
Basic Linear Algebra Subprograms Technical (BLAST) Forum

Standard

Basic Linear Algebra Subprograms Technical (BLAST) Forum

January 23, 2001



c1996-2000 University of Tennessee, Knoxville, Tennessee. Permission to copy without fee all
or part of this material is granted, provided the University of Tennessee copyright notice and the
title of this document appear, and notice is given that copying is by permission of the University
of Tennessee.

ii



Contents

Acknowledgments vii

Suggestions for Reading 1

1 Introduction 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Nomenclature and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Operator Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Scalar Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Vector Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.5 Matrix Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.6 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Overall Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.1 Scalar and Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.2 Matrix-Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.3 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Numerical Accuracy and Environmental Enquiry . . . . . . . . . . . . . . . . . . . . 14
1.7 Language Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8.1 Error handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Dense and Banded BLAS 21

2.1 Overview and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.1 Scalar and Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Matrix-Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Matrix Storage Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Conventional Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Packed Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Band Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Unit Triangular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5 Representation of a Householder Matrix . . . . . . . . . . . . . . . . . . . . . 28
2.2.6 Representation of a Permutation Matrix . . . . . . . . . . . . . . . . . . . . . 29

2.3 Interface Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



2.3.1 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Argument Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Interface Issues for Fortran 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Fortran 95 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Design of the Fortran 95 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Matrix Storage Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.5 Format of the Fortran 95 bindings . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.6 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Interface Issues for Fortran 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Fortran 77 Include File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.3 Array Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.4 Matrix Storage Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.5 Format of the Fortran 77 bindings . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.6 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Interface Issues for C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.1 C Include File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.3 Handling of complex data types . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.4 Return values of complex functions . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.5 Aliasing of arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.6 Array arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.7 Matrix Storage Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.8 Format of the C bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.9 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Numerical Accuracy and Environmental Enquiry . . . . . . . . . . . . . . . . . . . . 37
2.8 Language Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8.2 Reduction Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8.3 Generate Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.8.4 Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8.5 Data Movement with Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.8.6 Matrix-Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.8.7 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.8.8 Matrix-Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.8.9 Data Movement with Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.8.10 Environmental Enquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3 Sparse BLAS 109

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.2.1 Scalar and Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.2.2 Matrix-Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.2.3 Matrix-Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3 Describing sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.3.1 Sparse Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.3.2 Index bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

iv



3.3.3 Repeated Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4 Sparse BLAS Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.4.1 Creation Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.4.2 Specifying matrix properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.4.3 Sparse Matrices: Inserting List of Entries . . . . . . . . . . . . . . . . . . . . 115
3.4.4 Sparse Matrices: Inserting Row and Column Vectors . . . . . . . . . . . . . . 115
3.4.5 Sparse Matrices: Inserting Cliques . . . . . . . . . . . . . . . . . . . . . . . . 115

3.5 Interface Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.5.1 Interface Issues for Fortran 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.5.2 Interface Issues for Fortran 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.3 Interface Issues for C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.6 Numerical Accuracy and Environmental Enquiry . . . . . . . . . . . . . . . . . . . . 120
3.7 Language Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.7.2 Level 1 Computational Routines . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.7.3 Level 2 Computational Routines . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.7.4 Level 3 Computational Routines . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.7.5 Handle Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.7.6 Creation Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.7.7 Insertion routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.7.8 Completion of construction routine . . . . . . . . . . . . . . . . . . . . . . . . 133
3.7.9 Matrix property routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.7.10 Destruction routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4 Extended and Mixed Precision BLAS 137

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2 Design Goals and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.3 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3.1 Specifying Extra Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.3.2 Mixed Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.3.3 Numerical Accuracy and Environmental Enquiries . . . . . . . . . . . . . . . 141
4.3.4 Function Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.4 Interface Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.4.1 Interface Issues for Fortran 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.4.2 Interface Issues for Fortran 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.4.3 Interface Issues for C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.5 Language Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.5.2 Mixed and Extended Precision Reduction Operations . . . . . . . . . . . . . 148
4.5.3 Mixed and Extended Precision Vector Operations . . . . . . . . . . . . . . . . 150
4.5.4 Mixed and Extended Precision Matrix-Vector Operations . . . . . . . . . . . 152
4.5.5 Mixed and Extended Precision Matrix-Matrix Operations . . . . . . . . . . . 162
4.5.6 Environmental Enquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

v



A Appendix 179

A.1 Vector Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.3 Operator Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.4 Fortran 95 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.5 Fortran 77 Include File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.6 C Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B Legacy BLAS 187

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
B.2 C interface to the Legacy BLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2.1 Naming scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
B.2.2 Indices and I AMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
B.2.3 Character arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
B.2.4 Handling of complex data types . . . . . . . . . . . . . . . . . . . . . . . . . . 188
B.2.5 Return values of complex functions . . . . . . . . . . . . . . . . . . . . . . . . 189
B.2.6 Array arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.2.7 Aliasing of arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.2.8 C interface include �le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
B.2.9 Error checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
B.2.10 Rules for obtaining the C interface from the Fortran 77 . . . . . . . . . . . . 193
B.2.11 cblas.h include �le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
B.2.12 Using Fortran 77 BLAS to support row-major BLAS operations . . . . . . . 194

C Journal of Development 203

Bibliography 204

Index 207

vi



Acknowledgments

The technical development was carried out by subgroups, whose work was reviewed by the full
committee. During the period of development of the Basic Linear Algebra Subprograms (BLAS)
Technical Forum Standard, many people served in positions of responsibility and are listed below.

� Jack Dongarra and Sven Hammarling, Conveners and Meeting Chairs

� Susan Blackford and Andrew Lumsdaine, Minutes

� Susan Blackford, Editor

The primary chapter authors are the following:

� Susan Blackford, Jack Dongarra, and Sven Hammarling, Chapter 1

� Susan Blackford, Jack Dongarra, and Sven Hammarling, Linda Kaufman, Zohair Maany,
Antoine Petitet, Chapter 2

� Iain Du�, Mike Heroux, Roldan Pozo, Karin Remington, Chapter 3

� Jim Demmel, Greg Henry, Velvel Kahan, Xiaoye Li, Chapter 4

� Clint Whaley, C Interface to the Legacy BLAS

� Jack Dongarra, Fred Krogh, Journal of Development { Environmental routines

� Antoine Petitet, Journal of Development { Distributed-Memory Dense BLAS

� Sven Hammarling, Zohair Maany, Journal of Development { Fortran95 Thin BLAS

� George Corliss, Chenyi Hu, Baker Kearfoot, Bill Walster, J. Wol� v. Gudenberg, Journal of
Development { Interval BLAS

We would like to thank the individuals from the following organizations who have written the
reference implementations: University of California, Berkeley, University of Houston, Downtown,
University of Notre Dame, University of Tennessee, HP/Convex, NAG, NIST, and CERFACS.

Speci�cally, we thank the following students at the University of California, Berkeley, for their
work on the reference implementations and proofreading of various versions of the document: Ben
Wanzo, Berkat Tung, Weihua Shen, Anil Kapur, Michael Martin, Jimmy Iskandar, Yozo Hida,
Teresa Tung, Yulin Li.

We would like to thank the following vendors and ISPs: Cray, Digital/Compaq, HP/Convex,
IBM, Intel, NEC, SGI, Tera, NAG, and VNI.

We thank Paul McMahan of the University of Tennessee for preparing the commenting and
voting pages on the BLAS Technical Forum webpage.

vii



We would like to thank the members of the global community who have posted comments,
suggestions, and proposals to the email reector and the BLAS Technical Forum webpage.

And lastly, we would like to thank the attendees of the BLAS Technical Forum meetings:

Andy Anda, Ed Anderson, Zhaojun Bai, David Bailey, Satish Balay, Puri Bangalore, Claus
Bendtsen, Jesse Bennett, Mike Berry, Je� Bilmes, Susan Blackford, Phil Bording, Clay Breshears,
Sandra Carney, Mimi Celis, Andrew Chapman, Samar Choudhary, Edmond Chow, Almadena
Chtchelkanova, Andrew Cleary, Isom Crawford, Michel Dayd�e, John Dempsey, Theresa Do, Dave
Dodson, Jack Dongarra, Craig Douglas, Paul Dressel, Jeremy Du Croz, Iain Du�, Carter Ed-
wards, Salvatore Filippone, Rob Gjertsen, Roger Golliver, Cormac Garvey, Ian Gladwell, Bruce
Greer, Bill Gropp, John Gunnels, Fred Gustavson, Sven Hammarling, Richard Hanson, Hidehiko
Hasegawa, Satomi Hasegawa, Greg Henry, Mike Heroux, Je� Horner, Gary Howell, Mary Beth
Hribar, Chenyi Hu, Steve Huss-Lederman, Melody Ivory, Naoki Iwata, Bo K�agstr�om, Velvel Kahan,
Chandrika Kamath, Linda Kaufman, David Kincaid, Jim Koehler, Vipin Kumar, Rich Lee, Steve
Lee, Guangye Li, Jin Li, Sherry Li, Hsin-Ying Lin, John Liu, Andew Lumsdaine, Dave Mackay,
Kristin Marsho�e, Kristi Maschho�, Brian McCandless, Joan McComb, Noel Nachtigal, Jim Nagy,
Esmond Ng, Tom Oppe, Antoine Petitet, Roldan Pozo, Avi Purkayastha, Padma Raghavan, Karin
Remington, Yousef Saad, Majed Sidani, Jeremy Siek, Tony Skjellum, Barry Smith, Ken Stan-
ley, Pete Stewart, Shane Story, Chuck Swanson, Fran�coise Tisseur, Anne Trefethen, Anna Tsao,
Robert van de Geijn, Phuong Vu, Kevin Wadleigh, David Walker, Bob Ward, Jerzy Wa�sniewski,
Clint Whaley, Yuan-Jye Jason Wu, Chao Yang, and Guodong Zhang.

viii



Suggestions for Reading

This document is divided into chapters, appendices, a journal of development, and an index of
routine names. It is large, and it is not necessary for a user to read it in its entirety. A user may
choose to not read certain chapters or sections within this document, depending upon his/her areas
of interest. Chapters 2{4 contain a functionality discussion and language bindings for dense and
band, sparse, and mixed and extended precision BLAS, respectively. Thus, these chapters may
be read independently, referring to Chapter 1 and the Appendix for notation and implemen-
tation details common to all chapters. Refer to section 1.3 for a more detailed description of the
organization of this document.
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Chapter 1

Introduction

1.1 Introduction

This document de�nes the BLAS Technical Forum standard, a speci�cation of a set of kernel
routines for linear algebra, historically called the Basic Linear Algebra Subprograms and commonly
known as the BLAS. In addition to this publication, the complete standard can be found on the
BLAS Technical Forum webpage (http://www.netlib.org/blas/blast-forum/).

Numerical linear algebra, particularly the solution of linear systems of equations, linear least
squares problems, eigenvalue problems and singular value problems, is fundamental to most calcu-
lations in scienti�c computing, and is often the computationally intense part of such calculations.
Designers of computer programs involving linear algebraic operations have frequently chosen to
implement certain low level operations, such as the dot product or the matrix vector product, as
separate subprograms. This may be observed both in many published codes and in codes written
for speci�c applications at many computer installations.

This approach encourages structured programming and improves the self-documenting quality
of the software by specifying basic building blocks and identifying these operations with unique
mnemonic names. Since a signi�cant amount of execution time in complicated linear algebraic
programs may be spent in a few low level operations, reducing the execution time spent in these
operations leads to an overall reduction in the execution time of the program. The programming
of some of these low level operations involves algorithmic and implementation subtleties that need
care, and can be easily overlooked. If there is general agreement on standard names and parameter
lists for some of these basic operations, then portability and eÆciency can also be achieved.

The �rst major concerted e�ort to achieve agreement on the speci�cation of a set of linear algebra
kernels resulted in the Level 1 Basic Linear Algebra Subprograms (BLAS)1 [17] and associated test
suite. The Level 1 BLAS are the speci�cation and implementation in Fortran of subprograms for
scalar and vector operations. This was the result of a collaborative project in 1973-77. Following
the distribution of the initial version of the speci�cations to people active in the development of
numerical linear algebra software, a series of open meetings were held at conferences and, as a result,
extensive modi�cations were made in an e�ort to improve the design and make the subprograms
more robust. The Level 1 BLAS were extensively and successfully exploited by LINPACK [8], a
software package for the solution of dense and banded linear equations and linear least squares
problems.

With the advent of vector machines, hierarchical memory machines and shared memory paral-
lel machines, speci�cations for the Level 2 and 3 BLAS [10, 9], concerned with matrix-vector and

1Originally known just as the BLAS, but in the light of subsequent developments now known as the Level 1 BLAS
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4 CHAPTER 1. INTRODUCTION

matrix-matrix operations respectively, were drawn up in 1984-86 and 1987-88. These speci�cations
made it possible to construct new software to utilize the memory hierarchy of modern comput-
ers more e�ectively. In particular, the Level 3 BLAS allowed the construction of software based
upon block-partitioned algorithms, typi�ed by the linear algebra software package LAPACK [1].
LAPACK is state-of-the-art software for the solution of dense and banded linear equations, linear
least squares, eigenvalue and singular value problems, makes extensive use of all levels of BLAS
and particularly utilizes the Level 2 and 3 BLAS for portable performance. LAPACK is widely
used in application software and is supported by a number of hardware and software vendors.

To a great extent, the user community embraced the BLAS, not only for performance reasons,
but also because developing software around a core of common routines like the BLAS is good
software engineering practice. Highly eÆcient machine-speci�c implementations of the BLAS are
available for most modern high-performance computers. The BLAS have enabled software to
achieve high performance with portable code.

The original BLAS concentrated on dense and banded operations, but many applications require
the solution of problems involving sparse matrices, and there have also been e�orts to specify
computational kernels for sparse vector and matrix operations [7, 11].

In the spirit of the earlier BLAS meetings and the standardization e�orts of the MPI and
HPF forums, a technical forum was established to consider expanding the BLAS in the light of
modern software, language, and hardware developments. The BLAS Technical Forum meetings
began with a workshop in November 1995 at the University of Tennessee. Meetings were hosted by
universities, government institutions, and software and hardware vendors. Detailed minutes were
taken for each of the meetings, and these minutes are available on the BLAS Technical Forum
webpage (http://www.netlib.org/blas/blast-forum/).

Various working groups within the Technical Forum were established to consider issues such
as the overall functionality, language interfaces, sparse BLAS, distributed-memory dense BLAS,
extended and mixed precision BLAS, interval BLAS, and extensions to the existing BLAS. The
rules of the forum were adopted from those used for the MPI and HPF forums. In other words,
�nal acceptance of each of the chapters in the BLAS Technical Forum standard were decided at the
meetings using Robert's Rules. Drafts of the document were also available on the BLAS Technical
Forum webpage, and attendees were permitted to edit chapters, give comments, and vote on-line
in \virtual meetings", as well as to conduct discussions on the email reector. The e�orts of these
working groups are summarized in this document. Most of these discussions resulted in de�nitive
proposals which led to the speci�cations given in Chapters 2 - 4. Not all of the discussions resulted
in de�nitive proposals, and such discussions are summarized in the Journal of Development in the
hope that they may encourage future e�orts to take those discussions to a successful conclusion.

A major aim of the standards de�ned in this document is to enable linear algebra libraries
(both public domain and commercial) to interoperate eÆciently, reliably and easily. We believe
that hardware and software vendors, higher level library writers and application programmers all
bene�t from the e�orts of this forum and are the intended end users of these standards.

The speci�cation of the original BLAS was given in the form of Fortran 66 and subsequently
Fortran 77 subprograms. In this document we provide speci�cations for Fortran 952, Fortran 77 and
C. Reference implementations of the standard are provided on the BLAS Technical Forum webpage
(http://www.netlib.org/blas/blast-forum/). Alternative language bindings for C++ and Java
were also discussed during the meetings of the forum, but the speci�cations for these bindings were
postponed for a future series of meetings.

The remainder of this chapter is organized as follows. Section 1.2 provides motivation for the

2the current Fortran standard
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functionality. Section 1.3 outlines the organization of the document, and section 1.4 summarizes the
nomenclature and conventions used in the document. Section 1.5 presents tables of functionality
for the routines, and section 1.6 discusses issues concerning the numerical accuracy of the BLAS.
Section 1.7 briey describes the presentation of the speci�cations for the routines, and section 1.8
details the error handling mechanisms utilized within the routines.

1.2 Motivation

The motivation for the kernel operations is proven functionality. Many of the new operations are
based upon auxiliary routines in LAPACK [1] (e.g., SUMSQ, GEN GROT, GEN HOUSE, SORT,
GE NORM, GE COPY). Only after the LAPACK project was begun was it realized that there
were operations like the matrix copy routine (GE COPY), the computation of a norm of a matrix
(GE NORM) and the generation of Householder transformations (GEN HOUSE) that occurred so
often that it was wise to make separate routines for them.

A second group of these operations extended the functionality of some of the existing BLAS (e.g.,
AXPBY, WAXPBY, GER, SYR/HER, SPR/HPR, SYR2/HER2, SPR2/HPR2). For example, the
Level 3 BLAS for the rank k update of a symmetric matrix only allows a positive update, which
means that it cannot be used for the reduction of a symmetric matrix to tridiagonal form (to
facilitate the computation of the eigensystem of a symmetric matrix), or for the factorization of a
symmetric inde�nite matrix, or for a quasi-Newton update in an optimization routine.

Other extensions (e.g., AXPY DOT, GE SUM MV, GEMVT, TRMVT, GEMVER) perform
two Level 1 BLAS (or Level 2 BLAS) routine calls simultaneously to increase performance by
reducing memory traÆc.

The original e�orts to specify sparse Level 2 and 3 BLAS took considerably longer than the
corresponding e�orts for the dense and banded BLAS, principally because of the need to obtain
agreement on the way to represent sparse matrices. The lessons learned from those e�orts have
been vital background to the speci�cations given in this document.

The original Level 2 BLAS included, as an appendix, the speci�cation of extended precision
subprograms. With the widespread adoption of hardware supporting the IEEE extended arithmetic
format [15], as well as other forms of extended precision arithmetic, together with the increased
understanding of algorithms to successfully exploit such arithmetic, it was felt to be timely to
include a complete speci�cation for a set of extra precise BLAS.

1.3 Organization of the Document

This document is divided into chapters, appendices, a journal of development, and an index. It
is large, and it is not necessary for a user to read it in its entirety. A user may choose to not
read certain chapters or sections within this document, depending upon his/her areas of interest.
Chapters 2{4 contain a functionality discussion and language bindings for dense and band, sparse,
and mixed and extended precision BLAS, respectively. The Journal of Development presents
areas of research that are not yet mature enough to be considered as chapters, but were nevertheless
discussed at the meetings of the forum. A Bibliography is also provided, as well as an Index of
routine names.

All users are encouraged to frequently refer to the list of notation denoted in sections 1.4, 2.3,
and 3.3.

� Chapter 1: Introduction provides a brief overview of the background, motivation, and
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history of the BLAS Technical Forum e�ort. It also outlines the structure of the document,
conventions in notation, and overall functionality contained in the chapters.

� Chapter 2: Dense and Banded BLAS presents the functionality and language bind-
ings for proposed \new" dense and banded BLAS routines for serial and shared memory
computing.

� Chapter 3: Sparse BLAS presents the functionality and language bindings for proposed
\new" sparse BLAS routines for serial and shared memory computing.

� Chapter 4: Extended and Mixed Precision BLAS presents the functionality and lan-
guage bindings for proposed extended- precision and mixed-precision BLAS routines for serial
and shared memory computing.

� Appendix contains pertinent de�nitions and implementation details for the chapters.

� Legacy BLAS contains alternative language bindings for the legacy Level 1, 2, and 3 BLAS
for dense and band matrix computations.

� Journal of Development contains separate proposals for environmental enquiry routines,
Distributed-memory dense BLAS, Fortran 95 Thin BLAS, and Interval BLAS. This chapter
of the document is only available on the BLAS Technical Forum webpage
(http://www.netlib.org/blas/blast-forum/).

1.4 Nomenclature and Conventions

This section addresses mathematical notation and de�nitions, as well as the numerical accuracy for
the BLAS routines. Language-independent issues are also presented.

1.4.1 Notation

The following notation is used throughout the document.

� A, B, C { matrices

� D, DL, DR { diagonal matrices

� H { Householder matrix

� J { symmetric tridiagonal matrix (including 2� 2 blocked diagonal)

� P { permutation matrix

� T { triangular matrix

� op(A) { denotes A, or AT or AH where A is a matrix.

� transpose { denotes AT where A is a matrix.

� conjugate-transpose { denotes AH where A is a complex Hermitian matrix.

� u, v, w, x, y, z { vectors

� �x { speci�es the conjugate of the complex vector x
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� incu, incv, incw, incx, incy, incz { stride between successive elements of the respective vector

� Greek letters - scalars (but not exclusively Greek letters)

� xi - an element of a one-dimensional array

� yjx { refers to the elements of y that have common indices with the sparse vector x.

� � - machine epsilon

�  { assignment statement

� $ { swap (assignment) statement

� jj � jjp { the p-norm of a vector or matrix

Additional notation for sparse matrices can be found in 3.3.
For the mathematical formulation of the operations, as well as their algorithmic presentation, we

have chosen to index the vector and matrix operands starting from zero. This decision was taken
to simplify the presentation of the document but has no impact on the convention a particular
language binding may choose.

1.4.2 Operator Arguments

Some BLAS routines take input-only arguments that are called \operator" arguments. These
arguments allow for the speci�cation of multiple related operations to be performed by a single
function.

The operator arguments used in this document are norm, sort, side, uplo, trans, conj, diag, jrot,
order, index base, and prec. Their possible meanings are de�ned as follows:

norm: this argument is used by the routines computing the norm of a vector or matrix. Eight possible
distinct values are valid that specify the norm to be computed, namely the one-norm, real
one-norm, in�nity-norm and real in�nity norms for vectors and matrices, the 2-norm for
vectors, and the Frobenius-norm, max-norm and real max-norm for matrices.

sort: this argument is used by the sorting routines. Two possible distinct values are valid that
specify whether the data should be sorted in increasing or decreasing order.

side: this argument is used only by functions computing the product of two matrices A and B.
Two possible distinct values are valid, that specify whether A �B or B �A should be computed.

uplo: this argument refers to triangular and symmetric (Hermitian) matrices. Two possible distinct
values are valid distinguishing whether the matrix, or its storage representation, is upper or
lower triangular.

trans: this argument is used by the routines applying a matrix, say A, to another vector or another
matrix. Three possible distinct values are valid that specify whether the matrix A, its trans-
pose AT or its conjugate transpose AH should be applied. We use the notation op(A) to refer
to A, AT or AH depending on the input value of the trans operator argument.

conj: this argument is used by the complex routines operating with �x or x.

diag: this argument refers exclusively to triangular matrices. Two possible distinct values are valid
distinguishing whether the triangular matrix has unit-diagonal or not.
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jrot: this argument is used by the routine to generate Jacobi rotations. Three possible distinct
values are valid and specify whether the rotation is an inner rotation, an outer rotation, or a
sorted rotation.

order: this argument is used by the C bindings to specify if elements within a row of an array are
contiguous, or if elements within a column of an array are contiguous (see section 2.6.6).

index base: this argument is used by Chapter 3 to specify either one-based or zero-based indexing (see
section 3.3.1).

prec: this argument is used in Chapter 4 and speci�es the internal precision to be used by an
extended precision routine. Four distinct values are valid and specify whether the internal
precision is single precision, double precision, indigenous, or extra. Details on these settings
can be found in section 4.3.1.

All possible meanings for each operator are listed in section A.3. Their representation is de�ned
in the interface issues for the speci�c programming language: sections 2.4, 3.5.1, and 4.4.1 for
Fortran 95; sections 2.5, 3.5.2, and 4.4.2 for Fortran 77; and sections 2.6, 3.5.3, and 4.4.3 for C. The
values of the Fortran 95 derived types (for Chapters 2 and 4) are de�ned in the Fortran 95 module
blas operator arguments, and the values of the Fortran 95 named constants (for Chapter 3) are
de�ned in blas sparse namedconstants, see section A.4. Similarly, the values of the Fortran 77
named constants are de�ned in the Fortran 77 include �le blas namedconstants.h, in section A.5.
And �nally, the values of the C enumerated types are de�ned in the C include �le blas enum.h, in
section A.6.

Rationale. The intent is to provide each language binding with the opportunity to choose
the most appropriate form these arguments should take. For example, in Fortran 95, derived
types with named constants have been selected for Chapters 2 and 4, whereas derived types
could not be used in Chapter 3 (see section 3.5.1 for details). In Fortran 77, integers with
named constants have been chosen. And �nally, in C, operator arguments are represented by
enumerated types. (End of rationale.)

1.4.3 Scalar Arguments

Many scalar arguments are used in the speci�cations of the BLAS routines. For example, the size
of a vector or matrix operand is determined by the integer argument(s) m and/or n. Note that
it is permissible to call the routines with m or n equal to zero, in which case the routine exits
immediately without referencing its vector/matrix elements. Some routines return a displacement
denoted by the integer argument k. The scaling of a vector or matrix is often denoted by the
arguments alpha and beta.

The following symbols are used: a, b, c, d, r, s, t, alpha, beta and tau.

1.4.4 Vector Operands

A n-length vector operand x is speci�ed by two arguments { x and incx. x is an array that contains
the entries of the n-length vector x. incx is the stride within x between two successive elements of
the vector x.

The following lowercase letters are used to denote a vector: u, v, w, x, y, and z. The corre-
sponding strides are respectively denoted incu, incv, incw, incx, incy, and incz.
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Advice to implementors. The increment arguments incu, incv, incw, incx, incy and incz may
not be zero. (End of advice to implementors.)

