International Journal of High Performance
Computing Applications

http://hpc.sagepub.com/

Building and Using a Fault-Tolerant MPI Implementation
Graham E. Fagg and Jack J. Dongarra
International Journal of High Performance Computing Applications 2004 18: 353
DOI: 10.1177/1094342004046052

The online version of this article can be found at:
http://hpc.sagepub.com/content/18/3/353

Published by:
©®SAGE

http://www.sagepublications.com

Additional services and information for International Journal of High Performance Computing Applications can be found at:
Email Alerts: http://hpc.sagepub.com/cgi/alerts
Subscriptions: http://hpc.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations: http://hpc.sagepub.com/content/18/3/353.refs.html

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/
http://hpc.sagepub.com/content/18/3/353
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/18/3/353.refs.html
http://hpc.sagepub.com/

BUILDING AND USING A FAULT-
TOLERANT MPI IMPLEMENTATION

Graham E. Fagg '
Jack J. Dongarra®

Abstract

In this paper we discuss the design and use of a fault-tol-
erant MPI (FT-MPI) that handles process failures in a way
beyond that of the original MPI static process model. FT-
MPI allows the semantics and associated modes of failures
to be explicitly controlled by an application via a modified
functionality within the standard MPI 1.2 API. Given is an
overview of the FT-MPI semantics, architecture design,
example usage and sample applications. A short discus-
sion is given on the consequences of designing a fault-tol-
erant MPI both in terms of how such an implementation
handles failures at multiple levels internally as well as how
existing applications can use new features while still
remaining within the MPI standard.

Key words: Fault tolerant, message passing, parallel
computing, MPI

The International Journal of High Performance Computing Applications,
Volume 18, No. 3, Fall 2004, pp. 353-361

DOI: 10.1177/1094342004046052

© 2004 Sage Publications

1 Introduction

MPI (Snir et al., 1998) is the current standard message
passing system used to build high performance applica-
tions for both clusters and dedicated MPP systems. Ini-
tially MPI was designed to allow for very high efficiency
and thus performance on a number of early 1990s MPPs,
which at the time had limited OS runtime support. This
led to the current MPI design of a static process model.
This model was possible to implement for MPP vendors,
easy to program for, and more importantly something
that could be agreed upon by a standards committee. The
second version of MPI standard known as MPI-2 (Gropp
et al., 2000) did include some support for dynamic proc-
ess control, although this was limited to the creation of
new MPI process groups with separate communicators.
These new processes could not be merged with previ-
ously existing communicators to form intra-communica-
tors needed for a seamless single application model and
were limited to a special set of extended collectives (group)
communications.

The MPI static process model suffices for small num-
bers of distributed nodes within the currently emerging
masses of clusters and several hundred nodes of dedicated
MPPs. Beyond these sizes the mean time between failure
(MTBF) of CPU nodes becomes a factor. As attempts to
build the next generation Peta-flop systems advance, this
situation will only become more adverse as individual
node reliability becomes outweighted by orders of mag-
nitude increase in node numbers and hence node failures.
Current GRID (Foster and Kesselman, 1999a) technolo-
gies such as GLOBUS (Foster and Kesselman, 1999b)
also provide for middleware services such as naming and
resource discovery that are robust and handle expected
failures gracefully. Unfortunately the MPI message pass-
ing library for Globus, MPICH-G (Foster and Karonis,
1998), is not expected to handle loss of MPI processes or
partitioning of networks gracefully and failures still lead
to pathological failure of applications unless special pre-
cautions are taken. Such application checkpointing is dis-
cussed further in the next section.

