
Scalability Analysis of the SPEC OpenMP
Benchmarks on Large-Scale Shared Memory

Multiprocessors

Karl Fürlinger1,2, Michael Gerndt1, and Jack Dongarra2,3

1 Lehrstuhl für Rechnertechnik und Rechnerorganisation,
Institut für Informatik,

Technische Universität München
{fuerling, gerndt}@in.tum.de

2 Innovative Computing Laboratory,
Department of Computer Science,

University of Tennessee
{karl, dongarra}@cs.utk.edu

3 Oak Ridge National Laboratory and
University of Manchester

Abstract. We present a detailed investigation of the scalability charac-
teristics of the SPEC OpenMP benchmarks on large-scale shared memory
multiprocessor machines. Our study is based on a tool that quantifies four
well-defined overhead classes that can limit scalability – for each parallel
region separately and for the application as a whole.

1 Introduction

OpenMP has emerged as the predominant programming paradigm for scientific
applications on shared memory multiprocessor machines. The OpenMP SPEC
benchmarks were published in 2001 to allow for a representative way to compare
the performance of various platforms. Since OpenMP is based on compiler di-
rectives, the compiler and the accompanying OpenMP runtime system can have
a significant influence on the achieved performance.

In this paper we present a detailed investigation of the scalability charac-
teristics of the SPEC benchmarks on large-scale shared memory multiprocessor
machines. Instead of just measuring each application’s runtime for increasing
processor counts, our study is more detailed by measuring four well-defined
sources of overhead that can limit the scalability and by performing the analy-
sis not only for the overall program but also for each individual parallel region
separately.

The rest of this paper is organized as follows. In Sect. 2 we provide a brief
overview of the SPEC OpenMP benchmarks and their main characteristics. In
Sect. 3 we describe the methodology by which we performed the scalability
analysis and the tool which we used for it. Sect. 4 presents the results of our
study, while we discuss related work in Sect. 5 and conclude in Sect. 6.



2 The SPEC OpenMP Benchmarks

The SPEC OpenMP benchmarks come in two variants. The medium variant
(SPEC-OMPM) is designed for up to 32 processors and the 11 applications
contained in this suite were created by parallelizing the corresponding SPEC
CPU applications. The large variant (SPEC-OMPL) is based on the medium
variant (with code-modifications to increase scalability) but two applications
(galgel and ammp) have been omitted and a larger data set is used.

Due to space limitations we omit a textual description of the background,
purpose, and implementation of each application, please refer to [7] for such
a description. Instead, Table 1 lists the main characteristics of each application
with respect to the OpenMP constructs used for parallelization (suffix m denotes
the medium variant, while suffix l denotes the large variant of each application).

B
A
R
R
I
E
R

L
O
O
P

C
R
I
T
I
C
A
L

L
O
C
K

P
A
R
A
L
L
E
L

P
A
R
A
L
L
E
L
-

L
O
O
P

P
A
R
A
L
L
E
L
-

S
E
C
T
I
O
N
S

wupwise m/wupwise l 11 1 7 3

swim m 8
swim l 2 2 10

mgrid m/mgrid l 12 12

applu m 2 17 9 13
applu l 2 18 10 12

galgel m 7 2 26 1

equake m 2 2 9
equake l 4 4 8

apsi m 23 23 1
apsi l 18 18 10

gafort m/gafort l 6 400000 6 1

fma3d m 1 1 1 29
fma3d l 8 4 47

art m/art l 2 1 1 3

ammp m 2 5 5

Table 1: The OpenMP constructs used in each of the applications of the SPEC-OpenMP
benchmark suite.

3 Scalability Analysis Methodology

We performed the scalability study with our own OpenMP profiling tool, ompP [4,
5]. ompP delivers a text-based profiling report at program termination that
is meant to be easily comprehensible by the user. As opposed to standard



subroutine-based profiling tools like gprof [6], ompP is able to report timing data
and execution counts directly for various OpenMP constructs.

In addition to giving flat region profiles (number of invocations, total execu-
tion time), ompP performs overhead analysis, where four well-defined overhead
classes (synchronization, load imbalance, thread management, and limited par-
allelism) are quantitatively evaluated. The overhead analysis is based on the
categorization of the execution times reported by ompP into one of the four over-
head classes. For example, time in an explicit (user-added) OpenMP barrier is
considered to be synchronization overhead.

seqT execT bodyT exitBarT enterT exitT

MASTER •
ATOMIC • (S)
BARRIER • (S)
USER REGION •
LOOP • • (I)
CRITICAL • • • (S) • (M)
LOCK • • • (S) • (M)
SECTIONS • • • (I/L)
SINGLE • • • (L)
PARALLEL • • • (I) • (M) • (M)
PARALLEL LOOP • • • (I) • (M) • (M)
PARALLEL SECTIONS • • • • (I/L) • (M) • (M)

Table 2: The timing categories reported by ompP for the different OpenMP constructs
and their categorization as overheads by ompP’s overhead analysis. (S) corresponds to
synchronization overhead, (I) represents overhead due to imbalance, (L) denotes limited
parallelism overhead, and (M) signals thread management overhead.

