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Abzirecr. This paper describes the implemeniation ard performance resules for a few siandard Lnear algebea
routines on the Densleor HEP computer. The algorithms used Bere are based on high-level modules chat
facilizaie porehilivy and perforen efficienily in a2 wide range of envircomezis. The modules pre chosen 1o be of 2
large encisgh coanpuiationad graralaniy 50 that reascaably apdimum performance may be inswred. The design of
slpariims wills such fandamseniel medoles inomird will also facilicate their replacement by olbers mare suited 10
gain the desired performants an 4 parbicular compaler archapsciure

Hieywerds, HEP compuier, lneir algebea routings, ssembly langusge programmisg, performance anslysis
paralbel algoaibens, parallel computer,

We have been using the Dencleor HEP {Heterogenous Element Processor) to implement a
modest ser of parallel routines 1o handie some common problems that arise when dealing with
dense matrices in linear algebra: matnx multiplication, Cholesky decomposition of a positive
definite matrix, LU [actonzaton with parval pivoting, and QR [actonzaton of a general
matrix. Jordan [3] describes the architeclurs and programiming environment of the Denelear
HEP, and Stewart [5] provides a complete descnpiion of the algonthms discussed here, Parr of
the experiment was o examine the ease of taking a collection of alporithms, expressed in terms
of high-level modules, and implementing then on a computer with parallel constructions, such
as the Dreneleor HEP, Our hope was to gain near-optimam performance from these routines by
implementing only the underiving modules using parallsl constructs, We look on our experience
a3 an experiment in prodecing portable algorithms that have a high level of granulacny i their
structwre and high performance on 3 wide vanewy of computer archileciures,

The basic alponthms vsed here are the same a3 those reported in o paper by Dongarra and
Eizenstat [1] (with the exception of QR [actonzaton). These alporithms are hased on standard
procedures in linear algebra. They have been woitten to retain much of the ariginal mathemani-
cal formulation and aze based on matrx-vector operations. Designing the algonthms in terms of
such operations 15 the hard part of an implementation, By understanding the algorithm in terms
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of the mathematical steps necessary to reduce or solve a problem, we can uncover the structure
at @ high level. When programming from an algorithmic description, we have a tendency 1o
foces on small details during an implementation, To unveil the desired struclure, we must Lok
higher, avoiding the details. and must concentrate on operations that embody the computalional
compoengnls of an algonthm,

T produce a parallel version for the HEP, we replaced only three lower level modules:
matrix-vecter multiplication { g =y + Ax), vector-matrix multiplication { 37 = " + xT4), and a
rank one update 1o a matrix (A = A + xp7 ). These modules represent & high level of granularity
in the algorithm in the sense that they are based on matrix-vector operations, O{n* )} work, not
just vector eperations, O e ) work.

The parallelism in matrix-vector multiplication was obtained by performing m independent
inngr products with a matrix of size m % # and a veclor of lengih w, For the vector-matrix
multiplication, » independent inner products were performed with a veclor of length e and a
matrix of size m % n. The parallelism in the rank one update was oblained by performing o
eperalions, a scalar times a vector added to a column of the matrix.,

The technique used in this parallel implementation was bassd on a concept cilled * self-sched-
uling’ of paralle] processes (2] In seli-scheduling, a aumber of parailel processes are created and
aliowed o asynchronously access & unique processing index value that ponts o a specific
parallel scgment of the computation 1o be done, The accessing precedure allows onaly one
process 1o gain exclusive read /write privileges of the loop index. while all other sirmilarly
contending processes are momentarily blocked from such access, Before the controlling process
relinquises the loop index, however, it updates the index value: positioning it 1o point to the
next parallel processing scgment. As & process hecomes free or complelss its currcent task, this
technique allows it to self-scheduls itself for the next parallel segement of computation. Rather
than preassigning blocks of parallel compatations zcross processes, the self-scheduling tech.
nique allows each process to acquire more work at the sarliest possible moment, therehy,
reducing the idle time between completed parallel processes. Listed in the appendix are 1w
source codes that illustrate the use of the high-level module 33DOT, making up the kernal for
these algorithms. For clarity the subroutines SMXPY and SSDOT appearing in the appendix
hivve been annotated o describe the technigue of self-scheduling.

