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This paper describes & technigue for achieving supervector performance on 8 CRAY-1 in o purely
FORTRAN environment (i.e., without resorting to sssembler language). The technigue can be applisd
10 a wide variety of algorithms in linear algebra, and is benedicial in other architectural settings.

Categories and Bubject Descriptors: G.1.3 [Mathematics of Computing]: Mumercal Analysis—
numerical Hnear algebra; G4 [Maothematics of Compuiing]: Mathematical Boftware

Geperal Terms: Performance
Additionnl Key Wards and Phrases: Vector processing, linear algebra, efficiency, unrolling

INTRODUCTION

There are three basic performance levels on the CRAY-1—scalar, vector, and
supervector [4]:

Performance level Rate of execution,

S I0L §990 MFLOPS'
Scalar 04
Wiector 4-51
Supervector oil-160

The difference between scalar and vector modes 12 the use of vector instructions
to eliminate loop overhead and take full advantage of the pipelined functional
units. The difference between vector and supervector modes is the wse of vector

| MFLOPS is an acpopye for million floating-point operstions (additions or multiplicntions) per
seconid,
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220 - J. J Dongarra and 5. C. Eisenstat

registers to reduce the number of memory references (and thus avoid letting the
one path to/from memory become a bottleneck).

Typically, programs written in FORTRAN run at scalar or vector speeds, s0
that one must resort to assembler language (or assembler language kernels) to
improve performance. In this paper, we describe a technique for attaining
supervector speeds from FORTRAN?

THE IDEAL SETTING®

Most algorithms in linear algebra are easily vectorized. For example, consider
the following subroutine which adds the product of a matrix and a vector to
another vecior:

SUBROUTINE SMXPY (N1, ¥, N2, LDN, X, N}
BEAL ¥is), X(e), H{LDM, =}
DO20T =1, N2
DOIDT =1, N1
YD =Y(I)+X(J)«H{T,J)

10 CONTINHUE

20 CONTINUE
EETUEHN
END

The innermost loop is 8 SAXPY [5] (adding a multiple of one vector to another)
and would be detected by a good vectorizing compiler. Thus, the CRAY CFT
FORTRAN compiler generates vector code of the general form:

Load vector ¥

Load sealer X{J)

Load vector Mi«, J)

Multiply sealar X{J) fimes vector Mis, J)

Add result to vector Y

Store result in Y

Note that there are three vector memory references for each fwo vector floating-
point operations. Since there is only one path to/from memory and the memory
bandwidth is 80 million words per second, the rate of execution cannot exceed
~53] MFLOPS (less than 50 MFLOPS when vector start-up time is taken into
aceount)—vector performance.

Thus to attain supervector performance, it is necessary to expand the scope of
the vectorizing process to more than just simple vector operations. In this case,
a closer inspection reveals that the vector Y is stored and then reloaded in
successive SAXPYs. If instead we accumulate Y in a vector register (up to 64
words at & time) until all of the columns of M have been processed, we can avoid
two of the three vector memaory references in the innermost loop. The maximum
rate of execution is then 160 MFLOPS (~148 MFLOPS when vector start-up
time is taken into account)—supervector performance.

! We récognize that sssemblor code may be needed to achieve the highest level of performance, and
that its use in 0 small pumber of “kernels” is not & significant barrier to transpartability. Howsver,
the approach presented does lead to high levels of performance, is portable, and can be used to derve
algorithmic improvements in & muck wider class of problems than discussed in this naper

* Bew [4] for & more complete discussion.
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REALITY

The CRAY CFT compiler does not detect the fact that the result can be
accumulsted in a register (and not stored between successive vector operations),
Thus, the rate of execution is limited to vector speeds.