Example: The mathematical function returning the inner-product r of two real n-length vectors
x and y can be de�ned by:

r = xT y =
n�1X
i=0

xiyi:

Rationale. The arguments incx, and incy do not play a role in the mathematical formulation
of the operation. These arguments allow for the speci�cation of subvector operands in various
language bindings. Therefore, some of these arguments may not be present in all language-
dependent speci�cations. (End of rationale.)

1.4.5 Matrix Operands

A m-by-n matrix operand A is speci�ed by the argument A. A is a language-dependent data
structure containing the entries of the matrix operand A. The representation of the matrix entry
ai;j in A is denoted by A(i,j) for all (i,j) in the interval [0 : : : m� 1]� [0 : : : n� 1].

Capital letters are used to denote a matrix. The functions involving matrices use only four
symbols, namely A, B, C, and T.

1.4.6 Naming Conventions

Routine names have the pre�x BLAS to denote the Fortran 77 and C language bindings. The
routines in the Fortran 95 language bindings do not contain a pre�x. For Fortran 77, all characters
are uppercase; however, for the Fortran 95 and C interfaces all characters are lowercase. To avoid
possible name collisions, programmers are strongly advised not to declare variables or functions
with names beginning with these de�ned pre�xes.

The Fortran 77 and C language bindings have names of the form BLAS xZZZ, where the
letter x, indicates the data type as follows:

Data type x Fortran 77 x C

single precision real S REAL s oat
double precision real D DOUBLE PRECISION d double
single precision complex C COMPLEX c oat
double precision complex Z COMPLEX*16 or DOUBLE COMPLEX z double

The last letters ZZZ indicate the computation performed. In the matrix-vector and matrix-
matrix routines of Chapters 2 and 4 (and Appendix C), the type of the matrix (or of the most
signi�cant matrix) is also speci�ed as part of this ZZZ name of the routine. Most of these matrix
types apply to both real and complex matrices; a few apply speci�cally to one or the other, as
indicated below. Note that for Appendix C, these matrix types apply to interval matrices.
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GB general band
GE general (i.e., unsymmetric, in some cases rectangular)
HB (complex) Hermitian band
HE (complex) Hermitian
HP (complex) Hermitian, packed storage
SB (real) symmetric band
SP symmetric, packed storage
SY symmetric
TB triangular band
TP triangular, packed storage
TR triangular (or in some cases quasi-triangular)

The Fortran 95 language bindings have names of the form ZZZ. These bindings use generic
interfaces to manipulate the data type of the routine, and thus their names do not contain a letter
to denote the data type.

A detailed discussion of the format of the ZZZ naming convention is contained in each respective
chapter.

1.5 Overall Functionality

This section summarizes, in tabular form, the functionality of the proposed routines. Issues such
as storage formats or data types are not addressed. The functionality of the existing Level 1, 2 and
3 BLAS [17, 7, 10, 9] is a subset of the functionality proposed in this document.

In the original BLAS, each level was categorized by the type of operation; Level 1 addressed
scalar and vector operations, Level 2 addressed matrix-vector operations, while Level 3 addressed
matrix-matrix operations. The functionality tables in this document are categorized in a similar
manner, with additional categories to cover operations which were not addressed in the original
BLAS.

Unless otherwise speci�ed, the operations apply to both real and complex arguments. For the
sake of compactness the complex operators are omitted, so that whenever a transpose operation is
given the conjugate transpose should also be assumed for the complex case.

The last column of each table denotes in which chapter of this document the functionality
occurs. Speci�cally,

� \D" denotes dense and banded BLAS (Chapter 2),

� \S" denotes sparse BLAS (Chapter 3), and

� \E" denotes extended and mixed precision BLAS (Chapter 4).

1.5.1 Scalar and Vector Operations

This section lists scalar and vector operations. The functionality tables are organized as follows.
Table 1.1 lists the scalar and vector reduction operations, Table 1.2 lists the vector rotation opera-
tions, Table 1.3 lists the vector operations, and Table 1.4 lists those vector operations that involve
only data movement.

For the Sparse BLAS, x is a compressed sparse vector and y is a dense vector. Details of data
structures are in Section 3.3.1.

For further details of vector norm notation, refer to section 2.1.1.
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Dot product r  �r + �xT y D,E
r  xT y S

Vector norms r  jjxjj1; D
r  jjxjj1R; D
r  jjxjj2; D
r  jjxjj1; D
r  jjxjj1R; D

Sum r  P
i xi D,E

Min value & location k; xk; ; k = argmini xi D
Min abs value & location k; xk; k = argmini(jRe(xi)j+ jIm(xi)j) D
Max value & location k; xk; ; k = argmaxi xi D
Max abs value & location k; xk; k = argmaxi(jRe(xi)j+ jIm(xi)j) D
Sum of squares (scl; ssq) P

x2i ; D
ssq � scl2 =P

x2i D

Table 1.1: Reduction Operations

Generate Givens rotation (c; s; r) rot(a; b) D
Generate Jacobi rotation (a; b; c; s) jrot(x; y; z) D
Generate Householder transform (�; x; �) house(�; x); D

H = I � �uuT

Table 1.2: Generate Transformations

Reciprocal Scale x x=� D
Scaled vector accumulation y  �x+ �y; D,E

y  �x+ y S
Scaled vector addition w  �x+ �y D,E

Combined axpy & dot product

(
ŵ  w � �v
r  ŵTu

D

Apply plane rotation ( x y ) ( x y )R D

Table 1.3: Vector Operations

Copy y  x D
Swap y $ x D
Sort vector x sort(x) D
Sort vector & return index vector (p; x) sort(x) D
Permute vector x Px D
Sparse gather x yjx S
Sparse gather and zero x yjx; yjx  0 S
Sparse scatter yjx  x S

Table 1.4: Data Movement with Vectors
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1.5.2 Matrix-Vector Operations

This section lists matrix-vector operations in table 1.5. The matrix arguments A, B and T are dense
or banded or sparse. In addition, where appropriate, the matrix A can be symmetric (Hermitian)
or triangular or general. The matrix T represents an upper or lower triangular matrix, which can
be unit or non-unit triangular. For the Sparse BLAS, the matrix A is sparse, the matrix T is sparse
triangular, and the vectors x and y are dense.

Details of the data structures are discussed in sections 2.2, and 3.3.1.

Matrix-vector product y  �Ax+ �y; y  �ATx+ �y D,S,E
x �Tx; x �T Tx D,E
y  �Ax+ y; y  �ATx+ y S

Summed matrix-vector multiplies y  �Ax+ �Bx D,E

Multiple matrix-vector multiplies

(
x T T y
w  Tz

D(
x �AT y + z
w  �Ax

D

Multiple matrix-vector mults

and low rank updates

8><
>:

Â A+ u1v
T
1 + u2v

T
2

x �ÂT y + z

w  �Âx

D

Triangular solve x �T�1x; x �T�Tx D,S,E

Rank one updates A �xyT + �A D
and symmetric (A = AT ) A �xxT + �A D
rank one & two updates A (�x)yT + y(�x)T + �A D

Table 1.5: Matrix-Vector Operations

1.5.3 Matrix Operations

This section lists a variety of matrix operations. The functionality tables are organized as follows.
Table 1.6 lists single matrix operations and matrix operations that involve O(n2) operations, Table
1.7 lists the O(n3) matrix-matrix operations and Table 1.8 lists those matrix operations that involve
only data movement. Where appropriate one or more of the matrices can also be symmetric
(Hermitian) or triangular or general. The matrix T represents an upper or lower triangular matrix,
which can be unit or non-unit triangular. D, DL, and DR represent diagonal matrices, and J
represents a symmetric tridiagonal matrix (including 2� 2 block diagonal).

Details of the data structures are discussed in sections 2.2, and 3.3.1.
For further details of matrix norm notation, refer to section 2.1.3.
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Matrix norms r  jjAjj1; r  jjAjj1R D
r  jjAjjF ; r  jjAjj1; r  jjAjj1R D
r  jjAjjmax; r  jjAjjmaxR D

Diagonal scaling A DA; A AD; A DLADR D
A DAD D
A A+BD D

Matrix acc and scale C  �A+ �B D
Matrix add and scale B  �A+ �B; B  �AT + �B D

Table 1.6: Matrix Operations { O(n2) oating point operations

Matrix-matrix product C  �AB + �C; C  �ATB + �C D,E
C  �ABT + �C; C  �ATBT + �C D,E
C  �AB + �C; C  �ATB + �C S

Triangular multiply B  �TB; B  �BT D,E
B  �T TB; B  �BT T D,E

Triangular solve B  �T�1B; B  �T�TB D,S,E
B  �BT�1; B  �BT�T D,E

Symmetric rank k & 2k C  �AAT + �C; C  �ATA+ �C D,E
updates (C = CT ) C  �AJAT + �C; C  �AT JA+ �C D

C  (�A)BT +B(�A)T + �C, D,E
C  (�A)TB +BT (�A) + �C
C  (�AJ)BT +B(�AJ)T + �C, D
C  (�AJ)TB +BT (�AJ) + �C

Table 1.7: Matrix-Matrix Operations - O(n3) oating point operations

Matrix copy B  A; B  AT D
Matrix transpose A AT D
Permute Matrix A PA, A AP D

Table 1.8: Data Movement with Matrices
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1.6 Numerical Accuracy and Environmental Enquiry

To understand the numerical behavior of the routines proposed here, certain oating point pa-
rameters are necessary. Detailed error bounds and limitations due to overow and underow are
discussed in individual chapters (see sections 2.7, 3.6, and 4.3.3 but all of them depend on details of
how oating point numbers are represented. These details are available by calling an environmental
enquiry function called FPINFO.

Floating point numbers are represented in scienti�c notation as follows. This discussion follows
the IEEE Floating Point Arithmetic Standard 754 [2].3

x = �d:d � � � d �BASEE

where d:d � � � d is a number represented as a string of T signi�cant digits in base BASE with the
\point" to the right of the leftmost digit, and E is an integer exponent. E ranges from EMIN up
to EMAX. This means that the largest representable number, which is also called the overow
threshold or OV, is just less than BASEEMAX+1, This also means that the smallest positive \nor-
malized" representable number (i.e. where the leading digit of d:d � � � d is nonzero) is BASEEMIN ,
which is also called the underow threshold or UN.

When overow occurs (because a computed quantity exceeds OV in absolute value), the result is
typically �1, or perhaps an error message. When underow occurs (because a computed quantity
is less than UN in absolute magnitude) the returned result may be either 0 or a tiny number less
than UN in magnitude, with minimal exponent EMIN but with a leading zero (0:d � � � d). Such tiny
numbers are often called denormalized or subnormal, and oating point arithmetic which returns
them instead of 0 is said to support gradual underow.

The relative machine precision (or machine epsilon) of a basic operation � 2 f+;�; �; =g is
de�ned as the smallest EPS > 0 satisfying

fl(a� b) = (a� b) � (1 + Æ) for some jÆj � EPS

for all arguments a and b that do not cause underow, overow, division by zero, or an invalid
operation. When fl(a � b) is a closest oating point number to the true result a � b (with ties
broken arbitrarily), then rounding is called \proper" and EPS = :5 � BASE1�T . Otherwise
typically EPS = BASE1�T , although it can sometimes be worse if arithmetic is not implemented
carefully. We further say that rounding is \IEEE style" if ties are broken by rounding to the nearest
number whose least signi�cant digit is even (i.e. whose bottom bit is 0).

The function FPINFO returns the above oating point parameters, among others, to help the
user understand the accuracy to which results are computed. FPINFO can return the values for
either single precision or double precision. The way the precision is speci�ed is language dependent,
as is the choice of oating point parameter to return, and described in section 2.7. The names single
and double may have di�erent meanings on di�erent machines: We have long been accustomed to
single precision meaning 32-bits on all IEEE and most other machines [2], except for Cray and
its emulators where single is 64-bits. And there are historical examples of 60-bit formats on some
old CDC machines, etc. Nonetheless, we all agree on single precision as a phrase with a certain
system-dependent meaning, and double precision too, meaning at least twice as many signi�cant
digits as single.

3We ignore implementation details like \hidden bits", as well as unusual representations like logarithmic arithmetic
and double-double.
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The values returned by FPINFO are as follows, including the values returned for IEEE single and
IEEE double, the most common cases. The oating point parameters in column 1 have analogous
meanings as the like-named character arguments of the LAPACK subroutine xLAMCH.4

Floating point Description Value in Value in
parameter IEEE single IEEE double

BASE base of the machine 2 2
T number of digits 24 53
RND 1 when proper rounding 1 1

occurs in addition
0 otherwise

IEEE 1 when rounding in addition 1 1
is IEEE style
0 otherwise

EMIN minimum exponent before -126 -1022
(gradual) underow

EMAX maximum exponent before 127 1023
overow

EPS machine epsilon 2�24 � 5� 10�8 2�53 � 10�16

= .5�BASE1�T if RND=1
= BASE1�T if RND=0

PREC EPS�BASE 2�23 2�52

UN underow threshold 2�126 � 10�38 2�1022 � 10�308

= BASEEMIN

OV overow threshold � 2128 � 1038 � 21024 � 10308

= BASEEMAX+1 � (1�EPS)
SFMIN safe minimum, such that 2�126 � 10�38 2�1022 � 10�308

1/SFMIN does not overow
= UN if 1/OV<UN,
else (1+EPS)/OV

Table 1.9: Values returned by FPINFO

Chapter 4 de�nes an additional FPINFO-like function to supplement this one with additional
information needed for error bounds.

1.7 Language Bindings

Each speci�cation of a routine corresponds to an operation outlined in the functionality tables.
Operations are organized analogous to the order in which they are presented in the functionality
tables. The speci�cation has the form:

NAME (multi-word description of operation) < mathematical representation >

4Here are the di�erences: In xLAMCH, UN was called RMIN and OV was called RMAX. The value of IEEE was
computed by xLAMCH but not returned. xLAMCH returned EMIN+1 and EMAX+1 instead of EMIN and EMAX,
respectively (this corresponds to a di�erent choice of where to put the \point" in d:d � � � d � BASEE).
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Optional brief textual description of the functionality including any restrictions that apply to all
language bindings.

� Fortran 95 binding

� Fortran 77 binding

� C binding

Alternative language bindings for C++ and Java were also discussed during the meetings of the
forum, but the speci�cations for these bindings were postponed for a future series of meetings.

1.8 Error Handling

This document supports two types of error-handling capabilities: an error handler and error return
codes. Each chapter of this document, and thus each avor of BLAS, has the choice of using either
capability, whichever is more appropriate. Chapters 2 and 4 rely on an error handler, and Chapter 3
provides error return codes.

One error handler, BLAS ERROR, is de�ned. A series of error return codes are also de�ned.
Each function in this document determines when and if an error-handling mechanism is called, and
its function speci�cation must document the conditions (if any) which trigger the error handling
mechanism.

This standard de�nes some minimal scalar input argument checking which all BLAS-2000 com-
pliant libraries are required to do.

Advice to implementors. A BLAS supplier is free to provide multiple interfaces to the
libraries, so that a second, non-compliant interface may perform no error checking. (End of
advice to implementors.)

Additional error checking may be performed (for instance, checking that there are no zeros on the
diagonal of a triangular solve), but these kinds of tests are too implementation-constraining to be
mandated by the standard. Any additional error checking must not abort execution.

When any of the mandated scalar input argument checks fail, if the BLAS error handler is used,
it must use the API given below. The default behavior of the BLAS-compliant error handler is to
print an informative error message and abort execution. However, the API of this error handler is
mandated by this document speci�cally so that a user can override the default error handler with
a user-de�ned routine, so that this behavior can be changed. It is therefore necessary that the
implementor not assume that the error handler stops execution, but rather must return explicitly
before altering the routine's operands in the event of an error.

The following are de�ned as errors by this standard. All Fortran 95, Fortran 77, and C routines
must perform the following error check.

� Any value of the operator arguments whose meaning is not speci�ed in section A.3 is invalid.

Additionally, all Fortran 77 and C routines must perform the following error checks, unless otherwise
noted in the speci�cation of the routine.

� Any problem dimension or bandwidth (eg., m, n, k, kl, ku) less than zero

� Any vector increment (eg., incw, incx, incy, incz) equal to zero

� Any leading dimension (eg. lda, ldb, ldc, ldt) less than one
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� Any leading dimension (eg. lda, ldb, ldc, ldt) less than the relevant dimension of the problem.
The relevant dimension of the problem is:

{ n, for a square, symmetric, or triangular matrix

{ m, for a m � n general, non-transposed matrix

{ n, for a m � n general, transposed matrix

{ kl + ku + 1 for a m � n general band matrix

{ k + 1 for a n � n symmetric or triangular band matrix with k super- or subdiagonals

1.8.1 Error handlers

Each language binding possesses its own unique error handler. However, all error handlers minimally
pass three pieces of information:

1. RNAME, the name of the routine in which the error occurred.

2. IFLAG, an integer ag which, if negative, means that parameter number -IFLAG caused the
error, and if set to nonnegative, is an implementation-speci�c error code

3. IVAL, the value of parameter number -IFLAG.

Each language's BLAS error handler should print an informative error message describing the error,
and halt execution. The API of the error handler is explicitly spelled out in each section, so that if
this behavior is not desired by the user or higher level library provider, it may be changed by the
BLAS user, overriding the BLAS's error handler with one which performs as required.

The API for each language binding is mandated in the following sections; as an advice to the
implementor, an example of a BLAS-2000 compliant error handler is included as well.

F95 error handler

The Fortran 95 BLAS do not need to test the option arguments, since these are derived types and
hence invalid arguments are agged by the compiler. The only case where array dimensions are
arguments to the Fortran 95 BLAS are the nonsymmetric band routines where m and kl are passed
as arguments. The other array dimensions can be determined in the BLAS routines using the
intrinsic function SIZE, and arrays should be checked for conformance according to the operation
being performed. For example in the operation AB the second dimension of A must equal the �rst
dimension of B. Note that, for consistency, m is included in all of the nonsymmetric band routines
although in some cases it is redundant; in those cases it should be tested against the relevant array
dimension.

The mandated API of the routine is:

MODULE blas_error_handler

INTERFACE blas_error

SUBROUTINE blas_error(rname,iflag,ival)

INTEGER, INTENT (IN) :: iflag

INTEGER, OPTIONAL, INTENT (IN) :: ival

CHARACTER (*), INTENT (IN) :: rname

END SUBROUTINE blas_error

END INTERFACE

END MODULE blas_error_handler
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A possible implementation would be:

SUBROUTINE blas_error(rname,iflag,ival)

! .. Scalar Arguments ..

! The optional argument ival must be present when iflag is in (-98,-1)

INTEGER, INTENT (IN) :: iflag

INTEGER, OPTIONAL, INTENT (IN) :: ival

CHARACTER (*), INTENT (IN) :: rname

! ..

SELECT CASE (iflag)

CASE (-99)

WRITE (*,1000) rname

CASE (-98:-1)

WRITE (*,2000) rname, -iflag, ival

CASE DEFAULT

WRITE (*,3000) iflag, rname

END SELECT

STOP

1000 FORMAT ('On entry to ',A, &

' two or more array argument sizes do not conform')

2000 FORMAT ('On entry to ',A,' argument number',I3, &

' had the illegal value of ',I5)

3000 FORMAT ('Unknown error code ',I5,' raised by routine ',A)

END SUBROUTINE blas_error

F77 error handler

The mandated API of the routine is:

SUBROUTINE BLAS_ERROR( RNAME, IFLAG, IVAL )

CHARACTER*(*) RNAME

INTEGER IFLAG, IVAL

A possible implementation would be:

SUBROUTINE BLAS_ERROR( RNAME, IFLAG, IVAL )

CHARACTER*(*) RNAME

INTEGER IFLAG, IVAL

IF( IFLAG.LT.0 ) THEN

WRITE(*,1000) RNAME, -IFLAG, IVAL

ELSE

WRITE(*,2000) IFLAG, RNAME

END IF

STOP

1000 FORMAT('On entry to ',A, ' parameter number', I3,
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$ ' had the illegal value of', I)

2000 FORMAT('Unknown error code ',I,' raised by routine',A)

END

C error handler

The mandated API of the routine is:

void BLAS_error(char *rname, int iflag, int ival, char *form, ...)

A possible implementation would be:

#include <stdio.h>

#include <stdarg.h>

void BLAS_error(char *rname, int iflag, int ival, char *form, ...)

{

va_list argptr;

va_start(argptr, form);

fprintf(stderr, "Error #%d from routine %s:\n", iflag, rname);

if (form) vfprintf(stderr, form, argptr);

else if (iflag < 0)

fprintf(stderr,

" Parameter number %d to routine %s had the illegal value %d\n",

-iflag, rname, ival);

else fprintf(stderr, " Unknown error code %d from routine %s\n",

iflag, rname);

exit(iflag);

}
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Chapter 2

Dense and Banded BLAS

2.1 Overview and Functionality

This chapter de�nes the functionality and language bindings for the dense and banded BLAS rou-
tines, addressing mathematical operations with scalars, vectors and dense, banded, and triangular
matrices but not sparse data structures.

The chapter is organized as follows. Sections 2.1.1, 2.1.2, and 2.1.3 list in tabular form the
functionality of the proposed routines. Unless otherwise speci�ed, the operations apply to both
real and complex arguments. For the sake of compactness the complex operators are omitted, so
that whenever a transpose operation is given the conjugate transpose should also be assumed for
the complex case. Section 2.2 de�nes the matrix storage schemes. Section 2.3 discusses general
interface issues, and sections 2.4, 2.5, and 2.6 detail the interface issues for the respective language
bindings { Fortran 95, Fortran 77, and C. Section 2.7 discusses issues concerning the numerical
accuracy of the BLAS. And lastly, sections 2.8.2 { 2.8.10 present the language bindings for the
proposed routines.

2.1.1 Scalar and Vector Operations

This section lists scalar and vector operations. The functionality tables are organized as follows.
Table 2.1 lists the scalar and vector reduction operations, table 2.2 lists the rotation operations,
table 2.3 lists the vector operations, and table 2.4 lists vector operations involving only data move-
ment. Notation in the tables is de�ned in section 1.4, and details of the data structures are discussed
in section 2.2. Vector norms are de�ned in Appendix A.1. The language bindings are presented in
sections 2.8.2, 2.8.4, and 2.8.5.

2.1.2 Matrix-Vector Operations

This section lists the matrix-vectors operations in functionality table 2.5. Unless otherwise speci�ed,
the operations apply to both real and complex arguments. For the sake of compactness the complex
operators are omitted, so that whenever a transpose operation is given both the conjugate and
conjugate transpose should also be assumed for the complex case.

The matrix T represents an upper or lower triangular matrix, which can be unit or non-unit
triangular. D represents a diagonal matrix. Notation in the tables is de�ned in section 1.4, and
details of the data structures are discussed in section 2.2. The language bindings are presented in
section 2.8.6.

21
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Dot product r  �r + �xT y DOT
Vector norms r  jjxjj1; r  jjxjj1R; NORM

r  jjxjj2;
r  jjxjj1; r  jjxjj1R

Sum r  P
i xi SUM

Min value & location k; xk; ; k = argmini xi MIN VAL
Min abs value & location k; xk; k = argmini(jRe(xi)j+ jIm(xi)j) AMIN VAL
Max value & location k; xk; ; k = argmaxi xi MAX VAL
Max abs value & location k; xk; k = argmaxi(jRe(xi)j+ jIm(xi)j) AMAX VAL
Sum of squares (ssq; scl) P

x2i ; SUMSQ
ssq � scl2 =P

x2i

Table 2.1: Reduction Operations

Generate Givens rotation (c; s; r) rot(a; b) GEN GROT
Generate Jacobi rotation (a; b; c; s) jrot(x; y; z) GEN JROT
Generate Householder transform (�; x; �) house(�; x); GEN HOUSE

H = I � �uuT

Table 2.2: Generate Transformations

Reciprocal Scale x x=� RSCALE
Scaled vector accumulation y  �x+ �y; AXPBY
Scaled vector addition w  �x+ �y WAXPBY

Combined axpy & dot product

(
ŵ w � �v
r ŵTu

AXPY DOT

Apply plane rotation ( x y ) ( x y )R APPLY GROT

Table 2.3: Vector Operations

Copy y  x COPY
Swap y $ x SWAP
Sort vector x sort(x) SORT
Sort vector & return index vector (p; x) sort(x) SORTV
Permute vector x Px PERMUTE

Table 2.4: Data Movement with Vectors

2.1.3 Matrix Operations

This section lists single matrix operations, matrix-matrix operations, and matrix operations in-
volving data movement. The functionality tables are organized as follows. Table 2.6 lists single
matrix operations and matrix operations that involve O(n2) oating point operations, Table 2.7
lists the O(n3) matrix-matrix oating point operations and Table 2.8 lists those matrix oating
point operations that involve only data movement. Unless otherwise speci�ed, the operations apply
to both real and complex arguments. For the sake of compactness the complex operators are omit-
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Matrix vector product y  �Ax+ �y GE,GB,SY,HE, MV
SB,HB,SP,HP

y  �ATx+ �y GE,GB MV
x �Tx; x �T Tx TR,TB,TP MV

Summed matrix vector multiplies y  �Ax+ �Bx GE SUM MV

Multiple matrix vector multiplies

(
x T T y
w  Tz

TR MVT(
x �AT y + z
w  �Ax

GE MVT

Multiple mv mults & low rank updates

8><
>:

Â A+ u1v
T
1 + u2v

T
2

x �ÂT y + z

w  �Âx

GE MVER

Triangular solve x �T�1x; x �T�Tx TR,TB,TP SV

Rank one updates A �xyT + �A GE R
and symmetric (A = AT ) A �xxT + �A SY,HE,SP,HP R
rank one & two updates A (�x)yT + y(�x)T + �A SY,HE,SP,HP R2

Table 2.5: Matrix-Vector Operations

ted, so that whenever a transpose operation is given both the conjugate and conjugate transpose
should also be assumed for the complex case. The matrix T represents an upper or lower triangular
matrix, which can be unit or non-unit triangular. D, DL, and DR represent diagonal matrices, and
J is a symmetric tridiagonal matrix. Notation in the tables is de�ned in section 1.4, and details of
the data structures are discussed in section 2.2. Matrix norms are de�ned in Appendix A.2. The
language bindings are listed in sections 2.8.6, 2.8.7, 2.8.8, and 2.8.9.

