SIARM Ervew & 1984 Bocicty for ndusinal and Applicd Mxibemaiks
Woll Jh, Ma. I, Jarasary, 1984 OB 1 B R | s] 3

IMPLEMENTING LINEAR ALGEBRA ALGORITHMS FOR DENSE MATRICES
OMN A VECTOR PIPELINE MACHINE*

1), DONGARRAY F. G GUSTAYSONE AND A, KARPE

Abstract. This paper examines common implementations of linear algebra algorithms, such as mairix-
vectar miltiphicatsan, matrs-matsis msltiplication and the salution of linear equations. The different versions
are oxamined for elficiency on a computer architecture which uses vector processing and has pipelined
instruction execution. By using the advanced architectural features of such machines, ome can wsually achieve
manimum performance, and 1 b g s in terms of executios spesd can be seen oves
comvendional compuiers.

I. Imftroduction. In this paper we describe why existing algorithms for linear algebra
are nol wswally suited For computers that employ advanced concepls such as pipelining
and vector constructs to achieve enhanced performance. We examine the process of
refitling or reorganizing an underlying algorithm 1o conform 1o the computer architec-
ture, thereby gaining tremendous improvements in execution speeds while sacrificing
neither accuracy nor algorithm clarity. This reorganization, where it can be done, is
usually conceptually simple at the algorithm level. This paper will nod address the issues
involved with parallel processing. For a survey of parallel algorithms in linear algebra see
the review paper by Heller [B].

We will not concern ourselves here with an actual implementation on a specific
architeciure; To do so, one must undersiand all the subileiy and nuances of that
architecture and rizk obscuring the lundamental ideas. Bather, we use the features of a
vector pipeline machine to understand how various aspects interrelate and how they can
be pul together 1o achieve very high execution rates,

We use the term architecture in reference to the organization of the computer as seen
by the programmer or algorithm designer, Within the architecture we focus on the
instruction set and memory references, and their interaction in terms of performance.

We will conceniraie our examination on the behavior of linear algebra algorithms for
dense problems that can be accommodated in the main memory of a computer. The
solutions proposed here do not, in general, carry over to sparse matrices because of the
short vector lengths and the indirect addressing schemes that are so prevalent in sparse
matrix calculations. For a discussion of methods for handling the sparse matrix case, see
(51 [7].

We will focus in particular on algorithms written in Fortran and assembly language.
Foriran is an appropriate language, given the scientific nature of the application;
ocasional use of azsembly language enables us o gain the maximum speed poasible. The
use of Fortran implics some storage organization for array elements. By definition
Fortran must have mairix elements siored sequentially by column. As one accesses
consecutive elements in a ¢column of an array, the next element is found in the adjacent
lcation. If references are made by rows of the array, accesses to the next element of a row
musl be offzel by the number of elements in a column of the array, This organization will
be important in the actual implementiation.

*Rooceived by the cdilors Septomber 21, 1982, amd in revised form Junc 28, 1983, Ths rescarch was
supparted in part by [BM.

FArpoane Mational Laboratory, Argonne, Ilinais 60439 The research of this asthor was supported in
part by the Apphod Mathematical Séicncey Fescarch Program (KOC-04-02) of the Cilice al Encrgy Research ol
the LL.5. Depariment of Energy under comtract W-31-1089-Eng-38.

LIBM T,). Watson Research Cenier, Yorkiown Heighis, Mew York 10898,

SIBM Pako Advo Scentile Center, Palo A, Califorma B304

9l

o2 L) ONGAREA, F. G, GUSTAYSON AND A. KARP

I. Vector pipeline concepts. As background we will describe some of the basic
features found in supercomputers, concentrating on those features that are particularly
relevant to implementing linear algebra algorithms. For a more thorough discussion of
supercompuiers, see [9], [11], [13]. We will concentrate our attention on an architcciure
that is “Cray-like” in structure, i.e., one that performs vector operations in a vector
register configuration with concurrency provided by pipelining and independent instruc-
tion execution. We choose a configuration like the Cray-1 [16] for a number of reasons: 11
performs well on short vectors, it has a simple instruction set, and it has an extremely fast
execulion rate for dense, in-core lincar algebra problems. Mevertheless, the underlving
concepts can be applied to other machines in its class, e.g., the Cyber 205, (A few words of
caution: Not everything can be carried over, For instance, in the Cyber 205 access must be
made by column to allow for sequential referencing of matrix elements.)

A computer that is “Cray-like” derives its performance from several advanced
concepts, One of the most obvious is the use of vector instructions. By means of a single
instruction, all elementwise operations that make up the 1otal vector eperation are carried
oul, The instructions are performed in vector registers. The machine may have & such
elements in a vector register in addition to having a conventional set of registers for scalar
aperations, A typical sequence of instructions would be as follows:

Load a scalar register from memory
Load a vector register from memaory
Perform a scalar-vector multiplication
Load & vector register from memaory
Perlorm a vector-vector addition
Store the resulis in memory

These six instructions would correspond to perhaps 6k + 1 instructions on & conventional
computer, where & instructions are necessary for loop branching. Clearly, then, the time
to interpret the instructions has been reduced by almost a factor of &, resulting in a
significant savings in overhead.

Cray-like hardware typically provides for “simultancous™ execution of a number of
elementwise operations through pipelining. Pipelining generally takes the approach of
splitting the function 1o be performed into smaller pieces or stages and allocating separate
hardware to each of these stages. Pipelining is analogous to an industrial assembly line
where a product moves through a sequence of stations. Each station carries out one step in
the manufacturing process, and each of the stations works simultancously on different
units in different phases of completion. With pipelining. the lunctional units (foating
point adder, Moating point multiplier, ete.) can be divided into several suboperations that
must be carried out in seguence. A pipelined functional unit, then, is divided into shapes,
cach of which does a portion of the work in, say, one clock period. At the end of each clock
period, partial results are passed to the next stage and partial results are accepted from
ihe previous siage.