The routines were run first with siraight sequential FORTRAN 77 versions of the modules,
using no pasallel constructions, and then with the sequential modules replaced by therr paralle
counterparts. The parallel algenithms. written in an extended version of FORTRAN 77, require
the same number of floating-point operations and have identical properties with respect o
roundoff errors as their sequentiz counterparts. There was, however, an iocrense in ETIGrY
utilization by the parallel programs, This increase was required in order to support the
necessary parallel processing environment. For each parallel process the PIOCESSingG environment
must provide 1n part for the guaranieed and exclusive aceess of all local vanables associated
within a particular rowtine. As a means to implement this local assessing structure, all local
variables for each parallel subroutine were duplicated by the operating system (for as many
parallel provesses 1o be spawned) and placed into replicated, pre-assigned memory locations
during the creation of that specific parallel routine. In our problems the additional MEMary
requircments wis typically less than one percent over their sequential cou nterparts, This slight
increase reflects the memory space required for 1he execution of 32 parallel processes. Althought
this increase is smail. the potential for a significant increase is quite evident if the user requires a
large number of parallel subrowtines each having a large number of local variables. The
optimum results are shown in Table 1 for problems with matrices of arder 200,

Significant improvements in the parallel version can be seen aver 1he sequential implemenii-
tion. as much as a faclor of 8.53. An important paint here is that catly small chanpes were made
to the programs Lo gain these speedups. By replacing the fundamental modules. which would he
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transparcnt 1o 3 user. we have implemented & modest et important collection of pr OEFAME On
the HEF with minimal effort and with no change 10 the basic algorithm. These PrOZrams miy
not reach the maximum performance possible, bul the software effort has been quite small in
relation to the pains in performance, We realize it may be possible 1o achieve even hetter
performanse by investing more time and effort in the parallel implementation. As the algo-
nithms become more complicaled, however, the improvement becomes limited by the amount of
work associated with 1he nenparallel panis ~ partial pivoting, scaling, and norm calculations, In
& paraliel implementation on the HEP with one Process Execetion Module (PEM). we can
expect at most & factor 10 speedup over the sequential counterpart, Figures 1{a)-(d), on the
otleer hand, show our results for marrices whose order varied over the range from 50 to 300 with
4 processes executing in parallel. We see from these results that the large computational
granularity (the marrix order) contributes directly 1o the overall gains in performunce for these
parallel algorithms, Figures Ha)-(d) on the other hand show our resulis for o matrix of order
200 cxecuting from 1 wo 32 processes in parallel, By fixing the computational granularity, we
clearly see how well the HEP single PEM system supports the parallelism as the number of
parallel provesses increases. We may further deduce from Fig. 2 the intrinsic parallelism of these
algorithms by noting the near linear speedups (indicating minimal hardware overhead) resulting
from the execution of [rom one to five parallel processes.

One of cur goals 15 to avoid locking the algorithms into one computer’s architecture, however
fast that one may be; another goai is 10 design the algorithms at a level that the fundamental
modules need only be replaced 1o gain the desired pesformance. The module concept allows us
o divide s large problem into small. easily undersiood pieces that can be programmed
separately and venified at each step of the development process. These pieces are then chosen,
perhaps repeated. to solve various aspects of the larger problem. The success of this approach in
efficiently solving problems across a wide spectrum of computers depends on how well the
modules can be chosen so that the modules are ar & high enough level o allow o significany
number of arithmenic operations o be performed,