Matrix norms r jjAjj1; r  jjAjj1R; r  jjAjjF ; GE,GB,SY,HE,SB,HB, NORM
r jjAjj1; r  jjAjj1R; SP,HP,TR,TB,TP
r jjAjjmax; r  jjAjjmaxR

Diagonal scaling A DA; A AD GE,GB DIAG SCALE
A DLADR GE,GB LRSCALE
A DAD SY,HE,SB,HB,SP,HP LRSCALE
A A+BD GE,GB DIAG SCALE ACC

Matrix acc and scale B  �A+ �B; B  �AT + �B GE,GB,SY,SB, ACC
SP,TR,TB,TP

Matrix add and scale C  �A+ �B GE,GB,SY,SB, ADD
SP,TR,TB,TP

Table 2.6: Matrix Operations { O(n2) oating point operations
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Matrix matrix product C  �AB + �C; C  �ATB + �C GE MM
C  �ABT + �C; C  �ATBT + �C
C  �AB + �C; C  �BA+ �C SY,HE MM

Triangular multiply B  �TB; B  �BT TR MM
B  �T TB; B  �BT T

Triangular solve B  �T�1B; B  �BT�1 TR SM
B  �T�TB; B  �BT�T

Symmetric rank k & 2k C  �AAT + �C; C  �ATA+ �C SY,HE RK
updates (C = CT ) C  �AJAT + �C; C  �ATJA+ �C SY,HE TRIDIAG RK

C  (�A)BT +B(�A)T + �C, SY,HE R2K
C  (�A)TB +BT (�A) + �C
C  (�AJ)BT +B(�AJ)T + �C, SY,HE TRIDIAG R2K
C  (�AJ)TB +BT (�AJ) + �C

Table 2.7: Matrix-Matrix Operations { O(n3) oating point operations

Matrix copy B  A GE,GB,SY,HE,SB,HB,SP,HP,TR,TB,TP COPY
B  AT GE,GB COPY

Matrix transpose A AT GE TRANS
Permute Matrix A PA, A AP GE PERMUTE

Table 2.8: Data Movement with Matrices
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2.2 Matrix Storage Schemes

The following matrix storage schemes are used:

� column-based and row-based storage in a contiguous array;

� packed storage for symmetric, Hermitian or triangular matrices;

� band storage for band matrices;

In the examples below, � indicates an array element that need not be set and is not referenced
by the BLAS routines. Elements that \need not be set" are never read, written to, or otherwise
accessed by the BLAS routines. The examples illustrate only the relevant part of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing
array arguments in C or Fortran.

2.2.1 Conventional Storage

The default scheme for storing matrices in the Fortran 95 and Fortran 77 interfaces is the one
described in subsection 2.5.3: a matrix A is stored in a two-dimensional array A, with matrix
element aij stored in array element A(i; j), assuming one-based indexing.

For the C language interfaces, matrices may be stored column-wise or row-wise as described in
subsection 2.6.6: a matrix A is stored in a one-dimensional array A, with matrix element aij stored
column-wise in array element A(i + j � lda) or row-wise in array element A(j + i � lda), assuming
zero-based indexing.

If a matrix is triangular (upper or lower, as speci�ed by the argument uplo), only the elements
of the relevant triangle are accessed. The remaining elements of the array need not be set. Such
elements are indicated by � in the examples below. For example, assuming zero-based indexing and
n = 3:

order uplo Triangular matrix A Storage in array A

blas colmajor blas upper

0
B@ a00 a01 a02

a11 a12
a22

1
CA a00 � � a01 a11 � a02 a12 a22

blas rowmajor blas upper

0
B@ a00 a01 a02

a11 a12
a22

1
CA a00 a01 a02 � a11 a12 � � a22

blas colmajor blas lower

0
B@ a00

a10 a11
a20 a21 a22

1
CA a00 a10 a20 � a11 a21 � � a22

blas rowmajor blas lower

0
B@ a00

a10 a11
a20 a21 a22

1
CA a00 � � a10 a11 � a20 a21 a22

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower
triangle of the matrix (as speci�ed by uplo) to be stored in the corresponding elements of the array;
the remaining elements of the array need not be set. For example, when n = 3:
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order uplo Hermitian matrix A Storage in array A

blas colmajor blas upper

0
B@ a00 a01 a02

�a01 a11 a12
�a02 �a12 a22

1
CA a00 � � a01 a11 � a02 a12 a22

blas rowmajor blas upper

0
B@ a00 a01 a02

�a01 a11 a12
�a02 �a12 a22

1
CA a00 a01 a02 � a11 a12 � � a22

blas colmajor blas lower

0
B@ a00 �a10 �a20

a10 a11 �a21
a20 a21 a22

1
CA a00 a10 a20 � a11 a21 � � a22

blas rowmajor blas lower

0
B@ a00 �a10 �a20

a10 a11 �a21
a20 a21 a22

1
CA a00 � � a10 a11 � a20 a21 a22

2.2.2 Packed Storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as speci�ed by uplo) is packed by columns or rows in a one-dimensional array. In the
BLAS, arrays that hold matrices in packed storage, have names ending in `P'. So, in the case of
zero-based addressing as in C, we have the following formulas (For one-based addressing, as in
Fortran, replace i by i� 1 and j by j � 1 in these formulas).

� if uplo = blas upper then

{ if order = blas colmajor, aij is stored in AP(i+ j(j + 1)=2) for i � j;

{ if order = blas rowmajor, aij is stored in AP(j + i(2n� i� 1)=2) for i � j;

� if uplo = blas lower then

{ if order = blas colmajor, aij is stored in AP(i+ j(2n� j � 1)=2) for j � i.

{ if order = blas rowmajor, aij is stored in AP(j + i(i+ 1)=2) for j � i.

For example, assuming zero-based indexing:

order uplo Triangular matrix A Packed storage in array ap

blas colmajor blas upper

0
B@ a00 a01 a02

a11 a12
a22

1
CA a00 a01 a11| {z } a02 a12 a22| {z }

blas rowmajor blas upper

0
B@ a00 a01 a02

a11 a12
a22

1
CA a00 a01 a02| {z } a11 a12| {z } a22

blas colmajor blas lower

0
B@ a00

a10 a11
a20 a21 a22

1
CA a00 a10 a20| {z } a11 a21| {z } a22

blas rowmajor blas lower

0
B@ a00

a10 a11
a20 a21 a22

1
CA a00 a10 a11| {z } a20 a21 a22| {z }
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Note that for real or complex symmetric matrices, packing the upper triangle by columns is
equivalent to packing the lower triangle by rows; packing the lower triangle by columns is equivalent
to packing the upper triangle by rows. For complex Hermitian matrices, packing the upper triangle
by columns is equivalent to packing the conjugate of the lower triangle by rows; packing the lower
triangle by columns is equivalent to packing the conjugate of the upper triangle by rows.

2.2.3 Band Storage

For Fortran (column-major storage), an m-by-n band matrix with kl subdiagonals and ku super-
diagonals may be stored compactly in a two-dimensional array with kl+ku+1 rows and n columns.
Columns of the matrix are stored in corresponding columns (contiguous storage dimension) of the
array, and diagonals of the matrix are stored in rows (non-contiguous or strided dimension) of the
array. This storage scheme should be used in practice only if kl; ku� min(m;n), although BLAS
routines work correctly for all values of kl and ku. In the BLAS, arrays that hold matrices in band
storage have names ending in `B'.

To be precise, for column-major storage, aij is stored in AB(ku+ i� j; j) for max(0; j � ku) �
i � min(m�1; j+kl). For row-major storage, aij is stored in AB(i; kl+ j� i) for max(0; j�ku) �
i � min(n� 1; j + kl). For example, assuming column-major storage, when m = n = 5, kl = 2 and
ku = 1:

Band matrix A Band storage in array AB0
BBBBB@

a00 a01
a10 a11 a12
a20 a21 a22 a23

a31 a32 a33 a34
a42 a43 a44

1
CCCCCA

� a01 a12 a23 a34
a00 a11 a22 a33 a44
a10 a21 a32 a43 �
a20 a31 a42 � �

The elements marked � in the upper left and lower right corners of the array AB need not be
set, and are not referenced by BLAS routines.

For C (row-major storage), order = blas rowmajor, the rows of the matrix are stored in
corresponding rows (contiguous storage dimension) of the array, and diagonals of the matrix are
stored in columns (non-contiguous or strided dimension) of the array. The m-by-n band matrix
with kl subdiagonals and ku superdiagonals is stored in a one-dimensional array with n rows and
kl+ku+1 columns, strided by lda. The padding with elements marked � is now shifted to ensure
that rows of the matrix are stored contiguously. Refer to section B.2.12 for full details.

Triangular band matrices are stored in the same format, with either kl = 0 if upper triangular,
or ku = 0 if lower triangular.

For Fortran 77, and symmetric or Hermitian band matrices with kd subdiagonals or superdiag-
onals, only the upper or lower triangle (as speci�ed by uplo) need be stored:

� if uplo = blas upper, aij is stored in AB(kd + i� j; j) for max(0; j � kd) � i � j;

� if uplo = blas lower, aij is stored in AB(i� j; j) for j � i � min(n� 1; j + kd).

For example, assuming zero-based indexing and n = 5 and kd = 2:
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uplo Hermitian band matrix A Band storage in array AB

blas upper

0
BBBBB@

a00 a01 a02
�a01 a11 a12 a13
�a02 �a12 a22 a23 a24

�a13 �a23 a33 a34
�a24 �a34 a44

1
CCCCCA

� � a02 a13 a24
� a01 a12 a23 a34
a00 a11 a22 a33 a44

blas lower

0
BBBBB@

a00 �a10 �a20
a10 a11 �a21 �a31
a20 a21 a22 �a32 �a42

a31 a32 a33 �a43
a42 a43 a44

1
CCCCCA

a00 a11 a22 a33 a44
a10 a21 a32 a43 �
a20 a31 a42 � �

Similarly, for C (row-major storage), order = blas rowmajor, the contiguous dimension (rows)
of the matrix is stored in the contiguous dimension (rows) of the array, strided by lda. And picto-
rially, the one-dimensional array is the tranpose of the AB storage as depicted above. The padding
with elements marked � is now shifted to ensure that rows of the matrix are stored contiguously.
Refer to section B.2.12 for full details.

2.2.4 Unit Triangular Matrices

Some BLAS routines have an option to handle unit triangular matrices (that is, triangular ma-
trices with diagonal elements = 1). This option is speci�ed by an argument diag. If diag =

blas unit diag (Unit triangular)), the array elements corresponding to the diagonal elements of
the matrix are not referenced by the BLAS routines. The storage scheme for the matrix (whether
conventional, packed or band) remains unchanged, as described in subsection 2.2.1.

2.2.5 Representation of a Householder Matrix

An elementary reector (or elementary Householder matrix) H of order n is a unitary matrix
of the form

H = I � �vvH (2.1)

where � is a scalar, and v is an n-vector, with j� j2jjvjj22 = 2Re(�); v is often referred to as the
Householder vector. Often v has several leading or trailing zero elements, but for the purpose
of this discussion assume that H has no such special structure.

This representation agrees with what is used in LAPACK [1] (which di�ers from those used in
LINPACK [8] or EISPACK [21, 12]) sets v1 = 1; hence v1 need not be stored. In real arithmetic,
1 � � � 2, except that � = 0 implies H = I.

In complex arithmetic, � may be complex, and satis�es 1 � Re(�) � 2 and j� � 1j � 1. Thus
a complex H is not Hermitian (as it is in other representations), but it is unitary, which is the
important property. The advantage of allowing � to be complex is that, given an arbitrary complex
vector x, H can be computed so that

HHx = �(1; 0; : : : ; 0)T

with real �. This is useful, for example, when reducing a complex Hermitian matrix to real sym-
metric tridiagonal matrix, or a complex rectangular matrix to real bidiagonal form.
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2.2.6 Representation of a Permutation Matrix

An n-by-n permutation matrix P is represented as a product of at most n interchange permutations.
An interchange permutation E is a permutation obtained by swapping two rows of the identity ma-
trix. An eÆcient way to represent a general permutation matrix P is with an integer vector p of
length n. In other words, P = En : : : E1 and each Ei is the identity with rows i and pi interchanged.

Do i = 0 to n� 1
x(i))$ x( p(i)) ))

End do

or Do i = n� 1 to 0
x(i))$ x( p(i)) ))

End do

2.3 Interface Issues

2.3.1 Naming Conventions

The naming conventions adopted for the routines are as de�ned in section 1.4.6.

2.3.2 Argument Aliasing

Correctness is only guaranteed if output arguments are not aliased with any other arguments.

2.4 Interface Issues for Fortran 95

Some of the functions in the tables of this chapter can be replaced by simple array expressions
and assignments in Fortran 95, without loss of convenience or performance (assuming a reasonable
degree of optimization by the compiler). Fortran 95 also allows groups of related functions to be
merged together, each group being covered by a single interface.

The following sections discuss the indexing base for vector and matrix operands, the features of
the Fortran 95 language that are used, the matrix storage schemes that are supported, and error
handling.

We strongly recommend that optional arguments be supplied by keyword, not by position,
since the order in which they are described may di�er from the order in which they appear in the
argument list.

2.4.1 Fortran 95 Modules

Refer to Appendix A.4 for the Fortran 95 module blas dense. The module blas operator arguments

contains the derived type values, and separate modules are supplied with explicit interfaces to the
routines. If the module blas dense is accessed by a USE statement in any program which makes
calls to these BLAS routines, then those calls can be checked by the compiler for errors in the
numbers or types of arguments.

2.4.2 Indexing

The Fortran 95 interface returns indices in the range 1 � I � N (where N is the number of entries
in the dimension in question, and I is the index). This allows functions returning indices to be
directly used to index standard arrays.
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Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at one.

2.4.3 Design of the Fortran 95 Interfaces

The proposed design utilizes the following features of the Fortran 95 language.

Generic interfaces: all procedures are accessed through generic interfaces. A single generic name
covers several speci�c instances whose arguments may di�er in the following properties:

data type (real or complex).

precision (or equivalently, kind type parameter \kind-value"). However, all real or complex
arguments must have the same precision. We allow both single and double precision.

rank Some arguments may either have rank 2 (to store a matrix) or rank 1 (to store a vector).
In other cases an argument may be either a rank 1 array or a scalar.

di�erent argument lists Some of the arguments are optional. If one of these arguments
does not appear in the calling sequence, a prede�ned value or a prede�ned action is
assumed. Table 2.9 contains the prede�ned value or action for these arguments.

Assumed-shape arrays: all array arguments are assumed-shape arrays, which must have the
exact shape required to store the corresponding matrix or vector. Hence arguments to specify
array-dimensions or problem-dimensions are not required. The procedures assume that the
supplied arrays have valid and consistent shapes. Zero dimensions (implying empty arrays)
are allowed.

This means that, for a vector operand, the o�set and stride are not needed as arguments.
The actual argument corresponding to a n-length vector dummy argument could be:

actual argument comments

x(ix:ix+(n-1)*incx) ix6= 1 and incx 6= 1
x(1:1+(n-1)*incx) ix= 1 and incx6= 1
x(0:(n-1)*incx) ix= 0 and incx6= 1
x(ix:ix+n-1) ix6= 1 and incx= 1
x(1:n) ix= 1 and incx= 1
x if x is declared with shape (n), i.e.

x(n)
x(ix) where ix is an integer vector of n elements

containing valid indices of x
a(:,j) column j of a two-dimension array assuming

that it has n rows (SIZE(a,1) = n)
a(i,:) row i of a two-dimension array assuming

that it has n columns (SIZE(a,2) = n)

Derived types: In the Fortran 95 bindings, we use dummy arguments whose actual argument
must be a named constant of a derived type, which is de�ned within the BLAS module (and
accessible via the BLAS module).
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2.4.4 Matrix Storage Schemes

The matrix storage schemes for the Fortran 95 interfaces are as described in section 2.2. As with
the Fortran 77 interfaces, only column-major storage is permitted. However, assumed-shape arrays
are used instead of assumed-size arrays.

For a general banded matrix, a, three arguments a, m and kl are used to de�ne the matrix since
ku is de�ned from the shape of the matrix and kl (ku = SIZE(a; 1) � kl � 1). For a symmetric
banded matrix, a Hermitian banded matrix or triangular banded matrix, a, only a is used as an
argument to de�ne the matrix as the band width is de�ned from the shape of the matrix and is
equal to SIZE(a; 1) � 1 and m = n.

2.4.5 Format of the Fortran 95 bindings

Each interface is summarized in the form of a SUBROUTINE statement (or in few cases a FUNCTION

statement), in which all of the potential arguments appear. Arguments which need not be supplied
are grouped after the mandatory arguments and enclosed in square brackets, for example:

SUBROUTINE axpby( x, y [, alpha] [, beta] )

<type>(<wp>), INTENT (IN) :: x(:)

<type>(<wp>), INTENT (INOUT) :: y(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

The default value for � is 1.0 or (1.0,0.0).
As generic interfaces are used, oating point variables that can be REAL or COMPLEX are denoted

by the keyword <type> which designates the data type for the operand

<type> ::= REAL | COMPLEX

In some routines, however, some of the oating point arguments must be of a speci�c data type. If
this is the case, then the argument type REAL or COMPLEX is used.

The precision of the oating point variable is denoted by <wp> (i.e., \working precision") where

<wp> ::= KIND(1.0) | KIND(1.0D0)

and KIND(1.0) and KIND(1.0D0) represent single precision and double precision, respectively.
Some arguments may either have rank 2 (to store a matrix) or rank 1 (to store a vector). In

this case, the following notation is used:

<bb> ::= b(:,:) | b(:)

The same notation is used in the case of an argument that may either have rank 1 or is a scalar.

<bb> ::= b(:) | b

Fortran 95 bindings use assumed shape arrays. The actual arguments must have the correct
dimension. For all the procedures that contain array arguments the shape of the array arguments
is given in detail after the speci�cation. For example the speci�cation of the SUBROUTINE axpby

given above is followed by:

x and y have shape (n)

which indicates that both arrays x and y must be rank 1 with the same number of elements.
The calling sequence may be followed by a table which lists the di�erent variants of the oper-

ation, depending either on the ranks of some of the arguments or on the optional arguments. The
scalar values alpha and beta take the defaults given in the following table:



32 CHAPTER 2. DENSE AND BANDED BLAS

Argument default value in real case default value in complex case

alpha 1.0 (1.0,0.0)
beta 0.0 OR 1.0 (0.0,0.0) OR (1.0,0.0)

Procedures that contain the optional scalar beta state the default value for beta only if it is
1.0 or (1.0,0.0), otherwise the default is assumed to be 0.0 or (0.0,0.0).

The following table shows the notation that is used for the values of optional arguments (since
alpha and beta are also optional, for example):

Dummy Notation in table Named constant Default value
argument

norm 1-norm blas one norm blas one norm

1R-norm blas real one norm

2-norm blas two norm

Frobenius-norm blas frobenius norm

inf-norm blas inf norm

real-inf-norm blas real inf norm

max-norm blas max norm

real-max-norm blas real max norm

sort sort in decreasing order blas decreasing order blas increasing order

sort in increasing order blas increasing order

side L blas left side blas left

R blas right side

uplo U blas upper blas upper

L blas lower

transx N blas no trans blas no trans

T blas trans

C blas conj

H blas conj trans

conj blas no conj blas no conj

blas conj

diag N blas non unit diag blas non unit diag

U blas unit diag

jrot inner rotation blas jrot inner blas jrot inner

outer rotation blas jrot outer

sorted rotation blas jrot sorted

Table 2.9: Default values of Operator Arguments

2.4.6 Error Handling

The Fortran 95 interface must supply an error-handling routine blas error. The API for this
error-handling routine is de�ned in section 1.8. By default, this routine will print an error message
and stop execution. The user may modify the action performed by the error-handling routine, and
this modi�cation must be documented.

The following values of arguments are invalid and will be agged by the error-handling routine:
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� Any value of the operator arguments whose meaning is not speci�ed in the language-dependent
section is invalid;

Routine-speci�c error conditions are listed in the respective language bindings.

2.5 Interface Issues for Fortran 77

Unless explicitly stated, the Fortran 77 binding is consistent with ANSI standard Fortran 77. There
are several points where this standard diverges from the ANSI Fortran 77 standard. In particular:

� Subroutine names are not limited to six signi�cant characters.

� Subroutine names contain an underscore.

� Subroutines may use the INCLUDE statement for include �les.

Section 2.5.2 discusses the indexing of vector and matrix operands. Section A.5 de�nes the
operator arguments, section 2.5.3 de�nes array arguments, and section 2.2 lists the matrix storage
schemes that are supported. Section 2.5.5 details the format of the language binding, and section
2.5.6 discusses error handling.

2.5.1 Fortran 77 Include File

Refer to Appendix A.5 for details of the Fortran 77 include �le blas namedconstants.h.

2.5.2 Indexing

The Fortran 77 interface returns indices in the range 1 � I � N (where N is the number of entries
in the dimension in question, and I is the index). This allows functions returning indices to be
directly used to index standard arrays.

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at one.

2.5.3 Array Arguments

Vector arguments are permitted to have a storage spacing between elements. This spacing is
speci�ed by an increment argument. For example, suppose a vector x having components xi,
i = 1; : : : ; N , is stored in an array X() with increment argument INCX. If INCX > 0 then xi is
stored in X(1+ (i� 1) � INCX). If INCX < 0 then xi is stored in X(1+ (N � i) � jINCXj). This
method of indexing when INCX < 0 avoids negative indices in the array X() and thus permits
the subprograms to be written in Fortran 77. INCX = 0 is an illegal value.

Each two-dimensional array argument is immediately followed in the argument list by its leading
dimension, whose name has the form LD<array-name>. If a two-dimensional array A of dimension
(LDA,N) holds an m-by-n matrix A, then A(i; j) holds aij for i = 1; : : : ;m and j = 1; : : : ; n (LDA
must be at least m). See Section 2.2 for more about storage of matrices.

Note that array arguments are usually declared in the software as assumed-size arrays (last
dimension *), for example:

REAL A( LDA, * )
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although the documentation gives the dimensions as (LDA,N). The latter form is more informative
since it speci�es the required minimum value of the last dimension. However an assumed-size array
declaration has been used in the software in order to overcome some limitations in the Fortran 77
standard. In particular it allows the routine to be called when the relevant dimension (N, in this
case) is zero. However actual array dimensions in the calling program must be at least 1 (LDA in
this example).

2.5.4 Matrix Storage Schemes

The matrix storage schemes for the Fortran 77 interfaces are as described in section 2.2. Only
column-major storage is permitted, and all two-dimensional arrays are assumed-size arrays.

2.5.5 Format of the Fortran 77 bindings

Each interface is summarized in the form of a SUBROUTINE statement (or a FUNCTION statement).
The declarations of the arguments are listed in alphabetical order. For example,

SUBROUTINE BLAS_xAXPBY( N, ALPHA, X, INCX, BETA, Y, INCY )

INTEGER INCX, INCY, N

<type> ALPHA, BETA

<type> X( * ), Y( * )

Floating point variables are denoted by the keyword <type> which designates the data type for
the operand (REAL, DOUBLE PRECISION, COMPLEX, or COMPLEX*16). This data type will agree with
the x letter in the naming convention of the routine. In some routines, however, not all oating
point variables will be of the same data type. If this is the case, then a variable may be denoted by
the keyword <ctype> to restrict the data type to COMPLEX or COMPLEX*16, or <rtype> to restrict
the data type to REAL or DOUBLE PRECISION.

The language binding will be followed by any restrictions dictated for this interface.

2.5.6 Error Handling

The Fortran 77 interface supplies an error-handling routine BLAS ERROR, as de�ned in section 1.8.
By default, this routine will print an error message and stop execution. The user may modify the
action performed by the error-handling routine, and this modi�cation must be documented.

The following values of arguments are invalid and will be agged by the error-handling routine:

� Any value of the operator arguments whose meaning is not speci�ed in the language-dependent
section is invalid;

� incw=0 or incx=0 or incy=0 or incz=0;

� lda, ldb, ldc, or ldt < 1;

� lda < m if the matrix is an m� n general matrix and trans = blas no trans;

� lda < n if the matrix is an m� n general matrix and trans = blas trans;

� lda < n if the matrix is an n� n square, symmetric, or triangular matrix;

� lda < kl + ku + 1, if the matrix is an m� n general band matrix;
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� lda < k+1, if the matrix is an n � n symmetric or triangular band matrix with k super- or
subdiagonals;

Routine-speci�c error conditions are listed in the respective language bindings.

2.6 Interface Issues for C

The interface is expressed in terms of ANSI/ISO C. Most platforms provide ANSI/ISO C compilers,
and if this is not the case, free ANSI/ISO C compilers are available (eg., gcc).

Section 2.6.2 discusses the indexing of vector and matrix operands. Section A.6 de�nes the
operator arguments, section 2.6.3 discusses the handling of complex data types, section 2.6.4 de�nes
return values of complex functions, and section 2.6.5 provides the rule for argument aliasing. Section
2.6.6 de�nes array arguments, and section 2.6.7 lists the matrix storage schemes that are supported.
Section 2.6.8 details the format of the language binding, and section 2.6.9 discusses error handling.

2.6.1 C Include File

The C interface to the BLAS has a standard include �le, called blas dense.h, which minimally
contains the values of the enumerated types and ANSI/ISO C prototypes for all BLAS routines.
Refer to Appendix A.6 for details of the C include �les pertaining to Chapters 2 { 4.

