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1. INTRODUCTION 

S I C E D R  is a F O R T R A N  subrout ine  for improving the  accuracy  of  a compu ted  
real  eigenvalue and improving or comput ing  the  associated eigenvector.  I t  is first 
used to generate  informat ion during the  de te rmina t ion  of the  eigenvalues by  the  
Schur  decomposi t ion technique. In  part icular,  the  Schur  decomposi t ion  technique  
results in an or thogonal  matr ix  Q and an upper  quasi- t r iangular  mat r ix  T, such 
tha t  

A = QTQ w. (1.1) 

Matr ices  A, Q, and T and the approx imate  eigenvalue, say h, are t hen  used in the  
improvemen t  phase.  S I C E D R  uses an i terat ive m e t h o d  similar  to i tera t ive  
improvemen t  for l inear sys tems  to improve  the accuracy  of k and  improve  or 
compute  the eigenvector  x in O(n 2) work, where  n is the  order  of  the  mat r ix  A. 
T h e  me thod  used in S I C E D R  is described in [1, 5]. 

2. USAGE 

For  a description of the calling sequence, see the listing presented  a t  the  end of 
this paper.  

S I C E D R  factors  the  mat r ix  into i ts  Schur  decomposi t ion,  and  this  is t e r m e d  
the p r e - S I C E  phase. A modificat ion of the E I S P A C K  rout ine  I-IQR2 is used for 
this purpose (see [4, pp. 100-101] for details). 
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During the improvement phase {or SICE phase), SICEDR is called with 
matrices A, T, and Q and the approximate eigenvalue W. On return from 
S |CEDR the improved eigenvalue is stored in W and the improved or computed 
eigenvector in X. W and X contain the corrected eigenpair produced by the 
method at the next to last iteration. A still more accurate eigenpair can be formed 
if on return from SICEDR the user adds W to C W  and X to C X  in double 
precision and saves the results in double precision, where C W  and C X  contain 
the corrections to W and X, respectively, at the final iteration when the method 
terminates. 

The routine SICEDR is provided as a driver to simplify usage. SICEDR 
performs both the pre-SICE phase (reduction to upper form) and the SICE phase 
(improvement). 

In addition to the EISPACK package, the LINPACK [2] routine STRSL and 
the BLAS [3] package are used to perform fundamental operations. 

To produce a double-precision version of SICEDR in addition to making the 
obvious changes, such as changing variables to double precision and using double- 
precision intrinsic functions, it is necessary to replace routine STRSL by DTRSL 
and use the double-precision version of the BLAS. In addition, there are two 
critical parts of the calculation which m u s t  be performed in an extended precision. 
In the single-precision version, the routine SDDDOT and SDADD perform 
double-precision accumulations. In a double-precision version, they must be 
replaced by, say DQQDOT and DQADD, the extended precision counterparts. 
These extended precision routines would accumulate in quadruple precision, a 
nonstandard FORTRAN construct. Such routines are not included here, but can 
be constructed from the BLAS routines DQDOTI and DQDOTA. 

¢ 

3. S U M M A R Y  OF THE ALGORITHM 

We begin with a brief discussion of the basic algorithm as described in [1]. 
If ~, x is an approximate eigenpair, and ~ +/z, x + y is a neighboring eigenpair, 

then 

A ( x  + y") = (~ + ID(X + y'), (3.1) 

this relation being exact. We assume that  x is normalized so that  II x II ~ = 1 ffi x~, 
and we remove the degree of arbitrariness in :~ by requiring that  y~ ffi 0. 
Rearranging this equation, we have 

( A  - ~ I ) : ~  - I~X ffi )~x - A x  + #:~, (3.2) 

where the last term on the right will be of second order in the errors of )~, x. The 
equation above may be simplified by the introduction of a vector y deemed by 

yW = (yl, y2 . . . . .  y,-1, #, y,+l . . . . .  yn), (3.3) 

so that y gives the full information on both # and y. The above equation then 
becomes 

B y  ffi r + y~:~, (3.4) 

where r ffi h x  - A x  is the residual vector corresponding to ~, x and B is the 
matrix A - h i  with column s replaced by -x .  
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When the original approximate eigenpairs have been found by Francis' double 
QR algorithm, we have an orthogonal matrix Q and a quasi upper triangular 
matrix T, such that 

A -- Q T Q  T. (3.5) 

T is triangular apart from possible 2 × 2 diagonal blocks corresponding to complex 
conjugate eigenvalues. We solved a succession of linear systems of the form (3.4) 
with varying right-hand sides g. It will be convenient to introduce the generic 
notation Z - h i  = Zx and (Z - kI)e~ = Zxe, = zx~. We may then rewrite eq. (3.4) 
in the form 

where 

[A~ - (x + a~8)eW]y = (A~ + ceW)y = g, 

c = - x  - axs. 

Using the orthogonal factorization, we have 

T T T Q[Tx + Q ce~ Q]Q y -- g, 

giving 

where 

(Tx + dfW)QWy = QWg, 

( 3 . 6 )  

(3.7) 

d = QTc, fT  = eWQ and g = r + Ys:~. 

The matrix d f  T is a rank one modification of the quasi-triangular matrix Tx. To 
solve this system, we need to retriangularize Tx + d f  w. Accordingly, we premul- 
tiply the system by two orthogonal matrices Q1 and Q2, giving 

Q2QI(T~, + d fw)vWy  = V2QiVWg, (3.8) 

where Q~ and Q2 are products of elementary plane rotations determined as 
follows. 