But if we unroll [1] the outer loop (in this case to a depth of four) and insert
parentheses to force the arithmetic operations to be performed in the most
efficient order, then the innermost loop becomes

DO 10 I=1,; H1
¥(L)= (({(Y{T)+H{(T—3) s ML, T—2}} +H{J—2)+M(I, T—2))
& +E(T=1)sM(I,T=1)) +A{T} =ML, T}
10 CONTIHUE.

Mow the code generated by CFT has six vector memory references for each eight
vector floating-point operations. Thus the maximum rate of execution is ~1064
MFLOPS =100 MFLOPS when vector start-up time 1s taken into sccount) and
the actual rate is ~77 MFLOPS—supervector performance from FORTRAN.
The complete subroutine SMXPY4 15 given in Appendix A.

GENERALIZATIONS

With this approach we can develop quite a collection of procedures from linear
algebra. The key idea is to use two kernels—SMXPY and SXMPY (add a vector
times a matrix to another vector; see Appendix [1)—to do the bulk of the work.
Since both kernels can be unrolled* to give supervector performance, the proce-
dures themselves are capable of supervector performance,

Many processes which involve elementary transformations can be described in
these terms, e.g., matrix multiplication, Cholesky decomposition, and LU facto-
rization (see Appendix III and [4, 8]). However, the formulation 1s often not the
“natural” one, which may be based on outer products of vectors or accumulating
variable-length vectors, neither of which can be supervectonzed in FORTRAN.

Tables I-IV summarize the results obtained for these procedures on & CRAY
1-5 (as well as on the new CRAY 1-M® and CRAY X-MP®) when the subroutines
EMXPY and SXMPY were unrolled to the specified depth. All runs used the
CFT 1.11 FORTRAN compiler. By contrast, 30 MFLOPS ia often cited as a
“good rate for FORTRAN" on the CRAY 1-8 [3] and 100 MFLOPS as a "good
rate for CAL (Cray Assembler Language)™ [3] (e.g., Fong and Jordan [4] report
107 MFLOPS for an assembler language implementation of LU decomposition
with pivoting).

* Although there are only eight vector registers, this is suffickent for any depth of unrolling.

B The CHRAY 1-M is essentinlly 0 CRAY 1-58 with “slow” memory, It 2 faster in these tesis hecnuse
al & chaining anomaly—a vector losd izsues earlier on the CRAY 1-5, cousing n scalar-vector multiply
to miss chain-slot time.

“The CRAY X-MP iz a multiprocessor, sach processor having o cycle time of 8.5 na (versus 125 na
for the CHAY 1-5) and three paths to/from memaory (twoe for vector losds, one for vector stores).
These timings were ohtained using only one processor. While, in principle, the extra paths shoukd
remuve the memory bottlensck, in practice the unrolled code 2ill runs faster becouse there are fewer
vectar startups and less memory traffic (and thus fewer bank conflicis).

ACM Trasmections on Mathemstscal Software, Vol. 10, Mo ¥, September 1084
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Table I. 300 = 300 Matrix Multiplication

Unrolled MELapS : il
depth CRAY 1-M CRAY 1-5 CRAY X-MP
| a9 a0 106
2 il 53 151
4 a3 T2 161
i 101 a6 170
16 111 B 177

Table [I. 300 = 300 Cholesky Decomposition

L ... SRR
depth  CRAYIM CRAY1S  CRAY X-MP

. 2 2 &8

T 48 45 2]

4 87 [E1] 118

a2 a1 ™ il 13

146 BA T8 139

Table ITL. 34 = 300 LI Decomposition with Pivoting

sl MFLOPS b
depih CRAY 1-0M CRAY 1-8 CRAY X-MP
1 28 28 G
2 42 - T&
4 i 52 93
] ] e 103
16 G4 68 108

Table TV. 300 x 300 LU Decompoaition with Pivating
iUsing an Assembler Language Implementation

of TSAMAX")

Unrodled iE ok :
depth CRAY I-M CRAY 1-8 CRAY X-MP

1 a0 az il

i 4 £ 28

4 64 o 17

a T8 L] 123

16 a3 T8 136

*The search for the maximum element in the piver column
(ISAMAX [5]) does not vectorize and thus limits performance.
These times were obtained using an assembler language imple-
mentation of [SAMAX.