The aim of FI-MPI is to build a fault-tolerant MPI
implementation that can survive failures, while offering
the application developer a range of recovery options other
than just returning to some previous checkpointed state.
FT-MPI is built on the HARNESS (Beck et al., 1999)

'HIGH PERFORMANCE COMPUTING CENTER STUTTGART
ALLMANDRING 30, D-70550 STUTTGART, GERMANY

’DEPARTMENT OF COMPUTER SCIENCE, SUITE 413, 1122
VOLUNTEER BLVD., UNIVERSITY OF TENNESSEE,
KNOXVILLE, TN 37996-3450, USA

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

www.sagepublications.com
http://hpc.sagepub.com/

meta-computing system, and is meant to be used as the
HARNESS default application level message passing
interface. Its design allows it to be easily ported to other
GRID environments by porting its modular services that
are implemented in the form of short-lived daemons.

2 Checkpoint and Roll Back Versus
Replication Techniques

The first method that attempted to make MPI applications
fault-tolerant was through the use of checkpointing and
roll back. Co-Check MPI (Stellner, 1996) from the Tech-
nical University of Munich was the first MPI implemen-
tation built that used the Condor library for checkpointing
an entire MPI application. In this implementation, all proc-
esses would flush their message queues to avoid in-flight
messages getting lost, and then they would all synchro-
nously checkpoint. At some later stage, if either an error
occurred or a task was forced to migrate to assist load
balancing, the entire MPI application would be rolled
back to the last complete checkpoint and be restarted.
This system’s main drawback was the need for the entire
application having to checkpoint synchronously, which
depending on the application and its size could become
expensive in terms of time (with potential scaling prob-
lems). A secondary consideration was that they had to
implement a new version of MPI known as tuMPI as
updating MPICH was considered too difficult.

Another system that also uses checkpointing, but at a
much lower level, is Starfish MPI (Agbaria and Friedman,
1999). Unlike Co-Check MPI, which relies on Condor,
Starfish MPI uses its own distributed system to provide
built-in checkpointing. The main difference with Co-
Check MPI is how it handles communication and state
changes which are managed by Starfish using strict atomic
group communication protocols built upon the Ensemble
system, and thus avoids the message flush protocol of
Co-Check. Being a more recent project, StarFish sup-
ports faster networking interfaces than tuMPI.

The project closest to FT-MPI known to the authors is
the Implicit Fault Tolerance MPI project MPI-FT (Louca
et al., 1998) by Paraskevas Evripidou of Cyprus Univer-
sity. This project supports several master—slave models
where all communicators are built from grids that contain
“spare” processes. These spare processes are utilized when
there is a failure. To avoid loss of message data between the
master and slaves, all messages are copied to an observer
process, which can reproduce lost messages in the event
of any failures. This system appears only to support SPMD
style computation and has a high overhead for every mes-
sage and considerable memory needs for the observer
process for long running applications. This system is not
a full checkpoint system in that it assumes any data (or
state) can be rebuilt using just the knowledge of any passed

messages, which might not be the case for non-determin-
istic unstable solvers.

MPICH-V (Bosilca et al., 2002) from Université de
Paris Sud, France is a mix of uncoordinated checkpoint-
ing and distributed message logging. The message log-
ging is pessimistic; thus they guarantee that a consistent
state can be reached from any local set of process check-
points at the cost of increased message logging. MPICH-V
uses multiple message storage (observers) known as Chan-
nel Memories (CM) to provide message logging. Process
level checkpointing is handled by multiple servers known
as Checkpoint Servers (CS). The distributed nature of the
checkpointing and message logging allows the system to
scale, depending on the number of spare nodes availa-
ble to act as CM and CS servers. Ping-pong performance
of MPICH-V compared to MPICH-p4 is around 50%,
although application performance is usually much better.
In the case of the NAS BP benchmark the overhead for
MPICH-V compared to MPICH over P4 varies between
6% and 20%. Handling of a failure is automatic and
transparent to the user, although currently only master—
slave or SPMD applications are supported.