Advice to implementors. Note that the vendor is not constrained to using precisely this
include �le; only the enumerated type de�nitions are fully speci�ed. The implementor is
free to make any other changes which are not apparent to the user. For instance, all matrix
dimensions might be accepted as size t instead of int, or the implementor might choose to
make some routines in-line. (End of advice to implementors.)

2.6.2 Indexing

The C interface returns indices in the range 0 � I � N�1 (where N is the number of entries in the
dimension in question, and I is the index). This allows functions returning indices to be directly
used to index standard arrays.

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at zero.

2.6.3 Handling of complex data types

All complex arguments are accepted as void *. A complex element consists of two consecutive
memory locations of the underlying data type (i.e., float or double), where the �rst location
contains the real component, and the second contains the imaginary component.

An ISO/IEC committee (WG14/X3J11) [16] is presently working on an extension to ANSI/ISO
C which de�nes complex data types. This extension is one of several additions to the C language,
commonly referred to as the C9X standard. The de�nition of a complex element is the same as
given above, and so the handling of complex types by this interface will not need to be changed
when ANSI/ISO C standard is extended.
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2.6.4 Return values of complex functions

BLAS routines which return complex values in Fortran 77 are instead recast as subroutines in the
C interface, with the return value being an output parameter added to the end of the argument
list. This allows the output parameter to be accepted as a void pointer, as discussed above.

2.6.5 Aliasing of arguments

Unless speci�ed otherwise, only input-only arguments (speci�ed with the const quali�er), may be
legally aliased on a call to the C interface to the BLAS.

2.6.6 Array arguments

Arrays are constrained to being contiguous in memory. They are accepted as pointers, not as arrays
of pointers. Note that this means that two-dimensional array arguments in C are not permitted.

All BLAS routines which take one or more two dimensional arrays as arguments receive one
extra parameter as their �rst argument. This argument is an enumerated type (see Appendix A).
If this parameter is set to blas rowmajor, it is assumed that elements within a row of the array(s)
are contiguous in memory, while elements within array columns are separated by a constant stride
given in the stride parameter (this parameter corresponds to the leading dimension [e.g. LDA] in
the Fortran 77 interface).

If the order is given as blas colmajor, elements within array columns are assumed to be
contiguous, with elements within array rows separated by stride memory elements.

Note that there is only one blas order type parameter to a given routine: all array operands
are required to use the same ordering.

2.6.7 Matrix Storage Schemes

The matrix storage schemes for the C interfaces are as described in section 2.2. Column-major
storage and row-major storage in a contiguous array are permitted.

2.6.8 Format of the C bindings

Each routine is summarized in the form of an ANSI/ISO C prototype. For example:

void BLAS_xaxpby( int n, SCALAR_IN alpha, const ARRAY x, int incx,

SCALAR_IN beta, ARRAY y, int incy );

Floating point variables are denoted by the keywords SCALAR and ARRAY to denote scalar argu-
ments and array arguments respectively.

SCALAR IN ARRAY or SCALAR INOUT operation

float or double float * or double * real arithmetic
const void * void * complex arithmetic

This data type will agree with the x letter in the naming convention of the routine. In some
routines, however, not all oating point variables will be of the same data type. If this is the
case, then a variable may be denoted by the keyword RSCALAR INOUT, CSCALAR INOUT, RARRAY, or
CARRAY, to restrict the data type to real or complex arithmetic, respectively.

The language binding will be followed by any restrictions dictated for this interface.
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2.6.9 Error Handling

The C interface must supply an error-handling routine BLAS error. This error-handling routine
will accept as input a character string, specifying the name of the routine where the error occurred.
By default, this routine will print an error message and stop execution. The user may modify the
action performed by the error-handling routine, and this modi�cation must be documented.

The following values of arguments are invalid and will be agged by the error-handling routine:

� Any value of the operator arguments whose meaning is not speci�ed in the language-dependent
section is invalid;

� incw=0 or incx=0 or incy=0 or incz=0;

� lda, ldb, ldc, or ldt < 1;

� lda < m if the matrix is an m� n general matrix;

� lda < n if the matrix is an n� n square, symmetric, or triangular matrix;

� lda < kl + ku + 1, if the matrix is an m� n general band matrix;

� lda < k+1, if the matrix is an n � n symmetric or triangular band matrix with k super- or
subdiagonals;

Routine-speci�c error conditions are listed in the respective language bindings.

2.7 Numerical Accuracy and Environmental Enquiry

With a few exceptions that are explicitly described below, no particular computational order is
mandated by the function speci�cations. In other words, any algorithm that produces results \close
enough" to the usual algorithms presented in a standard book on matrix computations [13, 4, 14]
is acceptable. For example, Strassen's algorithm may be used for matrix multiplication, even
though it can be signi�cantly less accurate than conventional matrix multiplication for some pairs
of matrices [14]. Also, matrix multiplication may be implemented either as C = (� �A) �B+(� �C)
or C = � � (A �B) + (� � C) or C = A � (� �B) + (� � C), whichever is convenient.

To use the error bounds in [13, 4, 14] and elsewhere, certain machine parameters are needed to
describe the accuracy of the arithmetic.

These are described in detail in section 1.6, and returned by function xFPINFO. Its calling
sequence in C or Fortran 77 is

result = xFPINFO( CMACH )

where x=S for single precision and x=D for double precision. In Fortran 95, its calling sequence is

result = FPINFO( CMACH, float )

where the \kind" of oat (single or double) is used to determine the kind of the result. The
argument CMACH can take on the following named constant values (the exact representations
are language dependent, with CMACH available as a derived type in Fortran 95, named integer
constants in Fortran 77, and an enumerated type in C). The named constant values are de�ned in
sections A.4, A.5, and A.6. CMACH has the analogous meaning (see footnote 4 in section 1.6 for
a discussion) as the like-named character argument of the LAPACK auxiliary routine xLAMCH:
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Value of CMACH Name of oating point parameter
(see Table 1.9 in section 1.6 for details)

blas base BASE
blas t T
blas rnd RND
blas ieee IEEE
blas emin EMIN
blas emax EMAX
blas eps EPS
blas prec PREC
blas underow UN
blas overow OV
blas sfmin SFMIN

Here are the exceptional routines where we ask for particularly careful implementations to avoid
unnecessary over/underows, that could make the output unnecessarily inaccurate or unreliable.
The details of each routine are described with the language dependent calling sequences. Model
implementations that avoid unnecessary over/underows are based on corresponding LAPACK
auxiliary routines, NAG routines, or cited reports.

1. Reduction Operations (Section 2.8.2)

� NORM (Vector norms)

� SUMSQ (Sum of squares)

2. Generate Transformations (Section 2.8.3)

� GEN GROT (Generate Givens rotation)

� GEN JROT (Generate Jacobi rotation)

� GEN HOUSE (Generate Householder transform)

3. Vector Operations (Section 2.8.4)

� RSCALE (Reciprocal scale)

4. Matrix Operations (Section 2.8.7)

� fGE,GB,SY,HE,SB,SP,HP,TR,TB,TPg NORM (Matrix norms)

2.8 Language Bindings

Each speci�cation of a routine will correspond to an operation outlined in the functionality tables.
Operations are organized analogous to the order in which they are presented in the functionality
tables. The speci�cation will have the form:

NAME (multi-word description of operation) < mathematical representation >

Optional brief textual description of the functionality including any restrictions that apply to all
language bindings.
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� Fortran 95 binding

� Fortran 77 binding

� C binding

2.8.1 Overview

� Reduction Operations (section 2.8.2)

{ DOT (Dot product)

{ NORM (Vector norms)

{ SUM (Sum)

{ MIN VAL (Min value & location)

{ AMIN VAL (Min absolute value & location)

{ MAX VAL (Max value & location)

{ AMAX VAL (Max absolute value & location)

{ SUMSQ (Sum of squares)

� Generate Transformations (section 2.8.3)

{ GEN GROT (Generate Givens rotation)

{ GEN JROT (Generate Jacobi rotation)

{ GEN HOUSE (Generate Householder transform)

� Vector Operations (section 2.8.4)

{ RSCALE (Reciprocal Scale)

{ AXPBY (Scaled vector accumulation)

{ WAXPBY (Scaled vector addition)

{ AXPY DOT (Combined AXPY and DOT)

{ APPLY GROT (Apply plane rotation)

� Data Movement with Vectors (section 2.8.5)

{ COPY (Vector copy)

{ SWAP (Swap)

{ SORT (Sort vector)

{ SORTV (Sort vector & return index vector)

{ PERMUTE (Permute vector)

� Matrix-Vector Operations (section 2.8.6)

{ fGE,GBgMV (Matrix vector product)

{ fSY,SB,SPgMV (Symmetric matrix vector product)

{ fHE,HB,HPgMV (Hermitian matrix vector product)
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{ fTR,TB,TPgMV (Triangular matrix vector product)

{ GE SUM MV (Summed matrix vector multiplies)

{ GEMVT (Combined matrix vector product)

{ TRMVT (Combined triangular matrix vector product)

{ GEMVER (Combined matrix vector product with a rank 2 update)

{ fTR,TB,TPgSV (Triangular solve)

{ GER (Rank one update)

{ fSY,SPgR (Symmetric rank one update)

{ fHE,HPgR (Hermitian rank one update)

{ fSY,SPgR2 (Symmetric rank two update)

{ fHE,HPgR2 (Hermitian rank two update)

� Matrix Operations (section 2.8.7)

{ fGE,GB,SY,HE,SB,HB,SP,HP,TR,TB,TPg NORM (Matrix norms)

{ fGE,GBg DIAG SCALE (Diagonal scaling)

{ fGE,GBg LRSCALE (Two-sided diagonal scaling)

{ fSY,SB,SPg LRSCALE (Two-sided diagonal scaling of a symmetric matrix)

{ fHE,HB,HPg LRSCALE (Two-sided diagonal scaling of a Hermitian matrix)

{ fGE,GBg DIAG SCALE ACC (Diagonal scaling and accumulation)

{ fGE,GB,SY,SB,SP,TR,TB,TPg ACC (Matrix accumulation and scale)

{ fGE,GB,SY,SB,SP,TR,TB,TPg ADD (Matrix add and scale)

� Matrix-Matrix Operations (section 2.8.8)

{ GEMM (General Matrix Matrix product)

{ SYMM (Symmetric matrix matrix product)

{ HEMM (Hermitian matrix matrix product)

{ TRMM (Triangular matrix matrix multiply)

{ TRSM (Triangular solve)

{ SYRK (Symmetric rank-k update)

{ HERK (Hermitian rank-k update)

{ SY TRIDIAG RK (Symmetric rank-k update with tridiagonal matrix)

{ HE TRIDIAG RK (Hermitian rank-k update with tridiagonal matrix)

{ SYR2K (Symmetric rank-2k update)

{ HER2K (Hermitian rank-2k update)

{ SY TRIDIAG R2K (Symmetric rank-2k update with tridiagonal matrix)

{ HE TRIDIAG R2K (Hermitian rank-2k update with tridiagonal matrix)

� Data Movement with Matrices (section 2.8.9)

{ fGE,GB,SY,SB,SP,TR,TB,TPg COPY (Matrix copy)
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{ fHE,HB,HPg COPY (Matrix copy)

{ fGEg TRANS (Matrix transposition)

{ fGEg PERMUTE (Permute matrix)

� Environmental Enquiry (section 2.8.10)

{ FPINFO (Environmental enquiry)

2.8.2 Reduction Operations

DOT (Dot Product) x; y 2 IRn; r  �r + �xT y = �r + �
n�1X
i=0

xiyi

x; y 2 lC n; r  �r + �xT y = �r + �
n�1X
i=0

xiyi or r  �r + �xHy = �r + �
n�1X
i=0

�xiyi

The routine DOT adds the scaled dot product of two vectors x and y into a scaled scalar r. The
routine returns immediately if n is less than zero, or, if beta is equal to one and either alpha or n
is equal to zero. If alpha is equal to zero then x and y are not read. Similarly, if beta is equal to
zero, r is not read. As described in section 2.5.3, the value incx or incy less than zero is permitted.
However, if incx or incy is equal to zero, an error ag is set and passed to the error handler.

When x and y are complex vectors, the vector components xi are used unconjugated or conju-
gated as speci�ed by the operator argument conj. If x and y are real vectors, the operator argument
conj has no e�ect.

� Fortran 95 binding:

SUBROUTINE dot( x, y, r [, conj] [, alpha] [, beta] )

<type>(<wp>), INTENT (IN) :: x(:), y(:)

<type>(<wp>), INTENT (INOUT) :: r

TYPE (blas_conj_type), INTENT(IN), OPTIONAL :: conj

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where

x and y have shape (n)

� Fortran 77 binding:

SUBROUTINE BLAS_xDOT( CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R )

INTEGER CONJ, INCX, INCY, N

<type> ALPHA, BETA, R

<type> X( * ), Y( * )

� C binding:

void BLAS_xdot( enum blas_conj_type conj, int n, SCALAR_IN alpha,

const ARRAY x, int incx, SCALAR_IN beta, const ARRAY y,

int incy, SCALAR_INOUT r );
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NORM (Vector norms) r  jjxjj1; jjxjj1R; jjxjj2; jjxjj1; or jjxjj1R

The routine NORM computes the jj � jj1, jj � jj1R, jj � jj2, jj � jj1, or jj � jj1R of a vector x depending
on the value passed as the norm operator argument.

If norm = blas frobenius norm, an error ag is not raised, and the two-norm is returned to
the user. If n is less than or equal to zero, this routine returns immediately with the output scalar
r set to zero. The resulting scalar r is always real and its value is as de�ned in section 2.1.1. As
described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error ag is set and passed to the error handler.

� Fortran 95 binding:

REAL(<wp>) FUNCTION norm( x [, norm] )

<type>(<wp>), INTENT (IN) :: x(:)

TYPE (blas_norm_type), INTENT (IN), OPTIONAL :: norm

where

x has shape (n)

� Fortran 77 binding:

<rtype> FUNCTION BLAS_xNORM( NORM, N, X, INCX )

INTEGER INCX, N, NORM

<type> X( * )

� C binding:

void BLAS_xnorm( enum blas_norm_type norm, int n, const ARRAY x,

int incx, RSCALAR_INOUT r );

SUM (Sum) r  
n�1X
i=0

xi

The routine SUM computes the sum of the entries of a vector x. If n is less than or equal to
zero, this routine returns immediately with the output scalar r set to zero. As described in section
2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error ag is
set and passed to the error handler.

� Fortran 95 binding:

<type>(<wp>) FUNCTION sum( x )

<type>(<wp>), INTENT (IN) :: x(:)

where

x has shape (n)

This is the same as the Fortran 95 intrinsic function SUM.

� Fortran 77 binding:
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<type> FUNCTION BLAS_xSUM( N, X, INCX )

INTEGER INCX, N

<type> X( * )

� C binding:

void BLAS_xsum( int n, const ARRAY x, int incx, SCALAR_INOUT sum );

MIN VAL (Min value & location) k; xk such that k = arg min
0�i<n

xi

The routine MIN VAL �nds the smallest component of a real vector x and determines the
smallest o�set or index k such that xk = min

0�i<n
xi. This value xk is returned by the routine and

denoted by arg min
0�i<n

xi below. When the value of the n argument is less than or equal to zero, the

routine should initialize the output scalars k to the largest invalid index or o�set value (negative
one or zero) and r to zero. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error ag is set and passed to the error handler.

Advice to users. The routine MIN VAL strictly operates on real vectors. This routine is not
de�ned for complex vectors. (End of advice to users.)

� Fortran 95 binding:

SUBROUTINE min_val( x, k, r )

REAL(<wp>), INTENT (IN) :: x(:)

INTEGER, INTENT (OUT) :: k

REAL(<wp>), INTENT (OUT) :: r

where

x has shape (n)

� Fortran 77 binding:

SUBROUTINE BLAS_xMIN_VAL( N, X, INCX, K, R )

INTEGER INCX, K, N

<rtype> R

<rtype> X( * )

� C binding:

void BLAS_xmin_val( int n, const RARRAY x, int incx, int k,

RSCALAR_INOUT r );

AMIN VAL (Min absolute value & location) k; xk such that k = arg min
0�i<n

(jRe(xi)j+ jIm(xi)j)

The routine AMIN VAL �nds the o�set or index of the smallest component of a vector x and
also returns the smallest component of the vector x with respect to the absolute value. When the
value of the n argument is less than or equal to zero, the routine should initialize the output scalars
k to the largest invalid index or o�set value (negative one or zero) and r to zero. The resulting
scalar r is always real. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error ag is set and passed to the error handler.
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� Fortran 95 binding:

SUBROUTINE amin_val( x, k, r )

<type>(<wp>), INTENT (IN) :: x(:)

INTEGER, INTENT (OUT) :: k

REAL(<wp>), INTENT (OUT) :: r

where

x has shape (n)

A Fortran 95 interface was de�ned for this routine since it would have been too expensive
using Fortran 95 intrinsics.

� Fortran 77 binding:

SUBROUTINE BLAS_xAMIN_VAL( N, X, INCX, K, R )

INTEGER INCX, K, N

<rtype> R

<type> X( * )

� C binding:

void BLAS_xamin_val( int n, const ARRAY x, int incx, int k,

RSCALAR_INOUT r );

MAX VAL (Max value & location) k; xk such that k = arg max
0�i<n

xi

The routineMAX VAL �nds the largest component of a real vector x and determines the smallest
o�set or index k such that xk = max

0�i<n
xi. This value xk is returned by the routine and denoted

by arg max
0�i<n

xi below. When the value of the n argument is less than or equal to zero, the routine

should initialize the output scalars k to the largest invalid index or o�set value (negative one or zero)
and r to zero. As described in section 2.5.3, the value incx less than zero is permitted. However, if
incx is equal to zero, an error ag is set and passed to the error handler.

Advice to users. The routine MAX VAL strictly operates on real vectors. This routine is not
de�ned for complex vectors. (End of advice to users.)

� Fortran 95 binding:

SUBROUTINE max_val( x, k, r )

REAL(<wp>), INTENT (IN) :: x(:)

INTEGER, INTENT (OUT) :: k

REAL(<wp>), INTENT (OUT) :: r

where

x has shape (n)

� Fortran 77 binding:
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SUBROUTINE BLAS_xMAX_VAL( N, X, INCX, K, R )

INTEGER INCX, K, N

<rtype> R

<rtype> X( * )

� C binding:

void BLAS_xmax_val( int n, const RARRAY x, int incx, int k,

RSCALAR_INOUT r );

AMAX VAL (Max absolute value & location) k; xk such that k = arg max
0�i<n

(jRe(xi)j+ jIm(xi)j)

The routine AMAX VAL �nds the o�set or index of the largest component of a vector x and also
returns the largest component of the vector x with respect to the absolute value. When the value
of the n argument is less than or equal to zero, the routine should initialize the output scalars k to
the largest invalid index or o�set value (negative one or zero) and r to zero. The resulting scalar r
is always real. As described in section 2.5.3, the value incx less than zero is permitted. However, if
incx is equal to zero, an error ag is set and passed to the error handler.

� Fortran 95 binding:

SUBROUTINE amax_val( x, k, r )

<type>(<wp>), INTENT (IN) :: x(:)

INTEGER, INTENT (OUT) :: k

REAL(<wp>), INTENT (OUT) :: r

where

x has shape (n)

� Fortran 77 binding:

SUBROUTINE BLAS_xAMAX_VAL( N, X, INCX, K, R )

INTEGER INCX, K, N

<rtype> R

<type> X( * )

� C binding:

void BLAS_xamax_val( int n, const ARRAY x, int incx, int k,

RSCALAR_INOUT r );

SUMSQ (Sum of squares) (scl; ssq) P
x2i ;

The routine SUMSQ returns the values scl and ssq such that

scl2 � ssq = scale2 � sumsq +
n�1X
i=0

(Re(xi)
2 + Im(xi)

2);
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The value of sumsq is assumed to be at least unity and the value of ssq will then satisfy 1:0 �
ssq � (sumsq + n) when x is a real vector and 1:0 � ssq � (sumsq + 2n) when x is a complex
vector. scale is assumed to be non-negative and scl returns the value

scl = max
0�i<n

(scale; abs(Re(xi)); abs(Im(xi))):

scale and sumsq must be supplied on entry in scl and ssq respectively. scl and ssq are overwritten
by scl and ssq respectively. The arguments scl and ssq are therefore always real scalars. If scl is
less than zero or ssq is less than one, an error ag is set and passed to the error handler. If n is less
than or equal to zero, this routine returns immediately with scl and ssq unchanged. As described
in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error
ag is set and passed to the error handler.

Advice to implementors. High-quality implementations of this routine SUMSQ should be
accurate. The subroutine SLASSQ of the LAPACK [1] software library is an example of such
an accurate implementation. High-quality implementations should document the accuracy of
the algorithms used in this routine so as to alleviate the portability problems this represents.
(End of advice to implementors.)

� Fortran 95 binding:

SUBROUTINE sumsq( x, ssq, scl )

<type>(<wp>), INTENT (IN) :: x(:)

REAL(<wp>), INTENT (INOUT) :: ssq, scl

where

x has shape (n)

� Fortran 77 binding:

SUBROUTINE BLAS_xSUMSQ( N, X, INCX, SSQ, SCL )

INTEGER INCX, N

<rtype> SCL, SSQ

<type> X( * )

� C binding:

void BLAS_xsumsq( int n, const ARRAY x, int incx, RSCALAR_INOUT ssq,

RSCALAR_INOUT scl );

2.8.3 Generate Transformations

GEN GROT (Generate Givens rotation) (c; s; r) rot(a; b)

The routine GEN GROT constructs a Givens plane rotation so that 
c s
��s c

!
�
 

a
b

!
=

 
r
0

!
;
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where c is always a real scalar and c2 + jsj2 is equal to one. The scalars a and b are unchanged on
exit. c, s and r are de�ned precisely as follows, where we use the function

sign(x) �
(

x=jxj if x 6= 0
1 if x = 0

De�ning Givens rotations:
if b = 0 (includes the case a = b = 0)

c = 1
s = 0
r = a

elseif a = 0 (b must be nonzero)
c = 0
s = sign(�b)
r = jbj

else (a and b both nonzero)

c = jaj=pjaj2 + jbj2
s = sign(a)�b=

pjaj2 + jbj2
r = sign(a)

pjaj2 + jbj2
endif

When a and b are real, �b may be replaced by b.

Advice to implementors. High-quality implementations of this routine GEN GROT should
be accurate. We recommend one of the implementations described in [3]. We note that
the above de�nition of Givens rotations matches the one in the subroutine CLARTG of the
LAPACK [1] software library, but di�ers slightly from the de�nitions used in LAPACK rou-
tines SLARTG, SLARGV and CLARGV. LAPACK routines using these slightly di�erent Givens
rotations continue to function correctly [3]. (End of advice to implementors.)

� Fortran 95 binding:

SUBROUTINE gen_grot( a, b, c, s, r )

<type>(<wp>), INTENT (IN) :: a, b

REAL(<wp>), INTENT (OUT) :: c

<type>(<wp>), INTENT (OUT) :: s, r

� Fortran 77 binding:

SUBROUTINE BLAS_xGEN_GROT( A, B, C, S, R )

<rtype> C

<type> A, B, R, S

� C binding:

void BLAS_xgen_grot( SCALAR_IN a, SCALAR_IN b, RSCALAR_INOUT c,

SCALAR_INOUT s, SCALAR_INOUT r );
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GEN JROT (Generate Jacobi rotation) (a; b; c; s) jrot(x; y; z)

The routine GEN JROT constructs a Jacobi rotation so that 
a 0
0 b

!
=

 
c �s
�s c

!
�
 

x y
�y z

!
�
 

c ��s
s c

!
;

If JROT = blas inner rotation, then the rotation is chosen so that c � 1p
2
.

If JROT = blas outer rotation, then the rotation is chosen so that 0 � c � 1p
2
.

If JROT = blas sorted rotation, then the rotation is chosen so that abs(a) � abs(b).
On entry, the argument x contains the value x, and on exit it contains the value a. On entry,

the argument y contains the value y. On entry, the argument z contains the value z, and on exit
it contains the value b. The arguments x and z are real scalars, and argument c is always a real
scalar and c2 + jsj2 is equal to one.

Advice to implementors. High-quality implementations of this routine GEN JROT should
document the accuracy of the algorithms used in those functions so as to alleviate the porta-
bility problems this represents. (See NAG routine F06BEF). (End of advice to implementors.)

� Fortran 95 binding:

SUBROUTINE gen_jrot( x, y, z, c, s [, jrot] )

REAL(<wp>), INTENT (INOUT) :: x, z

<type>(<wp>), INTENT (IN) :: y

REAL(<wp>), INTENT (OUT) :: c

<type>(<wp>), INTENT (OUT) :: s

TYPE (blas_jrot_type), INTENT(IN), OPTIONAL :: jrot

� Fortran 77 binding:

SUBROUTINE BLAS_xGEN_JROT( JROT, X, Y, Z, C, S )

INTEGER JROT

<rtype> C, X, Z

<type> S, Y

� C binding:

void BLAS_xgen_jrot( enum blas_jrot_type jrot, RSCALAR_INOUT x,

SCALAR_IN y, RSCALAR_INOUT z, RSCALAR_INOUT c,

SCALAR_INOUT s );

GEN HOUSE (Generate Householder transform) (�; x; �) house(�; x);

The routine GEN HOUSE generates an elementary reector H of order n, such that

H(
�
x
) = (

�
0
) and HHH = I;
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where � and � are scalars, and x is an (n � 1)-element vector. � is always a real scalar. H is
represented in the form

H = I � �(
1
v
)( 1 vT );

where � is a scalar and v is a (n� 1)-element vector. � is called the Householder scalar and

 
1
v

!
the Householder vector. Note that when x is a complex vector, H is not Hermitian. If the elements
of x are zero, and � is real, then � is equal to zero and H is taken to be the unit matrix. Otherwise,
the real part of � is greater than or equal to one and less than or equal to two. Moreover, the
absolute value of the quantity � � 1 is less than or equal to one.