The goal of pipelined functional units 15 clearly performance. After some initial
startup time, which depends on the number of stages (called the length of the pipeline, or
pipe lengih), the functional unit can turn out one result per clock period as long as a new
pair of operands is supplied to the first stage every clock period. Thus, the rate is
independent of the length of the pipeline and depends only on the rate at which operands
are led into the pipeline. Therefore, if two vectors of length & are o be added, and if 1he
floating point adder requires 3 clock periods 10 complete, it would take 3 + & clock
periods 1o add the two vectors together, as opposed to 3 = & clock periods in a conventional
computer.

ALGORITHMS FOR DENSE MATRICES ON & VECTOR PIFELINE MACHINE 23

Another feature that is used to achieve high rates of execution is chaining, Chaining
is a technigue whereby the output register of one vector instruction is the same as one of
the input registers for the next vector instruction. If the instructions use separate
functional units, the hardware will start the second vector operation during the clock
period when the first result from the first operation is just leaving its functional unit, A
copy of the result is forwarded directly to the second functional unit and the first
execution of the second vector is started. The net result is that the execution of both vector
operations takes only the second functional unit startup time longer than the first vector
operation. The effect is that of having a new instruction which performs the same
operation as that of the two functional units that have been chained together. On the Cray
in addition to the arithmetic operations, vector loads from memory to vector registers can
be chained with sther arithmetic operations,

For example, let us consider a case involving a scalar-vector multiplication, followed
by a vector-vector addition, where the addition operation depends on the results of the
multiplication. Without chaining, but with pipelined functional units, the operation would
takea + & + m + k clock periods, where a is the time 1o start the vector addition (length
of the vector addition pipeline) and m is the time to start a vector multiplication (lengih of
the vector multiplication pipeline). With chaining, as soon as a result is produced from the
adder, it is fed directly into the multiplication unit, so the total time is @ + m + k. We
may represent this process graphically as in Fig. 1.

UNCHAIKED CHAINED
Ed L o :gzzzcn::
o | T o
b VA i Elcczn:::n
=1 [-- === =] W
= e
=
| E

Timg TimE

b, |

It is also possible 1o overlap operations if the two operations are independent. If a
vector addition and an independent vector multiplication are to be processed, the resulting
liming graph might look like Fig, 2

To describe the time to complete a vector operation, we use the concept of a chime
[8]. A chime (for chaining time) is a measure of the time needed 1o complete a sequence
of vector operations. To compute the number of chimes necessary for a sequence of
operations, one divides the total time 1o complete the operations by the vector length.
Overhead of startup and scalar work are usually ignored in counting chimes, and only the
integer parl is reported. For example, in the graph for unchained operations above there
are two chimes, whereas in the graph for the chained operation there is one chime.

OYERLAPPED

WETRUCTIONE

Tiwt

Fia, 2

i I 1. DONGARRA, F. G, GUSTAVSON AND A, KARP

As Fong and Jordan [6] have pointed out, there are three performance levels for
algorithms on the Cray. The two obvious ones are scalar and vector performance, Scalar
performance is achieved when operations are carried out on scalar quantities, with no use
of the vector funclional units, Vector performance is achieved when vectors are loaded
from memory into registers, operations such as multiplication or addition are performed,
and the results are stored into memory. The third performance level is called supervector
[6]. [10]. This level is achieved when vectors are retained in registers, operations are
performed using chaining, and the results are stored in registers.,

Dramatic improvements in rates of execution are realized in going from scalar to
vector and from vector to supervector speeds. We show in Fig. 3 a graph of the execution
rate in MFLOPS (million floating point operations per second) for LI decomposition of a
matrix of order n as performed on the Cray-1. When supervector rates are achieved, the
hardware is being driven ai close to its highest potential. Later in this paper we describe
what leads to this supervector performance.

In summary, then, vector machines rely on a number of technigues to enhance their
performance over conventional computers:

Fast cycle time,

¥ector instructions to reduce the number of instructions interpreted,

Pipelining to utilize a functional wnit fully and 1o deliver one result per cycle,
Chaining to overlap functional unit execution, and

Overlapping to execute more than one independent vector instruction concurrently,

Programs that use these features properly will fully utilize the potential of the vector
machine.

H'}'l T T T T T T
|:-:-|- "
| SUFLH VELTOR
Wl = =
o B0
- |
-
2 &n .
40 =
WECTOR
i ...’_,_,.--"""-_-_-_
SCALAR

O W K0 By 0 S0 30 150 400
CRDER

Fig. 3.

3. Matrix-vector example. We are now ready 1o examine a simple bul imporiant
operation thal pervades scientific computations: the matrix-vector product p ~— 4 ® x,
where v is a vector with m clements, A is a matrix with m rows and & columns, and x is a
vector with 7 elements. We will write the matrix-vector product as follows:

Creneric matrix-vecior multiplication algorithm,

for -y
for 1 to
Yo=Y+ dy X
end

end

ALLAIRITHMS FOR DENSE MATRICES ON A VECTUR MPELINVE MACHIME o3

We have intentionally left blank the loop indices and termination poinis of the loop
indices, There are basically two ways o encode this operation:

for i = 1 fom for i« 1 tom
y=0 ¥ =10
for j = 1 ton end
Fi= ¥+ @y *x; forj<1ton
end far & = | o
end Fi= 3+ gy *® X
e
end
p—Adex y—Asx
Form if Form Ji

In form i, references to the matris 4 are made by accessing across the rows. Since
Fortran stores mairix elements consecutively by column, accesses made 1o elemenis in a
row need to have an increment, or stride, different from one in order to reference the next
clement of the row. For most machines a siride of one or any other constant value can be
accommiodated.

With a “Cray-like” computer in which the memory cycle time is longer than the
processor cycle lime, however, there exists the peaibility of a memory bank conflict.

