ALGORITHM 679

A Set of Level 3 Basic Linear Algebra
Subprograms: Model Implementation and
Test Programs

JACE J. DOMGARRS

University of Tennesses and Cak Ridge Mational Labaratary
JEREMY DU CROZ and SVEM HAMMARLING
Mumerical Algorithms Group Lid,

and

sl DLUFF

Harwell Laboratory

Thiz paper deseribes n model fmplementation and teat asftware for the Level 3 Bosic Linear Algebra
Subprograms | Level 3 BLAS), The Level 5 BLAS are targeted at matrix-matrix operntions wich the
aim of providing more efficient, but portehle, implementations of algorithee an high-perfermance
compiters. The mode] implemsentation provides & portable sel of Fortran 77 Level 3 BLAS for
machines where specialized implementations do not exist or are not required. The test software aime
to werify that specinlized implementations mest the specification of the Level 3 BLAS apd that
implemsemiations &ee correctly istalled,

Cutegories and Subject Descriptorss F.21 [Analvsis of Algorithms and Problem Complesity]:
HNumerical Algorithms and Problems—ormpidetions on mateiess: G100 [Numerical Analysis|:
General—mirmerical algorithms; (.05 [Mumerical Analysis]: Mumerical Lineor Algehra—Unear
systems [direct and deradive mathads | (4 |[Mathematics of Computhng|: Mathemarical Soltwsare—
carbifieetion oan festings efficiency; portobiiiy relinbidity ong rebuasiness; rerificotion

General Terms Algorithmes, Measurement, Performance, Helinhility, Verifiention

Addditicnal Koy Words and Flirsses: Extended BLAS, wtilities

1. S8C0OPE OF THE ALGORITHM

[[4] we have delined the specification of & set of Level 2 Basie Linear Algebra
Subprograms for zelected matriz-matrix operations. They provide a standard
framewnrk for developing modular, portable, and efficient Fortran 77 code for

The research of . .1 Dongarea was supported in part by the Applied Mathematical Sciences
subprogram of the Oifice of Energy Research, U5, Deparineent of Energy, under contrace W1 108-
Eng-38.

Authors' sddresses: J.). Dongoern, Computer Scienes Departiaent, University of Tenneasse, Knox-
vilbe, TH 370606-1501; J, Dha Croz and 5. Hammarling, Mumerical Algorithms Group Lid, Wilkinson
Houss, Jordan Hill Road, Oxford OXZEDE, England; [Doff, Computer Science and Systoma
Mvision, Harwell Loboratory, Oxfnrdshine 0OX11 0RA, England,

Permiasion 1o copy withour fee all or part of this material i= granted provided that the copies are not
made or diatributed for direct commencinl advantage, the ACM copyright naotice and the title of the
publication nnd its date appeor, nnd notice is given that copyving e by permission of the Assccialion
for Computing Machinery, To copy otherwize, or to republish, reguires a fee ondfar specific
PETIRIBAI0N.

o 1980 ACA OHE-SR00 ORI (018 30000

ACH Transsciicns on Maothematical Sofvwere, Vol 16, Moo 1, March 1550, Papes 15-28.

Algarithm G79: A Set of Level 3 Besic Linear Algebra Suborogram:s . 18

block algorithms for many computationzl problems in linear slgebra. We also
anticipate that they will be wzelul building blocks in other areas of numerical
software. Our hope is that specialized implementations of the Level 5 BLAS will
ke developed for high-performance computers, and thus programs that call the
Level 3 BLAS can be efficient across a wide range of machines.

To support and encourage the use of the Lavel 3 BLAS, this paper describes
Ewo software components:

(1) A medel implementation of the subprograms 1n Fortean 77, This cnables the
Level 3 BLAS 1o he used on any machine, regardless of whether a specialized
implementation exists, It is described in Section 2,

(2] Test programs designed to ensure that implementations conform to the
gpecification and have been correctly installed (zee Section 4).

Seetion 3 contains some advics on developing specialized implementations of the
subprograms.