On exit, the scalar argument alpha is overwritten with the value of the scalar �. Similarly, the
vector argument x is overwritten with the vector v. If n is less than or equal to zero, this function
returns immediately with the output scalar tau set to zero. As described in section 2.5.3, the value
incx less than zero is permitted. However, if incx is equal to zero, an error ag is set and passed to
the error handler.

Advice to implementors. High-quality implementations of this routine GEN HOUSE should
be accurate. The subroutines SLARFG and CLARFG of the LAPACK [1] software library are
examples of such an accurate implementation. High-quality implementations should docu-
ment the accuracy of the algorithms used in those functions so as to alleviate the portability
problems this represents. (End of advice to implementors.)

Advice to users. Routines to apply Householder transformations are not provided. The sub-
routines xORMyy of the LAPACK [1] software library are examples of such implementations.
(End of advice to users.)

� Fortran 95 binding:

SUBROUTINE gen_house( alpha, x, tau )

<type>(<wp>), INTENT (INOUT) :: alpha

<type>(<wp>), INTENT (INOUT) :: x(:)

<type>(<wp>), INTENT (OUT) :: tau

where

x has shape (n)

� Fortran 77 binding:

SUBROUTINE BLAS_xGEN_HOUSE( N, ALPHA, X, INCX, TAU )

INTEGER INCX, N

<type> ALPHA, TAU

<type> X( * )

� C binding:

void BLAS_xgen_house( int n, SCALAR_INOUT alpha, ARRAY x, int incx,

SCALAR_INOUT tau );
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2.8.4 Vector Operations

RSCALE (Reciprocal Scale) x x=�

The routine RSCALE scales the entries of a vector x by the real scalar 1=�. The scalar � is
always real and supposed to be nonzero. This should be done without overow or underow as
long as the �nal result x=� does not overow or underow. If n is less than or equal to zero,
this routine returns immediately. As described in section 2.5.3, the value incx less than zero is
permitted. However, if incx is equal to zero or if alpha is equal to zero, an error ag is set and
passed to the error handler.

Advice to implementors. High-quality implementations of this routine RSCALE should be
accurate. The subroutine xRSCL of the LAPACK [1] software library is an example of such an
accurate implementation. High-quality implementations should document the accuracy of the
algorithms used in those functions so as to alleviate the portability problems this represents.
(End of advice to implementors.)

� Fortran 95 binding:

SUBROUTINE rscale( alpha, x )

REAL(<wp>), INTENT (IN) :: alpha

<type>(<wp>), INTENT (INOUT) :: x(:)

where

x has shape (n)

� Fortran 77 binding:

SUBROUTINE BLAS_xRSCALE( N, ALPHA, X, INCX )

INTEGER INCX, N

<rtype> ALPHA

<type> X( * )

� C binding:

void BLAS_xrscale( int n, RSCALAR_IN alpha, ARRAY x, int incx );

AXPBY (Scaled vector accumulation) y  �x+ �y

The routine AXPBY scales the vector x by � and the vector y by �, adds these two vectors to
one another and stores the result in the vector y. If n is less than or equal to zero, or if � is equal
to zero and � is equal to one, this routine returns immediately. As described in section 2.5.3, the
value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero, an
error ag is set and passed to the error handler.

� Fortran 95 binding:

SUBROUTINE axpby( x, y [, alpha] [, beta] )

<type>(<wp>), INTENT (IN) :: x(:)
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<type>(<wp>), INTENT (INOUT) :: y(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where

x and y have shape (n)

The default value for � is 1.0 or (1.0,0.0).

� Fortran 77 binding:

SUBROUTINE BLAS_xAXPBY( N, ALPHA, X, INCX, BETA, Y, INCY )

INTEGER INCX, INCY, N

<type> ALPHA, BETA

<type> X( * ), Y( * )

� C binding:

void BLAS_xaxpby( int n, SCALAR_IN alpha, const ARRAY x, int incx,

SCALAR_IN beta, ARRAY y, int incy );

WAXPBY (Scaled vector addition) w  �x+ �y

The routine WAXPBY scales the vector x by � and the vector y by �, adds these two vectors
to one another and stores the result in the vector w. If n is less than or equal to zero, this routine
returns immediately. As described in section 2.5.3, the value incx or incy or incw less than zero is
permitted. However, if either incx or incy or incw is equal to zero, an error ag is set and passed to
the error handler.

� Fortran 95 binding:

SUBROUTINE waxpby( x, y, w [, alpha] [, beta] )

<type>(<wp>), INTENT (IN) :: x(:), y(:)

<type>(<wp>), INTENT (OUT) :: w(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where

x, y and w have shape (n)

The default value for � is 1.0 or (1.0,0.0).

� Fortran 77 binding:

SUBROUTINE BLAS_xWAXPBY( N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW )

INTEGER INCW, INCX, INCY, N

<type> ALPHA, BETA

<type> W( * ), X( * ), Y( * )

� C binding:
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void BLAS_xwaxpby( int n, SCALAR_IN alpha, const ARRAY x, int incx,

SCALAR_IN beta, const ARRAY y, int incy, ARRAY w,

int incw );

AXPY DOT (Combined AXPY and DOT) ŵ w � �v; r  ŵTu

The routine combines an axpy and a dot product. w is decremented by a multiple of v. A dot
product is then computed with the decremented w.

Advice to implementors. Note that ŵ may be used to update r before it is written back
to memory. This optimization, which accelerates algorithms like modi�ed Gram-Schmidt
orthogonalization, is the justi�cation for AXPY DOT, which could otherwise be implemented
by calls to AXPBY and DOT. (End of advice to implementors.)

If n is less than or equal to zero, this routine returns immediately. As described in section 2.5.3,
the value incw or incv or incu less than zero is permitted. However, if either incw or incv or incu is
equal to zero, an error ag is set and passed to the error handler.

� Fortran 95 binding:

SUBROUTINE axpy_dot( w, v, u, r [, alpha] )

<type>(<wp>), INTENT (IN) :: v(:), u(:)

<type>(<wp>), INTENT (INOUT) :: w(:)

<type>(<wp>), INTENT (OUT) :: r

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha

where

u, v and w have shape (n)

� Fortran 77 binding:

SUBROUTINE BLAS_xAXPY_DOT( N, ALPHA, W, INCW, V, INCV, U, INCU,

$ R )

INTEGER INCW, INCV, INCU, N

<type> ALPHA, R

<type> W( * ), V( * ), U( * )

� C binding:

void BLAS_xaxpy_dot( int n, SCALAR_IN alpha, ARRAY w, int incw,

const ARRAY v, int incv, const ARRAY u, int incu,

SCALAR_INOUT r );

APPLY GROT (Apply plane rotation) ( x y ) ( x y )R
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The routine APPLY GROT applies a plane rotation to the vectors x and y. When the vectors x
and y are real vectors, the scalars c and s are real scalars. When the vectors x and y are complex
vectors, c is a real scalar and s is a complex scalar. This routine computes

8 i 2 [0 : : : n� 1];

 
xi
yi

!
=

 
c s
��s c

!
�
 

xi
yi

!
:

If n is less than or equal to zero or if c is one and s is zero, the routine APPLY GROT returns
immediately. As described in section 2.5.3, the value of incx or incy less than zero is permitted.
However, if incx or incy is equal to zero, an error ag is set and passed to the error handler.

� Fortran 95 binding:

SUBROUTINE apply_grot( c, s, x, y )

REAL(<wp>), INTENT (IN) :: c

<type>(<wp>), INTENT (IN) :: s

<type>(<wp>), INTENT (INOUT) :: x(:), y(:)

where

x and y have shape (n)

� Fortran 77 binding:

SUBROUTINE BLAS_xAPPLY_GROT( N, C, S, X, INCX, Y, INCY )

INTEGER INCX, INCY, N

<rtype> C

<type> S

<type> X( * ), Y( * )

� C binding:

void BLAS_xapply_grot( int n, RSCALAR_IN c, SCALAR_IN s, ARRAY x, int incx,

ARRAY y, int incy );

2.8.5 Data Movement with Vectors

COPY (Vector copy) y  x

The routine COPY copies the vector x into the vector y. If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incy less than zero is
permitted. However, if either incx or incy is equal to zero, an error ag is set and passed to the
error handler.

� Fortran 95 binding:

SUBROUTINE copy( x, y )

<type>(<wp>), INTENT (IN) :: x(:)

<type>(<wp>), INTENT (OUT) :: y(:)

where

x and y have shape (n)
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This is similar to the Fortran 95 assignment y=x.

� Fortran 77 binding:

SUBROUTINE BLAS_xCOPY( N, X, INCX, Y, INCY )

INTEGER INCX, INCY, N

<type> X( * ), Y( * )

� C binding:

void BLAS_xcopy( int n, const ARRAY x, int incx, ARRAY y, int incy );

SWAP (Swap) y $ x

The routine SWAP interchanges the vectors x and y. If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incy less than zero is
permitted. However, if either incx or incy is equal to zero, an error ag is set and passed to the
error handler.

� Fortran 95 binding:

SUBROUTINE swap( x, y )

<type>(<wp>), INTENT (INOUT) :: x(:), y(:)

where

x and y have shape (n)

� Fortran 77 binding:

SUBROUTINE BLAS_xSWAP( N, X, INCX, Y, INCY )

INTEGER INCX, INCY, N

<type> X( * ), Y( * )

� C binding:

void BLAS_xswap( int n, ARRAY x, int incx, ARRAY y, int incy );

SORT (Sort vector) x sort(x)

The routine SORT sorts the entries of a real vector x in increasing or decreasing order and
overwrites this vector x with the sorted vector. If n is less than or equal to zero, the function
returns immediately. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error ag is set and passed to the error handler.

Advice to users. The routine SORT strictly operates on real vectors. This routine is not
de�ned for complex vectors. (End of advice to users.)

Advice to implementors. The subroutine xLASRT of the LAPACK [1] software library is an
example of such a routine. (End of advice to implementors.)
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� Fortran 95 binding: Refer to SORTV speci�cation

� Fortran 77 binding:

SUBROUTINE BLAS_xSORT( SORT, N, X, INCX )

INTEGER INCX, N, SORT

<rtype> X( * )

� C binding:

void BLAS_xsort( enum blas_sort_type sort, int n, RARRAY x, int incx );

SORTV (Sort vector & return index vector) (p; x) sort(x)

The routine SORTV sorts the entries of a real vector x in increasing or decreasing order and
overwrites this vector x with the sorted vector (x = P � x). If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incp less than zero is
permitted. However, if either incx or incp is equal to zero, an error ag is set and passed to the
error handler.

The representation of the permutation vector p is described in section 2.2.6.

Advice to users. The routine SORTV strictly operates on real vectors. This routine is not
de�ned for complex vectors. (End of advice to users.)

� Fortran 95 binding:

SUBROUTINE sortv( x [, sort] [, p] )

REAL(<wp>), INTENT (INOUT) :: x(:)

TYPE (blas_sort_type), INTENT (IN), OPTIONAL :: sort

INTEGER, INTENT (OUT), OPTIONAL :: p(:)

where

x and p have shape (n)

The functionality of SORT is covered by SORTV.

� Fortran 77 binding:

SUBROUTINE BLAS_xSORTV( SORT, N, X, INCX, P, INCP )

INTEGER INCP, INCX, N, SORT

INTEGER P( * )

<rtype> X( * )

� C binding:

void BLAS_xsortv( enum blas_sort_type sort, int n, RARRAY x, int incx,

int *p, int incp );
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PERMUTE (Permute vector) x Px

The routine PERMUTE permutes the entries of a vector x according to the permutation vector
p. If n is less than or equal to zero, the routine returns immediately. As described in section 2.5.3,
the value incx or incp less than zero is permitted. However, if either incx or incp is equal to zero,
an error ag is set and passed to the error handler.

The encoding of the permutation P in the vector p follows the same conventions as the ones
described above for the routine SORTV. Refer to section 2.2.6 for complete details.

� Fortran 95 binding:

SUBROUTINE permute( x, p )

<type>(<wp>), INTENT (INOUT) :: x(:)

INTEGER, INTENT (IN) :: p(:)

where

x and p have shape (n)

� Fortran 77 binding:

SUBROUTINE BLAS_xPERMUTE( N, P, INCP, X, INCX )

INTEGER INCP, INCX, N

INTEGER P( * )

<type> X( * )

The value of INCP may be positive or negative. A negative value of INCP applies the permu-
tation in the opposite direction.

� C binding:

void BLAS_xpermute( int n, const int *p, int incp, ARRAY x, int incx );

The value of incp may be positive or negative. A negative value of incp applies the permu-
tation in the opposite direction.

2.8.6 Matrix-Vector Operations

In the following section, op(X) denotes X, or XT or XH where X is a matrix.

fGE,GBgMV (Matrix vector product) y  �op(A)x+ �y

The routines perform a matrix vector multiply y  �op(A)x + �y where � and � are scalars,
and A is a general (or general band) matrix. If m or n is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error ag is set and passed to the error handler. For the routine GEMV, if lda is less than
one, or trans = blas no trans and lda is less than m, or trans = blas trans and lda is less than
n, an error ag is set and passed to the error handler. For the C bindings of GEMV, if order =

blas rowmajor and if lda is less than one or lda is less than n, an error ag is set and passed to the
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error handler; if order = blas colmajor and if lda is less than one or lda is less than m, an error
ag is set and passed to the error handler. For the routine GBMV, if kl or ku is less than zero, or
if lda is less than kl plus ku plus one, an error ag is set and passed to the error handler. For the
C bindings of GBMV, if order = blas rowmajor and if lda is less than n, an error ag is set and
passed to the error handler; if order = blas colmajor and if lda is less than kl plus ku plus one,
an error ag is set and passed to the error handler.

� Fortran 95 binding:

SUBROUTINE gbmv( a, m, kl, x, y [, trans] [, alpha] [, beta] )

<type>(<wp>), INTENT(IN) :: a(:,:), x(:)

INTEGER, INTENT(IN) :: m, kl

<type>(<wp>), INTENT(INOUT) :: y(:)

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

if trans = blas_no_trans then

x has shape (n)

y has shape (m)

else if trans =/ blas_no_trans then

x has shape (m)

y has shape (n)

end if

The functionality of gemv is covered by gemm.

� Fortran 77 binding:

General:

SUBROUTINE BLAS_xGEMV( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,

$ Y, INCY )

General Band:

SUBROUTINE BLAS_xGBMV( TRANS, M, N, KL, KU, ALPHA, A, LDA, X,

$ INCX, BETA, Y, INCY )

all:

INTEGER INCX, INCY, KL, KU, LDA, M, N, TRANS

<type> ALPHA, BETA

<type> A( LDA, * ), X( * ), Y( * )

� C binding:

General:

void BLAS_xgemv( enum blas_order_type order, enum blas_trans_type trans,

int m, int n, SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy );

General Band:

void BLAS_xgbmv( enum blas_order_type order, enum blas_trans_type trans,

int m, int n, int kl, int ku, SCALAR_IN alpha, const ARRAY a,

int lda, const ARRAY x, int incx, SCALAR_IN beta,

ARRAY y, int incy );
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fSY,SB,SPgMV (Symmetric matrix vector product) y  �Ax+ �y with A = AT

The routines multiply a vector x by a real or complex symmetric matrix A, scales the resulting
vector and adds it to the scaled vector operand y. If n or k is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error ag is set and passed to the error handler. For the routine SYMV, if lda is less than
one or lda is less than n, an error ag is set and passed to the error handler. For the routine SBMV,
if lda is less than k plus one, an error ag is set and passed to the error handler. For the C bindings
for SBMV, if order = blas rowmajor and if lda is less than one or lda is less than n, an error ag
is set and passed to the error handler; if order = blas colmajor and if lda is less than one or lda
is less than k plus one, an error ag is set and passed to the error handler.

� Fortran 95 binding:

Symmetric Band:

SUBROUTINE sbmv( a, x, y [, uplo] [, alpha] [, beta] )

Symmetric Packed:

SUBROUTINE spmv( ap, x, y [, uplo] [, alpha] [, beta] )

all:

<type>(<wp>), INTENT(IN) :: <aa>, x(:)

<type>(<wp>), INTENT(INOUT) :: y(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

<aa> ::= a(:,:) or ap(:)

and

SB a has shape (k+1,n)

SP ap has shape (n*(n+1)/2)

x and y have shape (n)

(k=band width)

The funtionality of symv is covered by symm.

� Fortran 77 binding:

Symmetric:

SUBROUTINE BLAS_xSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,

$ INCY )

Symmetric Band:

SUBROUTINE BLAS_xSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,

$ INCY )

Symmetric Packed:

SUBROUTINE BLAS_xSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )

all:

INTEGER INCX, INCY, K, LDA, N, UPLO

<type> ALPHA, BETA

<type> A( LDA, * ) or AP( * ), X( * ), Y( * )
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� C binding:

Symmetric:

void BLAS_xsymv( enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy );

Symmetric Band:

void BLAS_xsbmv( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy );

Symmetric Packed:

void BLAS_xspmv( enum blas_order_type order, enum blas_uplo_type uplo, int n,

SCALAR_IN alpha, const ARRAY ap, const ARRAY x, int incx,

SCALAR_IN beta, ARRAY y, int incy );

fHE,HB,HPgMV (Hermitian matrix vector product) y  �Ax+ �y with A = AH

The routines multiply a vector x by a Hermitian matrix A, scales the resulting vector and adds
it to the scaled vector operand y. If n is less than or equal to zero or if beta is equal to one and alpha
is equal to zero, this routine returns immediately. The imaginary part of the diagonal entries of
the matrix operand are supposed to be zero and should not be referenced. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error ag is set and passed to the error handler. For the routine HEMV, if lda is less than
one or lda is less than n, an error ag is set and passed to the error handler. For the routine HBMV,
if lda is less than k plus one, an error ag is set and passed to the error handler. For the C bindings
for HBMV, if order = blas rowmajor and if lda is less than one or lda is less than n, an error ag
is set and passed to the error handler; if order = blas colmajor and if lda is less than one or lda
is less than k plus one, an error ag is set and passed to the error handler.

� Fortran 95 binding:

Hermitian Band:

SUBROUTINE hbmv( a, x, y [, uplo] [, alpha] [, beta] )

Hermitian Packed:

SUBROUTINE hpmv( ap, x, y [, uplo] [, alpha] [, beta] )

all:

COMPLEX(<wp>), INTENT(IN) :: <aa>, x(:)

COMPLEX(<wp>), INTENT(INOUT) :: y(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

<aa> ::= a(:,:) or ap(:)

and

HB a has shape (k+1,n)

HP ap has shape (n*(n+1)/2)

x and y have shape (n)

(k=band width)
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The funtionality of hemv is covered by hemm.

� Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHEMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,

$ INCY )

Hermitian Band:

SUBROUTINE BLAS_xHBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA,

$ Y, INCY )

Hermitian Packed:

SUBROUTINE BLAS_xHPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )

all:

INTEGER INCX, INCY, K, LDA, N, UPLO

<ctype> ALPHA, BETA

<ctype> A( LDA, * ) or AP( * ), X( * ), Y( * )

� C binding:

Hermitian:

void BLAS_xhemv( enum blas_order_type order, enum blas_uplo_type uplo,

int n, CSCALAR_IN alpha, const CARRAY a, int lda,

const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,

int incy );

Hermitian Band:

void BLAS_xhbmv( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, CSCALAR_IN alpha, const CARRAY a, int lda,

const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,

int incy );

Hermitian Packed:

void BLAS_xhpmv( enum blas_order_type order, enum blas_uplo_type uplo,

int n, CSCALAR_IN alpha, const CARRAY ap, const CARRAY x,

int incx, CSCALAR_IN beta, CARRAY y, int incy );

fTR,TB,TPgMV (Triangular matrix vector product) x �Tx, x �T Tx or x �THx

The routines multiply a vector x by a general triangular matrix T or its transpose, or its
conjugate transpose, and copies the resulting vector in the vector operand x. If n is less than or
equal to zero, this routine returns immediately. As described in section 2.5.3, the value incx less
than zero is permitted. However, if incx is equal to zero, an error ag is set and passed to the error
handler. For the routine TRMV, if ldt is less than one or ldt is less than n, an error ag is set and
passed to the error handler. For the routine TBMV, if ldt is less than k plus one, an error ag
is set and passed to the error handler. For the C bindings of TBMV, if order = blas rowmajor

and if ldt is less than k plus one, an error ag is set and passed to the error handler; if order =

blas colmajor and if ldt is less than one or ldt is less than n, an error ag is set and passed to the
error handler.

� Fortran 95 binding:
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Triangular Band:

SUBROUTINE tbmv( t, x [, uplo] [, trans] [, diag] [, alpha] )

Triangular Packed:

SUBROUTINE tpmv( tp, x [, uplo] [, trans] [, diag] [, alpha] )

all:

<type>(<wp>), INTENT(IN) :: <tt>

<type>(<wp>), INTENT(INOUT) :: x(:)

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

where

<tt> ::= t(:,:) or tp(:)

and

TB t has shape (k+1,n)

TP tp has shape (n*(n+1)/2)

x has shape (n)

(k=band width)

The funtionality of trmv is covered by trmm.

� Fortran 77 binding:

Triangular:

SUBROUTINE BLAS_xTRMV( UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,

$ INCX )

Triangular Band:

SUBROUTINE BLAS_xTBMV( UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,

$ X, INCX )

Triangular Packed:

SUBROUTINE BLAS_xTPMV( UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX )

all:

INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO

<type> ALPHA

<type> T( LDT, * ) or TP( * ), X( * )

� C binding:

Triangular:

void BLAS_xtrmv( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag, int n,

SCALAR_IN alpha, const ARRAY t, int ldt, ARRAY x, int incx );

Triangular Band:

void BLAS_xtbmv( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag, int n,

int k, SCALAR_IN alpha, const ARRAY t, int ldt, ARRAY x,

int incx );

Triangular Packed:
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void BLAS_xtpmv( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag, int n,

SCALAR_IN alpha, const ARRAY tp, ARRAY x, int incx );

GE SUM MV (Summed matrix vector multiplies) y  �Ax+ �Bx

This routine adds the product of two scaled matrix vector products. It can be used to compute
the residual of an approximate eigenvector and eigenvalue of the generalized eigenvalue problem
A � x = � � B � x. If m or n is less than or equal to zero, then this routine returns immediately.
As described in section 2.5.3, the value incx or incy less than zero is permitted. However, if incx
or incy is equal to zero, an error ag is set and passed to the error handler. If lda is less than one
or lda is less than m, or ldb is less than one or ldb is less than m, an error ag is set and passed
to the error handler. For the C bindings for GE SUM MV, if order = blas rowmajor and if lda is
less than one or lda is less than n, or if ldb is less than one or ldb is less than n, an error ag is set
and passed to the error handler; if order = blas colmajor and if lda is less than one or lda is less
than m, or if ldb is less than one or ldb is less than m, an error ag is set and passed to the error
handler.

� Fortran 95 binding:

SUBROUTINE ge_sum_mv( a, x, b, y [, alpha] [, beta] )

<type>(<wp>), INTENT (IN) :: a(:,:), b(:,:)

<type>(<wp>), INTENT (IN) :: x(:)

<type>(<wp>), INTENT (OUT) :: y(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where

x has shape (n);

y has shape (m);

a and b have shape (m,n) for general matrices

� Fortran 77 binding:

SUBROUTINE BLAS_xGE_SUM_MV( M, N, ALPHA, A, LDA, X, INCX, BETA,

$ B, LDB, Y, INCY )

INTEGER INCX, INCY, LDA, LDB, M, N

<type> ALPHA, BETA

<type> A( LDA, * ), B( LDB, * ), X( * ), Y( * )

� C binding:

void BLAS_xge_sum_mv( enum blas_order_type order, int m, int n,

SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY x, int incx, SCALAR_IN beta,

const ARRAY B, int ldb, ARRAY y, int incy );

GEMVT (Multiple matrix vector multiplies) x �AT y + z; w  �Ax
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The routine combines a matrix vector and a transposed matrix vector multiply. It multiplies a
vector y by a general matrix AT , scales the resulting vector and adds the result to z, storing the
result in the vector operand x. It then multiplies the matrix A by x, scales the resulting vector
and stores it in the vector operand w.

Advice to implementors. Note that x and w may be computed while passing A through the
top of the memory just once. This optimization, which accelerates algorithms like reducing a
symmetric matrix to tridiagonal form, is the justi�cation for GEMVT, which could otherwise
be implemented by two calls to GEMV. (End of advice to implementors.)

If m or n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error ag is set and passed to the error handler. If lda is less than
one or lda is less than m, an error ag is set and passed to the error handler. For the C bindings,
if order = blas rowmajor and if lda is less than one or lda is less than n, an error ag is set and
passed to the error handler; if order = blas colmajor and if lda is less than one or lda is less than
m, an error ag is set and passed to the error handler.

� Fortran 95 binding:

SUBROUTINE gemvt( a, x, y, w, z [, alpha] [, beta] )

<type>(<wp>), INTENT (IN) :: a(:,:)

<type>(<wp>), INTENT (IN) :: y(:), z(:)

<type>(<wp>), INTENT (OUT) :: x(:), w(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where

w and y have shape (m);

x and z have shape (n);

a has shape (m,n) for general matrix

� Fortran 77 binding:

SUBROUTINE BLAS_xGEMVT( M, N, ALPHA, A, LDA, X, INCX, Y, INCY,

$ BETA, W, INCW, Z, INCZ )

INTEGER INCW, INCX, INCY, INCZ, LDA, M, N

<type> ALPHA, BETA

<type> A( LDA, * ), X( * ), Y( * ), W( * ), Z( * )

� C binding:

void BLAS_xgemvt( enum blas_order_type order, int m, int n, SCALAR_IN alpha,

const ARRAY a, int lda, ARRAY x, int incx, const ARRAY y,

int incy, SCALAR_IN beta, ARRAY w, int incw, const ARRAY z,

int incz );

TRMVT (Multiple triangular matrix vector product) x T T y and w  Tz

The routine combines a matrix vector and a transposed matrix vector multiply. It multiplies
a vector y by a triangular matrix T T , storing the result as x. It also multiplies the matrix by the
vector z, storing the result as w.



