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SUMMARY

As multicore systems continue to gain ground in the high-performance computing world, linear algebra
algorithms have to be reformulated or new algorithms have to be developed in order to take advantage of
the architectural features on these new processors. Fine-grain parallelism becomes a major requirement
and introduces the necessity of loose synchronization in the parallel execution of an operation. This paper
presents an algorithm for the QR factorization where the operations can be represented as a sequence of
small tasks that operate on square blocks of data (referred to as ‘tiles’). These tasks can be dynamically
scheduled for execution based on the dependencies among them and on the availability of computational
resources. This may result in an out-of-order execution of the tasks that will completely hide the presence
of intrinsically sequential tasks in the factorization. Performance comparisons are presented with the
LAPACK algorithm for QR factorization where parallelism can be exploited only at the level of the BLAS
operations and with vendor implementations. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last 20 years, microprocessor manufacturers have been driven towards higher performance
rates only by the exploitation of higher degrees of instruction-level parallelism (ILP). Based on
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this approach, several generations of processors have been built where clock frequencies were
higher and higher and pipelines were deeper and deeper. As a result, applications could benefit
from these innovations and achieve higher performance simply by relying on compilers that could
efficiently exploit ILP. Owing to a number of physical limitations (mostly power consumption and
heat dissipation), this approach cannot be pushed any further. For this reason, chip designers have
moved their focus from ILP to thread-level parallelism (TLP) where higher performance can be
achieved by replicating execution units (or cores) on the die while keeping the clock rates in a range
where power consumption and heat dissipation do not represent a problem. It is easy to imagine
that multicore technologies will have a deep impact on the high-performance computing (HPC)
world where high processor counts are involved and, thus, limiting power consumption and heat
dissipation is a major requirement. The Top500 [1] list released in June 2007 shows that the number
of systems based on dual-core Intel Woodcrest processors grew in 6 months (i.e. from the previous
list) from 31 to 205 and that 90 more systems are based on dual-core AMD Opteron processors.
Although many attempts have been made in the past to develop parallelizing compilers, they

proved themselves efficient only on a restricted class of problems. As a result, at this stage of
the multicore era, programmers cannot rely on compilers to take advantage of the multiple CPUs
available on a processor. All the applications that were not explicitly coded to be run on parallel
architectures must be rewritten with parallelism in mind. Also, those applications that could exploit
parallelism may need considerable rework in order to take advantage of the fine-grain parallelism
features provided by multicores.
The current set of multicore chips from Intel and AMD are for the most part multiple processors

glued together on the same chip. There are many scalability issues to this approach, and it is unlikely
that this type of architecture will scale up beyond 8 or 16 cores. Although it is not yet clear how chip
designers are going to address these issues, it is possible to identify some properties that algorithms
must have in order to match high degrees of TLP:
fine granularity: cores are (and probably will be) associated with relatively small local memories

(either caches or explicitly managed memories like in the case of the STI cell [2] architecture or
the Intel Polaris [3] prototype). This requires splitting an operation into tasks that operate on small
portions of data in order to reduce bus traffic and improve data locality.
asynchronicity: as the degree of TLP grows and granularity of the operations becomes smaller,

the presence of synchronization points in a parallel execution seriously affects the efficiency of an
algorithm.
The LAPACK [4] and ScaLAPACK [5] software libraries represent a de facto standard for

high-performance dense linear algebra computations and have been developed, respectively, for
shared-memory and distributed-memory architectures. In both cases, exploitation of parallelism
comes from the availability of parallel BLAS. In the LAPACK case, a number of BLAS libraries
can be used to take advantage of multiple processing units on shared-memory systems; for example,
the freely distributed ATLAS [6] and GotoBLAS [7] or other vendor BLAS such as Intel MKL [8]
or AMD ACML [9] are popular choices. These parallel BLAS libraries use common techniques
for shared-memory parallelization such as pThreads [10] or OpenMP [11]. This is represented in
Figure 1 (left).
In the ScaLAPACK case, parallelism is exploited by PBLAS [12], which is a parallel BLAS im-

plementation that uses the message passing interface [13] (MPI) for communications on a distributed
memory system. Substantially, both LAPACK and ScaLAPACK implement sequential algorithms
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Figure 1. Transition from sequential algorithms that rely on parallel BLAS to parallel algorithms.

