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SUMMARY

Optimizing a given software system to exploit the features of the underlying system has been an area of
research for many years. Recently, a number of self-adapting software systems have been designed and
developed for various computing environments. In this paper, we discuss the design and implementation of a
software system that dynamically adjusts the parallelism of applications executing on computational Grids
in accordance with the changing load characteristics of the underlying resources. The migration framework
implemented by our software system is aimed at performance-oriented Grid systems and implements
tightly coupled policies for both suspension and migration of executing applications. The suspension and
migration policies consider both the load changes on systems as well as the remaining execution times of the
applications thereby taking into account both system load and application characteristics. The main goal
of our migration framework is to improve the response times for individual applications. We also present
some results that demonstrate the usefulness of our migration framework. Published in 2005 by John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Optimization of software routines for achieving efficiency on a given computational environment has
been an active area of research. Historically, the optimization was achieved by hand-tuning the software
system to fit the needs of the computing environment. Although high optimization can be achieved,
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this process was found to be tedious and needs considerable scientific expertise. Also, the hand-
tuning process was not portable across different computing environments. Finally, hand customization
does not take into account the run-time load dynamics of the system and the input parameters of the
application.

The solution to the above-mentioned problems associated with hand-tuning software routines for the
computing environment is to build self-adaptive software system that examines the characteristics of
the computing environments and chooses the software parameters needed to achieve high efficiency
on that environment. Recently, a number of self-adaptive software systems have been designed
and implemented [1–6]. Some of the software systems apply adaptivity to the computational
processors [1,2], some are tuned for communication networks [3], some are intended for workstation
clusters [5] and some have been developed for computational Grids [6]. The various adaptive software
systems also differ in the time when adaptivity is performed. Some perform adaptivity at installation
time [2–4], while others perform adaptivity at run time [5,6].

There are very few self-adaptive software systems that dynamically adapt to changes in the load
characteristics of the resources on computational Grids. Computational Grids [7] involve large resource
dynamics, so the ability to migrate executing applications onto different sets of resources assumes great
importance. Specifically, the main motivations for migrating applications in Grid systems are to provide
fault tolerance and to adapt to load changes on the systems. In this paper, we focus on the migration
of applications executing on distributed and Grid systems in order to adapt to the load dynamics of the
resources.

There are at least two disadvantages in using the existing migration frameworks [8–13] for adapting
to load dynamics. First, due to separate policies employed by these migration systems for suspension
of executing applications and migration of the applications to different systems, applications can incur
lengthy waiting times between when they are suspended and when they are restarted on new systems.
Second, due to the use of predefined conditions for suspension and migration and due to the lack of
knowledge of the remaining execution time of the applications, the applications can be suspended and
migrated even when they are about to finish execution in a short period of time. This is certainly less
desirable in performance-oriented Grid systems where the large load dynamics may lead to frequent
satisfaction of the predefined conditions and hence could lead to frequent invocations of suspension
and migration decisions.

In this paper, we describe a framework that defines and implements scheduling policies for migrating
applications executing on distributed and Grid systems in response to varying resource load dynamics.
In our framework, the migration of applications depends on

(1) the amount of increase or decrease in loads on the resources;
(2) the point during the application execution lifetime when load is introduced into the system;
(3) the performance benefits that can be obtained for the application due to migration.

Thus, our migrating framework takes into account both the load and application characteristics.
The policies are implemented in such a way that the executing applications are only suspended and
migrated when better systems are found for application execution thereby invoking the migration
decisions as infrequently as possible. Our migration framework is primarily intended for rescheduling
long running applications. The migration of applications in our migration framework is dependent on
the ability to predict the remaining execution times of the applications, which in turn is dependent
on the presence of execution models that predict the total execution cost of the applications.
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The framework has been implemented and tested in the GrADS system [6]. Our test results indicate
that our migration framework can help improve the performance of executing applications by more
than 30%. In this paper, we present some of the descriptions and results from our earlier work [14] and
also present new experiments regarding dynamic determination of rescheduling cost.

In Section 2, we present a general overview of self-adaptive software systems by describing some
systems that perform adaptivity. In Section 3, we describe the GrADS system and the life cycle of
GrADS applications. In Section 4, we introduce our migration framework by describing the different
components in the framework. In Section 5, we describe the API of the checkpointing library used
in our migration framework. In Section 6, the various policies regarding rescheduling are dealt with.
In Section 7, other issues relevant to migration are described in brief. In Section 8, we describe our
experiments and provide various results. In Section 9, we present related work in the field of migration.
We give concluding remarks and explain our future plans in Section 10.

2. SELF-ADAPTIVE SOFTWARE SYSTEMS—AN OVERVIEW

Recently, there have been a number of efforts in designing and developing self-adaptive software
systems. These system differ in terms of the kind of computational environments, the kind of adaptive
software system used and also the time when adaptivity is performed. The following sections describe
some illustrative examples.

2.1. ATLAS

ATLAS [2] stands for Automatically Tuned Linear Algebra Software. ATLAS exploits cache locality
to provide highly efficient implementations of BLAS (Basic Linear Algebra Subroutine) and few
LAPACK routines. During installation, ATLAS studies various characteristics of the hardware
including the size of the cache, the number of floating point units in the machine and the pipeline
length to determine the optimal or near-optimal block size for the dense matrices, the number of
loop unrollings to perform, the kind of instruction sets to use, etc. Thus, optimizations are performed
for reducing the number of accesses to main memory and reduce loop overheads resulting in BLAS
implementations that are competitive with the machine-specific versions of most known architectures.

2.2. ATCC

ATCC [3] (Automatically Tuned Collective Communications) is intended for optimizing MPI [15,16]
collective communications for a given set of machines connected by networks of specific
configurations. The collective communication routines form integral parts of most of the MPI-based
parallel applications. During installation, ATCC conducts experiments for different algorithms and
segment sizes for different collective communications, number of processors and message sizes.
ATCC then gathers the times for individual experiments in a look-up table. When the user invokes a
collective communication routine with a given message size and a given number of processors, ATCC
looks up the table and chooses the best collective communication algorithm and segment size for
communication. Recent versions of ATCC include performance models for collective communication
algorithms to reduce the time taken for conducting actual experiments.
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2.3. BeBOP

The BeBOP project from Berkeley attempts to optimize sparse matrix kernels, namely, matrix–
vector multiplication, triangular solve and matrix triple product for a given architecture. For each of
the sparse matrix kernels, the BeBOP project considers a set of implementations and chooses the
optimal or near-optimal implementation for a given architecture. Given a sparse matrix, machine,
and kernel, the BeBOP approach in choosing an implementation consists of two steps. First, the
possible implementations are benchmarked off-line in a matrix-independent, machine-dependent way.
When the matrix structure is known during runtime, the matrix is sampled to extract relevant aspects
of its structure, and performance models that combine the benchmark data and the estimated matrix
properties are evaluated to obtain the near-optimal implementation. The BeBOP [4] approach has been
successfully applied to optimize register blocking for sparse matrix–vector multiplication.