FT-MPI has much lower overheads compared to the
above checkpointing systems, and thus much higher poten-
tial performance. These benefits do, however, have conse-
quences. An application using FT-MPI has to be designed
to take advantage of its fault-tolerant features as shown in
the next section, although this extra work can be trivial
depending on the structure of the application. If an appli-
cation needs a high level of fault tolerance where node
loss would equal data loss then the application has to be
designed to perform some level of user-directed check-
pointing. FT-MPI does allow for atomic communications
much like Starfish, but unlike Starfish, the level of cor-
rectness can be varied for individual communicators.
This provides users the ability to fine tune for coherency
or performance as system and application conditions dic-
tate. An additional advantage of FT-MPI over many sys-
tems is that checkpointing can be performed at the user
level and the entire application does not need to be stopped
and rescheduled as with process-level checkpointing.

Currently GRID application efforts such as GrADS
(Berman et al., 2001) primarily focus on gaining high
performance from GRIDs rather than handling failures,
although current efforts at the University of Tennessee
(Petitet et al., 2001) involve checkpointing distributed appli-
cations to improve fault tolerance. Unlike the above check-
pointing systems that rely on local disks for checkpointed
data storage, the current GRADS effort is experimenting
with replicated distributed storage built on top of the IBP
(Plank et al., 1999) system to improve both availability and
performance. This system is also a user-level checkpoint-
ing scheme rather than process-level and thus would ben-
efit from avoiding rescheduling as provided by FT-MPL.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

3 FT-MPI Semantics

Current semantics of MPI indicate that a failure of an MPI
process or communication causes all communicators asso-
ciated with them to become invalid. As the standard pro-
vides no method to reinstate them (and it is unclear if we
can even free them), we are left with the problem that this
causes MPI_COMM_WORLD itself to become invalid
and thus the entire MPI application will grind to a halt.

FT-MPI extends the MPI communicator states from
{valid, invalid} to a range {FT_OK, FT_DETECTED,
FT_RECOVER, FT_RECOVERED, FT_FAILED}. In
essence this becomes {OK, PROBLEM, FAILED}, with
the other states mainly of interest to the internal fault recov-
ery algorithm of FT_MPI. Processes also have typical
states of {OK, FAILED} which FT-MPI replaces with
{OK, Unavailable, Joining, Failed}. The Unavailable state
includes unknown, unreachable or “we have not voted to
remove it yet” states. A communicator changes its state
when either an MPI process changes its state, or a commu-
nication within that communicator fails for some reason.
Some details of failure detection are given in Section 4.1.

The typical MPI semantics is from OK to Failed,
which then causes an application abort. By allowing the
communicator to be in an intermediate state we allow the
application the ability to decide how to alter the commu-
nicator and its state, as well as how communication within
the intermediate state behaves.

3.1 FAILURE MODES

On detecting a failure within a communicator, that com-
municator is marked as having a probable error. Immedi-
ately as this occurs the underlying system sends a state
update to all other processes involved in that communica-
tor. If the error was a communication error, not all com-
municators are forced to be updated; if it was a process
exit then all communicators that include this process are
changed. Note that this might not be all current commu-
nicators as we support MPI-2 dynamic tasks and thus
multiple MPI_COMM_WORLDS.

How the system behaves depends on the communica-
tor failure mode chosen by the application. The mode has
two parts, one for the communication behavior and one
for the how the communicator reforms, if at all.

3.2 COMMUNICATOR AND
COMMUNICATION HANDLING

Once a communicator has an error state it can only recover
by rebuilding itself, using a modified version of one of
the MPI communicator build functions such as MPI_
Comm_{create, split or dup}. Under these functions the
will still be the same as if there had been no error, or else

new communicator will follow the following semantics
depending on its failure mode:

* SHRINK. The communicator is reduced so that the
data structure is contiguous. The ranks of the proc-
esses are changed, forcing the application to recall
MPI_COMM_RANK.

* BLANK. This is the same as SHRINK, except that the
communicator can now contain gaps to be filled in
later. Communicating with a gap will cause an invalid
rank error. Note also that calling MPI_COMM_SIZE
will return the extent of the communicator, not the
number of valid processes within it.