that rely on parallel building blocks (i.e. the BLAS operations). As multicore systems require finer
granularity and higher asynchronicity, considerable advantages may be obtained by reformulating
old algorithms or developing new algorithms in a way that their implementation can be easily
mapped on these new architectures. This transition is shown in Figure 1. An approach along these
lines has already been proposed in [14–16] where operations in the standard LAPACK algorithms
for some common factorizations were broken into sequences of smaller tasks in order to achieve
finer granularity and higher flexibility in the scheduling of tasks to cores. The importance of fine
granularity algorithms is also shown by the authors of this paper in earlier works [17]. The usage
of recursive factorization techniques [18] is also relevant to the topics discussed in the remainder
of this paper.
The remainder of this paper shows how this can be achieved for the QR factorization. Section 2

describes the algorithm for block QR factorization used in the LAPACK library. Section 3 describes
the tiled QR factorization that provides both fine granularity and high level of asynchronicity.
Performance results for this algorithm are shown in Section 4. A comment on the usage of recursive
techniques is given in Section 5. Finally, future working directions are illustrated in Section 6.

2. BLOCK QR FACTORIZATION

2.1. Description of the block QR factorization

The QR factorization is a transformation that factorizes an m× n matrix A into its factors Q
and R, where Q is a unitary matrix of size n× n and R is a triangular matrix of size m×m.
This factorization is operated by applying min(m, n) Householder reflections to matrix A. Since
Householder reflections are orthogonal transformations, this factorization is stable as opposed to
the LU one; however, stability comes at the price of a higher flop count: QR requires 2n2(m−n/3)
as opposed to the n2(m − n/3) needed for LU. A detailed discussion of the QR factorization can
be found in [19–21]. LAPACK uses a particular version of this algorithm which achieves higher
performance on architectures with memory hierarchies, thanks to blocking. This algorithm is based
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on accumulating a number of Householder transformations in what is called a panel factorization,
which are, then, applied all at once by means of high-performance Level 3 BLAS operations. The
technique used to accumulate Householder transformation was introduced in [22] and is known as
the compact WY technique.
The LAPACK subroutine that performs the QR factorization is called DGEQRF and is explained

below. Consider a matrix A of size m× n that can be represented as

A=
(
A11 A12

A21 A22

)

where A11 is of size b× b, A12 of size b× (n − b), A21 of size (m − b)× b and A22 of size
(m − b)× (n − b).
The LAPACK algorithm for QR factorization can be described as a sequence of steps where, at

each step, the transformation in the following equation is performed:

A=
(
A11 A12

A21 A22

)
�⇒

(
V11

V21

)
,

(
R11 R12

0 Ã22

)
(1)

The transformation in Equation (1) is obtained in two steps:

1. Panel factorization: At this step, a QR transformation of the panel (A∗1) is performed as in
the following equation: (

A11

A21

)
�⇒

(
V11

V21

)
, (T11), (R11) (2)

This operation produces b Householder reflectors (V∗,1) and an upper triangular matrix R11
of size b× b, which is a portion of the final R factor, by means of the DGEQR2 LAPACK
subroutine; also, at this step, a triangular matrix T11 of size b× b by means of the DLARFT
LAPACK subroutine‡. Please note that V11 is a unit lower triangular matrix of size b× b. The
arrays V∗1 and R11 do not need extra space to be stored since they overwrite A∗1. A temporary
workspace is needed to store T11.

2. Trailing submatrix update: At this step, the transformation that was computed in the panel
factorization is applied to the rest of the matrix, also called trailing submatrix as shown in
the following equation:(

R12

Ã22

)
=
(
I −

(
V11

V21

)
· (T11) · (V T

11 V T
21)

)(
A12

A22

)
(3)

This operation, performed by means of the DLARFB LAPACK subroutine, produces a portion
R12 of the final R factor of size b× (n − b) and the matrix Ã22.

The QR factorization is continued by applying transformation (1) to submatrix Ã22 and, then,
iteratively, until the end of matrix A is reached. The value of b�m, n (the so-called block size) is

‡For the meaning of the matrix T11, refer to [22].
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set by default to 32 in LAPACK-3.1.1, but different values may be more appropriate and provide
higher performance, depending on the architecture characteristics.