After an access. a memory bank requires a certain amount of time before another
reference can be made, This delay time is referred (o as the “memory bank cycle time.”
Thiz memory cycle time on both the Cray-1 and the Cyber 205 i four processor cycles,
The operation of loading elemenis of a vector from memory into a vector regisier can be
pipelined, so that after some initial stariup following vector load, vecior elements arrive in
the register at the rate of one element per cyele. To keep vector operands streaming at this
rate, sequential elements are stored in different banks in an “interleaved” memory. If a
memory bank s accessed before the memory has a chance to cycle, chaining operations
will stop. Instead of delivering one result per cvele, the machine will deliver one resuli per
functional unit time. In other words, it will operate at scalar speeds, seriously degrading
performance. Mote, too, that the Cyber 205 must gather data that is not contiguous in
memory before it can begin computing

When matrix elements are referenced by column, a bank conflict cannst occur; but if
accesses are by row, there is a real potential of such a conflict. (Whether or not conflicts
oceur depends on the number of memory banks and on the size of the array wsed o contain
the mairix.) The moral is thai column accesses should be wsed whenever possible in a
Fortran environment. (Mote also that in computers which wse virtual memory and/or
cache memory, row accesses greatly increase the frequency of page faults.) As we shall
see, in most siluations by a simple reorganization the inner product can be replaced by a
complete vector operation.

Form §f uses column operations exclusively, The basic operation here is taking a
scalar multiple of one vector, adding it to another vector and storing the result. We refer
i this operation as SAXPY, the name given it in the BLAS (Basic Lincar Algebra
Subprograms) [12]. If we examine Form i, we see that the vector y can reside in g vector
register and that it need not be stored into memory wntil the entire operation is completed.
Codumns of the matris A are loaded into a register and scaled by the appropriate element
of x; a vector accumulation is made with the intermediate result. In a sense what we have
here is a gemeralized from of the SAXPY. We give the name GAXPY to the operation of

G I 1 DOMNGARRA, F, G, GUSTAVEON AND A KARP

loading a sequence of vectors from memory. multiplying the vectors by a sequence of
scalars amd accumulating the sum in a vector register, As we shall see, the GAXPY is a
fundamental operation for many forms of lincar algebra algorithms and utilizes a
machine like the Cray to its full potential. We use the term GAXPY to conform o ihe
style of the BLAS. GAXPY is simply a matrix vector product.

We recommend that in general that Form i be used over Form ij. This suggestion
holds when mr and # are roughly the same size, Indeed, Form ji usually provides the best
resulis. Mevertheless, the following caveat should be made: When m is much less than a
and less than the number of elements in a vector register, Form if should be given
consideration. In such cases, Form ji will have short vector lengths, whereas Form ij will
have long veciors

In some situations it may be necessary to calculate a matrix vector product with
additional precision, e.g., when a residual calculation is needed. One immediately thinks
of using accumulation of inner product; but from our discussion above, we see that a
GAXPY can be used to accomplish the same task in a purely vector fashion, provided that
vector operations can use extended precision arithmetic,

4. Matrix multiplication. We will now loek at another fundamental operation in
linear algebra: the process of multiplying two matrices together, The process is concep-
tually simple, but the number of operations 1o carry out the procedure is large. In
comparison to other processes such as solving systems of equations (2/3 n' operations) or
performing the (R [actorization of a matrix (473 n' operations [17]), matrix multiplica-
lion reguires more operations { 2n” operations). (Here we have used matrices of order » for
the comparisons. The operation counts reflect floating point multiplication as well as
Aoating point addition. Since addition and multiplication take roughly the same amount
of time to execute and each unil can deliver one result per cycle, the standard practice is to
count separately each floating point multiplication and floating point addition.)

We wish to find the product of A4 and & and store the result in €. From relationships
in lincar algebra we know that if 4 and £ are of dimension m x mand o = p, respectively,
then the matrix C is of dimension m = p. We will write the matrix multiplication
algorithm as

Cieneric matrix mudtiplication algorichm.

for - | to
for =
far = |t
Cy =y + Sy ® iy,
end
end
endl

We have intentionally left blank the loop indices and termination points. The loop indices
will have variable names /, /. and &, and the termination points for the indices will be m, p,
and #, respectively,

Six permutations are possible for arranging the three loop indices. The generic
algorithm will give rise 10 six forms of matrix multiplication. Each implementation will
have quite different memory access patterns, which will have an important impact on the
performance of the algorithm on a *“Cray-like” processor. For an alternative derivation of
these six varianis, see [1].

ALGORITHMS FOR DENSE MATRICES ON & VECTOR PIPELINE MACHINE

We summarize the algorithms below.

fori = 1 tom forj = 1top
for /= | top fori = 1 tom
cy=0 ey =0
for k = | boa fork = | tos
Cy = €y + ag * by, €y = Cy + dy * by
end i
enid end
end end
Form ifk Form jik
for i = 1 tom for j = 1 top
forj = 1 bop fori = 1 om
gy = oy = 1
onid end
end el

fork = | ton
for i = | to s
for j = | tap

fork = ltor
for j = 1 b0
for i = 1 tom

Oy = Oy + By * By, = O+ g * by
| el
cnd enid
eni enil
Form kij Form kji
for i = 1 tom for j - | tap
for j = 1 top for i = 1 tom
cy =1l £y = O
end enid
fork = | bon fork = | ton
forj = | top foor § = | b oer
Cy=Cy + ay vy Cy=cy+ag=hy
el el
el el
end end
Form ik Form jki

97

We have placed the initialization of the array in natural locations within each of the
algorithms. All the algorithms displayed above perform the same arithmetic operations
but in a different sequence; even the roundoff errors are the same. Their performance
when implemented in Fortran can vary greatly because of the way information is
accessed, What we have done is simply “interchanged the loops™ [14]. This rearrange-
mient dramatically affects performance on a “Cray-like™ machine,

The algorithms of the form ijk and jik are related by the fact that the inner loop is
performing an inner product calculation. We will describe the vector operation and data

98 10 DOMGARRA, F O GUSTAVSOM AND A, KARP

sequencing graphically by means of a diagram:

el

Form ijk

The dingram describes the sequence that the inner products of all columns of B with a row
of A are computed 1o produce a row of C, one element at a time.
For the form jik the data are referenced slightly differently so that the diagram is of

| |~ !]