* REBUILD. Most complex mode that forces the crea-
tion of new processes to fill any gaps until the size is
the same as the extent. The new processes can either
be places in the empty ranks, or the communicator can
be shrunk and the remaining processes filled at the
end. This is used for applications that require a certain
size to execute as in power of two FFT solvers.

* ABORT. This is a mode which affects the application
immediately when an error is detected and forces a
graceful abort. The user is unable to trap this. If the
application needs to avoid this they must set all com-
municators to one of the above communicator modes.

Communications within the communicator are controlled
by a message mode, which can be either of the following.

1. NOP. No operations on error, i.e., no user level
message operations are allowed and all simply
return an error code. This is used to allow an
application to return from any point in the code to a
state where it can take appropriate action as soon
as possible.

2. CONT. All communication that is NOT to the
affected/failed node can continue as normal.
Attempts to communicate with a failed node will
return errors until the communicator state is reset.

The user discovers any errors from the return code of any
MPI call, with a new fault indicated by MPI_ERR_OTHER.
Details as to the nature and specifics of an error are avail-
able though the cached attributes interface in MPI as dis-
cussed in Section 3.4 below.

3.3 POINT-TO-POINT VERSUS
COLLECTIVE CORRECTNESS

Although collective operations pertain to point-to-point
operations in most cases, extra care has been taken in
implementing the collective operations so that if an error
occurs during an operation, the result of the operation
the operation is aborted.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

/* pre-defined key value */
key = FT_MPI_LIST NUM_FAILED;
key2 = FT MPI_LIST FAILED;

/* key for

rc= MPI_func (comm..)

If (rc==MPI_ERR_OTHER) {
rc = MPI_Comm_get_attr (comm, key,
rc = MPI_Comm_get_attr (comm, key2,

for (i=0;i<num_failed;i++)
printf (“failure %d was rank

}

finding number of failure events */

/* key for getting pointer to failures in a list */

&num_failed, &flag);
&failed_ptr, &flag);
sd\n”, i+1, failed_ptrl[i]);

Example 1. Checking for order of failures

key
key?2

FT_MPI_COM_NUM_FAILED;
FT_MPI_COM_FAILED;

rc= MPI_Send

(____

, com) ;

If (rc==MPI_ERR_OTHER) {
rc = MPI_Comm_get_attr (comm, key,
rc = MPI_Comm_get_attr (comm, key2,
/* check list of failures */

failed_how_many_times failed _ptr

}

/* key for finding how many individual ranks failed */
/* key for accessing complete failure map of a communicator */

&num_failed, &flag);
&failed_ptr, &flag);
[rank] ;

Example 2. Accessing failures via process RANK

Broadcast, gather and all-gather demonstrate this per-
fectly. In broadcast, even if there is a failure of a receiv-
ing node, the receiving nodes still receive the same data,
i.e., the same end result for the surviving nodes. Gather
and all-gather are different in that the result depends on if
the problematic nodes sent data to the gatherer/root or
not. In the case of gather, the root might or might not
have gaps in the result. For the all2all operation, which
typically uses a ring algorithm, it is possible that some
nodes may have complete information and others incom-
plete. Thus, for operations that require multiple node
input as in gather/reduce type operations any failure
causes all nodes to return an error code, rather than possi-
bly invalid data. Currently an addition flag controls how
strictly the above rule is enforced by utilizing an extra
barrier call at the end of the collective call if required.

3.4 FT-MPI NOTIFICATION OF FAILURES

The MPI standard does not indicate how errors are reported
beyond standard return codes and error classes to provide
additional information. Without altering the meaning of
the standard, FT-MPI utilizes these mechanisms so that
applications that have been adapted to FT-MPI still com-
pile and link correctly on other MPI implementations.

To remain within the standard FT-MPI notifies the
application with a single return code MPI_ERR_OTHER
that an error has occurred and then makes additional infor-
mation available via the attribute caching mechanism. A
human readable form of the failure is also provided via a
MPI error class using the MPI error string function.