CONCLUSIONS
We have described a technigue that can produce significant gains in execution
speed on the CRAY-1." Moreover, to the extent that this approach reduces loop

¥ Baw [2] for another approach,
ACM Transsctions on Metbsmatical Software, Vol 10, Mo, 5, September 1984
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overhead and takes advantage of segmented functional units, it will be effective
on more conventional computers as well as on other “supercomputer” architec-
tures. Since optimized agsembler language implementations of the SMXPY and
SXMPY kernels are easy to code (a8 much so as any kernel) and frequently
available, one can get most of the advantages of assembler language while
programming in FORTRAN.,

APPEMNDIX A

SUHROUTINE 3004 |:H1. Y, M2, LDM, X, M)
REAL Y{=*), X([*), M{LIM.*}

PURPOSE !
Multiply pmtrix M Limes vector X and add the result te vecter ¥

PARAMETERS :

N1 INTECGER, nurber of elaments in vecltor Y, and mobher of rows (o
malrix M

T REAL(M1), wecter of length N1 to which is added the preduct M*X

N2 INTEGER, murber of elamnts in vector X, apnd mmSer of colums
immatrix ¥

LM INTEGER. leading dimension of array M
X REAL(ME), wveotar of length M2

M REAL{LDM M2), matrix of Ni rows and MZ colums

Cleanup odd vestor

oOnooOoDaoOOOaoOOOOOaOO0DOOOO0O0 000

I = MOD(NE,2)
IF (J§ .GE. 1) THEN
DO 10 1 = 1, M1
Y(1) = (¥Y(1)) + X{J)*n(1.7)
10 CONTINUE
ENDIF

Cleanup odd group of two wectors

oo

I = MOD{N2, 4)
IF (4§ C(E. 2) THEM
DO 20 1 =1, NL
¥(1) = ( (¥(1))
s + X(J-1)M(1,3-1}) + X(J)"M(1.])
20 COMT [ NUE
ENDIF

Main loap - groups of four veolars

oo

JMIN = J+4
DO 40 1 = JMIN, N2, 4
AUCMT on Matl el Software, ¥ol, 10, No 3, September 1054
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DDag [ =1. N
Y1) = ([ €¥(1))
g £ W(T-3)*M(1,1-3)) + X[J-2)*Mi1.1-2))
] + X[T-1)*M(T,7-1}) + X4} *M(1.T)
a0 CORT IHLE
40 COMTINLE
o
FETURN
END
APPENDIX B

SEAOUTINE SMXPYT (Ni, ¥, M2, LIM, X, H]
REAL Y(*), X(*). M{LDM,*)

PURFOSE:
Multiply matrix M Limes vector X and add the result to vector Y.

PARAMETERS:

Ni INTEGER, mumber of elersnts in vester Y, and number of rows im
maktriz M

T REAL(MN1), wester of length Ml te which is added the produst M*X

N2 INTEGER, mumber of elarents [n vectoer X, and mmber of colums
in matrix ¥

LI INTECGER, leading dimension of array M
X REAL{NE), wesalor of length M2

M REAL{LDM.N2). matrix of Nl rows and NE colums

OoOaOagnDOOaadnOOaaaaOOnDon

DO 20 4 =1, N2
DD101 =1, M
Y(1) = (Y{1)) + X(J)*M(1.J)
10 CONTINUE

20 CONT INUE
C
RETLFN
EMD
SUBRCUTINE SXMPY (N1, LDY, ¥, N2, LD, X, LDM. M)
REAL Y(LDY,*), X(LIEC.*). M{LIM, *)
i
C FURPOSE:
C Multiply rew wector X times meitrix M and add the result te row
' veclor VY.
H
C PARAMETERS:
C
C N1 INTEGER, nurber of colums in row vector Y, and numher of
c colums inmatrix M
&
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c LIf INTEGER. leading dimension of array ¥
o
C Y FEAL{LDY.N1), row vector of length N1 to which is added the
C produck X*M
c
C N2 INTEGER, number of colums in row wvector X, and nurber of
C rows inmatrix M
C
c LOX INTEGER, leading dim=nsion of array X
c
c X REAL{LDX . M2), row vector of length K2
C
C LIM INTEGER, leading dimension of array M
c
c M BEAL{LDM . N1), matrix of N2 rows and N1 colums
c
D e g
C

DO 20 J =1, N2

DOl =1 M
Y(1.1) = (¥({21.1)) + X(L.a)*M{1.1)
10 CONT I NUE
20 CONTINUE

C

RETLURN

B
APFPENDIX C

SUBROUTINE MM (A. LDA, Ni, N3, B, LDB, N2, C, LDC)
REAL A(LDA,*), B{LDS,*), C(LDC.*)

PURFOSE:
Multiply matrix B times matrix C and store the result im mmirix A.

FPARAMETERS
A FEAL[LDA, N3}, matrix of Nl rows and M3 colums
LDA INTEGER. leading dimension of array A
Ml INTEGER, musber of rows ln matrices A and B
N3 INTEGER, murbsr of colums in matrices A and C
B REAL(LDB. M2}, matrix of NI rows and N2 colums
LD INTEGER. leading dimension of array B

NZ2 INTEGEE, pumber of colums inmairix B, and number of rows in
matrix C

C REAL(LDC M3), omirix of N2 rows and M3 colums

LIC INTEGER, leading dimension of array ©

O O O S i i e D A I 1 s e e e e s s el e v i o e

OoOOOOoDOOOODDoOnNoOoOOonDoOOOoO0ODO0n
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DO 20 J =1, N3
D010l =1, M
A(1,1) = 0.0
10  CONTIMUE
CALL SMXPY (N2, A(1.J) N1,LDB.C(1.]).B)
20 CONTINUE

HETLUFN
EMD

SUBRQUTIME LLT (A, LDA, M, ROWI, INFD)
REAL A(LDA, *), ROWI(®), T

FURPOSE: t
Form the Cholesky factorizatisn A = L*L ol a symetric positive
deflnite makrix A with fastor L overeriting A.

PARAMETERS -

A REAL{LDA N}, matrix to be decarposed; only the lower Eriangle
need be supplied, the upper Llriangle is not refersnced

LW [KTEGER, leading dimension of array A
M INTEGER, nudber of rows and colums in the matrix A
RiW] FEAL{N), work array

0 for pomal return

INFO INTEGER. =
= 1 it 1-th leading minor is not positive definite

onoOoOOooOOOoOOOOOoOOOO000O000

INFO = @
DDA =1, N
C
C Subtract multiples of preceding colums from 1-th colom of A
C
Do JI=1, I-1
ROWI(J) = -A(1.0]
10 CONT | NUE
CALL SMXFY (M-1+1 A(01.1).01-1 LD ROWI A(1.1))
c
C Test for non-posltive definite leading minor
c
IF (A{I.I} .LE. 0.0} THEN
INFO = T
G0 TO 40
BDIF
C
C Form I-th columm of L
G

T = 1.0s8QRT(A(1.1])
All.IN =T
DO ab J = 1+1, N
A(J, 1) = T=A[d,]1)
20 CONTINLE
S0 CONTINLUE

ALM Transactions on Muthsmatical Solvears, Vol 10, Mo, 3, Seplamber 1984
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40 EETURNM
END

SUHROUTINE LU (A, LDA, N. IPVT, INFD)

INTEGER [PVT(*)

FEAL A(LDA.*), T
PURFOSE :

Form the LU factorization of A, where L is lower triangular and U

ig unit upper triangular, with the factors [ and U averwriting A.
PARAMETERS :