The matrix Q~ is such that 

Q l d =  (P2P3 . . .  P,~)d= yel where y- -  HdHz (3.9) 

and P~ is a rotation in the (i - 1, i) plane designed to annihilate the i th component 
of P,+~P~+2 . . .  Pnd. We have 

Q~(T~, + d f  T) = Q~T~, + y e l l  T, (3.10) 

where Q~T~ is upper Hessenberg, while ~,el fW is null except in the first row. Hence 
the right-hand side is also an upper Hessenberg matrix H. H m a y  now be reduced 
to upper triangular form, Tx, by premultiplication with Q2 defined by 

t ! ! 
Q2 = Pn . . .  P3P2,  (3.11) 

where the premultiplication by P ;  annihilates the element (i, i - 1) of the current 
matrix by a rotation in the (i - 1, i) plane. Hence, the triangular system remains 
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to be solved 

~, QWy ffi Q e Q 1 Q T g .  (3.12) 

A system with the matrix B may thus be solved in O ( n  2) operations. 
By its nature, eq. (3.2), which leads to eq. (3.12), is mildly nonlinear. Thus we 

repeat the process with x + y and h + # as the new approximations. The 
convergence theorem for this iterative procedure can be found in [1]. Since an 
orthogonal triangularization of A is available, it becomes practical to update the 
matrix B at each stage of the iteration, using the current approximation to the 
eigenpair. Accordingly, we treat the (p + 1)th step of the iteration as though it 
were the first step in the basic iteration starting with values X (p) and x (p). Since 
we treat each iterate as if it were the first, the term g:~ in eq. (3.2) is zero. Thus 
g = X x  - A x .  The algorithm then becomes 

(A - h(P)I)~ (p) - y(~P)x (p) ffi r (p) ffi ( )~ (P) I -  A ) x  (p) (3.13) 

where 

x ( P  +1) _~_ x(P ) ÷ y(P), h(P+l )  ~ k(P) + y(P). 

We may rewrite this as 

B(P)y  (p) ffi r (p), (3.14) 

where 

We now write 

~ ( p )  B (p) = A - h(P)I + c(P)e T, c (p) = - x  - ~ 8  • 

B(p) ffi Q(T~p) + Q T c ( P ) e T Q ) Q T  

ffi Q(T(x p) + d ( p ) f T ) Q  T (3.15) 

and solve (3.14) by the triangular system 

~ p ) Q T y ( p )  = Q~p) Q~p) QTr(p)" (3.16) 

Convergence is detected by examining successive values for the correction to the 
eigenvalue. When the previous correction is smaller by a factor of 2 than the 
current correction, the iteration is stopped. 

Note that Q and f will be independent of p ff s is not changing from one 
iteration to the next. The rotations involved in Q(~P) and Q~P), on the other hand, 
differ from one iteration to the next; but because the number of operations in 
each retriangularization is O ( n  2 ) and since some ½n 2 multiplication and additions 
are necessarily involved in the solution of a triangular system, this is quite 
acceptable. 

If we examine the number of operations for the reduction to quasi-triangular 
form, the p r e - S I C E  phase, we see that  there are roughly 10n 3 + 30n 2 operations 
involved (here, an operation means a multiplication followed by an addition). For 
the SICE phase there are approximately 13n 2 operations per iteration. Assuming 
3 iterations to improve an eigenpair, the total count is approximately 39n 2 
operations. 
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ALGORITHM 

[A part of the listing is printed here. The complete listing is available from the 
ACM Algorithms Distribution Service (see page 409 for order form).] 

SUBROUTINE SICEDR(LD, N, A, T, Q, w, x ,  CW, cx ,  K, Y1, Y2, R, Z1, 
* WR, Wl, JOB, INFO, INIT) 

INTEGER I, J, IPI, IERR, LD, N, K, JOB, INFO, INIT 
REAL A(LD,I), T(LD,I), Q(LD,I), WR(1), WI(1) 
REAL W, X(1), CW, CX(1), YI(1), Y2(1), R(1), ZI(1) 

THIS SUBROUTINE PROVIDES TWO FUNCTIONS DEPENDING ON 
THE VALUE OF INIT. 

l) 

2) 

TO REDUCE A MATRIX TO QUASI-TRIANGULAR FORM, 
ACCUMULATING THE ORTHOGONAL TRANSFORMATIONS, 
AND DETERMINE THE EIGENVALUES OF THE MATRIX. 

TO IMPROVE THE ACCURACY OF AN EIGENVALUE AND 
IMPROVE THE EIGENVECTOR OR COMPUTE AND IMPROVE THE 
EIGENVECTOR, GIVEN THE ORIGINAL MATRIX, AN 
APPROXIMATE EIGENVALUE, THE QUASI-TRIANGULAR MATRIX, 
AND THE ORTHOGONAL MATRIX WHICH PRODUCED THE 
QUASI-TRIANGULAR FORM. 

THESE FUNCTIONS ARE SIGNALED BY THE PARAMETER INIT. 

SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 
SIC 

1¢ 
2@ 
3(b 
4¢ 
5¢ 
6¢ 
7¢ 
8¢ 
9¢ 

1¢¢ 
11¢ 
12¢ 
13¢ 
14¢ 
15¢ 
16¢ 
17¢ 
18¢ 
19¢ 
2¢¢ 
21¢ 
22¢ 
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