idle” state
(white spaces). This is further demonstrated by looking
at the performance graphs from Fig. 13-15 obtained
on both Systems A and B for the three factorizations.
The performances are represented as functions of the
matrix sizes. In these figures, the size of the window is
defined by the number indicated in the legend times the
number of the available threads. By increasing the size

of the scheduler window, the performances of the LL
variants of the three factorizations considerably increase.
For example, the overall performance of the tile LL
Cholesky is multiplied by 3 on the System A and by
2 on System B when increasing the window size per
core from 3 to 200. In the same way, the performance
of the tile LL QR is multiplied by 4 on Systems A and
B. The performance of the tile LL LU is also multiplied
by 3 when increasing the window size of the scheduler
on both Systems A and B. So, in other words, if the
scheduler window size is small, the runtime environment
system is not able to detect and anticipate the concurrent
execution of independent sets of tasks. The already low
performance curve encountered with small window sizes
on the three factorizations starts significantly dropping
even more for large matrix sizes.

On the other hand, the window size parameter is
obsolete for the tile RL variants. The performance curves
of the RL Cholesky, QR and LU denoted by Right−XX
outperform the LL ones regardless of the window sizes.
The curves eventually meet up for large enough window
sizes. Again, this is due to the high degree of parallelism
offered by the RL variants, which allows many tasks to
be simultaneously executed. The RL variants seem to
be very attractive for shared-memory multicore systems,
especially because they do not require any parameter
auto-tuning like the LL variants. Therefore, the RL
variants should be chosen by default in the PLASMA
library distribution for those tile algorithms.

Furthermore, by closely studying some execution
traces of LL and RL variants, the clear distinctions
between both variants inherited from block algorithms
(i.e., LAPACK) may not exist anymore in the context of
data-driven, asynchronous out-of-order DAG execution.
Indeed, by increasing the window sizes of the scheduler,
the tile LL variants are able to perform look-ahead
techniques by initiating the work on the next panel while
the one on the current panel is still pending. Likewise,
the tile RL variants are permited to start processing the
next panel while the updates of the current panel are still
ongoing. One type of algorithm can thus morph into
another type of algorithm. The definitions of LL and
RL variants may then become obsolete in this particular
context.

VI. RELATED WORK

The FLAME project [2] developed by the University
of Texas, Austin follows the same algorithmic principle
by splitting the matrix into finer blocks. However, the
runtime environment (SuperMatrix) requires the explicit
construction of the DAG before the actual parallel exe-
cution of the tasks. As depicted in Fig. 10, the size of a
DAG considerably increases with respect to the number
of tiles. This may necessitate a large amount of memory
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Fig. 13. Cholesky factorization (left v.s. right looking version) with different task window size.
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Fig. 14. QR factorization (left v.s. right looking version) with different task window size.

to allocate the data structure which is not an option for
scheduling large matrix sizes, especially when dealing
with other algorithms (e.g., two-sided transformations)
that generate a more complex and larger DAG compared
to QR, LU and Cholesky.

Furthermore, there are many projects that are designed
to provide high performance, near-transparent computing
environments for shared-memory machines. Here we
discuss two projects that have been considered during
the design of our runtime environment.

The SMP superscalar (SMPSs) project[5][21] from
the Barcelona Supercomputing Center is a programming
environment for shared memory, multi-core architectures
focused on the ease of programming, portability and
flexibility. A standard C or Fortran code can be marked
up using preprocessor pragma directives to enable task
level parallelism. The parameters to the functions are
marked as input, output, or inout, and the data dependen-
cies between tasks are inferred in order to determine a
task DAG. A source-to-source compiler and a supporting
runtime library are used to generate native code for the
platform. The SMPSs project shares many similarities
with the dynamic runtime environment presented here.
One difference is that our implementation uses an API

to express parallelism rather than compiler pragmas,
thus eliminating an intermediate step. Another difference
is that our runtime environment allows for specialized
flags, such as the LOCALITY flag, which enable tuning
for linear algebra algorithms.

The Cilk project [24][8] from the MIT Laboratory for
Computer Science is a compiler based extension of the
C language that gives the programmer a set of keywords
to express task level parallelism (cilk, spawn, sync, inlet,
abort). Cilk is well suited to algorithms that can be
expressed recursively and implements a fork-join model
of multi-threaded computation. Since the parallelism in
our algorithms is expressed in a DAG obtained through
a data dependency analysis, Cilk is not well suited to
our problems.

VII. CONCLUSION AND FUTURE WORK

This paper presents an analysis of dynamically sched-
uled tile algorithms for dense linear algebra on shared-
memory, multicore systems. In particular, the paper
highlights the significant impact of the locality feature
and the window sizes of the scheduler on the LL and
RL variants of the tile Cholesky, QR and LU. The tile
RL variants of the three factorizations outperform the
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Fig. 15. LU factorization (left v.s. right looking version) with different task window size on 48 threads.

LL ones regardless of the scheduler locality and window
size optimizations. It is also common rule-of-thumb that
LL variants of linear algebra algorithms (e.g., Cholesky)
are well suited to shared-memory architectures and RL
variants are better suited to distributed memory archi-
tectures. However, these rules are no longer valid in the
context of data-driven, asynchronous out-of-order DAG
execution environments, because adjusting the size of
the task window (for LL variants) provides sufficient
look-ahead opportunities for one algorithmic variant can
morph into another algorithmic variant.
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