A FEAL{LDA,N), matrix te be factored

LDA INTEGER, leading dimension of the array A

N INTEGER, number of rows and solums in the matrix A

IFT INTEGER[N}, sequence of pivet rows

INFO INTEGER, 0 nperml return

d iF L{J.J) is zerc (whense A is singular)

______________________________________________________________________

Form J-th colum of L
CALL SMXPY [H-Iﬂ.&{J.I}.J-1.LD'.'L.ﬂ[:.-]]I.'.'LH.!]}

Search fer pivot

10 CONT [NUE

Test for zera pivet

IF (T .EQ. 0.0) THEN
INFO = J
GO TO 50

ENDIF

Interchange rows

M2 i=1, N
T = A(],
AT, T)
ALK, 1)

20 CONTINUE

1}
AlK. 1)
T

ALM Trazssctions on Mathemeticsl Software, Vaol. 10, Ma 3, Sepressbar 1054
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Farm J-th row of U

AL I} = 1.0/4(04, 1)
CALL S0PY {H-:,m.q.ﬁ.u.:ﬁ]..1-1.L.D.-L..ﬁ.|:.r.1}|.1.m-atL.J+L‘.|}
T=-=A[].1)
DOag [ =Jd+1, N
AL, 1} = T=A(1.1)
an CONT [MUE

40 CONTINUE
[
50 FETLHNM
END
APPENDIX D
SUHROUTIME LLTS (A. LDA, N, X, H)
REAL A(LDA, *), X[*]}, B(=), XK
C
C PURPOSE:
C Solve the symmetric positive definite system Ax = b given the
C Cholesky facterization of A (as covputed in LLT).
c
C PARAMETERS:
i
o A BEAL(LDA,N}, matrix which has been decorposed by routlos LLT
c in preparation for solving a sysiem of equaticns
c
c LDA INTEGER, leading dimension of array A
| =
C N INTEGER, numbsr of rows and colums in the matrix A
C
c X FREAL{N), solutlen of linear sysblem
L
c B REAL{N). right-hand-=ide of linear syslem
C
C ----------------------------------------------------------------------
C
Do K=1, H
XK} = B(K)
10 CONT I NUE
C
DDA K=1 N
XK = X(K) *A(K.K)
DO 20 1 = K+¢1, N
WLy = X(1) - Al K)*XK
20 CONT 1MUE
XK = XK
30 CONTINUE
C

DO SDEKE=N, 1, =1
XK = X(K)*A(K.K)
D4 I =1, K-1
X1 =X1) - AK. 1)K
40 CONT INUE
X(K) = XK
E0 CONTINLE

ACM Transactions on Muthematical Software, Vol 10, Mo, 3, September 1984
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RETUFN
EMD

SUBROUTINE LUS (A. LDA, W, 1PYT, X, B)
INTEGER 1PVT("}
REAL A(LDA,*), X[*}, B(*), XK
PFURMISE:
Solwve the linear system Ax = b given the LU factorization of A [as
computed in LU,
PARAMETERS

A REAL{LDA N), matrix which has been decamposed by routlne LU
in preparation for sclving a system of equalions

LDa INTEGER, leading dirensisn of the array A

N INTEGER, number of rows and colums in the matrix A
IPYT INTEGER(N), sequence of pivel rows

X REAL{N]), solution of linsar sysiem

B FEAL{M}, right-hand-side ol linear sysiem

......................................................................

DIDK =1, N
X(K) = B(K)
10 CONTIMNLUE
DO 20 K= 1, N
L = IPVT(K)
¥ = X(L)
X{L) = X(K)
KiE) = XK
20 CONTINUE

D4 KEm ) N
XK = X({K) *A(K.K}
DO 30 | = Ke1, N
X(1) = X(1) - A(],K)"XK
30  CONTINUE
X(K) = XK
40 CONTINUE
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