Two forms of essentially the same information are
made available to the application. The first form returns the
error information for a complete communicator in terms
of the number of failures per rank since the last recovery.
The second form returns the failed ranks in the order that
they were detected locally. This ordering is only consist-
ent globally in terms of the total failures not the ordering
reported at each node unless the FTMPI_NOTIFIER dae-
mon is used to force ordering of events.

3.5 FT-MPI BASIC USAGE

Simple usage of FT-MPI would be in the form of an error
check and then some corrective action such as a commu-
nicator rebuild. A typical code fragment is shown in Exam-
ple 3, where on an error the communicator is simply rebuilt
and reused.

Some types of computation, such as SPMD master—
worker codes, only need the error checking in the master

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

rc= MPI_Send (----, com);
If (rc==MPI_ERR_OTHER) {

MPI_Comm_dup (com, newcom);/* collective recovery occurs here! */

MPI_Comm_free (com);
com = newcom;
}

/* continue.. */

Example 3. Simple FT-MPI send usage

rc = MPI_Bcast (initial_work..);

if (rc==MPI_ERR_OTHER)reclaim lost_work(..);

while (! all_work_ done) {
if (work_allocated) {

rc = MPI_Recv (buf, ans_size, result_dt,
MPI_ANY TAG, comm, &status);

MPI_ANY_ SOURCE,
if (rc==MPI_SUCCESS) {

handle_work (buf);

free_worker (status.MPI_SOURCE) ;

all _work_done--;

}

else {

reclaim_lost_work (status.MPI_SOURCE) ;

if (no_surviving _workers) { /*
}
} /* work allocated */

do something ! */ }

/* Get a new worker as we must have received a result or a death */

rank=get_free_worker_and_allocate_work() ;

if (rank) {

rc = MPI_Send (.. rank..);
if (rc==MPI_OTHER_ERR) reclaim_lost_work (rank);
if (no_surviving workers) { /* ! do something ! */ }

} /* if free worker */
} /* while work to do */

Example 4. FT-MPI Master-Worker code

code if the user is willing to accept the master as the only
point of failure. Example 4 shows how complex a master
code can become. In this example the communicator mode
is BLANK and communications mode is CONT. The
master keeps track of work allocated, and on an error just
reallocates the work to any “free” surviving processes.
Note that the code has to check to see if there are any sur-
viving workers remaining after each death is detected.

3.6 FT-MPI USAGE WITHIN EXISTING
MESSAGE PASSING LIBRARIES

Many real-world parallel applications use numeric librar-
ies, such as ScaLAPACK (Blackford et al., 1997) and
PETSc (Balay et al., 2000), which themselves use MPI

internally through multiple layers. Altering such libraries
by changing each occurrence of each MPI call is imprac-
tical and error prone.

A more elegant solution is to use the MPI error handling
functions to automatically handle the errors for the appli-
cation. When combined with the long jump mechanism
in the C language this can provide a very simple solution
to many classes of error handling. A typical program flow
for an application is given in Figure 1. If the application
already contains user-level checkpointing then only the ini-
tial startup section of the code needs to be altered. The
flow within a normal process would proceed as follows:

1. MPI_Init would indicate if the process was started
normally via MPIRUN or was a restarted node
within an application.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

PmNPI_SULCERS. | re=MPL_Ink (.) \\I::ﬂ“”wl

1 am Mew
Do recover []

Irestall ErrHandiar] o

"--._________=

skl | Ty
Call Sobea y ErrooHandler
WP ONNE) s O recoar |)
Ca IMP

BT LengJME

[4PL_Finafize(...] Oin &rror

{automatic via the MP brary)

CF Trnerfice luwaliuig

Miirilmae f dhina strocinss and eomimicaion st handling
Derived Types: || Bofler Mamgomeni
= B e = LT e = Fail i ik
Tnlleive |advary FIF ibrrvei
Multi Thessdod SNIPE_Line o “’“’mf"“'"]
Cetnims Loty fpreens ool N
e defaction’
el e ihrom LRSI ¥lA 1"l 3.4 ; H.:.i.lﬂ! I_

Fig. 1 Flow control in a typical FT-MPI application
using MPI Error Handlers.