2.4. LFC

The LFC (LAPACK for Clusters) project [5] aims to simplify the use of parallel linear algebra software
on computational clusters. Benchmark results are obtained for sequential kernels that are invoked by
the parallel software. During run-time, adaptivity is performed by taking into account the resource
characteristics of the computational machines and an optimal or near-optimal choice of a subset of
resources for the execution of the parallel application is made by the employment of scheduling
algorithms. LFC also optimizes the parameters of the problem, namely the block size of the matrix.
LFC is intended for the remote invocation of parallel software from a sequential environment and
hence employs data movement strategies. The LFC approach has been successfully used for solving
ScaLAPACK LU, QR and Cholesky factorization routines.

3. THE GrADS SYSTEM

GrADS (Grid Application Development Software) [6] is an ongoing research project involving a
number of institutions and its goal is to simplify distributed heterogeneous computing in the same way
that the World Wide Web simplified information sharing over the Internet. GrADS approach is similar
to the LFC approach, but more suited to Grid computing due to the employment of Grid computing
tools. The University of Tennessee investigates issues regarding integration of numerical libraries in the
GrADS system. In our previous work [17], we demonstrated the ease with which numerical libraries
such as ScaLAPACK can be integrated into the Grid system and the ease with which the libraries can
be used over the Grid. We also showed some results to prove the usefulness of a Grid in solving large
numerical problems.

In the architecture of GrADS, the user wanting to solve a numerical application over the Grid invokes
the GrADS application manager. The life cycle of the GrADS application manager is shown in Figure 1.

As a first step, the application manager invokes a component called Resource Selector. The Resource
Selector accesses the Globus Monitoring and Discovery Service (MDS) [18] to obtain a list of
machines in the GrADS testbed that are available and then contacts the Network Weather Service
(NWS) [19] to retrieve system information for the machines. The application manager then invokes a
component called Performance Modeler with problem parameters, machines and machine information.
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Figure 1. GrADS application manager.

The Performance Modeler, using an execution model built specifically for the application, determines
the final list of machines for application execution. By employing an application-specific execution
model, GrADS follows the AppLeS [20] approach to scheduling. The problem parameters and
the final list of machines are passed as a contract to a component called Contract Developer.
The Contract Developer may either approve or reject the contract. If the contract is rejected, the
application manager develops a new contract by starting from the resource selection phase again. If the
contract is approved, the application manager passes the problem, its parameters and the final list of
machines to Application Launcher. The Application Launcher spawns the job on the given machines

Published in 2005 by John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:235–257



240 S. S. VADHIYAR AND J. J. DONGARRA

using Globus job-management mechanism and also spawns a component called Contract Monitor.
The Contract Monitor through an Autopilot mechanism [21] monitors the times taken for different
parts of applications. The GrADS architecture also has a GrADS Information Repository (GIR) that
maintains the different states of the application manager and the states of the numerical application.
After spawning the numerical application through the Application Launcher, the application manager
waits for the job to complete. The job can either complete or suspend its execution due to external
intervention. These application states are passed to the application manager through the GIR. If the job
has completed, the application manager exits, passing success values to the user. If the application is
stopped, the application manager waits for the state of the end application to change to ‘RESUME’ and
then collects new machine information by starting from the resource selection phase again.

4. THE MIGRATION FRAMEWORK AND SELF ADAPTIVITY

Although the GrADS architecture explained in the previous section has provisions for continuing an
end application after the application was stopped, it lacks components that perform the actual stopping
of the executing end application and informing the application manager of the various states of the
end application. Hence, the GrADS architecture as described in the previous section does not adapt the
executing application to the changing resource characteristics once the application is committed to a set
of resources. It is highly desirable to adapt and migrate the application to a different set of resources if
the resources on which the application is executing do not meet the performance criteria. The ability to
migrate applications in the GrADS system is implemented by adding a component called Rescheduler
to the GrADS architecture. The migrating numerical application, Migrator, the Contract Monitor that
monitors the application’s progress and the Rescheduler that decides when to migrate, together form
the core of the migrating framework. The interactions among the different components involved in
the migration framework is illustrated in Figure 2. These components are described in detail in the
following sections.

4.1. Migrator

A user-level checkpointing library called SRS (stop restart software) is used to provide migration
capability to the end application. The application, by making calls to the SRS API, achieves the
ability to checkpoint data, to be stopped at a particular point in execution, to be restarted later on
a different configuration of processors and to be continued from the previous point of execution.
The SRS library is implemented on top of MPI and hence can be used only with MPI-based parallel
programs. Since checkpointing in SRS is implemented at the application layer and not at the MPI layer,
migration is achieved by clean exit of the entire application and restarting the application on a new
configuration of resources. Although the method of rescheduling in SRS, by stopping and restarting
executing applications, incurs more overhead than process migration techniques [22–24] where a single
process or a set of processes of the application is either migrated to another processor or replaced by
a set of processes, the approach followed by SRS allows reconfiguration of executing applications and
achieves portability across different MPI implementations, particularly MPICH-G [25], a popular MPI
implementation for Grid computing. The SRS library uses Internet Backplane Protocol (IBP) [26] for
storage of the checkpoint data. IBP storage depots are started on all the machines in the GrADS testbed.
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Figure 2. Interactions in migration framework.