2.2. Scalability limits of the LAPACK implementation

The LAPACK algorithm for QR factorization can use any flavor of parallel BLAS to exploit
parallelism on a multicore, shared-memory architecture. This approach, however, has a number of
limitations due to the nature of the transformation in Equation (2), i.e. the panel factorization. Both
DGEQR2 and DLARFT are rich in Level 2 BLAS operations that cannot be efficiently parallelized
on currently available shared-memory machines. To understand this, it is important to note that
Level 2 BLAS operations can be, generally speaking, defined as all those operations where O(n2)
floating-point operations are performed on O(n2) floating-point data; thus, the speed of Level 2
BLAS computations is limited by the speed at which the memory bus can feed the cores. On current
multicore architectures, there is a vast disproportion between the bus bandwidth and the speed of
the cores. For example, the Intel Clovertown processor is equipped with four cores, each capable
of a double precision peak performance of 10.64Gflop/s (that is to say a peak of 42.56Gflop/s
for four cores) while the bus bandwidth peak is 10.64GB/s that provides 1.33GWords/s (a word
being a 64 bit double precision number). As a result, since one core is large enough to saturate
the bus, using two or more cores does not provide any significant benefit. The LAPACK algorithm
for QR factorization is, thus, characterized by the presence of a sequential operation (i.e. the panel
factorization), which represents a small fraction of the total number of flops performed (O(n2) flops
for a total of O(n3) flops) but limits the scalability of the block QR factorization on a multicore
system when parallelism is exploited only at the level of the BLAS routines. This approach will be
referred to as the fork-join approach since the execution flow of the QR factorization would show
a sequence of sequential operations (i.e. the panel factorizations) interleaved to parallel ones (i.e.
the trailing submatrix-updates).
Table I shows the scalability limits of the panel factorization and how this affects the scalability

of the whole QR factorization on an 8-socket dual-core AMD Opteron system with MKL-9.1 and
GotoBLAS-1.15 parallel BLAS libraries.

Table I. Scalability of the fork-join parallelization on an 8-socket
Dual Opteron system (16 cores total).

AMD ACML-4.0.0 GotoBLAS-1.15

DGEQR2 DGEQRF DGEQR2 DGEQRF
# Cores (Gflop/s) (Gflop/s) (Gflop/s) (Gflop/s)

1 0.1218 2.9 0.4549 3.31
2 0.1577 5.4 0.4558 5.51
4 0.2083 9.0 0.4557 9.69
8 0.5055 12.8 0.4549 10.58
16 0.4496 8.7 0.4558 13.01
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In [14–16], a solution to this scalability problem is presented. The approach described in [14,16]
consists of breaking the trailing submatrix update into smaller tasks that operate on a block column
(i.e. a set of b contiguous columns where b is the block size). The algorithm can then be represented
as a directed acyclic graph (DAG) where nodes represent tasks, either panel factorization or update
of a block column, and edges represent dependencies among them. The execution of the algorithm
is performed by asynchronously scheduling the tasks in a way that dependencies are not violated.
This asynchronous scheduling results in an out-of-order execution where slow, sequential tasks are
hidden behind parallel ones. This approach can be described as a dynamic lookahead technique.
Even if this approach provides significant speedup, as shown in [16], it is exposed to scalability
problems. In fact, due to the relatively high granularity of the tasks, the scheduling of tasks may have
a limited flexibility and the parallel execution of the algorithm may be affected by an unbalanced
load. These problems become a major limitation when the degree of parallelism grows (see [16]
for more details).
The following sections describe the application of this idea of dynamic scheduling and out-of-

order execution to an algorithm for QR factorization where finer granularity of the operations and
higher flexibility for the scheduling can be achieved. Performance results in Section 4 will show
how a good scalability and significant speedup can be achieved using the proposed algorithm in
combination with graph-driven, dynamic scheduling of the tasks.