Fig. 1 Overall structure of the FT-MPI implementation.

ehf = (MPI_Handler_function *) (&errhandleruserfunc); /* get handle to my error handler */

MPI_Errhandler_create (ehf, &errh);
MPI_Errhandler_get (MCW, &errh_org);
MPI_Errhandler_free (&errh_org);
MPI_Errhandler_set (MCW, errh);

/* create MPI handle to my function */
/* get original MPI handler */

/* replace default with my function */

Example 5. Installing an error handler under MPI

2. If the process is normal, then the application
would install the MPI error handler that they
wrote as shown in code Example 5.

3. The process would set a long jump so that it could
return to the top level functions where it can cor-
rectly manage program flow during a recovery.
This is required as a failure could be many levels
of function calls later.

4. The code would call the numeric library contain-
ing MPI calls (i.e., a parallel solver).

5. If completed successfully the code would enter
MPIL_finalize and terminate normally.

During the execution if an error occurred, the FT-MPI
runtime library would catch it and as soon as the program
enters a MPI routine, flow control would be passed to the
MPI error handler the user provided in 2 above. At this
point the user’s application could block on a communicator
create/duplicate function after which they would probably
load the user-level checkpoint data. After recovery they

would then jump back to the top level of the application,
reset the jump and then continue as per item 3 above.

A restarted process would discover from the MPI_Init
function that it was restarted and would then load any
recovery data rather than initial data, install the error han-
dler and continue as a normal process.

4 FT_MPI Implementation Details

FT-MPI is a partial MPI-2 implementation. It currently
contains support for both C and Fortran interfaces, all the
MPI-1.2 function calls required to run both the PSTSWM
(Worley et al., 1995) and BLAS (Choi et al., 1995) appli-
cations. BLAS is supported so that ScaLAPACK (Black-
ford et al., 1997) applications can be tested. Currently
only some of the dynamic process control functions from
MPI-2 are supported.

The current implementation is built as a number of
layers as shown in Figure 2. Operating system support is
provided by either PVM or the C HARNESS G_HCORE.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

Although point-to-point communication is provided by a
modified SNIPE_Lite communication library taken from
the SNIPE project (Fagg et al., 1999).

A number of components have been extensively opti-
mized, including derived data types (Fagg et al., 2001)
and message buffers and collective communications
(Vadhiyar et al., 2001).

4.1 FAILURE DETECTION

It is important to note that the failure handler shown in
Figure 2 gets notification of failures from both the point-
to-point communications libraries, as well as the OS sup-
port layer. In the case of communication errors, the notify
is usually started by the communication library detecting
a point-to-point message not being delivered to a failed
party rather than the failed parties OS layer detecting the
failure. The handler is responsible for notifying all tasks
of errors as they occur by injecting notify messages into
the send message queues ahead of user-level messages.
An additional daemon known as the FTMPI_NOTIFER
can be used to guarantee ordered delivery of failure noti-
fication messages and thus aid in complex debugging.

The failure handler within the FTMPI run-time library
relies on the conservation of event messages from the
underlying system to build a coherent system state during
recovery. A consequence of this is that temporary bi-sec-
tioning of the network between G_HCORE startup dae-
mons can lead to some processes being marked as failed;
thus the sum of living tasks and failure events will
remain constant.

4.2 LOW-LEVEL MESSAGE HANDLING

Many MPI message passing libraries employ multiple
message delivery schemes which vary with message size
to provide a balance between performance, unexpected
message buffering memory requirements and blocking
semantics. GM, for example, switches between eager
(always send) and rendezvous modes as the message size
increases.

FT-MPI uses eager for performance on all blocking
sends and switches to a token-based system for large
non-blocking messages. As with the failure detection, the
handling of communication during failures relies on a
guaranteed delivery of flow control messages and failure
events.