Form jik

Both descriptions use an inner product as the basic operation, For reasons stated earlier
aboul bank conflicts when accessing elements in a row of 4 matrix, we do not recommend
the use of inner products such as in form §ik on a “Cray-like™ machine.

The algorithms of the form kij and kji are related in that they use the SAXPY as a
basic operation, taking a multiple of a vector added 1o another vector. For the form kijwe

.

Form kij
In this case, a row of B s scaled by elements of a column of A, and the resuli s used to

update rows of C.
For the form &§¥ the access pattern appears as

l-A1=[1]]

Form kji

since the access patterns for form kji are by column, we recommend it over kij in a
Fortran environment. It is impostant 10 point out that in a PL/1 or a Pascal environment,
form kij is preferred because of the row orientation. For Algol 60 and Ada no
specilication in the language describes the array storage in memory, and Algol 68 allows

Tor either.
In the inal two forms, iky and jki, we see that the access patterns look like

= ki

Faorm ik

ALGORITHMS FOR DENSE MATRICES ON A YECTOR PIPELIME MACHINE ey

R EIIn

Fowrm fki

and

These forms wse the GAXPY operation; that is, multiples of a set of vectors are
accumulated in a single vector before the storing of that vector is required, On a machine
like the Cray, algorithms that use the G AXPY perform at supervector speeds,

Operations such as load, multiplication, and addition can be chained together on the
Cray =o that, after an initial startup, one result can be delivered per ¢ycle. The store
operation, however, cannot be chained io any operation since one cannot then guaraniee
the integrity of the data being loaded. That is, in a sequence like vector load-—vectior
multiplication—uvector addition—wvector store, the vector load will still be sending 1ts
result 1o a vector register when the vector store is started, and a possible bank conflict may
arise {or worse vet, an element of a vector may be referenced first in a load and next in a
siore operation, bul because the increment or stride value on the vector in the store
operation may differ from that in the lead, the store may overwrite an element belore it iz
lzaded). Since such a check is not made in the hardware of the Cray-1, the store operation
iz prohibited from chaining,

In terms of performance on the Cray-1, vector s 4 times faster than scalar, and
supervector 4 times faster than vector, so from scalar to supervecior one can expect
performance to be 16 times faster. { These numbers are coarse amnd are meant o reflect
realistic values that have been gathered from experience with varnous linear algebra
programs on the Cray-1; they are nod oplimum values, [2].]

In terms of the six algorithms being discussed for matrix multiplication, only the
forms that use a GAXPY (forms ik and j&f) can achieve a supervector speed; and of them
only the form jki performs well in a Fortran environment because of its column
arientation.

Up to this point we have not been concerned with the lengihs of vectors, We will now
assume that vector registers have some length, say ef {(in the case of the Cray-1, the vector
length iz &4). When matrices have row and for column dimensions greater than «f, an
additional level of structure must be imposed to handle this situation. (A machine like the
Cyber 205 does not have this problem since it is a memaory to memary architecture; data is
streamed from memory to the functional units and back 1o memory.) Specifically with
algorithm ji&i, columns of the matrix can be segmented to look like the following:

NEER

where each segment is of length of except for the last segment which will contain the
remaiming elements. The two ways 1o organize the algorithm are 1) 1o sequence column
segments across the matrix 4, developing a single complete segment of C, or 2} to
sequence column segments down a column of A, developing a partial segment of C.

These algorithms have an additional looping structure to take care of the vector
segmentation needed to process n elements in a vector register of length »f. The two
matrix multiplication algerithms for dealing with vectors of length greater than of are

100 1). DONGARRA, F. G, CUSTAYSOMN AND A. KARP

shown below:
for j = | top for j = 1 o p
for i = 1 tom For § = 1 to m by of
ey =10 fori = | tomin(l + of — 1, m)
end cy =10
for k = 1 ton end
for § = 1 b err by of for &k = | tow
for i = ftomin(d + of = 1, m) for i = ! to min(f + ef — 1, m)
Cy = €y + ag = by, Sy =y + ay v by
end el
end cd
end e
e end
Form jki by Block column Faorm jki by Mock row

The aims are 1o keep information in vector registers and to store the results only after

all operations are sequenced on that vector. The block row form accomplishes this goal: A

vector register is used o accumulate the sum of vector sepments over all columns of a

matrix. In the block column form, however, after each multiple of a vector is added in a
register, it is stored and the next segment is processed.

Ciraphically we have the following situation:

3]

TEETE e

R sitlars Incal” banltih]

Block columna

ZmEp T

Block row

Clearly we want to maintain the vector segment of Cin a register to minimize data traffic
to and from memory, but mainly we want to avoid storing the information. The block
column algorithm does not allow the repeated accumulation of & column of C, since a
register cannol hold an entire column of the matrix C. It is interesting to note that while
seqquential access is essential in a paged environment, a “Cray-like” architecture does not
suffer from paging problems. Therefore, the block row provides the best possible situation
and will lead to a very high rate of execution.

5. Linear equatioms. We now turn to one of the procedures that probably uses the
most computer time in a scientific environment: solving systems of equations. We will
concentrate our analysis on solving systems of eguations by Gaussian elimination or, more
precisely, the reduction to upper triangular form by means of elementary elimination. To
retain clarity, we initially will emit the partial pivoting step; nevertheless, pivoting is vital
to ensure numerical stability and will be dealt with laier,

Gaussian elimination usually transforms the original square matrix A into the
product of two matrices L and £, so thai

A= LU

ALGORITHMS FOR DEMSE MATRICES ON A YECTOR FIFELINE MACHINE 101

The matrices L and L have the same dimension as A; L is unit lower iriangular (L.e., zeros
above the diagonal and the value one on the diagonal), and L 15 upper triangular ii.e., zero
below the diagonal), The algorithm that produces L and U from A, in general, overwriles
the information in the space that A occupied, thereby saving storage. The algorithm,
when given the matrix in an array A, will produce in the upper triangular portion of the
array A the information describing £ and in the lower triangular portion below the
diagonal the information describing L.