Table 2 shows the details of the overhead classification performed by ompP.
This table lists the timing categories reported by ompP (execT, enterT, etc.) for
various OpenMP constructs (BARRIER, LOOP, etc.) A timing category is reported
by ompP if a ‘•’ is present and S, I, L, and M indicate to which overhead class a
time is attributed. A detailed description of the motivation for this classification
can be found in [5].

A single profiling run with a certain thread count gives the overheads ac-
cording to the presented model for each parallel region separately and for the
program as a whole. By performing the overhead analysis for increasing thread
numbers, scalability graphs as shown in Fig. 1 are generated by a set of perl
scripts that come with ompP. These graphs show the accumulated runtimes over
all threads, the “Work” category is computed by subtracting all overheads form
the total accumulated execution time. Note that a perfectly scaling code would
give a constant total accumulated execution time (i.e., a horizontal line) in this
kind of graph if a fixed dataset is used (as is the case for our analysis of the
SPEC OpenMP benchmarks.



4 Results

We have analyzed the scalability of the SPEC benchmarks on two cc-NUMA
machines. We ran the medium size benchmarks from 2 to 32 processors on a
32 processor SGI Alitx 3700 Bx2 machine (1.6 GHz, 6 MByte L3-Cache) while
the tests with SPEC-OMPL (from 32 to 128 processors, with increments of
16) have been performed on a node of a larger Altix 4700 machine with the
same type of processor. The main differences to the older Altix 3700 Bx2 are
an upgraded interconnect network (NumaLink4) and a faster connection to the
memory subsystem.

Every effort has been made to ensure that the applications we have analyzed
are optimized like “production” code. To this end, we used the same compiler
flags and runtime environment settings that have been used by SGI in the SPEC
submission runs (this information is listed in the SPEC submission reports)
and we were able to achieve performance numbers that were within the range
of variations to be expected from the slightly different hardware and software
environment.

The following text discusses the scalability properties we were able to identify
in our study. Due to space limitations we can not present a scalability graph
for each application or even for each parallel region of each application. Fig. 1
shows the most interesting scalability graphs of the SPEC OpenMP benchmarks
we have discovered. We also have to limit the discussion to the most interesting
phenomena visible and can not discuss each application.

Results for the medium variant (SPEC-OMPM):

wupwise m: This application scales well from 2 to 32 threads, the most sig-
nificant overhead visible is load imbalance increasing almost linearly with
the number of threads used (it is less than 1% for 2 threads and rises to
almost 12% of aggregated execution time for 32 threads). Most of this over-
head is incurred in two time-consuming parallel loops (muldoe.f 63-145
and muldeo.f 63-145).

swim m: This code scales very well from 2 to 32 threads. The only discernible
overhead is a slight load imbalance in two parallel loops (swim.f 284-294
and swim.f 340-352), each contributing about 1.2% overhead with respect
to the aggregated execution time for 32 threads.

mgrid m: This code scales relatively poorly (cf. Fig. 1a). Almost all of the
application’s 12 parallel loops contribute to the bad scaling behavior with
increasingly severe load imbalance. As shown in Fig. 1a, there appears to
be markedly reduced load imbalance for 32 and 16 threads. Investigating
this issue further we discovered that this behavior is only present in three of
the application’s parallel loops (mgrid.f 265-301, mgrid.f 317-344, and
mgrid.f 360-384). A source-code analysis of these loops reveals that in all
three instances, the loops are always executed with an iteration count that
is a power of two (which ranges from 2 to 256 for the ref dataset). Hence,
thread counts that are not powers of two generally exhibit more imbalance
than powers of two.



314.ovhds.dat

2 4 8 12 16 20 24 28 32

0

1000

2000

3000

4000

5000 Mgmt

Limpar

Imbal

Sync

Work

(a) mgrid m.

316.ovhds.dat

2 4 8 12 16 20 24 28 32

0

500

1000

1500

2000

2500

3000

Mgmt

Limpar

Imbal

Sync

Work

(b) applu m.

318.ovhds.dat

2 4 8 12 16 20 24 28 32

0

500

1000

1500

2000

2500

3000

3500

Mgmt

Limpar

Imbal

Sync

Work

(c) galgel m.

318.R00034.ovhds.dat

2 4 8 12 16 20 24 28 32

0

200

400

600

800

1000

1200

1400

1600

Mgmt

Limpar

Imbal

Sync

Work

(d) galgel m (lapack.f90 5081-5092).