During a failure all processes flush communications
with all existing communication contexts. They complete
all pending operations involving a remote process, until
either they have received a flow control message indicat-
ing that the process is entering a global state rebuild or a
failure event for that process is received. Thus the
number of flow control stop messages and death events

Fig. 3 Point-to-point message performance of FT-MPI
compared to various MPICH versions.

of open connections must match the number of pre-fail-
ure open connections. This allows all/any processes in an
eager send to always complete as their target guarantees
emptying the pipe before entering the global recovery
state, thus avoiding any deadlocks.

5 FT-MPI Performance

Figure 3 shows the performance of FT-MPI for point-to-
point messages compared to MPICH-p4 and MPICH-G2
under Globus 2.0. Further performance information can
be obtained from Fagg et al. (2001) and Vadhiyar et al.
(2001). As was stated in Section 2, the performance of
FT-MPI is not hindered by fault handling. Any additional
costs of fault tolerance only occur at applications startup,
during a failure recovery and during shutdown.

6 Conclusions

FT-MPI is an attempt to provide application program-
mers with different methods of dealing with failures
within MPI application than just checkpoint and restart.
It is hoped that by experimenting with FI-MPI, new
application methodologies and algorithms will be devel-
oped to allow for both high performance and the surviva-
bility required by both unreliable GRIDs and the next
generation of terra-flop and beyond machines. FT-MPI in
itself is already proving to be a useful vehicle for experi-
menting with self-tuning collective communications, dis-
tributed control algorithms, various dynamic library
download methods and improved sparse data handling
subsystems, as well as being the default MPI implemen-
tation for the HARNESS project.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

Future work in the FT-MPI library system will concen-
trate on developing a number of drop-in library templates
or skeletons to simplify the construction of fault-tolerant
applications.

BIOGRAPHIES

Graham Fagg received his BSc in Computer Science
and Cybernetics from the University of Reading (UK) in
1991 and a PhD in Computer Science in 1998. From 1991
to 1993, he worked on CASE tools for interconnecting
array processors and Transputer MIMD systems. From
1994 to 1995 he was a research assistant at the Cluster
Computing Laboratory at the University of Reading
working on code generation tools for group communica-
tions. From 1996 to 2001 he worked as a senior research
associate and then a Research Assistant Professor at the
University of Tennessee. From 2001 to 2002 he was a
visiting guest scientist at the High Performance Comput-
ing Center Stuttgart (HLRS). Currently he is a Research
Associate Professor at the University of Tennessee. His
current research interests include distributed scheduling,
resource management, performance prediction, bench-
marking, cluster management tools, parallel and distrib-
uted 10 and high-speed networking. He is currently
involved in the development of a number of metacomput-
ing and GRID middle-ware systems including SNIPE/2,
MPI_Connect, HARNESS, Open MPI, and a process
level fault-tolerant MPI implementation (FT-MPI).

Jack Dongarra holds an appointment as University
Distinguished Professor of Computer Science in the
Computer Science Department at the University of Ten-
nessee and is an Adjunct R&D Participant in the Compu-
ter Science and Mathematics Division at Oak Ridge
National Laboratory (ORNL) and an Adjunct Professor
in Computer Science at Rice University. He specializes in
numerical algorithms in linear algebra, parallel computing,
and the use of advanced-computer architectures, program-
ming methodology, and tools for parallel computers. His
research includes the development, testing and documen-
tation of high quality mathematical software. He has con-
tributed to the design and implementation of the following
open source software packages and systems: EISPACK,
LINPACK, the BLAS, LAPACK, ScaLAPACK, Netlib,
PVM, MPI, NetSolve, Top500, ATLAS, and PAPI. He
has published approximately 200 articles, papers, reports
and technical memoranda and he is co-author of several
books. He is a Fellow of the AAAS, ACM, and the IEEE
and a member of the National Academy of Engineering.