The application launcher, apart from launching the end application and the contract monitor, also
launches a component called RSS (run-time support system). RSS is included as part of the SRS
checkpointing package. An external component (e.g. the rescheduler) wanting to stop an executing end
application interacts with the RSS daemon. RSS exists for the entire duration of the application and
spans across multiple migrations of the application. Before the actual parallel application is started,
the RSS daemon is launched by the application launcher on the machine where the user invokes the
GrADS application manager. The actual application through the SRS library knows the location of
the RSS from the GIR and interacts with RSS to perform various functions. These functions include
initialization of certain data structures in the library, checking whether the application needs to be
stopped and storing and retrieving various information including pointers to the checkpointed data,
processor configuration and data distribution used by the application. RSS is implemented as a threaded
service that receives asynchronous requests from external components and the application.
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4.2. Contract Monitor

The Contract Monitor is a component that uses the Autopilot infrastructure to monitor the progress of
applications in GrADS. Autopilot [21] is a real-time adaptive control infrastructure built by the Pablo
group at University of Illinois, Urbana-Champaign. An autopilot manager is started before the launch of
the numerical application. The numerical application is instrumented with calls to send the execution
times taken for the different phases of the application to the contract monitor. The contract monitor
compares the actual execution times with the predicted execution times. When the contract monitor
detects large differences between the actual and the predicted performance of the end application, it
contacts the rescheduler and requests it to migrate the application.

4.3. Rescheduler

Rescheduler is the component that evaluates the performance benefits that can be obtained due to
the migration of an application and initiates the migration of the application. The rescheduler is a
daemon that operates in two modes: migration on request and opportunistic migration. When the
contract monitor detects intolerable performance loss for an application, it contacts the rescheduler
requesting it to migrate the application. This is called migration on request. In other cases when
any contract monitor has not contacted the rescheduler for migration, the rescheduler periodically
queries the GIR for recently completed applications. If a GrADS application was recently completed,
the rescheduler determines whether performance benefits can be obtained for an currently executing
application by migrating it to use the resources that were freed by the completed application. This is
called opportunistic rescheduling.

5. THE SRS API

The application interfaces for SRS look similar to CUMULVS [27], but unlike CUMULVS, SRS
does not require a PVM virtual machine to be set up on the hosts. The SRS library consists of six
main functions: SRS Init(), SRS Finish(), SRS Restart Value(), SRS Check Stop(), SRS Register()
and SRS Read(). The user calls SRS Init() and SRS Finish() in their application after MPI Init() and
before MPI Finalize(), respectively. Since SRS is a user-level checkpointing library, the application
may contain conditional statements to execute certain parts of the application in the start mode and
certain other parts in the restart mode. In order to know whether the application is executed in the
start or restart mode, the user calls SRS Restart Value() that returns 0 and 1 on start and restart
modes, respectively. The user also calls SRS Check Stop() at different phases of the application to
check whether an external component wants the application to be stopped. If the SRS Check Stop()
returns 1, then the application has received a stop signal from an external component and hence
should perform application-specific stop actions. There is no relationship between the locations of
the SRS Check Stop() calls and the calls to extract the execution times of the different phases of
application.

The user calls SRS Register() in his application to register the variables that will be checkpointed
by the SRS library. When an external component stops the application, the SRS library checkpoints
only those variables that were registered through SRS Register(). The user reads in the checkpointed

Published in 2005 by John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:235–257



SELF ADAPTIVITY IN GRID COMPUTING 243

data in the restart mode using SRS Read(). The user, through SRS Read(), also specifies the previous
and current data distributions. By knowing the number of processors and the data distributions used
in the previous and current execution of the application, the SRS library automatically performs the
appropriate data redistribution. For example, the user can start their application on four processors
with block distribution of data, stop the application and restart it on eight processors with block-cyclic
distribution. The details of the SRS API for accomplishing the automatic redistribution of data are
beyond the scope of the current discussion. For the current discussion, it is sufficient to note that the
SRS library is generic and has been tested with numerical libraries like ScaLAPACK and PETSC.

6. RESCHEDULING POLICIES

6.1. Policies for contacting the rescheduler

The contract monitor calculates the ratios between the actual execution times and the predicted
execution times of the application. The tolerance limits of the ratios are specified as inputs to the
contract monitor. When a given ratio is greater than the upper tolerance limit, the contract monitor
calculates the average of the computed ratios. If the average is greater than the upper tolerance limit, it
contacts the rescheduler, requesting that the application be migrated. The average of the ratios is used
by the contract monitor to contact the rescheduler due to the following reasons.

(1) A competing application of short duration on one of the machines may have increased the
load temporarily on the machine and hence caused the loss in performance of the application.
Contacting the rescheduler for migration on noticing few losses in performance will result
in unnecessary migration in this case, since the competing application will end soon and the
application’s performance will be back to normal.

(2) The average of the ratios also captures the history of the behavior of the machines on which
the application is running. If the application’s performance on most of the iterations has been
satisfactory, then few losses of performance may be due to sparse occurrences of load changes
on the machines.

(3) The average of the ratios also takes into account the percentage completed time of application’s
execution.

If the rescheduler refuses to migrate the application, the contract monitor adjusts its tolerance
limits to new values. Similarly when a given ratio is less than the lower tolerance limit, the contract
monitor calculates the average of the ratios and adjusts the tolerance limits if the average is less than
the lower tolerance limit. The dynamic adjusting of tolerance limits not only reduces the amount of
communication between the contract monitor and the rescheduler, but also hides the deficiencies in the
application-specific execution time model.

6.2. Policies for migration

For both migration on request and opportunistic migration modes, the rescheduler first contacts the
NWS to obtain the updated information for the machines in the Grid. It then contacts the application-
specific performance modeler to evolve a new schedule for the application. Based on the current
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Table I. Times for rescheduling phases.

Rescheduling phase Time (s)

Writing checkpoints 40
Waiting for NWS to update information 90
Time for application manager to get new resource information from NWS 120
Evolving new application-level schedule 80
Other Grid overhead 10
Starting application 60
Reading checkpoints and data redistribution 500

Total 900

total percentage completion time for the application and the predicted total execution time for the
application with the new schedule, the rescheduler calculates the remaining execution time, ret new,
of the application if it were to execute on the machines in the new schedule. The rescheduler also
calculates ret current, the remaining execution time of the application if it were to continue executing
on the original set of machines. The rescheduler then calculates the rescheduling gain as

rescheduling gain = (ret current − (ret new + 900))

ret current

The number 900 in the numerator of the fraction is the worst case time in seconds needed to
reschedule the application. The various times involved in rescheduling are given in Table I. The times
shown in Table I were obtained by conducting several experiments with different problem sizes and
obtaining the maximum times for each phases of rescheduling. Thus, the rescheduling strategy adopts
a pessimistic approach for rescheduling, with the result that migration of applications will be avoided
in certain cases where the migration could yield performance benefits.