We have for the past few years been using a set of routines called the Basic Linear Algebra
Subsprograms (BLAS) [4]. These routines focus on the veetor level; that is, they operate on
one-dimensional arrays. Typical of these operations are lunctions such as inner produect, a
multiplication of & vector added 1o another vector, and vector scaling. The BLAS are well suited
for operations that cocur on some of the veclor processors, but they are not the best choice for
certain elher veclor processerss, multiprocessors, or parallel processing computers, The next
higher level up from simple vector operations is the mairix-vector opeeations, Operations such
as 4 matrix lmes @ veclor and rank one changes 10 a matrix not only embady the operations
deseribed by the BLAS, but also have the advantage of providing enough compuiationl
granularity for efficient parallel provessing. With vectorizing technigues, the basic idea is to
produce vecior functions out of the inner loops of algorithms such as the BLAS, By contrast,
when an ilgonithm is parallelized, one focuses on the cuter loops, By consiructing algorithms
from medules that have a high level of granulanty, it will be possible 10 allow for either
implementation in 2 strajghtforward and simple manner,
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With such a wide variety of computer systems and architectures in use or propesed, there is a
very resl challenge for people designing algorithms, namely, how 1o write software that is both
efficient and portable, The solution lies in the granularity of the task. Programs expressed in
terms of modules with a high level of granularity reflect less of the detail and retain more of the
basic mathematical formulation. This allows for a wider range of efficient implementations
because the computalional intense parts are isolated in high-level modules. These modules can
be dealt with separately, perhops retargeting them for quite different architeciures, making the
overall algorithms efficient on the targeied architecture,

Appendix

We list the source of routines that were implemented on the Denelcor HEP, Each routine
contains documentation describing s purpese as well as its paramerer definitions, The source
listings for routines SMXPY and SSDOT have also been annctated in order to clarily the
technigue of self-scheduling as emploved in this particular stedy.

SUBROUTINE MM (A, LDA, N1, ¥3, B, LDE, N2. C, LDC)

C

INTEGER LDA4, ¥1, N3, LDE, N2, LD

REAL A(LDA =), B{LDE, «), C{LDE, =)
i
¢ PURPOSE:
C  Multiply matrix B times matnix O and store the result in matrix A,
C
C PABAMETERS:
[
C A BREAL (LD, N3, matrix of 81 rows and M3 columns
L Lidd  INTEGER, lzading dimension of areay A
S M1 INTEGER, number of rows in matrces A4 and 8
[ N3 INTEGER, number of columns in matrces 4 and O
C I REAL { LDE, N2}, mairix of N1 rows and N2 columns
Z LDg  IMTEGER, leading dimension of array B
< NI IMTEGER, number of columns in matrix the B, and oumber
< of eows in the matrx O
C O REAL { LN, WN3), matrix of 82 rows and 3 columns
C LiC  INTEGER, leading dimension of array ©
c
Lo e R e e P g e e+t e a0 ey i
O

DO 2 S=1, N3

DO 10 F=1, &1
AL Jy=0.0
1o COMTINLIE
CALL SMXPY (N2, A(L, J), N1, LDE. C(1. .1, B)
o CONTINUE

O

RETURMN

EMNT

SUBROUTIME LLT (4. LDA, N, ROWI, INFy
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INTEGER LI, N, INFO
REAL A{LDA, »), ROWT (=), T

=
C PLURPOSE:
C Form the Cholesky factorization 4 = L+ LT of a symmetrie positive
L definite matrix A with factor L overwriting 4,
L
T PARAMETERS:
C A REAL{LDA, N). matnx 1o be decomposed; only the lower triangle need
C be supplied; the upper tnangle is not referenced
C Lia  [NTEGER, leading dimension of array A
C i INTEGER, number of rows and columns in the matrix A
C BEOW! REALLMND, work array
o INFQ IMTEGER, =} for normal return
= [if Mhk leading minor is 0ol positive definite
L
e e i o S BT I
L
INFO =1
DOMWi=1,5

Z
L Subiract muliples of preceding columns from fth column of 4
C

DOWS=1, -1

BOWK S = —A(1, )
i COMTINUE

CALL SMXPY (N =141, A(I 1), F = 1, LDA, ROWT, AL 1))
C
C Test for non-positive delinite leading minor
i

[F (A5 ) LE () THEM

INFO=[
GO T 40

EMDIF
c
L Form fh column of L
L

T = 10/SQRT{ A [, [}
At =T
DOWS=F+1. N
AfS A= Te (S T}

0 CONTINUE

i CONTINUE

40 RETURM
END

Arnatared Nyiings of subroatines SMEFY and 35007

To be noted are the dollar (5] sggned vanables, formally termed asynchronous variables, in
these routines, A key feature of the HEP architectore is the addition of an extra bit in register
and data memory locotions, This bit whea acoessed by the $ declaration of a variable, allows
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any process to read that vanable’s allows any process 1o read that variable's content only if the
bie is in the Full (1) state, and concurrently blocks other processes from gaining read access by
setting the it to the empry (0) state. Similarly, any process may write into the content of the
asynchronous variahle only if the bit is in the empry state, and as before blocks other processes
from gaining write access by setting the bit 1o the full state. By such a unigue mechanism,
synchronization {and in this case self-scheduling) may be achieved with little or no prograrm.

ming aflort,

SUBROUTINE SMXPY (N1, ¥, N2, LDM. X, M)

[

INTEGER LM, N1, N2

REAL Y(=), X{=). M{LDM, =)

PURPOSE:

M is a matrix,
FARAMETERS;

M1 INTEGER.