References

Agbaria, A. and Friedman, R. 1999. Starfish: fault-tolerant
dynamic MPI programs on clusters of workstations. In
Proceedings of the 8th IEEE International Symposium
on High Performance Distributed Computing, Redondo,
Beach, CA.

Balay, S., Gropp, W.D., Mclnnes, L.C., and Smith, B.F. 2000.
PETSc 2.0 Users Manual Argonne National Laboratory,
ANL-95/11, Revision 2.0.29.

Beck, M. et al. 1999. HARNESS: a next generation distributed
virtual machine. Journal of Future Generation Computer
Systems, 15(5-6):571-582.

Berman, F. et al. 2001. The GrADS Project. International Jour-
nal of High Performance Computing Applications, 15(4):
327-344.

Blackford, S. et al. 1997. ScaLAPACK: a linear algebra library
for message-passing computers. In Proceedings of 1997
SIAM Conference on Parallel Processing, Minneapolis,
MN.

Bosilca, G. et al. 2002. MPICH-V: toward a scalable fault-toler-
ant MPI for volatile nodes. In Proceedings of SuperCom-
puting 2002, Baltimore, MD.

Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D.,
and Whaley, R. 1995. A Proposal for a Set of Parallel
Basic Linear Algebra Subprograms, LAPACK Working
Note #100, CS-95-292, May.

Fagg, G.E., Moore, K., and Dongarra, J.J. 1999. Scalable net-
worked information processing environment (SNIPE).
Journal of Future Generation Computer Systems, (15):
571-582.

Fagg, G., Bukovsky, A., and Dongarra, J. 2001. HARNESS and
fault-tolerant MPI. Parallel Computing, 27(11):1479-1496.

Foster, 1. and Karonis, N., 1998. A Grid enabled MPI: message
passing in heterogeneous distributed computing systems.
In Proceedings of SuperComputing 98 (SC98), Orlando,
FL.

Foster, 1. and Kesselmann, C. 1999a. The GRID: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann, San
Mateo, CA.

Foster, I. and Kesselman, C. (editors). 1999b. The Globus
Toolkit. In The GRID: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, San Mateo, CA, pp.
259-278.

Gropp, W., Lusk, E., and Thakur, R. 2000. Using MPI-2:
Advanced Features of the Message Passing Interface, 1st
edition, MIT Press, Cambridge, MA.

Louca, S., Neophytou, N., Lachanas, A., Evripidou, P. 1998.
MPI-FT: a portable fault tolerance scheme for MPIL. In
Proceedings of PDPTA ’98 International Conference, Las
Vegas, NV.

Petitet, A., Blackford, S., Dongarra, J., Ellis, B., Fagg, G.,
Roche, K., and Vadhiyar, S. 2001. Numerical libraries and
the Grid. International Journal of High Performance
Computing Applications, 15(4):359-374.

Plank, J.S., Beck, M., Elwasif, W.R., Moore, T., Swany, M., and
Wolski, R. 1999. The Internet Backplane Protocol: Stor-
age in the Network. In NetStore99: The Network Storage
Symposium, Seattle, WA.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Don- tions for MPI. In LACSI Symposium 2001, October 15-18,

garra, J. 1998. MPI — The Complete Reference. The MPI Santa Fe, NM.

Core, Vol. 1, 2nd edition. Worley, P.H., Foster, L.T., and Toonen, B. 1995. Algorithm com-
Stellner, G. 1996. CoCheck: checkpointing and process migra- parison and benchmarking using a parallel spectral trans-

tion for MPI. In Proceedings of the International Parallel form shallow water model. In Proceedings of the 6th

Processing Symposium, April, Honolulu, HI, pp. 526— Workshop on Parallel Processing in Meteorology, G.-R.

531. Hoffmann and N. Kreitz, editors, World Scientific, Singa-
Vadhiyar, S.S., Fagg, G.E., and Dongarra, J.J. 2001. Perform- pore, pp. 277-289.

ance modeling for self-adapting collective communica-

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 14, 2011

http://hpc.sagepub.com/