3. TILED QR FACTORIZATION

The idea of dynamic scheduling and out-of-order execution can be applied to a class of algorithms
for common Linear Algebra operations. Previous work in this direction shows how the Symmetric
Rank-K update (SYRK), Cholesky factorization, block LU factorization and block QR factoriza-
tion [14–16] can be parallelized with these techniques. Fine granularity algorithms for SYRK
and the Cholesky factorization can be easily derived from those used in the BLAS and LAPACK
libraries (respectively) by ‘tiling’ the elementary operations that they are made of (see [15] for
details). In the case of the block LAPACK algorithms for LU and QR factorizations, however, the
panel reduction involves tall and narrow portions of the matrix (i.e. a block column) and cannot be
reformulated as a sequence of tile operations; this represents the major limitation of the approach
presented in [14,16] (see also the previous section for more details). To overcome these limitations,
a major algorithmic change is necessary.
The algorithmic change proposed is actually well known and takes its roots in updating factoriza-

tions [19,20]. Using updating techniques to tile the algorithms has first§ been proposed by Yip [23]
for LU to improve the efficiency of out-of-core solvers and was recently reintroduced in [24,25] for
LU and QR, once more in the out-of-core context. A similar idea has also been proposed in [26]
for Hessenberg reduction in the parallel distributed context.
The originality of this paper is to study these techniques in the multicore context, where they

can be used to formulate fine granularity algorithms and achieve high flexibility for the dynamic
scheduling of tasks.

§To our knowledge.
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3.1. A fine-grain algorithm for QR factorization

The tiled QR factorization will be constructed based on the following four elementary operations:
DGEQT2: This subroutine was developed to perform the unblocked factorization of a diagonal tile

Akk of size b× b. This operation produces an upper triangular matrix Rkk , a unit lower triangular
matrix Vkk that contains b Householder reflectors and an upper triangular matrix Tkk as defined
by the WY technique for accumulating the transformations. Note that both Rkk and Vkk can be
written on the memory area that was used for Akk , and thus no extra storage is needed for them. A
temporary work space is needed to store Tkk .
Thus, DGEQT2(Akk , Tkk) performs

Akk ←− Vkk, Rkk, Tkk ←− Tkk

DLARFB: This LAPACK subroutine will be used to apply the transformation (Vkk, Tkk) computed
by subroutine DGEQT2 to a tile Akj .
Thus, DLARFB(Akj , Vkk , Tkk) performs

Akj ←− (I − VkkTkkV
T
kk)Akj

DTSQT2: This subroutine was developed to perform the unblocked QR factorization of a matrix
that is formed by coupling an upper triangular tile Rkk with a square tile Aik . This subroutine will
return an upper triangular matrix R̃kk that will overwrite Rkk and b Householder reflectors, where
b is the tile size. Note that, since Rkk is upper triangular, the resulting Householder reflectors can
be represented as an identity tile I on top of a square tile Vik . For this reason, no extra storage is
needed for the Householder vectors, since the identity tile need not be stored and Vik can overwrite
Aik . Also, a matrix Tik is produced for which storage space has to be allocated.
Then, DTSQT2(Rkk , Aik , Tik) performs(

Rkk

Aik

)
←−

(
I

Vik

)
, R̃kk, Tik ←− Tik

DSSRFB: This subroutine was developed to apply the transformation computed by DTSQT2 to
a matrix formed coupling two square tiles Akj and Ai j .
Thus, DSSRF(Akj , Ai j , Vik , Tik) performs(

Akj

Ai j

)
←−

(
I −

(
I

Vik

)
· (Tik) · (I V T

ik)

)(
Akj

Ai j

)

All of these elementary operations rely on BLAS subroutines to perform internal computations.
Assuming a matrix A of size pb× qb⎛

⎜⎜⎜⎜⎜⎝

A11 A12 . . . A1q

A21 A22 . . . A2q

...
. . .

...

Ap1 Ap2 . . . Apq

⎞
⎟⎟⎟⎟⎟⎠

Copyright q 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:1573–1590
DOI: 10.1002/cpe



1580 A. BUTTARI ET AL.

where b is the tile size and each Ai j is of size b× b, the QR factorization can be performed as in
Algorithm 1.