If the rescheduling gain is greater than 30%, the rescheduler sends stop signal to the RSS and
hence to the executing application, and stores the ‘STOP’ status in GIR. The application manager
then waits for the state of the end application to change to ‘RESUME’. After the application has
stopped, the rescheduler stores ‘RESUME’ as the state of the application in the GIR thus prompting
the application manager to evolve a new schedule and restart the application on the new schedule. If the
rescheduling gain is less than 30% and if the rescheduler is operating in the migration on request mode,
the rescheduler contacts the contract monitor prompting the contract monitor to adjust its tolerance
limits.

The rescheduling threshold [28] that the performance gain due to rescheduling must cross for
rescheduling to yield significant performance benefits depends on the load dynamics of the system
resources, the accuracy of the measurements of resource information and may also depend on the
particular application for which rescheduling is made. Since the measurements made by NWS are
fairly accurate, the rescheduling threshold for our experiments depended only on the load dynamics
of the system resources. By means of trial-and-error experiments using a range of different problem
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sizes for the different applications that were considered and for different configurations of the available
resources, we determined the rescheduling threshold for our testbed to be 30%. Rescheduling decisions
made below this threshold may not yield performance benefits in all cases.

7. OTHER MIGRATION ISSUES

The calculation of remaining execution and percentage completion times of the application forms the
backbone of our rescheduling architecture and lends uniqueness to our approach when compared with
other migration research efforts. The contract monitor, based on the actual and predicted execution
times of the different phases of the executing application and the predicted execution time from
the execution model, calculates the refined expected execution time of the application. Based on
the current elapsed time and the refined expected time of the executing application, the total percentage
completion time and the remaining execution time of the application are calculated by the rescheduler.
When calculating the remaining execution time of the application on a new set of resources, the total
predicted execution time from the execution model for the new set of resources is also taken into
account. Although our approach of calculating the remaining execution and percentage completion
times is most suitable for iterative applications, it can also be applied to other kinds of applications.

Also, in order to prevent possible conflicts between different applications due to rescheduling, the
rescheduler is implemented as a single GrADS service that is contacted by the contract monitors
of different applications. The rescheduler implements a queuing system and at any point in time
services the request for a single application by contacting the corresponding application manager of
that application. The stopping of the application by the rescheduler occurs in two steps. First, the
external component contacts the RSS and sends a signal to stop the application. This stop signal occurs
concurrently with application execution. When the application executes the next SRS Check Stop()
call, it contacts the RSS, obtains the stop information from RSS and proceeds to stop.

8. EXPERIMENTS AND RESULTS

The GrADS experimental testbed consists of about 40 machines that reside in institutions across
United States including the University of Tennessee, the University of Illinois, the University of
California at San Diego, Rice University, etc. For the sake of clarity, our experimental testbed consists
of two clusters, one in the University of Tennessee and another in the University of Illinois, Urbana-
Champaign. The characteristics of the machines are given in Table II. The two clusters are connected by
means of the Internet. Although the Tennessee machines are dual-processor machines, the applications
in the GrADS experiments use only one processor per machine.

About five applications, namely, ScaLAPACK LU and QR factorizations, ScaLAPACK eigenvalue
problems, PETSC CG solver and the heat equation solver, have been integrated into the migration
framework by instrumenting the applications with SRS calls and developing performance models
for the applications. In general, our migration framework is suitable for iterative MPI-based parallel
applications for which performance models predicting the execution costs can be written. In the
experiments shown in this paper, ScaLAPACK QR factorization was used as the end application.
Similar encouraging results were also obtained for other applications.
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Table II. Resource characteristics.

Cluster Processor Speed Memory Operating Globus
name Location Nodes type (MHz) (MB) Network system version

msc Tennessee 8 Pentium III 933 512 100 Mb Redhat 2.2
switched Linux 7.3
Ethernet

opus Illinois 16 Pentium II 450 256 1.28 Gbit s−1 Redhat 2.2
full duplex Linux 7.2

Myrinet (2.4.18 kernel)

The performance model of ScaLAPACK QR factorization was derived by simulating the routine
PDGEQRF. The simulation was based on benchmark performance of matrix multiplication and other
basic linear algebra routines on the resource testbed and a prediction of communication costs for a given
set of network links and for given message sizes. A more detailed description of the QR performance
model is beyond the scope of this paper. For a general idea of the methodology, the reader is referred to
earlier work [17]. The application was instrumented with calls to SRS library such that the application
can be stopped by the rescheduler at any point of time and can be continued on a different configuration
of machines. The data that was checkpointed by the SRS library for the application included the matrix,
A, and the right-hand side vector, B. Only the PDGEQRF routine and the driver routine for PDGEQRF
were modified for instrumentation with SRS calls. The percentage increase in size of the code due to
the modifications was less than 4%. Lower tolerance limit of 0.7 and upper tolerance limit of 2.0 were
used as thresholds for the contract monitor. These thresholds were derived by conducting preliminary
performance model validation tests on the testbed.

8.1. Migration on request

In all of the experiments in this section, four Tennessee and eight Illinois machines were used. A given
matrix size for the QR factorization problem was input to the application manager. For large problem
sizes, the computation time dominates the communication time for the ScaLAPACK application. Since
the Tennessee machines have higher computing power than the Illinois machines, the application
manager by means of the performance modeler chose the four Tennessee machines for the end
application run. A few minutes after the start of the end application, artificial load is introduced into
the four Tennessee machines. This artificial load is achieved by executing a certain number of loading
programs on each of the Tennessee machines. The loading program used was a sequential C code
that consists of a single looping statement that loops forever. This program was compiled without any
optimization in order to achieve the loading effect.

Due to the loss in predicted performance caused by the artificial load, the contract monitor requested
the rescheduler to migrate the application. The rescheduler evaluated the potential performance benefits
that can be obtained by migrating the application to the eight Illinois machines and either migrated the
application or allowed the application to continue on the four Tennessee machines. The rescheduler was
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operated in two modes—a default and a non-default mode. The normal operation of the rescheduler
is its default mode, and the non-default mode is to force the opposite decision of whether or not to
migrate. Thus, in cases when the default mode of the rescheduler was to migrate the application, the
non-default mode was to continue the application on the same set of resources, and in cases when
the default mode of the rescheduler was to not migrate the application, the non-default mode was to
force the rescheduler to migrate the application by adjusting the rescheduling cost parameters. For each
experimental run, results were obtained for both when rescheduler was operated in the default and non-
default mode. This allowed us to compare both scenarios and to verify whether the rescheduler made
the right decisions.