320.R00009.ovhds.dat

2 4 8 12 16 20 24 28 32

0

200

400

600

800

1000

1200

Mgmt

Limpar

Imbal

Sync

Work

(e) equake m (quake.c 1310-1319).

313.ovhds.dat

32 48 64 80 96 112 128

0

2000

4000

6000

8000

10000

12000

Mgmt

Limpar

Imbal

Sync

Work

(f) swim l.

315.ovhds.dat

32 48 64 80 96 112 128

0

10000

20000

30000

40000

50000

60000

Mgmt

Limpar

Imbal

Sync

Work

(g) mgrid l.

317.ovhds.dat

32 48 64 80 96 112 128

0

10000

20000

30000

40000

50000

Mgmt

Limpar

Imbal

Sync

Work

(h) applu l.

Fig. 1: Scalability graphs for some of the applications of the SPEC OpenMP bench-
mark suite. Suffix m refers to the medium size benchmark, while l refers to the large
scale benchmark. The x-axis denotes processor (thread) count and the y-axis is the
accumulated time (over all threads) in seconds.



applu m: The interesting scalability graph of this application (Fig. 1b) shows
super-linear speedup. This behavior can be attributed exclusively to one
parallel region (ssor.f 138-209) in which most of the execution time is
spent (this region contributes more than 80% of total execution time), the
other parallel regions do not show a super-linear speedup. To investigate the
reason for the super-linear speedup we used ompP’s ability to measure hard-
ware performance counters. By common wisdom, the most likely cause of
super-linear speedup is the increase in overall cache size that allows the ap-
plication’s working set to fit into the cache for a certain number of processors.
To test this hypothesis we measured the number of L3 cache misses incurred
in the ssor.f 138-209 region and the results indicate that, in fact, this is
the case. The total number of L3 cache misses (summed over all threads) is
at 15 billion for 2 threads, and at 14.8 billion at 4 threads. At 8 threads the
cache misses reduce to 3.7 billion, at 12 threads they are at 2.0 billion from
where on the number stays approximately constant up to 32 threads.

galgel m: This application scales very poorly (cf. Fig. 1c). The most significant
sources of overhead that are accounted for by ompP are load imbalance and
thread management overhead. There is also, however, a large fraction of
overhead that is not accounted for by ompP. A more detailed analysis of
the contributing factors reveals that in particular one small parallel loop
contributes to the bad scaling behavior: lapack.f90 5081-5092. The scaling
graph of this region is shown in Fig. 1d. The accumulated runtime for 2 to
32 threads increases from 107.9 to 1349.1 seconds (i.e., the 32 thread version
is only about 13% faster (wall-clock time) than the 2 processor execution).

equake m: Scales relatively poorly. A major contributor to the bad scalability
is the small parallel loop at quake.c 1310-1319. The contribution to the
wall-clock runtime of this region increases from 10.4% (2 threads) to 23.2%
(32 threads). Its bad scaling behavior (Fig. 1e) is a major limiting factor for
the application’s overall scaling ability.

apsi m: This code scales poorly from 2 to 4 processors but from there on the
scaling is good. The largest identifiable overheads are imbalances in the
application’s parallel loops.

Results for the large variant (SPEC-OMPL):

wupwise l: This application continues to scale well up to 128 processors. How-
ever, the imbalance overhead already visible in the medium variant increases
in severity.

swim l: The dominating source of inefficiency in this application is thread man-
agement overhead that dramatically increases in severity from 32 to 128
threads (cf. 1f). The main source is the reduction of three scalar variables in
the small parallel loop swim.f 116-126. At 128 threads more than 6 percent
of total accumulated runtime are spent in this reduction operation. The time
for the reduction is actually larger than the time spent in the body of the
parallel loop.

mgrid l: This application (cf. 1g) shows a similar behavior as the medium vari-
ant. Again lower numbers are encountered for thread counts that are powers



of two. The overheads (mostly imbalance and thread management) however,
dramatically increase in severity at 128 threads.

applu l: Synchronization overhead is the most severe overhead of this applica-
tion (cf. 1h). Two explicit barriers cause most of this overhead with severities
of more than 10% of total accumulated runtime each.

equake l This code shows improved scaling behavior in comparison to the
medium variant which results from code changes that have been performed.

5 Related Work

Saito et al. [7] analyze the published results of the SPEC-OMPM suite on large
machines (32 processors and above) and describe planned changes for the – then
upcoming – large variant of the benchmark suite.

A paper of Sueyasu [8] analyzes the scalability of selected components of
SPEC-OMPL in comparison with the medium variant. The experiments were
performed on a Fujitsu Primepower HPC2500 system with 128 processors. A
classification of the applications into good, poor, and super-linear is given and
is more ore less in line with our results. No analysis on the level of individual
parallel regions is performed and no attempt for a overhead classification is made
in this publication.