Like the matrix multiplication algornithm, the algorithm for Gaussian elimination
can be described as follows:

Creneric Gawssian elimination algorithm.
far
for
i 7 - AR S
@ = ay — (@ % ay)fay,.
endl
el
end

As before, we have intentionally left blank the information deseribing the loops. The
loop indices will have variable names ¢, j, and k. but their ranges will differ. Six
permulations are possible for arranging these loop indices.

If we fill in the blanks appropriately, we will derive six algorithmic forms of Gaussian
climination. Each form produces exactly the same matrices I and 7 from A; even Lhe
roundofl errors are the same. (We have omitted some numerically eritical features, like
pivoting, in order 10 keep the structure simple.)

These six algorithms have radically different performance charactleristics on a
“Cray-like” machine. As in the case of matrix multiplication, we can best investigate
these differences by analyzing the patterns of data access.

Forms ijk and jik are varianis of the Crout algorithm of Gaussian elimination [17].
({To be more precise, these are variants of the Doolittle algorithm, but for simplicity we
refer (o them as Crout.) The Crout algorithm can be characterized by its use of inner
products to accomplish the decomposition. At the ith step of the algorithm the matriz has
the form shown in Fig, 4.

=

%

5w

l.

MG i

For form {0k, inner products are formed with the ith column of £ and rows | through
i of the formed L to create the new elements of £, A similar procedure is followed Tor
form jik, but with the roles of L7 and L interchanged, Notice that since inner products are
performed, il one accumulates the result in extended precision, a more accurate
lactorization will resuli.

L L) DONGARRA, F. 0, GUSTAVSON AND A. KARP

Form kij is the form most often taught students in a first course in linear algebra. In
brief, a multiple of a given row is subtracted from all successive rows to introduce reros
between the diagonal elements of the given row & to the last row (see Fig. 5). After zeroing
oul an element, the zeroing transformation is applied to the remainder of the matrix. This
algorithm references elements by rows and. as a result, is not really suited for Fortran.

Form &ji is the column variant of the & row algorithm as described in [15] and is
used in the LINPACK collection [3]. This form is organized s0 that sweeps are made
down a column instead of across a row of the matrix. As with form kji, a zeroing
transformation is performed, and then that transformation is applied to the remainder of
the matrix, Sinte the operations occur within columns of the matrix, this algorithm is
mare attractive in Fortran than either of the previous approaches. The basic operation is a
SAXPY. Since updates are made 1o all remaining columns of the matrix, there is no
opportumty o accumulate the intermediate result in extended precision,

The final two algorithms, forms ik and jki. differ from forms kij and &ji primarily in
how transformations are applied. Here, before zeros are introduced, all previous transfor-
mations are applied; and only afterwards is the zeroing transformation applied. Specifi-
cally, in form jki, columns 1 through i — 1 are applied fo column § before zeros are
introduced in column i. This is the algorithm described in Fong and Jordan [6]; see
Fig. 6.

The basic operation of this algorithm is a GAXPY. As the previous transformations
are applied, a column of the matrix can remain in 2 register and need not be stored in
memory. Thus, the algorithm has the possibility of accumulating the intermediate vector
resulis in vector extended precision.

Since column arientation is preferable in a Fortran environment, we will concentrate
our attention on only three forms: jik, kji, jki which we will refer to as SDOT, SAXPY,
and GAXPY respectively. If we were dealing with some other language where row
orientation wis desirable, then the other three forms would be appropriate for discussion.

ALGORITHMS FOR DEMSE MATRICES ON A YECTOR PIPFELINE MACHIME 103

Motice that in choosing these forms, only in the Crout variants do we have 1o consider a
“giride™ or worry about memaory bank conflicis,

Appendix A lists the three forms implemented in Fortran 77.

We turn now to implementing the three forms in a pseudovector assembly language
{PVAL). This language is idealized 1o the extent that we assume that vector segmentation
and length of vector registers are not 2 problem. Segmentation is, nevertheless, an
important detail on some vector computers, and we will discuss it later. We also do nol
label vector registers, but refer instead to their content.

In PVAL, then, we have the following instructions:

INCE {=mnlbton2 looponifromnal fonl

LOOPF seope of loop on §

[5 soaliar load

8T 5 scalar stare

YL ¢ vt lowd

V8T v vector slore

Va pe—p Ly vectoe-vecior addition

¥8M v rv¥s vector-sealar multipficarion
VED pre—pfs vector-sealar division

YIP o= 5 4 ¢ v initialized vector imner produet,

Appendix B lists the translations of the three algorithms into PYAL.
As one might expect, the three forms perform the same number of arithmetic
operations; see Table 1.

TaBLE |
number of divisions ! number of multiplications
l.' - gl - L]
SAXPY version -l T | o 3 pI |
=l ksl =l pubal imliel
a-| = | B =l -
GAXPY versian I i T
Jul fil =i k=l k4l
W i " " p=1 izl
SDOT vession ¥ ¥ -3 E|1—L|}
LI E iml =3 N =i ke
Total far each Yeiw® — Al tha' = Yo’ + lha

A more important quantity to measure with respect to vector machines is the
memaory traffic, i.e., the loads and stores. In most situations the arithmetic will actually be
free; just the time spent in loading and storing results is actually observed, since the
arithmetic is often hidden under the cost of the loads and stores. We will use the word
“touch™ to describe a load or a store operation. By examining the PV AL code found in
Appendix B we can count the vector load and store instructions used in the various
versions of LU decomposition; see Table 2.