64 CHAPTER 2. DENSE AND BANDED BLAS

Advice to implementors. Note that x and w may be computed while passing T through the
top of the memory just once. This optimization, which accelerates algorithms like reducing a
symmetric matrix to tridiagonal form, is the justi�cation for TRMVT, which could otherwise
be implemented by two calls to TRMV. (End of advice to implementors.)

If n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error ag is set and passed to the error handler. If ldt is less than
one or ldt is less than n, an error ag is set and passed to the error handler.

� Fortran 95 binding:

SUBROUTINE trmvt( t, x, y, w, z [, uplo] )

<type>(<wp>), INTENT (IN) :: t(:,:)

<type>(<wp>), INTENT (IN) :: y(:), z(:)

<type>(<wp>), INTENT (OUT) :: x(:), w(:)

TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo

where

w, x, y and z have shape (n);

t has shape (n,n).

� Fortran 77 binding:

SUBROUTINE BLAS_xTRMVT( UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW,

$ Z, INCZ )

INTEGER INCW, INCX, INCY, INCZ, LDT, N, UPLO

<type> T( LDT, * ), W( * ), X( * ), Y( * ), Z( * )

� C binding:

void BLAS_xtrmvt( enum blas_order_type order, enum blas_uplo_type uplo,

int n, const ARRAY t, int ldt, ARRAY x, int incx,

const ARRAY y, int incy, ARRAY w, int incw, const ARRAY z,

int incz );

GEMVER (Multiple matrix vector multiply with a rank 2 update)

Â A+ u1v
T
1 + u2v

T
2 and x �ÂT y + z and w  �Âx

The routine precedes a combined matrix vector and a transposed matrix vector multiply by a
rank two update. A matrix A is updated by u1v

T
1 and u2v

T
2 . The transpose of the updated matrix

is multiplied by a vector y. The resulting vector is scaled and added to the vector operand z, and
stored in x . The operand x is multiplied by the updated matrix A. The resulting vector is scaled
and stored as w.

Advice to implementors. Note that Â, x and w may be computed while passing A through the
top of the memory just once. This optimization, which accelerates algorithms like reducing
a general matrix to bidiagonal form, is the justi�cation for GEMVER, which could otherwise
be implemented by calls to other BLAS routines. (End of advice to implementors.)
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If m or n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error ag is set and passed to the error handler. If lda is less than
one or lda is less than m, an error ag is set and passed to the error handler. For the C bindings,
if order = blas rowmajor and if lda is less than one or lda is less than n, an error ag is set and
passed to the error handler; if order = blas colmajor and if lda is less than one or lda is less than
m, an error ag is set and passed to the error handler.

� Fortran 95 binding:

SUBROUTINE gemver( a, u1, v1, u2, v2, x, y, z, w [, alpha] [, beta] )

<type>(<wp>), INTENT (IN) :: u1(:), u2(:), v1(:), v2(:), y(:), z(:)

<type>(<wp>), INTENT (INOUT) :: a(:,:), x(:)

<type>(<wp>), INTENT (OUT) :: w(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where

u1, u2, w and y have shape (m);

v1, v2, x and z have shape (n);

a has shape (m,n).

� Fortran 77 binding:

General:

SUBROUTINE BLAS_xGEMVER( M, N, A, LDA, U1, V1, U2, V2, ALPHA, X,

$ INCX, Y, INCY, BETA, W, INCW, Z, INCZ )

INTEGER INCW, INCX, INCY, INCZ, LDA, M, N

<type> ALPHA, BETA

<type> U1( * ), V1( * ), U2( * ), V2( * )

<type> A( LDA, * ), W( * ), X( * ), Y( * ), Z( * )

� C binding:

General:

void BLAS_xgemver( enum blas_order_type order, int m, int n, ARRAY a,

int lda, const ARRAY u1, const ARRAY v1,

const ARRAY u2, const ARRAY v2, SCALAR_IN alpha,

ARRAY x, int incx, const ARRAY y, int incy, ARRAY w,

int incw, SCALAR_IN beta, const ARRAY z, int incz );

fTR,TB,TPgSV (Triangular solve) x �T�1x, x �T�Tx

These routines solve one of the systems of equations x  �T�1x or x  �T�Tx, where x is
a vector and the matrix T is a unit, non-unit, upper or lower triangular (or triangular banded or
triangular packed) matrix. If n is less than or equal to zero, this function returns immediately. As
described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error ag is set and passed to the error handler. For TRSV, if ldt is less than one or ldt is
less than n, an error ag is set and passed to the error handler. For TBSV, if ldt is less than one or
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ldt is less than k plus one, an error ag is set and passed to the error handler. For the C bindings
for TBSV, if order = blas rowmajor and if ldt is less than one or ldt is less than n, an error ag
is set and passed to the error handler; if order = blas colmajor and if ldt is less than one or ldt
is less than k plus one, an error ag is set and passed to the error handler.

Advice to implementors. Note that no check for singularity, or near singularity is speci�ed
for these triangular equation-solving routines. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver. (End of advice to implementors.)

� Fortran 95 binding:

Triangular Band:

SUBROUTINE tbsv( t, x [, uplo] [, trans] [, diag] [, alpha] )

Triangular Packed:

SUBROUTINE tpsv( tp, x [, uplo] [, trans] [, diag] [, alpha] )

all:

<type>(<wp>), INTENT(IN) :: <tt>

<type>(<wp>), INTENT(INOUT) :: x(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

where

<tt> ::= t(:,:) or tp(:)

and

x has shape (n)

TB t has shape (k+1,n)

TP tp has shape (n*(n+1)/2)

(k=band width)

The funtionality of trsv is covered by trsm.

� Fortran 77 binding:

Triangular:

SUBROUTINE BLAS_xTRSV( UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,

$ INCX )

Triangular Band:

SUBROUTINE BLAS_xTBSV( UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,

$ X, INCX )

Triangular Packed:

SUBROUTINE BLAS_xTPSV( UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX )

all:

INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO

<type> ALPHA

<type> T( LDT, * ) or TP( * ), X( * )

� C binding:
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Triangular:

void BLAS_xtrsv( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, SCALAR_IN alpha, const ARRAY t, int ldt,

ARRAY x, int incx );

Triangular Band:

void BLAS_xtbsv( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, int k, SCALAR_IN alpha, const ARRAY t, int ldt,

ARRAY x, int incx );

Triangular Packed:

void BLAS_xtpsv( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, SCALAR_IN alpha, const ARRAY tp, ARRAY x,

int incx );

GER (Rank one update) A 2 IRn2 ; A �xyT + �A A 2 lC n2 ; A �xyT + �A or A �xyH + �A

This routine performs the rank 1 operation A �xyT + �A where � and � are scalars, x and
y are vectors, and and A is a matrix. If m or n is less than or equal to zero or if beta is equal to
one and alpha is equal to zero, this function returns immediately. As described in section 2.5.3,
the value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero,
an error ag is set and passed to the error handler. If lda is less than one or lda is less than m, an
error ag is set and passed to the error handler. For the C bindings, if order = blas rowmajor

and if lda is less than one or lda is less than n, an error ag is set and passed to the error handler;
if order = blas colmajor and if lda is less than one or lda is less than m, an error ag is set and
passed to the error handler.

The operator argument conj is only referenced when x and y are complex vectors. When x and
y are complex vectors, the vector components yi are used unconjugated or conjugated as speci�ed
by the operator argument conj.

� Fortran 95 binding: Refer to GEMM speci�cation

� Fortran 77 binding:

SUBROUTINE BLAS_xGER( CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA,

$ A, LDA )

INTEGER CONJ, INCX, INCY, LDA, M, N

<type> ALPHA, BETA

<type> A( LDA, * ), X( * ), Y( * )

� C binding:

void BLAS_xger( enum blas_order_type order, enum blas_conj_type conj,

int m, int n, SCALAR_IN alpha, const ARRAY x, int incx,

const ARRAY y, int incy, SCALAR_IN beta, ARRAY a, int lda );
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fSY,SPgR (Symmetric Rank One Update) A �xxT + �A with A = AT

The routine performs the symmetric rank-1 update A = �xxT +�A, where � and � are scalars,
x is a vector and A is a symmetric (symmetric packed) matrix. This routine returns immediately
if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero. As described in
section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error
ag is set and passed to the error handler. If lda is less than one or lda is less than n, an error ag
is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routines xSYR and xSPRwith added functionality
for complex symmetric matrices.

� Fortran 95 binding:

Symmetric Packed:

SUBROUTINE spr( x, ap [, uplo] [, trans] [, alpha] [, beta] )

<type>(<wp>), INTENT(IN) :: x(:)

<type>(<wp>), INTENT(INOUT) :: ap(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x has shape (n)

ap has shape (n*(n+1)/2)

The functionality of syr is covered by syrk.

� Fortran 77 binding:

Symmetric:

SUBROUTINE BLAS_xSYR( UPLO, N, ALPHA, X, INCX, BETA, A, LDA )

Symmetric Packed:

SUBROUTINE BLAS_xSPR( UPLO, N, ALPHA, X, INCX, BETA, AP )

all:

INTEGER INCX, LDA, N, UPLO

<type> ALPHA, BETA

<type> A( LDA, * ) or AP( * ), X( * )

� C binding:

Symmetric:

void BLAS_xsyr( enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,

SCALAR_IN beta, ARRAY a, int lda );

Symmetric Packed:

void BLAS_xspr( enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,

SCALAR_IN beta, ARRAY ap );
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fHE,HPgR (Hermitian Rank One Update) A �xxH + �A with A = AH

The routine performs the Hermitian rank-1 update A = �xxH + �A, where � and � are real
scalars, x is a complex vector and A is a Hermitian (Hermitian packed) matrix. This routine returns
immediately if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero.
As described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error ag is set and passed to the error handler. If lda is less than one or lda is less than
n, an error ag is set and passed to the error handler.

� Fortran 95 binding:

Hermitian Packed:

SUBROUTINE hpr( x, ap [, uplo] [, trans] [, alpha] [, beta] )

COMPLEX(<wp>), INTENT(IN) :: x(:)

COMPLEX(<wp>), INTENT(INOUT) :: ap(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

REAL(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x has shape (n)

ap has shape (n*(n+1)/2)

The functionality of her is covered by herk.

� Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHER( UPLO, N, ALPHA, X, INCX, BETA, A, LDA )

Hermitian Packed:

SUBROUTINE BLAS_xHPR( UPLO, N, ALPHA, X, INCX, BETA, AP )

all:

INTEGER INCX, LDA, N, UPLO

<rtype> ALPHA, BETA

<ctype> A( LDA, * ) or AP( * ), X( * )

� C binding:

Hermitian:

void BLAS_xher( enum blas_order_type order, enum blas_uplo_type uplo,

int n, RSCALAR_IN alpha, const CARRAY x, int incx,

RSCALAR_IN beta, CARRAY a, int lda );

Hermitian Packed:

void BLAS_xhpr( enum blas_order_type order, enum blas_uplo_type uplo,

int n, RSCALAR_IN alpha, const CARRAY x, int incx,

RSCALAR_IN beta, CARRAY ap );
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fSY,SPgR2 (Symmetric Rank two update) A �xyT + �yxT + �A with A = AT

The routine performs the symmetric rank-2 update A = �xyT + �yxT + �A, where � and �
are scalars, x is a vector and A is a symmetric (symmetric packed) matrix. This routine returns
immediately if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero.
As described in section 2.5.3, the value incx or incy less than zero is permitted. However, if either
incx or incy is equal to zero, an error ag is set and passed to the error handler. If lda is less than
one or lda is less than n, an error ag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routines xSYR2 and xSPR2 with added function-
ality for complex symmetric matrices.

� Fortran 95 binding:

Symmetric Packed:

SUBROUTINE spr2( x, y, ap [, uplo] [, trans] [, alpha] [, beta] )

<type>(<wp>), INTENT(IN) :: x(:), y(:)

<type>(<wp>), INTENT(INOUT) :: ap(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x and y have shape (n)

ap has shape (n*(n+1)/2)

The functionality of syr2 is covered by syr2k.

� Fortran 77 binding:

Symmetric:

SUBROUTINE BLAS_xSYR2( UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A,

$ LDA )

Symmetric Packed:

SUBROUTINE BLAS_xSPR2( UPLO, N, ALPHA, X, INCX, Y, INCY, BETA,

$ AP )

all:

INTEGER INCX, LDA, N, UPLO

<type> ALPHA, BETA

<type> A( LDA, * ) or AP( * ), X( * ), Y( * )

� C binding:

Symmetric:

void BLAS_xsyr2( enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,

const ARRAY y, int incy, SCALAR_IN beta, ARRAY a, int lda );

Symmetric Packed:

void BLAS_xspr2( enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,

const ARRAY y, int incy, SCALAR_IN beta, ARRAY ap );
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fHE,HPgR2 (Hermitian Rank two update) A �xyH + ��yxH + �A with A = AH

The routine performs the Hermitian rank-2 update A = �xyH + ��yxH + �A, where � is a
complex scalar and and � is a real scalar, x and y are complex vectors and A is a Hermitian
(Hermitian packed) matrix. This routine returns immediately if n is less than or equal to zero or
if beta is equal to one and alpha is equal to zero. As described in section 2.5.3, the value incx or
incy less than zero is permitted. However, if either incx or incy is equal to zero, an error ag is set
and passed to the error handler. If lda is less than one or lda is less than n, an error ag is set and
passed to the error handler.

� Fortran 95 binding:

Hermitian Packed:

SUBROUTINE hpr2( x, y, ap [, uplo] [, trans] [, alpha] [, beta] )

COMPLEX(<wp>), INTENT(IN) :: x(:), y(:)

COMPLEX(<wp>), INTENT(INOUT) :: ap(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x and y have shape (n)

ap has shape (n*(n+1)/2)

The functionality of her2 is covered by her2k.

� Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHER2( UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A,

$ LDA )

Hermitian Packed:

SUBROUTINE BLAS_xHPR2( UPLO, N, ALPHA, X, INCX, Y, INCY, BETA,

$ AP )

all:

INTEGER INCX, LDA, N, UPLO

<ctype> ALPHA

<rtype> BETA

<ctype> A( LDA, * ) or AP( * ), X( * ), Y( * )

� C binding:

Hermitian:

void BLAS_xher2( enum blas_order_type order, enum blas_uplo_type uplo,

int n, CSCALAR_IN alpha, const CARRAY x, int incx,

const CARRAY y, int incy, RSCALAR_IN beta, CARRAY a,

int lda );

Hermitian Packed:

void BLAS_xhpr2( enum blas_order_type order, enum blas_uplo_type uplo,
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int n, CSCALAR_IN alpha, const CARRAY x, int incx,

const CARRAY y, int incy, RSCALAR_IN beta, CARRAY ap );

2.8.7 Matrix Operations

fGE,GB,SY,HE,SB,HB,SP,HP,TR,TB,TPg NORM (Matrix norms)

r  jjAjj1; jjAjj1R; jjAjjF ; jjAjj1; jjAjj1R; jjAjjmax; or jjAjjmaxR
These routines compute the one-norm, real one-norm, Frobenius-norm, in�nity-norm, real

in�nity-norm, max-norm, or real max-norm of a general matrix A depending on the value passed
as the norm operator argument. This routine returns immediately with the output scalar r set to
zero if m (for nonsymmetric matrices) or n or kl or ku (for band matrices) or k (for symmetric
band matrices) is less than or equal to zero. The resulting scalar r is always real and as de�ned in
section 2.1.3. If norm = blas two norm, requesting the two-norm of a matrix, an error ag is set
and passed to the error handler. The only exception to this rule is if the matrix is a single column
or a single row, whereby the Frobenius-norm is returned since the two-norm and Frobenius-norm
of a vector are identical. For the routine GE NORM, if lda is less than one or lda is less than m,
an error ag is set and passed to the error handler. For the C bindings of GE NORM, if order
= blas rowmajor and if lda is less than one or lda is less than n, an error ag is set and passed
to the error handler; if order = blas colmajor and if lda is less than one or lda is less than m,
an error ag is set and passed to the error handler. For the routine GB NORM, if lda is less than
kl plus ku plus one, an error ag is set and passed to the error handler. For the C bindings of
GB NORM, if order = blas rowmajor and if lda is less than one or lda is less than n, an error ag
is set and passed to the error handler; if order = blas colmajor and if lda is less than one or lda
is less than kl plus ku plus one, an error ag is set and passed to the error handler. For the routines
SY NORM, HE NORM, and TR NORM, if lda is less than one or lda is less than n, an error ag is
set and passed to the error handler. For the routines SB NORM, HB NORM, and TB NORM, if lda
is less than k plus one, an error ag is set and passed to the error handler. For the C bindings of
SB NORM, HB NORM, and TB NORM, if order = blas rowmajor and if lda is less than one or
lda is less than n, an error ag is set and passed to the error handler; if order = blas colmajor

and if lda is less than one or lda is less than k plus one, an error ag is set and passed to the error
handler.

Advice to implementors. High-quality implementations of these routines should be accu-
rate. The subroutines SLANGB, SLANGE, SLANGT, SLANHS, SLANSB, SLANSP, SLANST,
SLANSY, SLANTB, SLANTP, and SLANTR, of the LAPACK [1] software library are examples
of accurate implementations. High-quality implementations should document the accuracy of
the algorithms used in this routine so as to alleviate the portability problems this represents.
(End of advice to implementors.)

� Fortran 95 binding:

General:

REAL(<wp>) FUNCTION ge_norm( a [, norm] )

General Band:

REAL(<wp>) FUNCTION gb_norm( a, m, kl [, norm] )
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Symmetric:

REAL(<wp>) FUNCTION sy_norm( a [, norm] [, uplo] )

Hermitian:

REAL(<wp>) FUNCTION he_norm( a [, norm] [, uplo] )

Symmetric Band:

REAL(<wp>) FUNCTION sb_norm( a [, norm] [, uplo] )

Hermitian Band:

REAL(<wp>) FUNCTION hb_norm( a [, norm] [, uplo] )

Symmetric Packed:

REAL(<wp>) FUNCTION sp_norm( ap [, norm] [, uplo] )

Hermitian Packed:

REAL(<wp>) FUNCTION hp_norm( ap [, norm] [, uplo] )

Triangular:

REAL(<wp>) FUNCTION tr_norm( a [, norm] [, uplo] [, diag] )

Triangular Band:

REAL(<wp>) FUNCTION tb_norm( a [, norm] [, uplo] [, diag] )

Triangular Packed:

REAL(<wp>) FUNCTION tp_norm( ap [, norm] [, uplo] [, diag] )

all:

<type>(<wp>), INTENT (IN) :: a(:,:) | ap(:)

INTEGER, INTENT (IN) :: m, kl

TYPE (blas_norm_type), INTENT (IN), OPTIONAL :: norm

TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo

TYPE (blas_diag_type), INTENT (IN), OPTIONAL :: diag

where

a has shape (m,n) for general matrix

(l,n) for general banded matrix (l > kl)

(n,n) for symmetric, Hermitian or triangular

(k+1,n) for symmetric banded, Hermitian banded

or triangular banded (k=band width)

ap has shape (n*(n+1)/2).

� Fortran 77 binding:

General:

<rtype> FUNCTION BLAS_xGE_NORM( NORM, M, N, A, LDA )

General Band:

<rtype> FUNCTION BLAS_xGB_NORM( NORM, M, N, KL, KU, A, LDA )

Symmetric:

<rtype> FUNCTION BLAS_xSY_NORM( NORM, UPLO, N, A, LDA )

Hermitian:

<rtype> FUNCTION BLAS_xHE_NORM( NORM, UPLO, N, A, LDA )

Symmetric Band:

<rtype> FUNCTION BLAS_xSB_NORM( NORM, UPLO, N, K, A, LDA )

Hermitian Band:

<rtype> FUNCTION BLAS_xHB_NORM( NORM, UPLO, N, K, A, LDA )

Symmetric Packed:

<rtype> FUNCTION BLAS_xSP_NORM( NORM, UPLO, N, AP )
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Hermitian Packed:

<rtype> FUNCTION BLAS_xHP_NORM( NORM, UPLO, N, AP )

Triangular:

<rtype> FUNCTION BLAS_xTR_NORM( NORM, UPLO, DIAG, N, A, LDA )

Triangular Band:

<rtype> FUNCTION BLAS_xTB_NORM( NORM, UPLO, DIAG, N, K, A, LDA )

Triangular Packed:

<rtype> FUNCTION BLAS_xTP_NORM( NORM, UPLO, DIAG, N, AP )

all:

INTEGER DIAG, K, KL, KU, LDA, M, N, NORM, UPLO

<type> A( LDA, * ) or AP( * )

� C binding:

General:

void BLAS_xge_norm( enum blas_order_type order, enum blas_norm_type norm,

int m, int n, const ARRAY a, int lda, RSCALAR_INOUT r );

General Band:

void BLAS_xgb_norm( enum blas_order_type order, enum blas_norm_type norm,

int m, int n, int kl, int ku, const ARRAY a, int lda,

RSCALAR_INOUT r );

Symmetric:

void BLAS_xsy_norm( enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, int n, const ARRAY a,

int lda, RSCALAR_INOUT r );

Hermitian:

void BLAS_xhe_norm( enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, int n, const CARRAY a,

int lda, RSCALAR_INOUT r );

Symmetric Band:

void BLAS_xsb_norm( enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, int n, int k, const ARRAY a,

int lda, RSCALAR_INOUT r );

Hermitian Band:

void BLAS_xhb_norm( enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, int n, int k, const CARRAY a,

int lda, RSCALAR_INOUT r );

Symmetric Packed:

void BLAS_xsp_norm( enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, int n, const ARRAY ap,

RSCALAR_INOUT r );

Hermitian Packed:

void BLAS_xhp_norm( enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, int n, const CARRAY ap,

RSCALAR_INOUT r );

Triangular:

void BLAS_xtr_norm( enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, enum blas_diag_type diag,
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int n, const ARRAY a, int lda, RSCALAR_INOUT r );

Triangular Band:

void BLAS_xtb_norm( enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, enum blas_diag_type diag,

int n, int k, const ARRAY a, int lda, RSCALAR_INOUT r );

Triangular Packed:

void BLAS_xtp_norm( enum blas_order_type order, enum blas_norm_type norm,

enum blas_uplo_type uplo, enum blas_diag_type diag,

int n, const ARRAY ap, RSCALAR_INOUT r );

fGE,GBg DIAG SCALE (Diagonal scaling) A DA;AD with D diagonal

These routines scale a general (or banded) matrix A on the left side or the right side by a
diagonal matrix D. This routine returns immediately if m or n or kl or ku (for band matrices) is
less than or equal to zero. As described in section 2.5.3, the value incd less than zero is permitted.
However, if incd is equal to zero, an error ag is set and passed to the error handler. For the
routine GE DIAG SCALE, if lda is less than one or lda is less than m, an error ag is set and passed
to the error handler. For the C bindings of GE DIAG SCALE, if order = blas rowmajor and if lda
is less than one or lda is less than n, an error ag is set and passed to the error handler; if order
= blas colmajor and if lda is less than one or lda is less than m, an error ag is set and passed
to the error handler. For the routine GB DIAG SCALE, if lda is less than kl plus ku plus one, an
error ag is set and passed to the error handler. For the C bindings of GB DIAG SCALE, if order
= blas rowmajor and if lda is less than one or lda is less than n, an error ag is set and passed to
the error handler; if order = blas colmajor and if lda is less than one or lda is less than kl plus
ku plus one, an error ag is set and passed to the error handler.

� Fortran 95 binding:

General:

SUBROUTINE ge_diag_scale( d, a [, side] )

General Band:

SUBROUTINE gb_diag_scale( d, a, m, kl [, side] )

all:

<type>(<wp>), INTENT (IN) :: d(:)

<type>(<wp>), INTENT (INOUT) :: a(:,:)

INTEGER, INTENT (IN) :: m, kl

TYPE (blas_side_type), INTENT (IN), OPTIONAL :: side

where

a has shape (m,n) for general matrix

(l,n) for general banded matrix (l > kl)

d has shape (p) where p = m if side = blas_left_side

p = n if side = blas_right_side

� Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_DIAG_SCALE( SIDE, M, N, D, INCD, A, LDA )
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General Band:

SUBROUTINE BLAS_xGB_DIAG_SCALE( SIDE, M, N, KL, KU, D, INCD, A,

$ LDA )

all:

INTEGER INCD, KL, KU, LDA, M, N, SIDE

<type> A( LDA, * ), D( * )

� C binding:

General:

void BLAS_xge_diag_scale( enum blas_order_type order,

enum blas_side_type side, int m, int n,

const ARRAY d, int incd, ARRAY a, int lda );

General Band:

void BLAS_xgb_diag_scale( enum blas_order_type order,

enum blas_side_type side, int m, int n, int kl,

int ku, const ARRAY d, int incd, ARRAY a, int lda );

fGE,GBg LRSCALE (Two-sided diagonal scaling) A DLADR

These routines scale a general (or banded) matrix A on the left side by a diagonal matrix DL

and on the right side by a diagonal matrix DR. This routine returns immediately if m or n or kl or
ku (for band matrices) is less than or equal to zero. As described in section 2.5.3, the value incdl or
incdr less than zero is permitted. However, if either incdl or incdr is equal to zero, an error ag is set
and passed to the error handler. For the routine GE LRSCALE, if lda is less than one or lda is less
than m, an error ag is set and passed to the error handler. For the C bindings of GE LRSCALE,
if order = blas rowmajor and if lda is less than one or lda is less than n, an error ag is set and
passed to the error handler; if order = blas colmajor and if lda is less than one or lda is less than
m, an error ag is set and passed to the error handler. For the routine GB LRSCALE, if lda is less
than kl plus ku plus one, an error ag is set and passed to the error handler. For the C bindings of
GB LRSCALE, if order = blas rowmajor and if lda is less than one or lda is less than n, an error
ag is set and passed to the error handler; if order = blas colmajor and if lda is less than one or
lda is less than kl plus ku plus one, an error ag is set and passed to the error handler.