Three parameters were involved in each set of experiments—the size of the matrices, the amount of
load on the resources and the time after the start of the application when the load was introduced into
the system. The following three sets of experiments were obtained by fixing two of the parameters and
varying the other parameter.

In the first set of experiments, the artificial load consisting of 10 loading programs was introduced
into the system five minutes after the start of the end application. The bar chart in Figure 3 was obtained
by varying the size of the matrices, i.e. the problem size on the x-axis. The y-axis represents the
execution time in seconds of the entire problem including the Grid overhead. For each problem size,
the bar on the left represents the execution time when the application was not migrated and the bar on
the right represents the execution time when the application was migrated.

Several points can be observed from Figure 3. The time for reading checkpoints occupied most of
the rescheduling cost since it involves moving data across the Internet from Tennessee to Illinois and
redistribution of data from four to eight processors. On the other hand, the time for writing checkpoints
is insignificant since the checkpoints are written to local storage. The rescheduling benefits are more
for large problem sizes since the remaining lifetime of the end application when load is introduced
is larger. There is a particular size of the problem below which the migrating cost overshadows the
performance benefit due to rescheduling. Except for matrix size 8000, the rescheduler made correct
decisions for all matrix sizes. For matrix size 8000, the rescheduler assumed a worst-case rescheduling
cost of 900 seconds while the actual rescheduling cost was close to about 420 seconds. Thus, the
rescheduler evaluated the performance benefit to be negligible while the actual scenario points to the
contrary. Thus, the pessimistic approach by using a worst-case rescheduling cost in the rescheduler will
lead to underestimating the performance benefits due to rescheduling in some cases. We also observe
from the figure that the times for reading checkpoints and data distribution do not necessarily increase
linearly with increasing matrix sizes. For example, the time for data distribution is more for matrix
size 11 000 than for matrix size 12 000. This is due to the transient loads associated with the Internet
between Tennessee and Illinois.

In the second set of experiments, matrix size 12 000 was chosen for the end application and artificial
load was introduced 20 min into the execution of the application. In this set of experiments, the amount
of artificial load was varied by varying the number of loading programs that were executed. In Figure 4,
the x-axis represents the number of loading programs and the y-axis represents the execution time in
seconds. For each amount of load, the bar on the left represents the case when the application was
continued on four Tennessee machines and the bar on the right represents the case when the application
was migrated to eight Illinois machines.

Similar to the first set of experiments, we find only one case when the rescheduler made an incorrect
decision for rescheduling. This case, when the number of loading programs was five, was due to the
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Figure 3. Problem sizes and migration.

insignificant performance gain that can be obtained due to rescheduling. When the number of loading
programs was three, we were not able to force the rescheduler to migrate the application because the
application completed during the time for rescheduling decision. Also, the greater the load, the higher
the performance benefit due to rescheduling because of larger performance losses for the application
in the presence of heavier loads. However, the most significant result in Figure 4 was that the execution
times when the application was rescheduled remained almost constant irrespective of the amount of
load. This is because, as can be observed from the results when the number of loading programs was 10
and when the number was 20, the more the amount of load, the earlier the application was rescheduled.
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Figure 4. Load amount and migration.

Hence our rescheduling framework was able to adapt to the external load. As with Figure 3, we see
that the times for checkpoint reading show variance for the same matrix size in Figure 4. Again, this is
due to the variance in network loads on the Internet connection between Tennessee and Illinois.

In the third set of experiments, shown in Figure 5, equal amounts of load consisting of seven loading
programs was introduced at different points of execution of the end application for the same problem of
matrix size 12 000. The x-axis represents the elapsed execution time in minutes of the end application
when the load was introduced. The y-axis represents the total execution time in seconds. Similar to the
previous experiments, the bars on the left denote the cases when the application was not rescheduled
and the bars on the right represent the cases when the application was rescheduled.
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As can be observed from Figure 5, there are diminishing returns due to rescheduling as the load is
introduced later into the program execution. The rescheduler made wrong decisions in two cases—
when the load introduction times are 15 and 20 min after the start of end application execution.
While the wrong decision for 20 min can be attributed to the pessimistic approach of rescheduling,
the wrong decision of the rescheduler for 15 min was determined to be due to the faulty functioning of
the performance model for the ScaLAPACK QR problem for Illinois machines. The most startling
result in Figure 5 is when the load was introduced 23 min after the start of the end application.
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At this point, the program almost completed and hence rescheduling will not yield performance benefits
for the application. The rescheduler was able to evaluate the scenario correctly and avoid unnecessary
rescheduling of the application. Most rescheduling frameworks will not be capable of achieving this
since they do not possess the knowledge regarding remaining execution time of the application.

8.2. Opportunistic migration

In this set of experiments, we illustrate opportunistic migration in which the rescheduler tries to migrate
an executing application when some other application completes. For these experiments, two problems
were involved. For the first problem, matrix size of 14 000 was used and six Tennessee machines were
made available. The application manager, through the performance modeler, chose the six machines
for the end application run. Two minutes after the start of the end application for the first problem,
a second problem of a given matrix size was input to the application manager. For the second problem,
the six Tennessee machines on which the first problem was executing and two Illinois machines
were made available. Due to the presence of the first problem, the six Tennessee machines alone
were insufficient to accommodate the second problem. Hence, the performance model chose the six
Tennessee machines and two Illinois machines for the end application and the actual application run
involved communication across the Internet.

In the middle of the execution of the second application, the first application completed and hence the
second application can be potentially migrated to use only the six Tennessee machines. Although this
involved constricting the number of processors for the second application from eight to six, there can
be potential performance benefits due to the non-involvement of Internet. The rescheduler evaluated
the potential performance benefits due to migration and made an appropriate decision.

Figure 6 shows the results for two illustrative cases when matrix sizes of the second application
were 13 000 and 14 000. The x-axis represents the matrix sizes and the y-axis represents the execution
time in seconds. For each application run, three bars are shown. The bar on the left represents the
execution time for the first application that was executed on six Tennessee machines. The middle bar
represents the execution time of the second application when the entire application was executed on six
Tennessee and two Illinois machines. The bar on the right represents the execution time of the second
application, when the application was initially executed on six Tennessee and two Illinois machines
and later migrated to execute on only six Tennessee machines when the first application completed.