The work of Aslot et al. [1] describes static and dynamic characteristics of
the SPEC-OMPM benchmark suite on a relatively small (4-way) UltraSPARC
II system. Similar to our study, timing details are gathered on the basis of indi-
vidual regions and a overhead analysis is performed that tries to account for the
difference in observed and theoretical (Amdahl) speedup. While the authors of
this study had to instrument their code and analyze the resulting data manually,
our ompP tool performs this task automatically.

Fredrickson et al. [3] have evaluated, among other benchmark codes, the
performance characteristics of seven applications from the OpenMP benchmarks
on a 72 processor Sun Fire 15K. In their findings, all applications scale well
with the exception of swim and apsi (which is not in line with our results, as
well as, e.g. [7]). This study also evaluates “OpenMP overhead” by counting
the number of parallel regions and multiplying this number with an empirically
determined overhead for creating a parallel region derived from an execution of
the EPCC micro-benchmarks [2]. Compared to our approach, this methodology
of estimating the OpenMP overhead is less flexible and accurate, as for example
it does not account for load-imbalance situations and requires an empirical study
to determine the “cost of a parallel region”. Note that in our study all OpenMP-
related overheads are accounted for, i.e., the work category does not contain any
OpenMP related overhead.

6 Conclusion and Future Work

We have presented a scalability analysis of the medium and large variants of
the SPEC OpenMP benchmarks. The applications show a widely different scal-
ing behavior and we have demonstrated that our tool ompP can give interesting,



detailed insight into this behavior and can provide valuable hints towards an
explanation for the underlying reason. Notably, our scalability methodology en-
compasses four well-defined overhead categories and offers insights into how the
overheads change with increasing numbers of threads. Also, the analysis can
be performed for individual parallel regions and as shown by the examples, the
scaling behavior can be widely different. One badly scaling parallel region can
have increasingly detrimental influence on an application’s overall scalability
characteristics.

Future work is planned along two directions. Firstly, we plan to exploit ompP’s
ability to measure hardware performance counters to perform a more detailed
analysis of memory access overheads. All modern processors allow the mea-
surement of cache-related events (misses, references) that can be used for this
purpose. Secondly, we plan to exploit the knowledge gathered in the analysis
of the SPEC benchmarks for an optimization case study. Possible optimizations
suggested by our study include the privatization of array variables, changes to
the scheduling policy of loops and avoiding the usage of poorly implemented
reduction operations.

References

1. Vishal Aslot and Rudolf Eigenmann. Performance characteristics of the SPEC
OMP2001 benchmarks. SIGARCH Comput. Archit. News, 29(5):31–40, 2001.

2. J. Mark Bull and Darragh O’Neill. A microbenchmark suite for OpenMP 2.0. In
Proceedings of the Third Workshop on OpenMP (EWOMP’01), Barcelona, Spain,
September 2001.

3. Nathan R. Fredrickson, Ahmad Afsahi, and Ying Qian. Performance characteristics
of OpenMP constructs, and application benchmarks on a large symmetric multipro-
cessor. In Proceedings of the 17th ACM International Conference on Supercomputing
(ICS 2003), pages 140–149, San Francisco, CA, USA, 2003. ACM Press.

4. Karl Fuerlinger and Michael Gerndt. ompP: A profiling tool for OpenMP. In Pro-
ceedings of the First International Workshop on OpenMP (IWOMP 2005), Eugene,
Oregon, USA, May 2005.

5. Karl Fuerlinger and Michael Gerndt. Analyzing overheads and scalability character-
istics of OpenMP applications. In Proceedings of the Seventh International Meeting
on High Performance Computing for Computational Science (VECPAR’06), pages
39–51, Rio de Janeiro, Brasil, 2006. LNCS 4395.

6. Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: A call graph
execution profiler. SIGPLAN Not., 17(6):120–126, 1982.

7. Hideki Saito, Greg Gaertner, Wesley B. Jones, Rudolf Eigenmann, Hidetoshi
Iwashita, Ron Lieberman, G. Matthijs van Waveren, and Brian Whitney. Large
system performance of SPEC OMP2001 benchmarks. In Proceedings of the 2002
International Symposium on High Performance Computing (ISHPC 2002), pages
370–379, London, UK, 2002. Springer-Verlag.

8. Naoki Sueyasu, Hidetoshi Iwashita, Kohichiro Hotta, Matthijs van Waveren, and
Kenichi Miura. Scalability of SPEC OMP on Fujitsu PRIMEPOWER. In Proceed-
ings of the Fourth Workshop on OpenMP (EWOMP’02), 2002.