2. THE MODEL IMPLEMEMTATICN

2.1 Programming Considerations

There are many mathematically equivalent wavs to implement the Level 3 BLAS
even in standard Fortran 77 as discussed in Section 3. 'T'he choice of method for
the modsl implementation has been muided by the following considerations:

{1} The elements of the array A are accessed sequentially, column by column,
whenever possible. On vector-processing machines this allows the columns
of the array to be recognized as contiguous vectors (hy the Fortran compiler).
On virtual-memory machines it kesps page swaps to a minimum,

{2 Provision s made 1o skip the innermost loop if relevant elementz of the
matrices are zero. This can vield a considerable gain in efficiency if there are
gerd eniries in the input macrices, for example:

IF{ BILJL.NEXERO 'THEN
TEMP = ALPHA®B(L,I}
Dovan =1, M
C{LJd) = C(IJ) + TEMP*A{LL}
i COMTIMUE
END [F

2.2 Efficiency

The mode]l implementation has not been desizned to be particularly efficient on
any gpecific maching, although the organization of the code is auch that it should
perform tolerably well on conventional sealar machines with o rood optimizing
compiler and pozsibly on some single-processor vector machines with a good
optimizing compiler. Our main gim 15 a elear and steaightlorward implementation
of the algorithms in the same atyle as the modsl implementation of the Level 2
BLAS [8]. Section 2 discusses how (o implement the Level 3 BLAS elficiently,

ACM Transoctions o Methemotical Saftwaee, Yol. 165, No. 1, Mesch 12840,

20 -« J Dongacra ef al.

2.3 Language Standards

The model implementation of the Level 3 BLAS is written entively in portahle
standard Fortran 77 with two exceplions:

(1) For the routines that require a “double precision complex”™ data type (names
heginning with 2), we have used the following extensions to standard Fortran:

COMPLEX®LE type specification statements;

DCONIG and DOMPLY intrinzic functions whose argument. and result
are both of type COMPLEX" LS

DELE intrinsic function with 8 COMPLEX*16 argument and DOUBLE
PRECISION result, delivering the real part of the argument; and
COMPLEX*16 constants formed [rom a pair of double precigion con-
stants in parentheses,

{2) For the arguments of type CHARACTER that specify options, we wish to
allow either uppercase or lowercase characters 1o be supplied. Lowercase
characters are not part of the standard Fortran character set, but their use
is 50 widespread that it would be unfriendly not to allow them. This can be
an ohstacle to portability on some systems (a5 is discussed in Section 7 [3]),
but we have avoided most of the problems by using the auxiliary LOGICAL
finetion LEAME described in the Appendix.

24 Auxiliary Subprograms

Two auxiliary subprograms are called by the Level 3 BLAS: an error-handling
routine XERBLA and the character-comparigon routine LSAME. They are
identical to the subprograms of the same names in the meodel implementation of
the Level 2 BLAS. Hoth these subprograms may be selectively modified by
installers of the package as described in the Appendix, No changes need be made
to the rest of the model code.

3. NOTES OM IMPLEMENTATICN

Here we offer some advice to anyone planning to develop a specialized, machine-
specific implementation of the Level 3 BLAS. The following broad possibilities
should be considered:

{n) Rewriting the algorithms in Fortran so that the structure of the inner loops
is better adapred to the architecture of the machine.

ih) Using calls to Level 2 BLAS.

i¢) Using machine-specific extensions 1o Fortran, such as array-syntax, compi-
ler-directives, or calls Lo library routines.

{d] Coding the routines in assembly language.

Approaches (h), (e}, and {d) should be considercd as extensions of (a), nol as
slternatives. Implementers should not congider translating the mede] implemen-
tation into calls to Level 2 BLAS, extended Fortran, or assembly language
without first considering whether the structure of the model implementation is
well adapted o their machine.