In counting vector and scalar touches, some optimization has been performed.
Vectors are relained as long as possible in registers before storing. In sequences of
instructions where a scalar and vector are referred to and the scalar is located adjacent to
the vector, a vector load is performed of length ene greater than the required vector; this
procedure saves the scalar load operation, thereby hiding the cost in the vector load. This

104 L1 DOMNGARRA, F. G GLUSTAVSON AND A KARP

Tane 2
Summaary of loads and siores in LU decomposizion
SAXPY l GAXPY | spor
VeI VETSion | wErsion
| H i T 1
Total Touches Shopl. il 111 ‘oo "_+E_5_"
3] 1 r 3 b]

optimization assumes that we can exiract scalars from the vector registers; some
machines may require additional work to do the extraction,

We notice that the SAXPY approach has almost twice as many touches as the
U AXPY or SDOT approach. Most of this additional activity comes from vector store
operations, which will have a dramatic effect in machines where vector stores disrupt the
flow of computations. Even on a machine like the Cray X-MP, which has hardware
enhancements 10 avoid this bottleneck found on the Cray-1, the GAXPY version never
hinders performance. Experience on the Cray X-MP has shown that performance is
actually increased when a G AXFY is used; this results from fewer bank conflicts and poor
code generation by the compiler for the S AXPY version.

An important distinetion 10 remember when comparing GAXPY and SDOT is that
the fundamental operation is different; GAXPY operates on vectors and produces a
vector, while SDOT operates on vectors and produces a scalar. The tofal number of
touches is roughly the same in the two algorithms.

We will next examine the execution times of the three algorithms. The sequence of
instructions in the innermost loop of the vector code is different for each implementation.
For the various versions the instructions are

L L L.
YL YL YL
VEM VaM VIP
YA VA 8T
WST

SAXPY GAXFY SDOT

We are interested in how these sequences are affected in different environments.
Specifically, we will look at four architectural settings:

Mo chaining or overlapping of operations.

Chaining of vector loads, vector addition, veclor-scalar multiplication, but not vecior
SLOre.

Chaining of vector loads, vector addition, vector-scalar multiplication and vector
SLOTES,

Mo chaining of operations, but overlapping of vecior loads, vector addition, vector—
s¢alar multiplication and vecior siores,

Throughout the different architectural settings we assume that each vector instruction is
pipelined in the sense that, afier an initial startup, results are delivered at one per cycle.
Let us see how the architecture and the algorithm combine to give 1 measure of
performance. Consider first a machine that allows no chaining or overlapping of
instructions. The time taken by each algorithm then is the sum of the arithmetic time and
the number of touches. Since GAXPY and SDOT touch the data half as much as SAXPY,

ALGORITHMS FOR DENSE MATRICES DN A VECTOR FIPELINE MACHINE 103

they take less time. If the inner product s implemented in 2 way that allows the
multiplication and addition o proceed in tandem, then the SDOT approach is fastest,
From the timing diagrams it & clear that SAXPY takes four chimes, GAXPY three
chimes, and ST only two chimes., [We assume that one vector has been prefetched and
remains in & register during the course of the operation.)

The situation is different on a machine that allows chaining. While the GAXPY
algorithm achieves supervector speeds, SAXFPY only gives vecior speeds; i.e., il lakes iwo
chimes. The reason 15 simple: In GAXFPY the vector store 15 outside the innermost loop,
while in SAXPY it is inside the loop. It is very difficult to analyze SDOT, The timing
diagram shows that SD0T and GAXYPY both take one chime; the difference in ime 15 due
i the different amounts of overhead. On the Cray-1, SD807T has the potential to seriously
degrade performance because of memory bank conflicts arising from row access patierns,

An interesting alternative to chaining 5 overlapping. Eecall that on the Cray-1,
chaining will not occur if there are memory bank conflicts. The problem can be avoided il
memory access is overlapped with arithmetic. This approach allows data to be loaded into
the vector registers at an irregular rate while guarantecing that the arithmetic uniis get
one inpul per machine cycle, The effect on liming can be seen by the hrst (wo passes
through the inner loops of 5AXPY and GAXPY; see Fig. 7.

SAXPY takes two chimes per pass plus of machine cycles 1o get started; GAXPY and
S0OT each take only one chime plus vf cycles to start. Although there 15 some overhead
that is not needed on a machine that chains, overlapping will reach vector or super-vecior
speeds in situations that will nod chain, Motice that we have allowed loads and stores of

hl—l
- E.ﬂ_.
1 W
: Lll.l_l
1 el
] E.—I
LR |

w50
| 2=y]
WiT
—_—
"EI_I
¥l
i -,
i IHEEN] 1]
s

SDOT rirumg diagram with overlapping.

Fig. 7

101 1) DONGARRA, F. G GUSTAVSDOM AND A, KARP

Tame 3
Architeciure NAXPY APV SOHor
Soguential 4 ;| 3
Chain loads i 1 1
Chain leads /stores 1 1 1
Uverlap operations 2 1 |

independent data to proceed simultaneously. If this feature were not allowed, then
SAXPY would take three chimes.

These resulis are summarized in Table 3. The entries are the number of chimes
needed to complete the inner loop. However, the table tells only part of the story, Even
though S00T looks as fast as GAXPY on a machine that chains, it can be slower on the
Cray-1 because of inefficient computation of inner product.

6. Segmentation of loops. Vector segmentation occurs when the vectors are longer
than the vector registers. As noted earlier, segmentation requires an extra loop, To study
segmentation, we exiend the definitions of the PYAL instructions INCR and LOOP o
take an argument VSEG. Thus, the instruction

INCE sseg = miton

breaks vector loads and stores from element m to element a into segments of length o, The
first &f elements will be loaded or stored on the first pass, the nexi #f elements on the next
pass, and soon. The vector load then looks like

YL a

R I r

which will load the next segment of column j into the register.

If the segmentation is in the inner loop, then none of the algorithms is faster than
vector speed. The reason can be seen from the PVAL code for the inner loops of GAXPY,
given in Appendix B. The vector store is inside the loop on k instead of outside. {(On a
paged machine architecture this would not be the optimum choice, see [4] for details.)
The timing diagram for the inner loop is given in Fig. §.