� Fortran 95 binding:

General:

SUBROUTINE ge_lrscale( dl, dr, a )

General Band:

SUBROUTINE gb_lrscale( dl, dr, a, m, kl )

all:

<type>(<wp>), INTENT (IN) :: dl(:), dr(:)

<type>(<wp>), INTENT (INOUT) :: a(:,:)

INTEGER, INTENT (IN) :: m, kl

where

a has shape (m,n) for general matrix

(l,n) for general banded matrix (l > kl)
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dl has shape (m)

dr has shape (n)

� Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_LRSCALE( M, N, DL, INCDL, DR, INCDR, A, LDA )

General Band:

SUBROUTINE BLAS_xGB_LRSCALE( M, N, KL, KU, DL, INCDL, DR, INCDR,

$ A, LDA )

all:

INTEGER INCDL, INCDR, KL, KU, LDA, M, N

<type> A( LDA, * ), DL( * ), DR( * )

� C binding:

General:

void BLAS_xge_lrscale( enum blas_order_type order, int m, int n,

const ARRAY dl, int incdl, const ARRAY dr,

int incdr, ARRAY a, int lda );

General Band:

void BLAS_xgb_lrscale( enum blas_order_type order, int m, int n, int kl,

int ku, const ARRAY dl, int incdl, const ARRAY dr,

int incdr, ARRAY a, int lda );

fSY,SB,SPg LRSCALE (Two-sided diagonal scaling of a symmetric matrix)

A DAD with A = AT

These routines perform a two-sided scaling of a symmetric (or symmetric banded or symmetric
packed) matrix A by a diagonal matrixD. This routine returns immediately if n or k (for symmetric
band matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than
zero is permitted. However, if incd is equal to zero, an error ag is set and passed to the error
handler. For the routines SY LRSCALE and SP LRSCALE, if lda is less than one or lda is less than n,
an error ag is set and passed to the error handler. For the routine SB LRSCALE, if lda is less than
k plus one, an error ag is set and passed to the error handler. For the C bindings of SB LRSCALE,
if order = blas rowmajor and if lda is less than one or lda is less than n, an error ag is set and
passed to the error handler; if order = blas colmajor and if lda is less than one or lda is less than
k plus one, an error ag is set and passed to the error handler.

� Fortran 95 binding:

Symmetric:

SUBROUTINE sy_lrscale( d, a [, uplo] )

Symmetric Band:

SUBROUTINE sb_lrscale( d, a [, uplo] )

Symmetric Packed:

SUBROUTINE sp_lrscale( d, ap [, uplo] )
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all:

<type>(<wp>), INTENT (IN) :: d(:)

<type>(<wp>), INTENT (INOUT) :: a(:,:) | ap(:)

TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo

where

a has shape (n,n) for symmetric

(k+1,n) for symmetric banded (k=band width)

ap has shape (n*(n+1)/2).

d has shape (n)

� Fortran 77 binding:

Symmetric:

SUBROUTINE BLAS_xSY_LRSCALE( UPLO, N, D, INCD, A, LDA )

Symmetric Band:

SUBROUTINE BLAS_xSB_LRSCALE( UPLO, N, K, D, INCD, A, LDA )

Symmetric Packed:

SUBROUTINE BLAS_xSP_LRSCALE( UPLO, N, D, INCD, AP )

all:

INTEGER INCD, K, LDA, N, UPLO

<type> A( LDA, * ) or AP( * ), D( * )

� C binding:

Symmetric:

void BLAS_xsy_lrscale( enum blas_order_type order, enum blas_uplo_type uplo,

int n, const ARRAY d, int incd, ARRAY a, int lda );

Symmetric Band:

void BLAS_xsb_lrscale( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, const ARRAY d, int incd, ARRAY a,

int lda );

Symmetric Packed:

void BLAS_xsp_lrscale( enum blas_order_type order, enum blas_uplo_type uplo,

int n, const ARRAY d, int incd, ARRAY ap );

fHE,HB,HPg LRSCALE (Two-sided diagonal scaling of a Hermitian matrix)

A DADH with A = AH

These routines perform a two-sided scaling of a Hermitian (or Hermitian banded or Hermitian
packed) matrix A by a diagonal matrix D. This routine returns immediately if n or k (for Hermitian
band matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than
zero is permitted. However, if incd is equal to zero, an error ag is set and passed to the error
handler. For the routines HE LRSCALE, if lda is less than one or lda is less than n, an error ag is
set and passed to the error handler. For the routine HB LRSCALE, if lda is less than k plus one,
an error ag is set and passed to the error handler. For the C bindings of HB LRSCALE, if order
= blas rowmajor and if lda is less than one or lda is less than n, an error ag is set and passed to
the error handler; if order = blas colmajor and if lda is less than one or lda is less than k plus
one, an error ag is set and passed to the error handler.
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� Fortran 95 binding:

Hermitian:

SUBROUTINE he_lrscale( d, a [, uplo] )

Hermitian Band:

SUBROUTINE hb_lrscale( d, a [, uplo] )

Hermitian Packed:

SUBROUTINE hp_lrscale( d, ap [, uplo] )

all:

COMPLEX(<wp>), INTENT (IN) :: d(:)

COMPLEX(<wp>), INTENT (INOUT) :: a(:,:) | ap(:)

TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo

where

a has shape (n,n) for Hermitian

(k+1,n) for Hermitian banded (k=band width)

ap has shape (n*(n+1)/2).

d has shape (n)

� Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHE_LRSCALE( UPLO, N, D, INCD, A, LDA )

Hermitian Band:

SUBROUTINE BLAS_xHB_LRSCALE( UPLO, N, K, D, INCD, A, LDA )

Hermitian Packed:

SUBROUTINE BLAS_xHP_LRSCALE( UPLO, N, D, INCD, AP )

all:

INTEGER INCD, K, LDA, N, UPLO

<ctype> A( LDA, * ) or AP( * ), D( * )

� C binding:

Hermitian:

void BLAS_xhe_lrscale( enum blas_order_type order, enum blas_uplo_type uplo,

int n, const ARRAY d, int incd, ARRAY a, int lda );

Hermitian Band:

void BLAS_xhb_lrscale( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, const ARRAY d, int incd, ARRAY a,

int lda );

Hermitian Packed:

void BLAS_xhp_lrscale( enum blas_order_type order, enum blas_uplo_type uplo,

int n, const ARRAY d, int incd, ARRAY ap );

fGE,GBg DIAG SCALE ACC (Diagonal scaling and accumulation) A A+BD

These routines perform the diagonal scaling of a general (or banded) matrix B and accumulate
the result in the matrix A. This routine returns immediately if m or n or kl or ku (for band
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matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than zero
is permitted. However, if incd is equal to zero, an error ag is set and passed to the error handler.
For the routine GE DIAG SCALE ACC, if lda or ldb is less than one or lda or ldb is less than m, an
error ag is set and passed to the error handler. For the C bindings of GE DIAG SCALE ACC, if
order = blas rowmajor and if lda or ldb is less than one or lda or ldb is less than n, an error ag
is set and passed to the error handler; if order = blas colmajor and if lda or ldb is less than one
or lda or ldb is less than m, an error ag is set and passed to the error handler. For the routine
GB DIAG SCALE ACC, if lda is less than kl plus ku plus one, an error ag is set and passed to the
error handler. For the C bindings of GB DIAG SCALE ACC, if order = blas rowmajor and if lda
is less than one or lda is less than n, an error ag is set and passed to the error handler; if order
= blas colmajor and if lda is less than one or lda is less than kl plus ku plus one, an error ag is
set and passed to the error handler.

� Fortran 95 binding:

General:

SUBROUTINE ge_diag_scale_acc( b, d, a )

Band:

SUBROUTINE gb_diag_scale_acc( b, m, kl, d, a )

all:

<type>(<wp>), INTENT (IN) :: b(:,:), d(:)

<type>(<wp>), INTENT (INOUT) :: a(:,:)

INTEGER, INTENT (IN) :: m, kl

where

a has shape (m,n)

b has shape (m,n) for general matrix

(l,n) for general banded matrix (l > kl)

d has shape (n)

� Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_DIAG_SCALE_ACC( M, N, B, LDB, D, INCD, A,

$ LDA )

Band:

SUBROUTINE BLAS_xGB_DIAG_SCALE_ACC( M, N, KL, KU, B, LDB, D, INCD,

$ A, LDA )

all:

INTEGER INCD, KL, KU, LDA, LDB, M, N

<type> A( LDA, * ), B( LDB, * ), D( * )

� C binding:

General:

void BLAS_xge_diag_scale_acc( enum blas_order_type order, int m, int n,

const ARRAY b, int ldb, const ARRAY d,

int incd, ARRAY a, int lda );

General Band:
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void BLAS_xgb_diag_scale_acc( enum blas_order_type order, int m, int n,

int kl, int ku, const ARRAY b, int ldb,

const ARRAY d, int incd, ARRAY a, int lda );

fGE,SY,SB,SPg ACC (Matrix accumulation and scale) B  �A+ �B, B  �AT + �B

These routines scale a matrix A (or its transpose) and scale a matrix B and accumulate the
result in the matrix B. Matrices A and B have the same storage format. These routines return
immediately if alpha is equal to zero and beta is equal to one, or if m (for nonsymmetric matrices)
or n or k (for symmetric band matrices) is less than or equal to zero. As described in section 2.5.3,
for the routine GE ACC, if lda or ldb is less than one or lda or ldb is less than m, an error ag is set
and passed to the error handler. For the C bindings for GE ACC, if order = blas rowmajor and
if lda or ldb is less than one or lda or ldb is less than n, an error ag is set and passed to the error
handler; if order = blas colmajor and if lda or ldb is less than one or lda or ldb is less than m, an
error ag is set and passed to the error handler. For the routine SY ACC, if lda or ldb is less than
one or lda or ldb is less than n, an error ag is set and passed to the error handler. For the routine
SB ACC, if lda or ldb is less than k plus one, an error ag is set and passed to the error handler.
For the C bindings of SB ACC, if order = blas rowmajor and if lda or ldb is less than one or lda
or ldb is less than n, an error ag is set and passed to the error handler; if order = blas colmajor

and if lda or ldb is less than one or lda or ldb is less than k plus one, an error ag is set and passed
to the error handler.

� Fortran 95 binding:

General:

SUBROUTINE ge_acc( a, b [, trans] [, alpha] [, beta] )

Symmetric:

SUBROUTINE sy_acc( a, b [, uplo] [, trans] [, alpha] [, beta] )

Symmetric Band:

SUBROUTINE sb_acc( a, b [, uplo] [, trans] [, alpha] [, beta] )

Symmetric Packed:

SUBROUTINE sp_acc( ap, bp [, uplo] [, trans] [, alpha] [, beta] )

all:

<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)

<type>(<wp>), INTENT(INOUT) :: b(:,:) | bp(:)

TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT (IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

The default value for � is 1.0 or (1.0,0.0).

� Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_ACC( TRANS, M, N, ALPHA, A, LDA, BETA, B,

$ LDB )

Symmetric:
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SUBROUTINE BLAS_xSY_ACC( UPLO, TRANS, N, ALPHA, A, LDA, BETA, B,

$ LDB )

Symmetric Band:

SUBROUTINE BLAS_xSB_ACC( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,

$ B, LDB )

Symmetric Packed:

SUBROUTINE BLAS_xSP_ACC( UPLO, TRANS, N, ALPHA, AP, BETA, BP )

all:

INTEGER K, LDA, LDB, M, N, TRANS, UPLO

<type> ALPHA, BETA

<type> A( LDA, * ) or AP( * ), B( LDB, * ) or BP( * )

� C binding:

General:

void BLAS_xge_acc( enum blas_order_type order, enum blas_trans_type trans,

int m, int n, SCALAR_IN alpha, const ARRAY a, int lda,

SCALAR_IN beta, ARRAY b, int ldb );

Symmetric:

void BLAS_xsy_acc( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, SCALAR_IN alpha,

const ARRAY a, int lda, SCALAR_IN beta, ARRAY b, int ldb );

Symmetric Band:

void BLAS_xsb_acc( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k, SCALAR_IN alpha,

const ARRAY a, int lda, SCALAR_IN beta, ARRAY b, int ldb );

Symmetric Packed:

void BLAS_xsp_acc( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, SCALAR_IN alpha,

const ARRAY ap, SCALAR_IN beta, ARRAY bp );

fGB,TR,TB,TPg ACC (Matrix accumulation and scale) B  �A+ �B

These routines scale matrices A and B and accumulate the result in the matrix B. Matrices A
and B have the same storage format. These routines return immediately if alpha is equal to zero
and beta is equal to one, or if m or kl or ku (for general band matrices) or n or k (for triangular
band matrices) is less than or equal to zero. For the routine GB ACC, if lda is less than kl plus ku
plus one, an error ag is set and passed to the error handler. For the C bindings for GB ACC, if
order = blas rowmajor and if lda is less than one or lda is less than n, an error ag is set and
passed to the error handler; if order = blas colmajor and if lda is less than one or lda is less
than kl plus ku plus one, an error ag is set and passed to the error handler. For the routines
TR ACC and TP ACC, if lda is less than one or lda is less than n, an error ag is set and passed to
the error handler. For the routine TB ACC, if lda is less than k plus one, an error ag is set and
passed to the error handler. For the C bindings for TB ACC, if order = blas rowmajor and if lda
is less than one or lda is less than n, an error ag is set and passed to the error handler; if order
= blas colmajor and if lda is less than one or lda is less than k plus one, an error ag is set and
passed to the error handler.



2.8. LANGUAGE BINDINGS 83

� Fortran 95 binding:

General Band:

SUBROUTINE gb_acc( a, m, kl, b [, alpha] [, beta] )

Triangular:

SUBROUTINE tr_acc( a, b [, uplo] [, diag] [, alpha] [, beta] )

Triangular Band:

SUBROUTINE tb_acc( a, b [, uplo] [, diag] [, alpha] [, beta] )

Triangular Packed:

SUBROUTINE tp_acc( ap, bp [, uplo] [, diag] [, alpha] [, beta] )

all:

<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)

INTEGER, INTENT (IN) :: m, kl

<type>(<wp>), INTENT(INOUT) :: b(:,:) | bp(:)

TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo

TYPE (blas_diag_type), INTENT (IN), OPTIONAL :: diag

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

The default value for � is 1.0 or (1.0,0.0).

� Fortran 77 binding:

General Band:

SUBROUTINE BLAS_xGB_ACC( M, N, KL, KU, ALPHA, A, LDA, BETA, B,

$ LDB )

Triangular:

SUBROUTINE BLAS_xTR_ACC( UPLO, DIAG, N, ALPHA, A, LDA, BETA, B,

$ LDB )

Triangular Band:

SUBROUTINE BLAS_xTB_ACC( UPLO, DIAG, N, K, ALPHA, A, LDA, BETA, B,

$ LDB )

Triangular Packed:

SUBROUTINE BLAS_xTP_ACC( UPLO, DIAG, N, ALPHA, AP, BETA, BP )

all:

INTEGER DIAG, K, KL, KU, LDA, LDB, M, N, UPLO

<type> ALPHA, BETA

<type> A( LDA, * ) or AP( * ), B( LDB, * ) or BP( * )

� C binding:

General Band:

void BLAS_xgb_acc( enum blas_order_type order, int m, int n, int kl, int ku,

SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,

ARRAY b, int ldb );

Triangular:

void BLAS_xtr_acc( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_diag_type diag, int n, SCALAR_IN alpha,

const ARRAY a, int lda, SCALAR_IN beta, ARRAY b, int ldb );



84 CHAPTER 2. DENSE AND BANDED BLAS

Triangular Band:

void BLAS_xtb_acc( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_diag_type diag, int n, int k, SCALAR_IN alpha,

const ARRAY a, int lda, SCALAR_IN beta, ARRAY b, int ldb );

Triangular Packed:

void BLAS_xtp_acc( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_diag_type diag, int n, SCALAR_IN alpha,

const ARRAY ap, SCALAR_IN beta, ARRAY bp );

fGE,GB,SY,SB,SP,TR,TB,TPg ADD (Matrix add and scale) C  �A+ �B

This routine scales two matrices A and B and stores their sum in a matrix C. Matrices A, B,
and C have the same storage format. This routine returns immediately if m or kl or ku (for general
band matrices) or n or k (for symmetric or triangular band matrices) is less than or equal to zero.
For the routine GE ADD, if lda or ldb is less than one or less than m, an error ag is set and passed
to the error handler. For the C bindings for GE ADD, if order = blas rowmajor and if lda or ldb
is less than one or lda or ldb is less than n, an error ag is set and passed to the error handler; if
order = blas colmajor and if lda or ldb is less than one or lda or ldb is less than m, an error ag
is set and passed to the error handler. For the routine GB ADD, if lda or ldb is less than kl plus ku
plus one, an error ag is set and passed to the error handler. For the C bindings for GB ADD, if
order = blas rowmajor and if lda or ldb is less than one or lda or ldb is less than n, an error ag
is set and passed to the error handler; if order = blas colmajor and if lda or ldb is less than one
or lda or ldb is less than kl plus ku plus one, an error ag is set and passed to the error handler. For
the routines SY ADD, TR ADD, SP ADD, and TP ADD, if lda or ldb is less than one or lda or ldb
is less than n, an error ag is set and passed to the error handler. For the routines SB ADD and
TB ADD, if lda or ldb is less than k plus one, an error ag is set and passed to the error handler.
For the C bindings for SB ADD and TB ADD, if order = blas rowmajor and if lda or ldb is less
than one or lda or ldb is less than n, an error ag is set and passed to the error handler; if order =

blas colmajor and if lda or ldb is less than one or lda or ldb is less than k plus one, an error ag
is set and passed to the error handler.

� Fortran 95 binding:

General:

SUBROUTINE ge_add( a, b, c [, alpha] [, beta] )

General Band:

SUBROUTINE gb_add( a, m, kl, b, c [, alpha] [, beta] )

Symmetric:

SUBROUTINE sy_add( a, b, c [, uplo] [, alpha] [, beta] )

Symmetric Band:

SUBROUTINE sb_add( a, b, c [, uplo] [, alpha] [, beta] )

Symmetric Packed:

SUBROUTINE sp_add( ap, bp, cp [, uplo] [, alpha] [, beta] )

Triangular:

SUBROUTINE tr_add( a, b, c [, uplo] [, diag] [, alpha] [, beta] )

Triangular Band:

SUBROUTINE tb_add( a, b, c [, uplo] [, diag] [, alpha] [, beta] )
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Triangular Packed:

SUBROUTINE tp_add( ap, bp, cp [, uplo] [, diag] [, alpha] [, beta] )

all:

<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)

INTEGER, INTENT (IN) :: m, kl

<type>(<wp>), INTENT(IN) :: b(:,:) | bp(:)

<type>(<wp>), INTENT(OUT) :: c(:,:) | cp(:)

TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo

TYPE (blas_diag_type), INTENT (IN), OPTIONAL :: diag

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

assuming A, B and C all the same (general, banded or packed) with

the same size.

a, b and c have shape (m,n) for general matrix

(l,n) for general banded matrix (l > kl)

(n,n) for symmetric or triangular

(k+1,n) for symmetric banded or triangular

banded (k=band width)

ap, bp and cp have shape (n*(n+1)/2).

The default value for � is 1.0 or (1.0,0.0).

� Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_ADD( M, N, ALPHA, A, LDA, BETA, B, LDB, C,

$ LDC )

General Band:

SUBROUTINE BLAS_xGB_ADD( M, N, KL, KU, ALPHA, A, LDA, BETA, B,

$ LDB, C, LDC )

Symmetric:

SUBROUTINE BLAS_xSY_ADD( UPLO, N, ALPHA, A, LDA, BETA, B, LDB,

$ C, LDC )

Symmetric Band:

SUBROUTINE BLAS_xSB_ADD( UPLO, N, K, ALPHA, A, LDA, BETA, B, LDB,

$ C, LDC )

Symmetric Packed:

SUBROUTINE BLAS_xSP_ADD( UPLO, N, ALPHA, AP, BETA, BP, CP )

Triangular:

SUBROUTINE BLAS_xTR_ADD( UPLO, DIAG, N, ALPHA, A, LDA, BETA, B,

$ LDB, C, LDC )

Triangular Band:

SUBROUTINE BLAS_xTB_ADD( UPLO, DIAG, N, K, ALPHA, A, LDA, BETA,

$ B, LDB, C, LDC )

Triangular Packed:

SUBROUTINE BLAS_xTP_ADD( UPLO, DIAG, N, ALPHA, AP, BETA, BP, CP )

all:

INTEGER DIAG, K, KL, KU, LDA, LDB, M, N, TRANS, UPLO
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<type> ALPHA, BETA

<type> A( LDA, * ) or AP( * ), B( LDB, * ) or BP( * ),

<type> C( LDC, * ) or CP( * )

� C binding:

General:

void BLAS_xge_add( enum blas_order_type order, int m, int n, SCALAR_IN alpha,

const ARRAY a, int lda, SCALAR_IN beta, const ARRAY b,

int ldb, ARRAY c, int ldc );

General Band:

void BLAS_xgb_add( enum blas_order_type order, int m, int n, int kl, int ku,

SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,

const ARRAY b, int ldb, ARRAY c, int ldc );

Symmetric:

void BLAS_xsy_add( enum blas_order_type order, enum blas_uplo_type uplo, int n,

SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,

const ARRAY b, int ldb, ARRAY c, int ldc );

Symmetric Band:

void BLAS_xsb_add( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, SCALAR_IN alpha, const ARRAY a, int lda,

SCALAR_IN beta, const ARRAY b, int ldb, ARRAY c, int ldc );

Symmetric Packed:

void BLAS_xsp_add( enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY ap, SCALAR_IN beta,

const ARRAY bp, ARRAY cp );

Triangular:

void BLAS_xtr_add( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_diag_type diag, int n, SCALAR_IN alpha,

const ARRAY a, int lda, SCALAR_IN beta, const ARRAY b,

int ldb, ARRAY c, int ldc );

Triangular Band:

void BLAS_xtb_add( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_diag_type diag, int n, int k, SCALAR_IN alpha,

const ARRAY a, int lda, SCALAR_IN beta, const ARRAY b,

int ldb, ARRAY c, int ldc );

Triangular Packed:

void BLAS_xtp_add( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_diag_type diag, int n, SCALAR_IN alpha,

const ARRAY ap, SCALAR_IN beta, const ARRAY bp,

ARRAY cp );

2.8.8 Matrix-Matrix Operations

In the following section, op(X) denotes X, or XT or XH where X is a matrix.
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GEMM (General Matrix Matrix Product) C  �op(A)op(B) + �C

The routine performs a general matrix matrix multiply C  �op(A)op(B) + �C where � and
� are scalars, and A, B, and C are general matrices. This routine returns immediately if alpha
is equal to zero and beta is equal to one, or if m or n or k is less than or equal to zero. If lda is
less than one, or transa = blas no trans and lda is less than m, or transa 6= blas no trans and
lda is less than k, or ldb is less than one, or transb = blas no trans and ldb is less than k, or
transb 6= blas no trans and ldb is less than n, or ldc is less than one or less than m, an error ag
is set and passed to the error handler.

This interface encompasses the Legacy BLAS routine xGEMM.

� Fortran 95 binding:

SUBROUTINE gemm( a, b, c [, transa] [, transb] [, alpha] [, beta] )

<type>(<wp>), INTENT(IN) :: <aa>, <bb>

<type>(<wp>), INTENT(INOUT) :: <cc>

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa, transb

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

<aa> ::= a(:,:) or a(:)

<bb> ::= b(:,:) or b(:)

<cc> ::= c(:,:) or c(:)

and

c, rank 2, has shape (m,n)

a has shape (m,k) if transa = blas_no_trans (the default)

(k,m) if transa /= blas_no_trans

(m) if rank 1

b has shape (k,n) if transb = blas_no_trans (the default)

(n,k) if transb /= blas_no_trans

(n) if rank 1

c, rank 1, has shape (m)

a has shape (m,n) if transa = blas_no_trans (the default)

(n,m) if transa /= blas_no_trans

b has shape (n)

Rank a Rank b Rank c transa transb Operation Arguments

2 2 2 N N C  �AB + �C real or complex

2 2 2 N T C  �ABT + �C real or complex

2 2 2 N H C  �ABH + �C complex

2 2 2 T N C  �ATB + �C real or complex

2 2 2 T T C  �ATBT + �C real or complex

2 2 2 H N C  �AHB + �C complex

2 2 2 H H C  �AHBH + �C complex

2 1 1 N - c �Ab+ �c real or complex

2 1 1 T - c �AT b+ �c real or complex

2 1 1 H - c �AHb+ �c complex

1 1 2 - - C  �abT + �C real or complex

1 1 2 - H C  �abH + �C complex
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The functionality of xGEMV, xGER, xGERU, and xGERC are also covered by this generic
procedure.