ACM Teansactions cs Metbematicol Soffwars, Yal. 18, Ke L, March 1350

Algorithm 679 A Set of Level 3 Basic Lingar Algebra Subprograms « 2

We wish to draw the atlention of implementers to the following possible
approaches to restructuring the code:

(1} Permuting the Nesting of Loops. Each matris—matrix operation per-
formed by the Level 3 BLAS involves triply nested loops. The code mav he
reorganized in six different ways by permuting the order of nesting of the loop
indices, as deseribed in [3]. Different organizations are likely Lo offer advantages
on different machines in terms of maximizing the use of vector registers, and
minimizing the use of coche memory or exploitation of loop-bazed parallelism,
for examyple,

(2) fetroducing o Block Structure, Additionsl loops may be added to the code
in order 1o break the computation into operations on submatrices of suitahle
size, As in (1), this mav be important either to minimize memory traffic (if the
aubmatrices heing operated on can all be stored in high-speed cache or local
memory) or to exploit parallelism {if operations on separate submatrces can be
performed in parallel).

(3) Using Alternative Segments of Code for Different Shapes ond Sizes of
Matriees. 1t is essential that implementers should not confine their efforts to
achieving high performance only when all the matrices are large and square. In
the intended applications of the Level 3 BLAS (as illustrated in Section 9 of [4],
for example), the matrices are often long and thin, and good performance in this
cage is equally important. It is likely thal come implementations need to switch
between different segments of code, according to the absolute or relative values
of the matrix dimenzions s, i, and &

() Lstng Work Armpvs o Al Confipuows Storpge, On some machines
performance is significantly degraded if veclors are not stored contignonaly. In
order to allow contiguous storage it may be necessary to copv & row or rows of a
matrix inko a temporary work vector.

As a general guideline, efficient implementations are likely to be achieved by
reducing the ratio of memory Lraffic to arithmetic operations, making full use of
vector operations (if available), and exploiting parallelism (if availahle).

However, note that in some envirenments exploitation of fine-grain parallelism
within the Level 3 BLAS may interfere with possible conrse-grain parallelization
al higher levels in the program.

On many high-perfermance computers, schieving an optimal implementation
of the Level 3 BLAS iz likely to be a more difficult task than achisving the same
for the Level 2 BLAS. However, we helisve that it will be well worth the effort
since it will enable a wide range of higher level algorithms to be transported onto
those machines without serious loss of efficiency [1].

Timing programs for all the Level 3 BLAS are available from netlib [2] or
Trom Chie authors.

As an illustration of whal can be achieved we show in Table I the speed of
implementations of particular Level 1, 2, and 3 BLAZ routines or routines
of similar functionality, on three different machines. The routines are for
Level 1: BLAS, SDOT/DDOT, and SANPY/DAXDPY: for Lewvel @ BLAS,
SGEMV/DGEMY {or eguivalent for matrix—vector multiply); for Level 3:

ACM Trnmctions on Mathematical Softwere, Val. 16, Mao B, March 1960,

22 - J. J. Dongarra et al.

Table [Performonee in Milops of BLAS

Machans
CRAY-2 TRM 3YE Alliant FX /8
Memsary

Peak Performance reference Flops 065 10 o]
Loval 1 SDOT/DOOT e P 151 A 14
SANDPY/DAXDY 3n 2n 121 26 14

Level 2 BGEMY/DGEMY [2R a0 i 5
Lovel 3 SGEMM/TIGEMM Ar® Ir® 437 A 43

Note: Memory references und flops are for matrices and vectors of arder a. The Miflep rates
nee the maximum rates for large o

BLAS, SGEMM/DGEMM for eguivalent [or matriz-matriz multiplyl. The
speeds quoted are the maximum speeds observed for tuned machine-specific
implementations of the routines, We give expressions for the amount of memory
traffic and the number of floating-point operations | flops) for each ealeulation,

We show the resulis of timing the routines on three computera: the CRAY -2
(with vector register and local memory), the IBM 3080/%F {with cache and
vieetor registers), and the Alliant FX/8 (with parallel processors, cache, and
veetor registersl. We also show the manulaciurer’s peak performance figures for
each maching, Apart from the Alliant figures (limited by the speed of the memaory-
to-cache transfer), the Level & routines attain a performance remarkably close
o the peak, and the clear advaniage of using higher level BLAS s seen on all
machines. These fGgures were ohtained on lightly loaded machines. Because the
Level 3 BLAS make fewer demands on memaory, the comparison iz likely to be
evien more Favorable on more heavily loaded machines.