N1 INTEGER,

LOM  INTEGER.
A EEAL (N2

OoOOOan OO0 an DN oo

e,

¥ REAL{N1),

1,
M FEAL (&1, ¥2}, malng used 1o [omm y=p + M+ 3.

Form ¥ = ¢+ M = x, where x and x are vectors and

numier of rows in ¥ oand the matrs M.

veotor oo accumulate the prodect M s x,

number of rows in X and columns in the matnx M.
leading dimension of the array M,

vector wsed 1 form y = p+ M=,

B O L I N 0 Y, et e e e e e s e g ey o T e o e e Ty e B

This 15 a parallel verston for the HEP

FYRCRranous parioies 10 e cammianicared o rowiine S5D0OT

COMMON sSYNCLly SNPROC, SDONE, SNROW

1107 3 73 i,

IF(N1 LE. 0 .OR. N2 .LE. 1) RETURN
Sel wp for asynchronous operations

MPROC = number of processors for o 1ask

PURGE sers asynchronsus variakies to emipiy siaie
PURGE SNPROC, SDONE, SNROW
Initialize variable o hove the value I and ser ©jal™

VRO =1
c

Propare to sefug ke number of processors
NCREAT = MINI N1, ¥FROC)

Ker the mumber of processes “jull™

ENPROC = NOCREAT
o
[ Dioall loop
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C
Epawn muitiple coples af this rewting ta run in paraliel
CWD 30 fPROC =1, NCREAT
CREATE S5DAT (NI, N2, X 1, M, LODM, ¥
I COMTIMUL

[
Is Endall
i Join and continue serial
z
Féaii here wngdl SDONE fupr been glosa a oalue foperation performed in rowtine 85007
DONTET = 3MIANE
RETURM
END
SUBROUTIMNE S5DOT{N1, N2, X, INCX, M, LIN, T}
C
INTEGER N1, N2, FNCX, LDA
REAL X{=), M{ LI, =), ¥(«)
L
C PURPOSE:
i
¢ Form one component of v, such that p =y + M x,
C where y and x are veclors and M 15 a3 marrix.
li'.“
o PARAMETERS:
e
C M1 INTEGER, number of rows in ¥ and the mateix A
LI N2 INTEGER, number of rows in & and columns in the matix M
C X REAL(MNZ), vector used to flormy =y + M= x
C INCX  INTEGER, sirde wsed 0 addressng X
C M REAL{ &1, N2}, matnx used to form p=yp + Me x
C Loy INTEGER, leading dimensions of the array M
C ¥ FEAL{NT), vestor 10 accumulate the product M« x
i
A R e e L R o S s e L S e MR e e
[
L This 15 a paralle] version for the HEP
L

Aszpachronons wariables comminicated from SMXPY
COMMON AEVYNCL ASNPROC, SDONE, SNROW

i

1 CONTINUE

L]

o Pick up next row

o

irden awaigiee roet thai has te be provessed
= INROW

Ircremenr o nexi row 1o he proceised
INROW =141

Check f reaphed vthe end
[Fi s, GT. N1y GO TO 30
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o
Ferform innee praduct with row § af miiriy
DO XDJ=1, &2
VUIy={Y{I+ X(J)s M(], 1)
0 CONTIMUE
i
Gei g few row o parfarm inner produc
GO TO 10
30 CONTINUE
LI
Z Terminate process and check if finished
C
Uniguely decrement the number of pracerses gerive
MNACTPR = SNPROC -1
SVPROC = NACTER
Check to gev I finished, if 5o ser SDONE © fuil™
IFiNACTER EQ.0) SDONE = 10

C
RETURN
END
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