Algorithm 1. The tiled algorithm for QR factorization.
1. for k= 1, 2, ...,min(p, q) do
2. DGEQT2(Akk , Tkk);
3. for j = k + 1, k + 2, . . . , q do
4. DLARFB(Akj , Vkk , Tkk);
5. end for
6. for i = k + 1, k + 1, . . . , p do
7. DTSQT2(Rkk , Aik , Tik);
8. for j = k + 1, k + 2, . . . , q do
9. DSSRFB(Akj , Ai j , Vik , Tik);
10. end for
11. end for
12. end for

Figure 2 gives a graphical representation of one repetition (with k= 1) of the outer loop in
Algorithm 1 with p= q = 3. The dark, thick borders show what tiles in the matrix are being read
and the light fill shows what tiles are being written in a step. The Tkk tiles are not shown in this
figure for clarity purposes.

3.2. Operation count

This section shows that Algorithm 1 has a higher operation count than the LAPACK algorithm
discussed in Section 2. The performance results in Section 4 will demonstrate that it is worth paying
this cost for the sake of scaling. The operation count of the tiled algorithm for QR factorization can
be derived starting from the operation count of each elementary operation; assuming that b is the
tile size:
DGEQT2: This operation is a standard non-blocked QR factorization of a b× b tile, where, in

addition, the Tkk triangular tile is computed. Thus, 4/3b3 floating point operations are performed
for the factorization plus 2/3b3 for computing Tkk . This subroutine accounts for 2b3 floating point
operations total.
DLARFB: Since both Vkk and Tkk are triangular tiles, 3b3 floating point operations are performed

in this subroutine.
DTSQT2: Taking advantage of the triangular structure of Rkk , the factorization can be computed

in 2b3 floating point operations. The computation of the triangular Tik tile can also be performed
exploiting the structure of the Householder vectors built during the factorization (remember that
the b reflectors can be represented as an identity tile on top of a square full tile). Since 4/3b3 are
needed to compute Tik , the DTSQT2 accounts for 10/3b3 floating point operations.
DSSRFB: Exploiting the structure of the Householder reflectors and of the Tik tile computed in

DTSQT2, this subroutine needs 5b3 floating point operations.
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Figure 2. Graphical representation of one repetition of the outer loop in Algorithm 1 on a matrix with p= q = 3.
As expected, the picture is very similar to the out-of-core algorithm presented in [24].

For each repetition of the outer loop in Algorithm 1, one DGEQT2, q−k DLARFB, p−k DTSQT2
and (p − k)(q − k) DSSRFB are performed for a total of 2b3 + 3(q − k)b3 + 10/3(p − k)b3 +
5(p − k)(q − k)b3. Assuming, without loss of generality, that q<p and integrating this quantity
over all the q repetitions of the outer loop in Algorithm 1, the total operation count for the QR
factorization is

q∑
k=1

(
2b3 + 3(q − k)b3 + 10

3
(p − k)b3 + 5(p − k)(q − k)b3

)

� 5

2
q2
(
p − q

3

)
b3

= 5

2
n2
(
m − n

3

)
(4)
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Equation (4) shows that the tiled algorithm for QR factorization needs 25% more floating point
operations than the standard LAPACK algorithm.
Since the extra flops are due to the formation and application of multiple Tik tiles at each step,

using unblocked transformations in the tiled algorithm would lead to exactly the same operation
count of the block LAPACK algorithm, but this drastically affects the performance on a system
with memory hierarchy.

3.3. Graph-driven asynchronous execution

Following the approach presented in [14,16], Algorithm 1 can be represented as a DAGwhere nodes
are elementary tasks that operate on b× b blocks and where edges represent the dependencies among
them. Figure 3 shows the DAG when Algorithm 1 is executed on a matrix with p= q = 3. Note
that the DAG has a recursive structure; thus, if p1≥p2 and q1≥q2, then the DAG for a matrix of
size p2× q2 is a subgraph of the DAG for a matrix of size p1× q1. This property also holds for
most of the algorithms in LAPACK.
Once the DAG is known, the tasks can be scheduled asynchronously and independently as long

as the dependencies are not violated. A critical path can be identified in the DAG as the path that
connects all the nodes that have the higher number of outgoing edges. Based on this observation,
a scheduling policy can be used, where higher priority is assigned to those nodes that lie on the
critical path. Clearly, in the case of our block algorithm for QR factorization, the nodes associated
with the DGEQT2 subroutine have the highest priority and then three other priority levels can be
defined for DTSQT2, DLARFB and DSSRFB in descending order.
This dynamic scheduling results in an out-of-order execution where idle time is almost completely

eliminated since only very loose synchronization is required between the threads. Figure 4 shows
part of the execution flow of Algorithm 1 on a 16-core machine (8-socket Dual Opteron) when
tasks are dynamically scheduled based on dependencies in the DAG. Each line in the execution
flow shows which tasks are performed by one of the threads involved in the factorization.
Figure 4 shows that all the idle times, which represent the major scalability limit of the fork-

join approach, can be removed, thanks to the very low synchronization requirements of the

Figure 3. The dependency graph of Algorithm 1 on a matrix with p= q = 3.
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Figure 4. The execution flow for dynamic scheduling, out-of-order execution of Algorithm 1.