Specialized implementations should, where possible, use a straightforward
comparison of characters, rather than the routine LEAME used by the model
implementation,

4. THE TEST PROGRAMS

A geparate test program exists for each of the four data bypes (REAL, COMPLEX,
DOUBLE PRECISION, and COMPLEX®16) All test programs conform to the
zsame patiern with only the minimum necessary changes, 2o we talk generically
about “the test program”™ in the singular.

The program hss been desizned not merely Lo check whether the maodsl
implementation has been correctly installed, but slso to serve as o validation
tool, and even as o modest debugging aud, for any specialized implementation.

The program has the following features:

—The parameters of the test problems and the names of the subprograms to be
tested are specified by means of a data file, which can easily be modified [or
debugeing.

—The data for the fest problem are generaled internally, and the results are
checked internally,

—The program checks that no arpuments are changed by the routines except the
designated culpul vector oF matrix.

ACM Transactions on Muthematical Scftwar, Wol, 16, Ne. [, Murch 15230

Algorithm 679: A Set of Level 3 Basic Linsar Algabra Subprograms * 23

—All error exits (caused by illegsl parameter values) are teated.

—The program generates a concize summary report on the lests and oplionally
can generate o “history” or “snapshot”™ fle as an additional debussing aid.

4,1 Parameters of the Test Problems

Each test problem (ie., each call of a subprogram to be tested) depends on a
choice of valuez lor the following parameters (where relevant to the particular
subprograms): the dimensions s, o, and & cthe eptions SIDE, UPLO, TRANE,
and DIAG; and the scalars o and &

All relevant combinations of the options SIDE, UPLO, TRANS, and DIAG
are tested. The wvalues of the other arpuments are defined by a data file.
Specifically, the program reads in a set 3, of values for »e, 1, and &, a set 5, of
values [or o, amd a sel 5, of values for 5.

The test problems are then generated in a nested loop structure:

for m € 5,
[orn E 8,
for ke &
for all relevant values of SIDE, UPLO, TEANS, and DIIAG
Tora E 5,
for 3 E 8.,

(OF course, arguments not relevant to the routine are omitted from the loop
SEFICTITE.)

Obwviously, the sels 2, 5., and s should be az small as possible; otherwise, a
very large number of problems are senerated, and the test program takes a
forbaddingly long time 1o run, On the other hand, for 8 comprebensive test it iz
ezgential to exercize sll segments of the code and sll special or extreme cases
such asm, m, h=0or o= 0, o= 1, =10, 3= | Mote that we cannot be sure
what cases are regarded sz special or extreme in any specialized implementation,

A data file, which specifies soiz of parameters suitable for many machines, is
supglied with the Lest progeam, but installers and implementers must be alert o
the poszible need o extend or modity them (see the Appendix).

4.2 Data for the Test Problems

[data for the elements of the matrices 4, B, and O are generated using a simple,
portable congruentinl number generator. Values for the matrix elements
are uniformly distributed over (=05, 0.6). Care is taken to ensure that the data
have Mull working accuracy, Some of the matrix elements are 26t to zere 2o that
special code (see Section 2) can be tested. When DIAG = "IN°, 1.0 iz added to the
diagonal elements of criangular matrices to ensure that they are reasomahly
well conditioned, For each call of 8 routine the argument LDA iz set 1o
min LDAMIN + 1, m,.l, where LDAMIN (s the minimum permitted value of
LDA for that eall, and rhy,. is the maximurn value permitted by the array
dimenzions in the program; LDB and LDC are set in the same way,

Elements in the arravs that are not to be referenced by the subprogram (e,
the subdiagonal elements when UPLO = ‘U°) are set to a “rogue” value (—107)
to increaze the likelihood that a reference to them is detected. It a fatal error 12
reported and an element of the computed resalt is of order 107, then the routine
has almost certainly referenced the wrong element of an array.