For the second problem, for both matrix sizes 13 000 and 14 000, for the second problem, the
rescheduler made the correct decision of migrating the application. We also find that for both problem
cases, the second application was almost immediately rescheduled after the completion of the first
application.

8.3. Predicting redistribution cost

As observed in Figures 3–5, the rescheduler can make wrong decisions for rescheduling in
certain cases. In cases where the rescheduler made the wrong decision, the rescheduler decided
that rescheduling the executing application will not yield significant performance benefits for the
application, while the actual results point to the contrary. This is because the rescheduler used the
worst-case times shown in Table I for different phases of rescheduling while the actual rescheduling
cost was less than the worst-case rescheduling cost.
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Figure 6. Opportunistic migration.

As shown in Table I, the cost for reading and redistribution of checkpoint data is the highest of the
various costs involved in rescheduling. The checkpoint reading and redistribution are performed in
a single operation where the processes determine the portions and locations of data needed by them
and read the checkpoints directly from the IBP [26] depots. The data redistribution cost depends on
a number of factors including the number and amount of checkpointed data, the data distributions
used for the data, the current and future processors sets for the application used before and after
rescheduling, the network characteristics, particularly the latency and bandwidth of the links between
the current and future processor sets, etc. The rescheduling framework was extended to predict the
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redistribution cost and use the predicted redistribution cost for calculating the gain due to rescheduling
the executing application. Although the time for writing the checkpoints also depends on the size of
the checkpoints, the checkpoint writing time is insignificant because the processes write checkpoint
data to the local storage. Hence, the time for checkpoint writing is not predicted in the rescheduling
framework.

Similar to the SRS library, the rescheduling framework has also been extended to support common
data distributions such as block, cyclic and block-cyclic distributions. When the end application calls
SRS Register to register data to be checkpointed, it also specifies the data distribution used for that
data. If the data distribution is one of the common data distributions, the input parameter used for the
distribution is stored in an internal data structure of the SRS library. For example, if a block-cyclic data
distribution is specified for the data, the block size used for the distribution is stored in the internal
data structure. When the application calls SRS StoreMap, the data distributions used for the different
data along with the parameters used for the distribution are sent to the RSS.

When the rescheduler wants to calculate the rescheduling cost of an executing application, it contacts
the RSS of the application, and retrieves various information about the data that were marked for
checkpointing including the total size and data types of the data, the data distributions used for the
data and the parameters used for the data distributions. For each data that uses one of the common data
distributions supported by the rescheduler, the rescheduler determines the data maps for the current
processor configuration on which the application is executing and the future processor configuration
where the application can be potentially rescheduled. A data map indicates the total number of panels
of the data and the size and location of each of the data panel. The rescheduler calculates the data
map using the data distribution and the parameters used for data distribution it collected from RSS.
Based on the data maps for the current and future processor configuration and the properties of
the networks between the current and future processor configuration it collected from NWS, the
rescheduler simulates the redistribution behavior. The end result of the simulation is the predicted
cost for reading and redistribution of checkpointed data if the application was rescheduled to the new
processor configuration. The rescheduler uses this predicted redistribution cost for calculation of the
potential rescheduling gain that can be obtained due to rescheduling the application.

An experiment was conducted in which the simulation model for predicting the redistribution
cost was validated. In this experiment, four Tennessee and eight Illinois machines were used.
A ScaLAPACK QR factorization problem was submitted to the GrADS Application Manager. Since the
Tennessee machines were faster than the Illinois machines, the four Tennessee machines were chosen
by the Performance Modeler for the execution of the end application. Five minutes after the start
of the execution of the end application, artificial loads were introduced in the Tennessee machines
by the execution of 10 loading programs on each of the Tennessee machines. When the Contract
Monitor contacted the rescheduler requesting that the application be rescheduled, the rescheduler
dynamically predicted the redistribution cost involved in rescheduling the application. Figure 7
compares the predicted and the actual cost for redistribution of the data for different problem sizes.
The x-axis denoted the matrix sizes used for the QR factorization problem and the y-axis represents
the redistribution time.

From Figure 7, we find that the rescheduler was able to perform a reasonably accurate simulation
of the redistribution of data. The actual redistribution cost was greater than the predicted redistribution
cost by only 30–40 s. The difference is mainly due to the unpredictable behavior in the network
characteristics of the Internet connection between Tennessee and Illinois. By employing the predicted
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Figure 7. Redistribution cost prediction versus actual performance (four Tennessee and eight Illinois machines).

redistribution cost, the rescheduler was able to make the right decisions for rescheduling for cases in
Figures 3–5 when it previously made wrong decisions.

9. RELATED WORK

Different systems have been implemented to migrate executing applications onto different
sets of resources. These systems migrate applications either to efficiently use under-utilized
resources [11,22,23,29,30], or to provide fault resilience [31], or to reduce the obtrusiveness
to workstation owner [10,31]. The particular projects that are closely related to our work are
Dynamite [11], MARS [13], LSF [12], Condor [10] and Cactus [32].

The Dynamite system [11] based on Dynamic PVM [30] migrates applications when certain
machines in the system get under-utilized or over-utilized as defined by application-specified
thresholds. Although this method takes into account application-specific characteristics it does not
necessarily evaluate the remaining execution time of the application and the resulting performance
benefits due to migration.

In LSF [12], jobs can be submitted to queues which have pre-defined migration thresholds. A job
can be suspended when the load of the resource increases beyond a particular limit. When the time
since the suspension becomes higher than the migration threshold for the queue, the job is migrated
and submitted to a new queue. Thus LSF suspends jobs to maintain the load level of the resources while
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our migration framework suspends jobs only when it is able to find better resources where the jobs can
be migrated. By adopting a strict approach to suspending jobs based on pre-defined system limits, LSF
gives less priority to the stage of the application execution whereas our migration framework suspends
an application only when the application has enough remaining execution time so that performance
benefits can be obtained by migration. And, lastly, due to the separation of the suspension and migration
decisions, a suspended application in LSF can wait for a long time before it restarts executing on
a suitable resource. In our migration framework, a suspended application is immediately restarted
because of the tight coupling of suspension and migration decisions.