Figure 5. A comparison of column major storage format (left) and block data layout (right).

graph-driven execution. The graph-driven execution also provides some degree of adaptivity since
tasks are scheduled to threads depending on the availability of execution units.

3.4. Block data layout

The major limitation of performing very fine-grain computations is that the BLAS library generally
has very poor performance on small blocks. This situation can be considerably improved by storing
matrices in block data layout (BDL) instead of the column major format, which is the standard
storage format for FORTRAN arrays.
Figure 5 compares column major format (left) and BDL (right). In BDL, a matrix is split into

blocks and each block is stored into contiguous memory locations. Each block is stored in column
major format, and blocks are stored in column major format with respect to each other. As a result,
the access pattern to memory is more regular and BLAS performance is considerably improved.
The benefits of BDL have been extensively studied in the past, for example, in [27], and recent
studies such as [15] demonstrate how fine-granularity parallel algorithms can benefit from BDL.

4. PERFORMANCE RESULTS

The performance of the tiled QR factorization with dynamic scheduling of tasks has been measured
on the systems listed in Table II and compared with the performance of the fork-join approach,
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Table II. Details of the systems used for the following performance results.

8-Socket Dual Opteron 2-Socket Quad Clovertown

Architecture Dual-Core AMD Intel�Xeon�CPU
OpteronTM 8214 X5355

Clock speed 2.2GHz 2.66GHz
# Cores 8× 2= 16 2× 4= 8
Peak performance 70.4 Gflop/s 85.12Gflop/s
Memory 62GB 16GB
Compiler suite Intel 9.1 Intel 9.1
BLAS libraries GotoBLAS-1.15 GotoBLAS-1.15

ACML-4.0.0 MKL-9.1
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Figure 6. Performance of the tiled algorithm with dynamic scheduling using GotoBLAS-1.15 on an 8-socket Dual
Opteron system. The dashed curve indicates the raw performance of the tiled algorithm with dynamic scheduling,

i.e. the performance as computed with the true operation count in Equation (4).

i.e. the standard algorithm for block QR factorization of LAPACK associated with multithreaded
BLAS.
Figures 6–9 show the performance of the QR factorization for the block algorithm with dynamic

scheduling, the LAPACK subroutine linked to multithreaded BLAS and a vendor implementation
of the QR factorization (this last is provided only by the MKL and ACML libraries but not the
GotoBLAS one). A block size of 200 has been used for the tiled algorithm, whereas the block size
for the LAPACK algorithm¶ has been tuned in order to achieve the best performance for all the
combinations of architecture and BLAS library.

¶The block size in the LAPACK algorithm sets the width of the panel.
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Figure 7. Performance of the tiled algorithm with dynamic scheduling using GotoBLAS-1.15 on a 2-socket
Quad Clovertown system. The dashed curve indicates the raw performance of the tiled algorithm with dynamic

scheduling, i.e. the performance as computed with the true operation count in Equation (4).
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Figure 8. Performance of the tiled algorithm with dynamic scheduling using ACML-4.0.0 on an 8-socket Dual
Opteron system. The dashed curve indicates the raw performance of the tiled algorithm with dynamic scheduling,

i.e. the performance as computed with the true operation count in Equation (4).

In each graph, two curves are reported for the block algorithm with dynamic scheduling; the
solid curve shows its relative performance when the operation count is assumed to be equal to the
one of the LAPACK algorithm reported in Section 2, whereas the dashed curve shows its ‘raw’
performance, i.e. the actual flop rate computed with the exact operation count for this algorithm
(given in Equation (4)). As already mentioned, the ‘raw performance’ (dashed curve) is 25% higher
than the relative performance (solid curve).
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Figure 9. Performance of the tiled algorithm with dynamic scheduling using MKL-9.1 on a 2-socket Quad Clover-
town system. The dashed curve indicates the raw performance of the tiled algorithm with dynamic scheduling,

i.e. the performance as computed with the true operation count in Equation (4).