ACH Transoctions on Methemotenl Solwace, Yol 18, Mo, 1, Manch 19940,

24 + J. . Dinggare et al,

4.3 Checking the Results

After each call of & subprogram being tested. s operation 15 checked in two
WHYE,

Firzt, each of itz arguments, including all elements of the array arguments, is
checked to zee whether it has been changed by the subproscam. IF any argumsent,
other than the specified elements of the result matrix, has heen changed, a fatal
error is reporied. (This check includes the supposedly unreferenced elements of
the arrays, which were initialized with a rogue value.

Second, the result matrix computed by the subprogram iz compared with the
result computed by simple Fortran code. We do not expect exact agresment
because the two results are not necessarily computed by the same sequences of
Aoating-point operations. We do, however, expect the differences 1o be insignif-
eant to working precizion in the following sense.

In the matrix multiply routines, each element of the result vector is defined by
an expression of the form

A
0y — dx .-E| aaby; + Ho.

The abzolute error in the computed inner product and subsequent anthmetic

i5 bounded by

ey = 6| = emiy

wheara
&
by =18 egl + el E [aall byl
dm=]

For each element ¢, of the result, the program computes the test ratio:

| &5 = il
€Ly

Theoretically, this test ratio could be as large as #, but in practice we have
never observed such growth, snd so the ratio s compared with a constantc
threzhold value, which iz defined in the date file. Test ratios greater than the
threshold are flagped az “suspect.” On the basiz of experience a thresheld value
of 16 1z recommended {the largest value ohserved on a variety of machines has
been 9.7). The precise value 15 net eritical, Errors in the routines are most likely
to he ercors in array indexing, which almost certainly lead to a totally wrong
result. A more subtle potential error 1z the wse of & gingle precision variable in a
double precizion computation. This i= likely to lead to o loss of half the machine
priecision. The Lest program regards a test ratio greater than « = as a fatal error.

Similar teats are performed for the other Level 3 BLAS routines, in each case
separating suspect resulis from sbviouzly inaccurate ones.

MNote that the test programs make no attempl to generate data that would
reveal potential numerical instability in an implementation of the Level 3 BLAS.
{This would be a vain task without detailed knowledge of the algorithm.) Passing
the teszts should not be taken to mean that the requirement for numerical stabilivy
{zee Section 7 of [4]) bas been zatisfied.

ACM Trazmections on Mathemetles] Softeare, Vel 16, Mo, 1, March 1990

Algarithm 673 & Set of Level 3 Bagic Lingar Algebra Subprograms . 25

APPEMDNG INSTALLATION NOTES

AT, Insialling the Model Implementation

The subprograms fall into four sets aceording to the data tvpe of the matrices
and vectors: REAL, COMPLEX, DOUBLE PRECISION, and COMPLEX*16
(subprogram names beginning with 5, C, D, and Z, respectivelv). Choose which
gt or sets are to he installed,

Examine the suxilisry subprograms XERBLA and LEAME (which are inde-
pendent of the data typel, and consider whether thev need to be modified.

The subprogram XEEBLA is called when one of the Leval 32 BLAS detects an
illegal value of one of its arguments. The verasion supplied with the model
implementation wriles o message to the standard output channel, for exarmple,

** On entry to STREM parameter number 3 had an illegal value.

and then executes a STOP statement. Installers mav wish to redirect the error
message to a different output channel or to replace the STOP astatement by a
call to system-zpecific exception handling or traceback mechanizms,

The logical function LSAME is uged to perform all character comparison in
the Level 3 BLAS in a case-insensitive manner. For example, the expression

LEAME(UFLD, 1)
i3 equivalent Lo
(UPLOER. "L OB UPLOCEG. '),

The supplicd version works eorrectly on all svstems that vse the ASCI code
lor internal representation of characters. For systems that use the EBCDIC code,
one constant must be changed. For OO svetems with 6-12 bii, representation,
alternative code i= provided in comments. Any of the versions work correctly on
all systems if only uppercase characters are passed as arguments.

Compile the chosen sets of subprograme, together with LSAME and XERBLA,
and create an object libra rv.