IT the segmentation is done outside the loop on f instead, the vector store can be kept
outside the inner loop. Supervector speed can then be achieved. Just as with the matrix
multiplication, we want 1o hold the result in the register as long as possible. Figure 9
shows the optimal access paltern,

The PVAL code in Appendix C has been modified to allow for segmentation. In each
case, the segmentation has been chosen 1o minimize the overhead. The notation a,..,. .,
means that the corresponding operation is to be performed only for rows § + 1 through the
end of the segment. In addition, eperations on zero-length vectors are ignored.

In summary, we can make the following statements about performance. 17 we can be
assured that memory bank conflicts will not occur, and if we use GAXPY, then chaining
as implemented on the Cray-1 gives nearly optimal performance. I, on the other hand,
memary bank conflicts are frequent or the vectors are sufficiently long, then overlapping
is a viable alternative. Here either SAXPY or GAXPY will run nearly as fast as when
chaining occurs. Some machines. such as array processors, have efficient inner-product
hardware; on such machines, S 00OT will be fastest.

Motice that GAXPY is fast or almost as fast as SDOT and that SAXPY is always
slower. In addition, SAXPY touches the data twice as much, which can cause memaory

ALGORITHMS FOR DEMSE MATRICES OM A YECTOR PIFELINE MACHINE 107

| BTy
[}:1
1".1-'.1_|
I Ve
|] [SE———)
[I
1
i . SE—
Limenwoees 4

KAXFY timing dicpram witk chmining.

¥L
| e

r Wi
i M
| a—
l_?":‘:'m
-t s

GAXPY timing diggram with chaiming,

WL

M
[T
. 'il_'
*
Lﬂ%- rrrjﬁ

ST timing diggrom witk chaining

Fea. B

bandwidth bottlenecks. Therefore, il there is any uncertainty about the characteristics of
the machine, the coding should probably be done using GAXPY. To gain the most in
terms of performance on the Cray, simple vector operations are not enough. The scope
must be expanded to include the next level, matrix-vector operations, such as the
matrix—vector multiplication of G AXPY,

7. Pivoting. Up to this point we have ignored pivoting in the LI/ factorization.
Pivoling is necessary to stabilize the underlying algorithm. If the algorithm is applied
without pivoting 1o a general matrix, the solution will almost certainly contain unaccept-
able errors. Pivoting is a relatively simple procedure; in partial pivoting an interchange
is performed based on the largest element in absolute value of a column af the matrix.
In algorithm jki the pivot procedure is performed before the scaling operation (ses
Appendix A,

In terms of performance, the pivoting procedure is just some additional overhead and
does nol significantly affect the performance, We must, however, qualify this statement

NIl B e

SAXPY ALY NIOT

|

108 1 L DONGARREA, F. G, GUSTAVSDN AND A4 KARP

somewhat, A piveling operation invelves the interchange of two complete rows of the
miatrix. Therefore, we must issue two vector loads and two vector stores for each vector
segment in the rows, However, the segmentation is done in the outer loop, L.e., once per
column, and takes only about 2n additional vector touches. Unfortunately, these are row
accesses that may produce memory bank conflicts.

8. Conclusions. Our aim was not o rewrite an existing program but (o restrecture
the algorithm, This is more than a matter of words, program or algorithm. In looking at a
program, one has a tendency to focus on statements, detecting one vector operation here,
another there, To produce & truly vectorized implementation, however one must go back
to the algorithm and restructure it with vectors or matrix—vector constructions in mind.
We hope in the future that compilers will routinely carry oul the process of restructuring.

Looking back, we have been pleasantly relieved to see that algorithms restructured
for a vector pipeline architecture perform as well or better than their predecessors on
conventional machines,

Looking forward, we admit that we may again have to go through this exercise for
multiprocessor machines such as the Cray X-MP, Cray-2, Cyber 2xx and the Denelcor
HEP.

Appendix A. Column varianiz of the generic Gaussian elimingtion algerithm,

SUBROUTIME KM A LDA M)
C
C S5AXPY
. FORM EJ-5AXPY

REAL AL P
oADK = 1,M-1
D00 = K41,
ALK = -ALLK) ATKK)
10 CONTINUE
Do) =K+ 1M
o200 = K+1.M
A(LT) = ALLD + ALK =A(K T}
20 CONTINLE
an CUNTINUE
A0 CONTINLUIE
RETLRN
M
Form KIf

SUBROUTINE JEI A, LDA M)

GAXFY
FORM JKI - GAXFY

[AaSR

REAL ATLDA MY
DO)= 1M
DOOEK = 1,01
DO =K+1.M
ALY = ACLTY + A(LKALE D)
11} CONTINUE
2 CONTINUE
DO 300 = 041,
ALY = -ACLI AT

N aan

00 a o

ALGORITHMS FOR DEMSE MATRICES ON A YECTOR PIFELINE MACHINE

W COMTIMUE
0 CONTINUE
RETLUREMN
EMD

Faorm JET

SUBROUTIMNE LIKLA LDAM)

SDOT
FORM LK - DOT

REAL ALDAMY
DO =1.M
DO20) =11
ALLS-1) = -AL I A- 1T
DOINK = 1J-1
ALY = ALLT) 4 A{LK}sA{E. D)
I CONTIMNUE
i CODNTIMUE
DO 40] =T+ 1M
D3R = 101
AL = A{LD] + ALK AR}
] COMTIMLUE
40 CONTINUE
SOCONTINUE
RETLIRN
END

Form [TK

SUBRDUTINE JEIFYT{A LD M)