The graphs on the left part of each figure show the performance measured using the maximum
number of cores available on each system with respect to the problem size. The graphs on the right
part of each figure show the weak scalability, i.e. the flop rates versus the number of cores when
the local problem size is kept constant (nloc= 5000) as the number of cores increases.
Figures 6–9 show that, despite the higher operation count, the block algorithm with dynamic

scheduling is capable of completing the QR factorization in less time than the LAPACK algorithm
when the parallelism degree is high enough that the benefits of the asynchronous execution overcome
the penalty of the extra flops. For lower numbers of cores, in fact, the fork-join approach has a good
scalability and completes the QR factorization in less time than the block algorithm because of the
lower flop count. Note that the actual execution rate of the block algorithm for QR factorization with
dynamic scheduling (i.e. the dashed curves) is always higher than that of the LAPACK algorithm
with multithreaded BLAS even for low numbers of cores.
The scalability data reported on the right side of Figures 6–9 clearly show how the fork-join

approach has scalability limits that become more evident for higher degree of parallelism leading
also to slowdown in some cases (see Figure 8). The scalability of the tiled algorithm with dynamic
scheduling resembles that of vendor implementations. However, the data in the graphs suggest that
the tiled algorithm may have an advantage over the vendor implementations when the degree of
parallelism is higher than what was possible to achieve on the systems used.
The actual performance of the tiled algorithm, even if considerably higher than that of the fork-

join one, is still far from the peak performance of the systems used for the measures. This is
mostly due to two factors. First, the nature of the BLAS operations involved; the DGEQR2 and the
DLARFT in the LAPACK algorithm and the DGEQT2 and DTSQT2 in the block algorithm are based
on Level 2 BLAS operations that, being memory bound, represent a limit for performance. Second,
the performance of BLAS routines on small-size blocks. The block size used in the experiments
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reported above is 200; this block size represents a good compromise between flexibility of the
scheduler and performance of the BLAS operations, but it is far from being ideal. Such a block size,
in fact, does not allow a good task scheduling for smaller size problems and still the performance
of BLAS operations is far from what can be achieved for bigger size blocks.

5. ON THE USE OF RECURSION IN THE BLOCK LAPACK ALGORITHM

As pointed out in Section 2, the block QR algorithm in LAPACK suffers scalability limitations due
to the intrinsically sequential nature of the panel reduction. Recursive techniques to perform the
panel reduction as proposed by Elmroth et al. [18] can be used to weaken these limitations. Even if
recursive panel factorization was introduced as a cache oblivious technique to improve data locality,
it must be noted that the usage of recursion allows one to perform some of the operations in the panel
reduction by means of Level 3 BLAS subroutines, which means that the panel can be parallelized
to some extent on shared-memory architectures. However, part of the panel reduction is still to
be performed in Level 2 BLAS operations, which represents a limitation to the scalability of the
algorithm for the reasons discussed in Section 2. Owing to the unavailability of source code for the
algorithm presented in [18], a variant of this algorithm was implemented and its performance was
compared with that of the traditional LAPACK block algorithm and the tiled algorithm described
in Section 3. Specifically, in the implemented variant, recursion in the panel is stopped at a given
point (set through parameters that must be tuned according to the architecture characteristics) after
which conventional unblocked code (i.e. the LAPACK DGEQR2) is used to perform the remainder
of the computations. The results of this comparison on the 8-socket Dual Opteron system in Table II
are reported in Figure 10. Figure 10 shows that, even if the recursive panel provides much better
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Figure 10. Comparison between the performance of the tiled algorithm with dynamic scheduling
using ACML-4.0.0 on an 8-socket Dual Opteron system, the traditional LAPACK block algorithm

and the block algorithm with recursive panel.
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performance with respect to the traditional LAPACK block algorithm, it is still considerably slower
than the proposed tiled algorithm for higher parallelism degrees.