AZ. Testing the Model Implementation

Select the test program or programs corresponding to the data tvpes handled hy
the subprograms that have heen inatallad.,

An annotated example of a data file for the program can be obtained by editing
the comments at the start of the main program. This defines the names and unit
numbers of the output files, various parameters of the tests, and the names of
those subprograms that are to be tested. The data file for the REAL routines is
illustrated in Figure 1. The first 14 records are read using list-divected output,
and the lnst 6 records are read using the format (A8, L.2).

Change the first and third records of the data file, if necessary, to ensure that
the file name is legal on your ayatem. Mo other changes to the data fles should
be necessary before an initial run of the test program, bul seme changes may be
neaded 1o ensure that the tests are sufficiently thorough (zee AZ, A4, and A5,

The data file is read from unit NIN, which is set 00 5 in a PARAMETER

statement in the main program; change this il necessary.

ALM Tranawctions an Machemmzal Soltware, Val, 08, Mo, 1, Masch 1500,

26 -). Dongarra et al

Reoord no. Record conlenls

| *EELATS . SUhT MAME OF SIBAARY QUTPUT FILE

i t UNIT MIMGER OF SLAMARY FILE

] "EBLATI, SMAP® ekl OF SWAPSHOT OUTPUT FILE

4 -1 UNIT MIMAER OF SHAPSIIOT FILE (NOT USED IF .LT. 0)

3 F LOCICAL FLAG, T TO BENIND SMAFPSHOT FILE ATTER EACH RECDRIR.

& F LOGICAL FLAG, T TO STOP ON FALLURES.

T T LOGICAL FLAG, T TO TEST ERROR EXITE,

1 16.0 THROSHHD YALUE OF TEST RATIO

@ & NIMBER OF WALUES OF M

11 . 1% 30550 VALUES OF K

1L 3 MIMAER OF VALUES OF ALFIA

1z o.3 1.0 0.7 VALUES OF ALFHA

1% 1 HIMEER OF VALUES OF BETA

14 0.0 1.0 1.3 VALUES OF DETA

15 SGEG T PUT FOFOR MO TEST. SAME COLIRME.

L6 aEded T PUT F OFIR 30 TEST. SAME COLURNS .

7 ATHWS T BUT F FOR MO TEST, SaME COLUMNG .

18 STRS T PUT F FOR KO TEST. SAME COLLMNE,

|§ SS5YRE T PUT F FOR M0 TEST. SAME COLUMNS.

P11 SETRIK T PUT F FOR MO TEET. SAME OOLIMNS.
Fipuare 1

Compile the test program, link in the required subprograms, and run the
ProgTAam.

Mate: the test program includes a special version of the auxihary subprogram
YERBLA, This is for use with the test program only, It iz needed to check that
XERBLA is called by the Level 3 BLAS if and only if an error exit is intended.
When the Level 3 BLAS are linked into the test program, they must be linked
to this special version of XERBLA. If the model implementation of XERBLA is
uzed for teating, the test program stops prematurcly after writing an error message
from RERBLA,

Tahle I1 gives the approximate times taken to run the test programs using the
supplied data file and the model implementsation of the subprograms on various
rachines.

If the tests using the supplied data file are completed successfully, consider
whether the tests have been sufficiently thorough. For example, on & machine
with vector registers, at least one value of N greater than the length of a vector
regiater should be used; otherwise important parts of the compiled code may not
be exercised by the tests.

A Teansections on Mathematzzal Salwaee, Yiol, 16, Mo, 1, Merch 159H.

Algarithm G79: A Set of Level 3 Basic Linear Algebra Subprograms .« 27

Table [1. Execution Time in Seconds of Test Progrums
an Different Machines

2] C I A
AR H 204 Gl T28 1425
WA 8800 WS 4 (] 4 102
1B rnYE & L =} 15
CRAY-2) 11 121 —

The Leste may fail with either “suspect resulis™ or “fatal errors.” Suspect
risults, with a test ratio slightly greater than the threshold, are probably caused
by anomalies in floating-point arichmetic on the machine: if this cxplanation is
considered to be sufficient, incresse the value of the thresheld specified in the
data file. Fatal errors most probably indicate a compilation error or corruption
of the source text. An error detecled by the swstem, for example, an array
subzeript out of hounds or use of an unassigned variable, is almost certainly due
to the same couses, IF che avstem does not provide adeguate postmortem infor-
maticn about the ervor, the snapshot file can give a little help (see Section A5,

A3, Testing a Specialized Implemantation

Proceed initially as described in Section A2,

If the implementation does not use an error-handling subprogram XERBLA
compatible with the model implementstion, then the data file must be modified
to suppress the lesting of error exits.