Of the Grid computing systems, only Condor [10] seems to migrate applications under workload
changes. Condor provides powerful and flexible ClassAd mechanism by means of which the
administrator of resources can define policies for allowing jobs to execute on the resources, suspending
the jobs, and vacating the jobs from the resources. The fundamental philosophy of Condor is to increase
the throughput of long running jobs and also respect the ownership of the resource administrators.
The main goal of our migration framework is to increase the response times of individual applications.
Similar to LSF, Condor also separates the suspension and migration decisions and hence has the same
problems mentioned for LSF in taking into account the performance benefits of migrating applications.
Unlike our rescheduler framework, the Condor system does not possess knowledge about the remaining
execution time of the applications. Thus suspension and migrating decisions can be invoked frequently
in Condor based on system load changes. This may be less desirable in Grid systems where system
load dynamics are fairly high.

The Cactus [32] migration framework was also developed in the context of the GrADS project and
hence follows most of the design principles of our migration framework. Their migration thorn is
similar to our migrator and their performance detection thorn also performs contract monitoring and
detects contract violation similar to our contract monitor. Their migration logic manager is similar in
principle to our rescheduler. The differences lie in the decisions made to contact the rescheduler service
for migration, and decisions made in the rescheduler regarding when to migrate. While our migration
framework makes decisions using a threshold for the average performance ratio, the Cactus framework
uses a maximum number of consecutive contract violations as the threshold for migration. Although
Cactus allows the thresholds to be changed dynamically by the user using a HTTP interface, often
the user does not possess adequate expertise in determining the threshold and hence a more automatic
mechanism such as that followed in our approach is desirable for Grid systems. Also, the Cactus
migration framework only uses the resource characteristics to discover better systems for migrating,
whereas our system uses predicted application performance on the new systems. Also, similar to other
approaches, Cactus does not take into account the remaining execution time of the application.

The GridWay framework [33] has a number of similarities with the GrADS framework both in terms
of concepts and the design of the architecture. Hence, GridWay’s job migration framework by Montero
et al. [34] performs most of the functionalities of our migration framework. Their job migration
framework takes into account the proximity of the execution hosts to the checkpoint and restart files.
Their job migration framework also performs opportunistic migration and migration under perfor-
mance degradation. However, their work does not mention about the migration of parallel MPI jobs
and the possible reconfiguration of hosts and the redistribution of data. By considering dynamic redis-
tribution costs based on network bandwidths, our migration framework indirectly takes into account the
proximity of the new hosts to the checkpoint files. Lastly, the execution models used by our migration
framework simulate the actual application and hence are more robust than their mathematical models.
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10. CONCLUSIONS AND FUTURE WORK

Many existing migration systems that migrate applications under resource load conditions implement
simple policies that cannot be applied to Grid systems. We have implemented a migration framework
that takes into account both the system load and application characteristics. The migrating decisions are
based on factors including the amount of resource load, the point during the application lifetime when
the load is introduced, and the size of the applications. We have also implemented a framework that
opportunistically migrates executing applications to make use of additional free resources. Experiments
were conducted and results were presented to demonstrate the capabilities of the migration framework.

We intend to provide more robust frameworks in the SRS system and in the rescheduler to efficiently
predict the cost for the redistribution of data. Also, instead of fixing the rescheduler threshold
at 30%, our future work will involve determining the rescheduling threshold dynamically based
on the dynamic observation of load behavior on the system resources. We propose to investigate
the usefulness of our approach for complex applications involving multiple components and/or
written in multi-programming languages similar to the efforts of Mayes et al. [35]. Currently,
the average of performance ratios is used to determine when a contract monitor will contact the
rescheduler for migration. In the future, we plan to investigate more robust policies for contacting
the rescheduler. Mechanisms for quantifying the deficiencies of the execution model detected during
contract monitoring and communicating the information to the application developer also need to be
investigated.

ACKNOWLEDGEMENTS

The authors wish to thank the reviewers for their very helpful comments toward improving the quality of the paper.
This research was supported in part by the Applied Mathematical Sciences Research Program of the Office of
Mathematical, Information, and Computational Sciences, U.S. Department of Energy under contract DE-AC05-
00OR22725 with UT-Battelle, LLC, and in part based on work supported by the National Science Foundation
under Grant No. ACI 0103759.

REFERENCES

1. Frigo M. FFTW: An adaptive software architecture for the FFT. Proceedings of the ICASSP Conference, vol. 3. IEEE
Computer Society Press: Washington, DC, 1998; 1381.

2. Whaley RC, Dongarra J. Automatically tuned linear algebra software. SC98: High Performance Networking and
Computing. IEEE Computer Society Press: Washington, DC, 1998.

3. Vadhiyar S, Fagg G, Dongarra J. Automatically tuned collective communications. Proceedings of SuperComputing2000.
IEEE Computer Society Press: Washington, DC, 2000.

4. Vuduc R, Demmel JW, Yelick KA, Kamil S, Nishtala R, Lee B. Performance optimizations and bounds for sparse
matrix–vector multiply. Proceedings of Supercomputing, Baltimore, MD, November 2002. IEEE Computer Society Press:
Washington, DC, 2002.

5. Chen Z, Dongarra J, Luszczek P, Roche K. Self adapting software for numerical linear algebra and LAPACK for clusters.
Parallel Computing 2003; 29(11–12):1723–1743.

6. Berman F et al. The GrADS project: Software support for high-level Grid application development. International Journal
of High Performance Applications and Supercomputing 2001; 15(4):327–344.

7. Foster I, Kesselman C (eds.). The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann: San Mateo,
CA, 1999.

8. Mirchandaney R, Towsley D, Stankovic JA. Adaptive load sharing in heterogeneous distributed systems. Journal of Parallel
and Distributed Computing 1990; 9:331–346.

9. Douglis F, Ousterhout JK. Transparent process migration: Design alternatives and the sprite implementation. Software:
Practice and Experience 1991; 21(8):757–785.

Published in 2005 by John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:235–257



SELF ADAPTIVITY IN GRID COMPUTING 257

10. Litzkow M, Livney M, Mutka M. Condor—a hunter for idle workstations. Proceedings of the 8th International Conference
on Distributed Computing Systems. IEEE Computer Society Press: Washington, DC, 1988; 104–111.

11. van Albada GD, Clinckemaillie J, Emmen AHL, Gehring J, Heinz O, van der Linden F, Overeinder BJ., Reinefeld A,
Sloot PMA. Dynamite—blasting obstacles to parallel cluster computing. High-Performance Computing and Networking
(HPCN Europe ’99), Amsterdam, The Netherlands, April 1995, Sloot PMA, Bubak M, Hoekstra AG, Hertzberger LO
(eds.) (Lecture Notes in Computer Science, vol. 1593). Springer: Berlin, 1995; 300–310.