6. CONCLUSION

By adapting known algorithms for updating the QR factorization of a matrix, we have derived
an implementation scheme of the QR factorization for multicore architectures based on dynamic
scheduling and BDL. Although the proposed algorithm is performing 25% more flops than the
regular algorithm, the gain in flexibility allows an efficient dynamic scheduling, which enables the
algorithm to scale almost perfectly when the number of cores increases.
While this paper addresses only the QR factorization, it is straightforward to derive with the

same ideas the two important computational routines that consists in applying the Q-factor to a set
of vectors (see DORMQR in LAPACK) and constructing the Q-factor (see DORGQR in LAPACK).
The ideas behind this work can be extended in many directions.
Explore techniques to reduce the extra flops: It can be noted that the 25% overhead can be re-

duced by using non-square tiles. For example, using 2b× b tiles, the overhead reduces to 12.5%.
Although this may seem an effective solution to the problem of extra computations, using rect-
angular tiles yields a coarser granularity that limits the flexibility of the dynamic scheduling and
results in poorer parallelization of the elementary operations. A potentially effective technique for
reducing the amount of extra flops consists in accumulating the transformations computed inside
the DTSQT2 operation in subsets of size s where s�b (this method is explained in [24]). The
efficient implementation of this ‘internal blocking’ technique is not easy to accomplish since it has
to face the limitations of BLAS subroutines on small portions of data. The internal blocking is
currently under investigation.
Implement other linear algebra operations: The LU factorization can be performed with an

algorithm that is analogous to the QR one described in Section 3. This algorithm has been discussed
in [23,25] as a way of improving the out-of-core LU factorization. Although the only difference
between the tiled algorithms for the LU and QR factorizations is in the elementary operations, in the
LU case the cost of the tiled algorithm is 50% higher than that of the LAPACK algorithm. For this
reason, the benefits of the improved scalability may be visible only at very high processor counts
or may not be visible at all. Techniques must be investigated to eliminate or reduce the extra cost.
The same idea of tiled operations may also be applied to other two-sided transformations such as

Hessenberg reduction, tridiagonalization and bidiagonalization. In these transformations, Level 2
BLAS operations are predominant and panel reductions account for almost 50% of the time of a
sequential execution. Breaking the panel into smaller tasks that can be executed in parallel with
other tasks may yield considerable performance improvements.
Enforcing data locality: The results presented in [15] show that enforcing data locality and CPU

affinity may provide considerable benefits. It must be noted that the improvements that can be
expected on non-multicore SMPs are higher than those on currently available multicore systems
and this is due to the fact that on multicores, some of the higher level memories are shared between
multiple cores. Moreover, enforcing data locality has a major drawback in the fact that it seriously
limits the scheduling of tasks since each core can only be assigned tasks that operate on data that
resides on the memory associated with it. Preliminary results show that enforcing data locality and
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CPU affinity provides a slight speedup on the 8-socket Dual Opteron system, which is a NUMA
architecture. These techniques require further investigation.
Implement the same algorithms in distributed memory systems: The fact that the block algorithms

for QR and LU factorizations require only loose synchronization between tasks also makes them
good candidates for the implementation on distributed memory systems based on MPI communi-
cations.
Implement the same algorithms on the STI cell architecture: In the STI Cell processor, no caches

are present, but a small, explicitly managed memory is associated with each core. Owing to the small
size of these local memories (only 256KB), the LAPACK algorithms for LU and QR factorizations
cannot be efficiently implemented. The block algorithms for LU and QR factorizations represent
ideal candidates for the STI Cell architecture, since they can be parallelized with a very fine
granularity.
Explore the usage of parallel programming environments: The task of implementing linear al-

gebra operations with dynamic scheduling of tasks on multicore architectures can be considerably
simplified by the use of graph-driven parallel programming environments. One such environment
is SMP Superscalar [28] developed at the Barcelona Supercomputing Center. SMP Superscalar
addresses the automatic exploitation of the functional parallelism of a sequential program in
multicore and SMP environments. The focus is on the portability, simplicity and flexibility of the
programming model. Based on a simple annotation of the source code, a source-to-source compiler
generates the necessary code, and a runtime library exploits the existing parallelism by building at
runtime a task dependency graph. The runtime takes care of scheduling the tasks and handling the
associated data. Besides, a temporal locality-driven task scheduling can be implemented.
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