Consider very carefully what changes need to be made to the data file to ensure
that the implementation has been thoroughly tested. For example, if the tech-
nigue of loop unrolling is applied, make sure that sufficient values of & are used
ta test all the clean-up code; if ALPHA EQ. —1.0is treated as o special case, add
=10 o the values of ALFPHA.

Ad. Changing the Parameters of the Tests

The values supplied in the data file must satisfy certain restrictions, defined by
the following symbolic constants in the test program:

Mume Menning Vialue
NIDAIAY MMuximuam number of valses of M. M, and K i
NALMAX Wlnxirmam number of valoss of ALPEA 7
MEEMAX hlaximam number of valuees of RETA 7
MWhiAX Mlaximuem value of M, N, K 4]

Il necessary, modify the PARAMETER statements that define these symholic
constants,

A5, The History ar Snagshot File

The main output file from the test program contains a concise report on the
success or failure of the testz of each routine and the reazons for failure il il
ooeurs. Optionally, the program also writes to a saparate [le a one-line record

ACM Traneactione oo Muibematical Software, Yol 16, Ne 1, Barch 156040

23 . JoJ. Deegarra et al

mving details of the arguments in each eall of a Level 3 BLAS subprogram, tor
exarmle

&5 STRSM (L, 'U7 T 0, 1, 5 —1.0, 4,11, B, 5)

iThe number 25 indicates that this is the 25th call of STRSM.) The record is
written immediately before the routine iz called.

As a cumulative *history™ file, this record enables the user to monitor which
tests are passed successfully hefore a failure oceurs. Moreover, if an exception
oeeurs in the Lavel 3 BLAS routine (e, array bound error or division by zerol,
the last record written to the file should give details of the call that caused the
exception. However, en some systems the cutput buffers are not emptied when a
program is terminated abnormally, If the logical flag in line 5 of the data file is
get tor T, then the program rewinds the file after cach record is written in order
to Toree empiving of the buffer; in this mode the file presents a one-ling
“smapshot”™ of the current or most recent call Lo a Level 3 BLAS routine.

REFEREMCES

1, DesMEL, J. W.. DONGARRS, J, 4, D Croz, J., GEEENEAUM, A, HassaBuiweG, 5, asn

SoreENsEN, [Prospectis for the development of a linear algebaa Librooy for high-performance

computers, Argunne Mational Laberntory Heport, ANL-MUS-TM-87, Argonne, (1L, Sepe. 13ET.

DosGanna, 1 J, anng Grosse, B Disteibotion of mothemmatical software via electronie mail.

Comnmarn, ACM 360 (hay 18T, 40E-407,

4, Domcaris, J.J., Gustavsow, F, adp Kage, A, Implementing lingae algeben algonthms for
denan patrices on o vectar ppeline machine, STAM Se 35, 1 (Jan, 1884), 91-113

i Doscakira, J. A, D Croe, J., DUEF, 1, aND HAMMARLING, 5. A set of Jevel 3 basic linesr
alpehra subprograms. This isaoe, pp, 1-17.

5. Doxcakra, L, T Croe, 1., HasMARLING, 5, axn Haxgown, [An extended sec of foriean
hasic linear algebra sulbpesgrenms, ACM Trars, Motk Softee, T4 1 (Mar. 1988], 117

6 Doucakia, 0, DU CROE, 0, Hastmareass, S, anb Haxson, B Algaritho 666 An exterded
set ol bagie linesr nlgehra subprograme: Model implementation and test programe, ACM Tros
Marh, Sefow. 14, 1 {Mar, 1558), 18-32,

i

Received Oetabor 1995 mvized Fehmunry 19689; accepled March 1955

ACM Transactions on Mothematical Saftwans, Vol, 16, Neo 1, Mareh 1930