12. Zhou S, Zheng X, Wang J, Delisle P. Utopia: A load sharing facility for large, heterogeneous distributed computer systems.
Software: Practice and Experience 1993; 23(12):1305–1336.

13. Gehring J, Reinefeld A. MARS—A framework for minimizing the job execution time in a metacomputing environment.
Future Generation Computer Systems 1996; 12(1):87–99.

14. Vadhiyar S, Dongarra J. Performance oriented migration framework for the Grid. Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid 2003), Tokyo, Japan, May 2003. IEEE Computer
Society Press: Washington, DC, 2003; 130–137.

15. Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J. MPI: The Complete Reference—The MPI Core (2nd edn), vol. 1.
MIT Press: Boston, MA, 1998.

16. MPI. http://www-unix.mcs.anl.gov/mpi [5 February 2004].
17. Petitet A, Blackford S, Dongarra J, Ellis B, Fagg G, Roche K, Vadhiyar S. Numerical libraries and the Grid: The GrADS

experiments with scalapack. Journal of High Performance Applications and Supercomputing 2001; 15(4):359–374.
18. Fitzgerald S, Foster I, Kesselman C, von Laszewski G, Smith W, Tuecke S. A directory service for configuring

high-performance distributed computations. Proceedings of the 6th IEEE Symposium on High-Performance Distributed
Computing. IEEE Computer Society Press: Washington, DC, 1997; 365–375.

19. Wolski R, Spring N, Hayes J. The network weather service: A distributed resource performance forecasting service for
metacomputing. Journal of Future Generation Computing Systems 1999; 15(5–6):757–768.

20. Berman F, Wolski R. The AppLeS project: A status report. Proceedings of the 8th NEC Research Symposium. SIAM:
Philadelphia, PA, 1997.

21. Ribler RL, Vetter JS, Simitci H, Reed DA. Autopilot: Adaptive control of distributed applications. Proceedings of the 7th
IEEE Symposium on High-Performance Distributed Computing. IEEE Computer Society Press: Washington, DC, 1998;
172.

22. Casas J, Clark D, Galbiati P, Konuru R, Otto S, Prouty R, Walpole J. MIST: PVM with transparent migration and
checkpointing. Proceedings of the 3rd Annual PVM User’s Group Meeting, Pittsburgh, PA, May 1995.

23. Casas J, Clark D, Konuru R, Otto S, Prouty R, Walpole J. MPVM: A migration transparent version of PVM. Technical
Report CSE-95-002, Oregon Graduate Institute School of Science and Engineering, 1995.

24. Stellner G. CoCheck: Checkpointing and process migration for MPI. Proceedings of the 10th International Parallel
Processing Symposium (IPPS ’96), Honolulu, HI. IEEE Computer Society Press: Washington, DC, 1996; 526–531.

25. Foster I, Karonis N. A Grid-enabled MPI: Message passing in heterogeneous distributed computing systems. Proceedings
of SuperComputing 98 (SC98). IEEE Computer Society Press: Washington, DC, 1998.

26. Plank JS, Beck M, Elwasif WR, Moore T, Swany M, Wolski R. The Internet backplane protocol: Storage in the network.
NetStore99: The Network Storage Symposium, 1999.

27. Geist GA, Kohl JA, Papadopoulos PM. CUMULVS: Providing fault-tolerance, visualization and steering of parallel
applications. International Journal of High Performance Computing Applications 1997; 11(3):224–236.

28. Wolski R, Shao G, Berman F. Predicting the cost of redistribution in scheduling. Proceedings of 8th SIAM Conference on
Parallel Processing for Scientific Computing. SIAM: Philadelphia, PA, 1997.

29. Saqabi KA, Otto SW, Walpole J. Gang scheduling in heterogeneous distributed systems. Technical Report, OGI, 1994.
30. Dikken L, van der Linden F, Vesseur JJJ, Sloot PMA. DynamicPVM: Dynamic load balancing on parallel systems.

Proceedings of High Performance Computing and Networking, Volume II, Networking and Tools, Munich, Germany, April
1994 (Lecture Notes in Computer Science, vol. 797), Gentzsch W, Harms U (eds.). Springer: Berlin, 1994; 273–277.

31. Arabe JNC, Lowekamp ABB, Seligman E, Starkey M, Stephan P. Dome: Parallel programming in a heterogeneous multi-
user environment. Proceedings of SuperComputing 1995. IEEE Computer Society Press: Washington, DC, 1995.

32. Allen G, Angulo D, Foster I, Lanfermann G, Liu C, Radke T, Seidel E, Shalf J. The Cactus Worm: Experiments
with dynamic resource discovery and allocation in a Grid environment. The International Journal of High Performance
Computing Applications 2001; 15(4):345–358.

33. Huedo E, Montero RS, Llorente IM. An experimental framework for executing applications in dynamic Grid environments.
Technical Report 2002-43, NASA/CR-2002-211960, ICASE, November 2002.

34. Montero RS, Huedo E, Llorente IM. Grid resource selection for opportunistic job migration. Proceedings of the 9th
International Euro-Par Conference, Klagenfurt, Austria, August 2003 (Lecture Notes in Computer Science, vol. 2790).
Springer: Berlin, 2003; 366–373.

35. Mayes K, Riley GD, Ford RW, Luján M, Freeman L, Addison C. The design of a performance steering system
for component-based Grid applications. Performance Analysis and Grid Computing, Getov V, Gerndt M, Hoisie A,
Maloney A, Miller B, (eds.). Kluwer Academic: Dordrecht, 2003; 111–127.

Published in 2005 by John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:235–257


	1 INTRODUCTION
	2 SELF-ADAPTIVE SOFTWARE SYSTEMS---AN OVERVIEW
	2.1 ATLAS
	2.2 ATCC
	2.3 BeBOP
	2.4 LFC

	3 THE GrADS SYSTEM
	4 THE MIGRATION FRAMEWORK AND SELF ADAPTIVITY
	4.1 Migrator
	4.2 Contract Monitor
	4.3 Rescheduler

	5 THE SRS API
	6 RESCHEDULING POLICIES
	6.1 Policies for contacting the rescheduler
	6.2 Policies for migration

	7 OTHER MIGRATION ISSUES
	8 EXPERIMENTS AND RESULTS
	8.1 Migration on request
	8.2 Opportunistic migration
	8.3 Predicting redistribution cost

	9 RELATED WORK
	10 CONCLUSIONS AND FUTURE WORK