GAXPY
FORM JKI - GAXPY
WITH FIVOTIMG

REAL ALLIRA MGT
DO 60D = 1.M
DO MK = 1,11
DO 0] =Kl
ALLD = ALY + ALK s ALK)
10 CONTIMUE
m CONTIMNUE

FI¥YOT SEARCH

T = ABS(A{L))}
L=J
DO = J+1,N
IF(ABS{A(II)) . GT . T) THEN
T = ABS{ALLIY)
L=1
END IF
W CONTINUE

[

11 10, DOMGARRA, F, G, GUSTAYSON AND A, KARP

INTERCHANGE ROWSE

38 M

DO 400 = 1M
T = &[T}
ALT = AL
AILII=T
CONTINUE

DOREOT = 0+ 1N
ALY} = -A(LI) AL
50 CONTINUE
O CORTIMLE
RETLRMN

ExD

Form JEKI

Appendix B. Translations inte PYAL

INCR
YL
VED
VST
INCR

VL
ViM
VA
VST
LOap
LOOP

INCR
YL
INCR

VL
VEM
VA
LCHp
Va
VST
Lo

INCR
WL
INCR

VL
VIP

k= 1ton—1

Kipn ™ Tpuy
e T b §
Dhsinik ™ N
J=k<on
.l‘:iﬂ‘_akﬂ_l
Zhstam ™ Xis 1w ® Fu

Yioinm ™ Pivin T Zpyim

L}

Bgitm) Fisim

d
k

SAXPY
f=110n
xl-'_'ﬂ.l._l
k=1to)=1|
Kaare ¥ @ps ik
Yioim™ Vi ¥ Iy

Livta ™ Xpslw T Viein
k

Xietm*— =&y 1mf X

L 1._1‘_':'.In

d

LGAXPY

i=1ton

'.'Ir' I"'lu_l.u

J=2 00

X v — X |."-.|-'_I I
Pizg—1 ey, -
Xy X5 ¥ Projoi Xppos

ALGORITHMS FOR DENSE MATRICES OM & VECTOR PIPELINE MACHINE

L i
INCR J=i41 tin
VL Fra—t = @i g

VIP Rp— X+ Vi) Xyg
LOOP |
FET ﬂl.l n" xl'l
OO i
SDaT

Appendiz C, PYAL code with segmentation.

INCR k=1tor=1
INCR o
Wi = ﬂ:wf_l-
"'ISD I.l-."-.i Fr _xnl-r; -‘::'ll'ri
VST []
INCR f=k+lton
YL ¥ Dy
VEM 2 Xy " Fy
"l'lA .Pﬂllrr-i '_J':nr_g.'c + I
VST | B)
LODP I
LOOP vEeg
L k
EAXPY
INCR J=1bon
INCR rieg, i
I"'IL X — ﬂnrj._r
INCR k= tnj-1
I""II- = ul"lrt-l.i
ViaM o= Xy
WA Xpsnged " Mg T F
LP &
VSD Kvsege) " = Xragil X
VET Tppey, | *— X
I VECE
LOOP)
GAXPY
INCR i=lton
IMCE vseg, I
Wl X 'ﬂ|_m-|'
INCR J= 210
D Ep ==X Wy
"-I]_. ¥ ¥ iy J= 1. f

YIP Tt =X+ F * Ky

111

112 1.). DONGARRA, F. G, OUSTAVSON AND & KARP

LOOP |
INCE J=i+lton
1"'.'- .:I'I e Ehrg-.l-l._l
VIP X)X+ V * Xypegat-
LOOP
VET oy *— X
LOOp FEEE
LOOP i

SDaT

REFERENCES

[1] X M. Bovue, Towaeds guramaric syarhesis of finear algetva programs, Proc. Conference on Prodection
and Assezmenl of Mumerical Software, M. Delves and Hennel, &d., Academic Press, New York,
1980, pp. 2252435,
[2] 1.} DosGarks, Some LINPACK timings on the CRAY- 1, Tutesial in Parallel Processing, B. H, Kuhs
and [. A. Padua, eds., [EEE, 1981, pp. 363-380.
[3] 11 DonGarss,) B BukcH, C. B MoLER, anp G. W, Stewaer, LINPACK Users” Guide, Society for
Indusirial and Applied Maihematics, Philadelpbaa, 1979
[4] 11 DuCroz, 5. M. NuGeNT, 1. K. REIDanD D, B Tavooe, Solvieg faepe fiel] sers of fineer squations in
a paged virtual store, ACM Trans, Math, Software, 7 (1981), pp. 537-5146.
2] L. 5. DurF anp). K. REiD, Experience of sparse malriz codes on the Cray-1, Compuler Science and
System Division, AERE Harwell C55 116, Ociober 1881,
[6] K. Fonc ano T. L, Jlomoaxy, Seme lisear alpebra alporithms ond their peeformance oe CRAY-1, Los
AJames Scientific Laboratary, UC-32, Los Alamns, MM, June 1977,
[7] F.G. GusTavson, Seme basic technigues for solving sparse sgstems of linear equations, Sparse Mairices
and Their Applications, [0 J. Rose and B A, Willoughby, eds. Plenom, Mew York, 1972, pp. 41-52,
[2] . HELLER, A survey of parailel algoritkms in auserical lispar algebra, this Review, 20 (1978), pp
T4D-77T,
[%] R.W, Hockxey asp C R, JessHorE, Porallel Compurters, 1. W, Arrowsmith, Brisiol, 1931,
[10] T.L. Jormas, Private commenications, 19832,
[11] P. M. KoGoe, The Archirecrure of Pipelined Computers, Academic Press, New York, 19].
[12] €. Lawsos, R, Hasmos, D, KiNcain, anp F. Keoox, Sasic lnear algebea subprograms for Forfran
urage, ACM Trans. Maik. Software, 3 (1979), pp. 308-371.
[13] R. LeviMg, Supercomparers, Scenlilic American, January 1982, pp. 118135,
[14] . B. Movss, Privatle communication, 1978,
[15] ———. Marrix compuiaiions with Fortran and paging, Comm. ACM_ 15 (1972), pp. 268-270.
[16] R. M. Russoie, The CRAY-1 computer spetem, Comm. ACM, 21 {1978), pp. 63-72
[17] G, W.STEwarT, Introdwction fa Matnx Compurarion, Academic Press, Mew York, 1973,