� Fortran 77 binding:

SUBROUTINE BLAS_xGEMM( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC )

INTEGER K, LDA, LDB, LDC, M, N, TRANSA, TRANSB

<type> ALPHA, BETA

<type> A( LDA, * ), B( LDB, * ), C( LDC, * )

� C binding:

void BLAS_xgemm( enum blas_order_type order, enum blas_trans_type transa,

enum blas_trans_type transb, int m, int n, int k,

SCALAR_IN alpha, const ARRAY a, int lda, const ARRAY b,

int ldb, SCALAR_IN beta, ARRAY c, int ldc );

SYMM (Symmetric Matrix Matrix Product) C  �AB + �C or C  �BA+ �C

This routine performs one of the symmetric matrix matrix operations C  �AB + �C or
C  �BA + �C where � and � are scalars, A is a symmetric matrix, and B and C are general
matrices. This routine returns immediately if alpha is equal to zero and beta is equal to one, or if
m or n is less than or equal to zero. For side equal to blas left side, and if lda is less than one or less
than m, or if ldb is less than one or less than m, or if ldc is less than one or less than m, an error
ag is set and passed to the error handler. For side equal to blas right side, and if lda is less than
one or less than n, or if ldb is less than one or less than n, or if ldc is less than one or less than n,
an error ag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xSYMM with added functionality for com-
plex symmetric matrices.

� Fortran 95 binding:

SUBROUTINE symm( a, b, c [, side] [, uplo] [, alpha] [, beta] )

<type>(<wp>), INTENT(IN) :: a(:,:), <bb>

<type>(<wp>), INTENT(INOUT) :: <cc>

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

<bb> ::= b(:,:) or b(:)

<cc> ::= c(:,:) or c(:)

and

c, rank 2, has shape (m,n), b same shape as c

SY a has shape (m,m) if side = blas_left_side (the default)

a has shape (n,n) if side /= blas_left_side

c, rank 1, has shape (m), b same shape as c

SY a has shape (m,m)
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Rank b Rank c side Operation

2 2 L C  �AB + �C
2 2 R C  �BA+ �C
1 1 - c �Ab+ �c

The functionality of xSYMV is covered by symm.

� Fortran 77 binding:

SUBROUTINE BLAS_xSYMM( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC )

INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO

<type> ALPHA, BETA

<type> A( LDA, * ), B( LDB, * ), C( LDC, * )

� C binding:

void BLAS_xsymm( enum blas_order_type order, enum blas_side_type side,

enum blas_uplo_type uplo, int m, int n, SCALAR_IN alpha,

const ARRAY a, int lda, const ARRAY b, int ldb,

SCALAR_IN beta, ARRAY c, int ldc );

HEMM (Hermitian Matrix Matrix Product) C  �AB + �C or C  �BA+ �C

This routine performs one of the Hermitian matrix matrix operations C  �AB + �C or
C  �BA + �C where � and � are scalars, A is a Hermitian matrix, and B and C are general
matrices. This routine returns immediately if alpha is equal to zero and beta is equal to one, or if
m or n is less than or equal to zero. For side equal to blas left side, and if lda is less than one or less
than m, or if ldb is less than one or less than m, or if ldc is less than one or less than m, an error
ag is set and passed to the error handler. For side equal to blas right side, and if lda is less than
one or less than n, or if ldb is less than one or less than n, or if ldc is less than one or less than n,
an error ag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xHEMM.

� Fortran 95 binding:

Hermitian:

SUBROUTINE hemm( a, b, c [, side] [, uplo] [, alpha] [, beta] )

COMPLEX(<wp>), INTENT(IN) :: a(:,:), <bb>

COMPLEX(<wp>), INTENT(INOUT) :: <cc>

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

<bb> ::= b(:,:) or b(:)

<cc> ::= c(:,:) or c(:)

and
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c, rank 2, has shape (m,n), b same shape as c

HE a has shape (m,m) if "side" = blas_left_side (the default)

a has shape (n,n) if "side" /= blas_left_side

c, rank 1, has shape (m), b same shape as c

HE a has shape (m,m)

Rank b Rank c side Operation

2 2 L C  �AB + �C
2 2 R C  �BA+ �C
1 1 - c �Ab+ �c

The functionality of xHEMV is covered by hemm.

� Fortran 77 binding:

SUBROUTINE BLAS_xHEMM( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC )

INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO

<ctype> ALPHA, BETA

<ctype> A( LDA, * ), B( LDB, * ), C( LDC, * )

� C binding:

void BLAS_xhemm( enum blas_order_type order, enum blas_side_type side,

enum blas_uplo_type uplo, int m, int n, CSCALAR_IN alpha,

const CARRAY a, int lda, const CARRAY b, int ldb,

CSCALAR_IN beta, CARRAY c, int ldc );

TRMM (Triangular Matrix Matrix Multiply) B  �op(T )B or B  �Bop(T )

These routines perform one of the matrix-matrix operations B  �op(T )B or B  �Bop(T )
where � is a scalar, B is a general matrix, and T is a unit, or non-unit, upper or lower triangular
(or triangular band) matrix. This routine returns immediately if m, n, or k (for triangular band
matrices), is less than or equal to zero. For side equal to blas left side, and if ldt is less than one
or less than m, or if ldb is less than one or less than m, an error ag is set and passed to the error
handler. For side equal to blas right side, and if ldt is less than one or less than n, or if ldb is less
than one or less than m, an error ag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xTRMM.

� Fortran 95 binding:

SUBROUTINE trmm( t, b [, side] [, uplo] [, transt] [, diag] [, alpha] )

<type>(<wp>), INTENT(IN) :: t(:,:)

<type>(<wp>), INTENT(INOUT) :: <bb>

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
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TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

where

<bb> ::= b(:,:) or b(:)

and

b, rank 2, has shape (m,n)

TR t has shape (m,m) if side = blas_left_side (the default)

t has shape (n,n) if side /= blas_left_side

b, rank 1, has shape (m)

TR t has shape (m,m)

Rank b transt side Operation

2 N L B  �TB
2 T L B  �T TB
2 H L B  �THB
2 N R B  �BT
2 T R B  �BT T

2 H R B  �BTH

1 N - b �Tb
1 T - b �T T b
1 H - b �THb

The functionality of xTRMV is covered by trmm.

� Fortran 77 binding:

SUBROUTINE BLAS_xTRMM( SIDE, UPLO, TRANST, DIAG, M, N, ALPHA, T,

$ LDT, B, LDB )

INTEGER DIAG, LDB, LDT, M, N, SIDE, TRANST, UPLO

<type> ALPHA

<type> T( LDT, * ), B( LDB, * )

� C binding:

void BLAS_xtrmm( enum blas_order_type order, enum blas_side_type side,

enum blas_uplo_type uplo, enum blas_trans_type transt,

enum blas_diag_type diag, int m, int n, SCALAR_IN alpha,

const ARRAY t, int ldt, ARRAY b, int ldb );

TRSM (Triangular Solve) B  �op(T�1)B or B  �Bop(T�1)

This routine solves one of the matrix equations B  �op(T�1)B or B  �Bop(T�1) where � is
a scalar, B is a general matrix, and T is a unit, or non-unit, upper or lower triangular matrix. This
routine returns immediately if m or n is less than or equal to zero. For side equal to blas left side,
and if ldt is less than one or less than m, or if ldb is less than one or less than m, an error ag is set
and passed to the error handler. For side equal to blas right side, and if ldt is less than one or less
than n, or if ldb is less than one or less than m, an error ag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xTRSM.
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Advice to implementors. Note that no check for singularity, or near singularity is speci�ed
for these triangular equation-solving routines. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver. (End of advice to implementors.)

� Fortran 95 binding:

SUBROUTINE trsm( t, b [, side] [, uplo] [, transt] [, diag] [, alpha] )

<type>(<wp>), INTENT(IN) :: t(:,:)

<type>(<wp>), INTENT(INOUT) :: <bb>

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt

TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

where

<bb> ::= b(:,:) or b(:)

and

b, rank 2, has shape (m,n)

TR t has shape (m,m) if side = blas_left_side (the default)

t has shape (n,n) if side /= blas_left_side

b, rank 1, has shape (m)

TR t has shape (m,m)

Rank b transt side Operation

2 N L B  �T�1B
2 T L B  �T�TB
2 H L B  �T�HB
2 N R B  �BT�1

2 T R B  �BT�T

2 H R B  �BT�H

1 N - b �T�1b
1 T - b �T�T b
1 H - b �T�Hb

The functionality of xTRSV is covered by trsm.

� Fortran 77 binding:

SUBROUTINE BLAS_xTRSM( SIDE, UPLO, TRANST, DIAG, M, N, ALPHA,

$ T, LDT, B, LDB )

INTEGER DIAG, LDB, LDT, M, N, SIDE, TRANST, UPLO

<type> ALPHA

<type> T( LDT, * ), B( LDB, * )

� C binding:
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void BLAS_xtrsm( enum blas_order_type order, enum blas_side_type side,

enum blas_uplo_type uplo, enum blas_trans_type transt,

enum blas_diag_type diag, int m, int n, SCALAR_IN alpha,

const ARRAY t, int ldt, ARRAY b, int ldb );

SYRK (Symmetric Rank K update) C  �AAT + �C, C  �ATA+ �C

This routine performs one of the symmetric rank k operations C  �AAT + �C or C  
�ATA+ �C where � and � are scalars, C is a symmetric matrix, and A is a general matrix. This
routine returns immediately if alpha is equal to zero and beta is equal to one, or if n or k is less
than or equal to zero. If ldc is less than one or less than n, an error ag is set and passed to the
error handler. For trans equal to blas no trans, and if lda is less than one or less than n, an error
ag is set and passed to the error handler. For trans equal to blas trans, and if lda is less than one
or less than k, an error ag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xSYRK with added functionality for
complex symmetric matrices.

� Fortran 95 binding:

SUBROUTINE syrk( a, c [, uplo] [, trans] [, alpha] [, beta] )

<type>(<wp>), INTENT(IN) :: <aa>

<type>(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

<aa> ::= a(:,:) or a(:)

and

c has shape (n,n)

a has shape (n,k) if trans = blas_no_trans (the default)

(k,n) if trans /= blas_no_trans

(n) if rank 1

Rank a trans Operation

2 N C  �AAT + �C
2 T C  �ATA+ �C
1 - C  �aaT + �C

The functionality of xSYR is covered by syrk.

� Fortran 77 binding:

SUBROUTINE BLAS_xSYRK( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,

$ C, LDC )

INTEGER K, LDA, LDC, N, TRANS, UPLO

<type> ALPHA, BETA

<type> A( LDA, * ), C( LDC, * )
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� C binding:

void BLAS_xsyrk( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k, SCALAR_IN alpha,

const ARRAY a, int lda, SCALAR_IN beta, ARRAY c, int ldc );

HERK (Hermitian Rank K update) C  �AAH + �C, C  �AHA+ �C

This routine performs one of the Hermitian rank k operations C  �AAH + �C or C  
�AHA+ �C where � and � are scalars, C is a Hermitian matrix, and A is a general matrix. This
routine returns immediately if alpha is equal to zero and beta is equal to one, or if n or k is less
than or equal to zero. If ldc is less than one or less than n, an error ag is set and passed to the
error handler. For trans equal to blas no trans, and if lda is less than one or less than n, an error
ag is set and passed to the error handler. For trans equal to blas trans, and if lda is less than one
or less than k, an error ag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xHERK.

� Fortran 95 binding:

SUBROUTINE herk( a, c [, uplo] [, trans] [, alpha] [, beta] )

COMPLEX(<wp>), INTENT(IN) :: <aa>

COMPLEX(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

REAL(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

<aa> ::= a(:,:) or a(:)

and

c has shape (n,n)

a has shape (n,k) if trans = blas_no_trans (the default)

(k,n) if trans /= blas_no_trans

(n) if rank 1

Rank a trans Operation

2 N C  �AAH + �C
2 T C  �AHA+ �C
1 - C  �aaH + �C

The functionality of xHER is covered by herk.

� Fortran 77 binding:

SUBROUTINE BLAS_xHERK( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C,

$ LDC )

INTEGER K, LDA, LDC, N, TRANS, UPLO

<rtype> ALPHA, BETA

<ctype> A( LDA, * ), C( LDC, * )
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� C binding:

void BLAS_xherk( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k, RSCALAR_IN alpha,

const CARRAY a, int lda, RSCALAR_IN beta, CARRAY c, int ldc );

SY TRIDIAG RK (Symmetric Rank K update with symmetric tridiagonal matrix)

C  �AJAT + �C, C  �AT JA+ �C

This routine performs one of the symmetric rank k operations C  �AJAT + �C or C  
�ATJA + �C where � and � are scalars, C is a symmetric matrix, A is a general matrix, and J
is a symmetric tridiagonal matrix. This routine returns immediately if alpha is equal to zero and
beta is equal to one, or if n or k is less than or equal to zero. If ldc is less than one or less than n,
an error ag is set and passed to the error handler. For trans equal to blas no trans, and if lda is
less than one or less than n, an error ag is set and passed to the error handler. For trans equal
to blas trans, and if lda is less than one or less than k, an error ag is set and passed to the error
handler.

� Fortran 95 binding:

SUBROUTINE sy_tridiag_rk( a, d, e, c [, uplo] [, trans] [, alpha] &

[, beta] )

<type>(<wp>), INTENT(IN) :: a(:,:)

<type>(<wp>), INTENT(IN) :: d(:), e(:)

<type>(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

c has shape (n,n)

if trans = blas_no_trans (the default)

a has shape (n,k)

d has shape (k)

e has shape (k-1)

if trans /= blas_no_trans

a has shape (k,n)

d has shape (n)

e has shape (n-1)

Rank a trans Operation

2 N C  �AJAT + �C
2 T C  �ATJA+ �C

� Fortran 77 binding:
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SUBROUTINE BLAS_xSY_TRIDIAG_RK( UPLO, TRANS, N, K, ALPHA, A, LDA, D,

$ E, BETA, C, LDC )

INTEGER K, LDA, LDC, N, TRANS, UPLO

<type> ALPHA, BETA

<type> A( LDA, * ), C( LDC, * ), D( * ), E( * )

� C binding:

void BLAS_xsy_tridiag_rk( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k,

SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY d, const ARRAY e, SCALAR_IN beta,

ARRAY c, int ldc );

HE TRIDIAG RK (Hermitian Rank K update with symmetric tridiagonal matrix)

C  �AJAH + �C, C  �AHJA+ �C

This routine performs one of the Hermitian rank k operations C  �AJAH + �C or C  
�AHJA + �C where � and � are scalars, C is a Hermitian matrix, A is a general matrix, and J
is a symmetric tridiagonal matrix. This routine returns immediately if alpha is equal to zero and
beta is equal to one, or if n or k is less than or equal to zero. If ldc is less than one or less than n,
an error ag is set and passed to the error handler. For trans equal to blas no trans, and if lda is
less than one or less than n, an error ag is set and passed to the error handler. For trans equal
to blas trans, and if lda is less than one or less than k, an error ag is set and passed to the error
handler.

� Fortran 95 binding:

SUBROUTINE he_tridiag_rk( a, d, e, c [, uplo] [, trans] [, alpha] &

[, beta] )

COMPLEX(<wp>), INTENT(IN) :: a(:,:)

COMPLEX(<wp>), INTENT(IN) :: d(:), e(:)

COMPLEX(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

REAL(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

c has shape (n,n)

if trans = blas_no_trans (the default)

a has shape (n,k)

d has shape (k)

e has shape (k-1)

if trans /= blas_no_trans

a has shape (k,n)

d has shape (n)

e has shape (n-1)
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Rank a trans Operation

2 N C  �AJAH + �C
2 T C  �AHJA+ �C

� Fortran 77 binding:

SUBROUTINE BLAS_xHE_TRIDIAG_RK( UPLO, TRANS, N, K, ALPHA, A, LDA,

$ D, E, BETA, C, LDC )

INTEGER K, LDA, LDC, N, TRANS, UPLO

<rtype> ALPHA, BETA

<ctype> A( LDA, * ), C( LDC, * ), D( * ), E( * )

� C binding:

void BLAS_xhe_tridiag_rk( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k,

RSCALAR_IN alpha, const CARRAY a, int lda,

const CARRAY d, const CARRAY e, RSCALAR_IN beta,

CARRAY c, int ldc );

SYR2K (Symmetric rank 2k update) C  (�A)BT +B(�A)T + �C

C  (�A)TB +BT (�A) + �C

These routines perform the symmetric rank 2k operation C  (�A)BT + B(�A)T + �C or
C  (�A)TB +BT (�A) + �C where � and � are scalars, C is a symmetric matrix, and A and B
are general matrices. This routine returns immediately if alpha is equal to zero and beta is equal
to one, or if n or k is less than or equal to zero. If ldc is less than one or less than n, an error ag
is set and passed to the error handler. For trans equal to blas no trans, and if lda is less than one
or less than n, or if ldb is less than one or less than n, an error ag is set and passed to the error
handler. For trans equal to blas trans, and if lda is less than one or less than k, or if ldb is less than
one or less than k, an error ag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xSYR2K with added functionality for
complex symmetric matrices.

� Fortran 95 binding:

SUBROUTINE syr2k( a, b, c [, uplo] [, trans] [, alpha] [, beta] )

<type>(<wp>), INTENT(IN) :: <aa>, <bb>

<type>(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

<aa> ::= a(:,:) or a(:)

<bb> ::= b(:,:) or b(:)

and

c has shape (n,n)
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if trans = blas_no_trans (the default)

a has shape (n,k)

b has shape (n,k)

if trans /= blas_no_trans

a has shape (k,n)

b has shape (k,n)

Rank a Rank b trans Operation

2 2 N C  �ABT + �BAT + �C
2 2 T C  �ATB + �BTA+ �C
1 1 - C  �abT + �baT + �C

The functionality of xSYR2 is covered by syr2k.

� Fortran 77 binding:

SUBROUTINE BLAS_xSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC )

INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO

<type> ALPHA, BETA

<type> A( LDA, * ), B( LDB, * ), C( LDC, * )

� C binding:

void BLAS_xsyr2k( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k, SCALAR_IN alpha,

const ARRAY a, int lda, const ARRAY b, int ldb,

SCALAR_IN beta, ARRAY c, int ldc );

HER2K (Hermitian rank 2k update) C  (�A)BH +B(�A)H + �C

C  (�A)HB +BH(�A) + �C

These routines perform the Hermitian rank 2k operation C  (�A)BH + B(�A)H + �C or
C  (�A)HB +BH(�A) + �C where � and � are scalars, C is a Hermitian matrix, and A and B
are general matrices. This routine returns immediately if alpha is equal to zero and beta is equal
to one, or if n or k is less than or equal to zero. If ldc is less than one or less than n, an error ag
is set and passed to the error handler. For trans equal to blas no trans, and if lda is less than one
or less than n, or if ldb is less than one or less than n, an error ag is set and passed to the error
handler. For trans equal to blas trans, and if lda is less than one or less than k, or if ldb is less than
one or less than k, an error ag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xHER2K.

� Fortran 95 binding:

SUBROUTINE her2k( a, b, c [, uplo] [, trans] [, alpha] [, beta] )

COMPLEX(<wp>), INTENT(IN) :: <aa>, <bb>

COMPLEX(<wp>), INTENT(INOUT) :: c(:,:)



2.8. LANGUAGE BINDINGS 99

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha

REAL(<wp>), INTENT(IN), OPTIONAL :: beta

where

<aa> ::= a(:,:) or a(:)

<bb> ::= b(:,:) or b(:)

and

c has shape (n,n)

a and b have shape (n,k) if trans = blas_no_trans (the default)

(k,n) if trans /= blas_no_trans

(n) if rank 1

Rank a Rank b trans Operation

2 2 N C  �ABH + ��BAH + �C
2 2 T C  �AHB + ��BHA+ �C
1 1 - C  �abH + ��baH + �C

The functionality of xHER2 is covered by her2k.

� Fortran 77 binding:

SUBROUTINE BLAS_xHER2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC )

INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO

<ctype> ALPHA

<rtype> BETA

<ctype> A( LDA, * ), B( LDB, * ), C( LDC, * )

� C binding:

void BLAS_xher2k( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k, CSCALAR_IN alpha,

const CARRAY A, int lda, const CARRAY b, int ldb,

RSCALAR_IN beta, CARRAY c, int ldc );

SY TRIDIAG R2K (Symmetric rank 2k update with symmetric tridiagonal matrix)

C  (�AJ)BT +B(�AJ)T + �C
C  (�AJ)TB +BT (�AJ) + �C

These routines perform the symmetric rank 2k operation C  (�AJ)BT + B(�AJ)T + �C or
C  (�AJ)TB + BT (�AJ) + �C where � and � are scalars, C is a symmetric matrix, A and B
are general matrices, and J is a symmetric tridiagonal matrix. This routine returns immediately
if alpha is equal to zero and beta is equal to one, or if n or k is less than or equal to zero. If ldc is
less than one or less than n, an error ag is set and passed to the error handler. For trans equal
to blas no trans, and if lda is less than one or less than n, or if ldb is less than one or less than n,
an error ag is set and passed to the error handler. For trans equal to blas trans, and if lda is less
than one or less than k, or if ldb is less than one or less than k, an error ag is set and passed to
the error handler.
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� Fortran 95 binding:

SUBROUTINE sy_tridiag_r2k( a, d, e, b, c [, uplo] [, trans] &

[, alpha] [, beta] )

<type>(<wp>), INTENT(IN) :: a(:,:), b(:,:)

<type>(<wp>), INTENT(IN) :: d(:), e(:)

<type>(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha

<type>(<wp>), INTENT(IN), OPTIONAL :: beta

where

c has shape (n,n)

if trans = blas_no_trans (the default)

a and b have shape (n,k)

d has shape (k)

e has shape (k-1)

if trans /= blas_no_trans

a and b have shape (k,n)

d has shape (n)

e has shape (n-1)

Rank a Rank b trans Operation

2 2 N C  (�AJ)BT +B(�AJ)T + �C
2 2 T C  (�AJ)TB +BT (�AJ) + �C

� Fortran 77 binding:

SUBROUTINE BLAS_xSY_TRIDIAG_R2K( UPLO, TRANS, N, K, ALPHA, A, LDA,

$ D, E, B, LDB, BETA, C, LDC )

INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO

<type> ALPHA, BETA

<type> A( LDA, * ), B( LDB, * ), C( LDC, * ),

$ D( * ), E( * )

� C binding:

void BLAS_xsy_tridiag_r2k( enum blas_order_type order,

enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k,

SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY d, const ARRAY e, const ARRAY b,

int ldb, SCALAR_IN beta, ARRAY c, int ldc );

HE TRIDIAG R2K (Hermitian rank 2k update with symmetric tridiagonal matrix)

C  (�AJ)BH +B(�AJ)H + �C
C  (�AJ)HB +BH(�AJ) + �C
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These routines perform the symmetric rank 2k operation C  (�AJ)BH +B(�AJ)H + �C or
C  (�AJ)HB + BH(�AJ) + �C where � and � are scalars, C is a Hermitian matrix, A and B
are general matrices, and J is a symmetric tridiagonal matrix. This routine returns immediately
if alpha is equal to zero and beta is equal to one, or if n or k is less than or equal to zero. If ldc is
less than one or less than n, an error ag is set and passed to the error handler. For trans equal
to blas no trans, and if lda is less than one or less than n, or if ldb is less than one or less than n,
an error ag is set and passed to the error handler. For trans equal to blas trans, and if lda is less
than one or less than k, or if ldb is less than one or less than k, an error ag is set and passed to
the error handler.

� Fortran 95 binding:

SUBROUTINE he_tridiag_r2k( a, d, e, b, c [, uplo] [, trans] &

[, alpha] [, beta] )

COMPLEX(<wp>), INTENT(IN) :: a(:,:), b(:,:)

COMPLEX(<wp>), INTENT(IN) :: d(:), e(:)

COMPLEX(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha

REAL(<wp>), INTENT(IN), OPTIONAL :: beta

where

c has shape (n,n)

if "trans" = blas_no_trans (the default)

a and b have shape (n,k)

d has shape (k)

e has shape (k-1)

if "trans" /= blas_no_trans

a and b have shape (k,n)

d has shape (n)

e has shape (n-1)

Rank a Rank b trans Operation

2 2 N C  (�AJ)BH +B(�AJ)H + �C
2 2 T C  (�AJ)HB +BH(�AJ) + �C

� Fortran 77 binding:

SUBROUTINE BLAS_xHE_TRIDIAG_R2K( UPLO, TRANS, N, K, ALPHA, A, LDA,

$ D, E, B, LDB, BETA, C, LDC )

INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO

<ctype> ALPHA

<rtype> BETA

<ctype> A( LDA, * ), B( LDB, * ), C( LDC, * ),

$ D( * ), E( * )

� C binding:
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void BLAS_xhe_tridiag_r2k( enum blas_order_type order,

enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k,

CSCALAR_IN alpha, const CARRAY a, int lda,

const CARRAY d, const CARRAY e, const CARRAY b,

int ldb, RSCALAR_IN beta, CARRAY c, int ldc );

2.8.9 Data Movement with Matrices

fGE,GB,SY,SB,SP,TR,TB,TPg COPY (Matrix copy) B  A, B  AT , B  AH

This routine copies a matrix (or its transpose or conjugate-transpose) A and stores the result
in a matrix B. Matrices A and B have the same storage format. This routine returns immediately
if m (for nonsymmetric matrices), n, k (for symmetric band matrices), or kl or ku (for general band
matrices), is less than or equal to zero. For the routine GE COPY, if trans equal to blas no trans,
and if lda is less than one or less than m, or if ldb is less than one or less than m, an error ag
is set and passed to the error handler. For the routine GE COPY, if trans equal to blas trans or
blas conj trans, and if lda is less than one or less than m, or if ldb is less than one or less than n,
an error ag is set and passed to the error handler. For the routine GB COPY, if lda is less than
kl plus ku plus one, or if ldb is less than kl plus ku plus one, an error ag is set and passed to the
error handler. For the routines SY COPY and TR COPY, if lda is less than one or less than n, or
if ldb is less than one or less than n, an error ag is set and passed to the error handler. For the
routines SB COPY and TB COPY, if lda is less than k plus one, or if ldb is less than k plus one, an
error ag is set and passed to the error handler.

� Fortran 95 binding:

General:

SUBROUTINE ge_copy( a, b [, trans] )

General Band:

SUBROUTINE gb_copy( a, b, m, kl [, trans] )

Symmetric:

SUBROUTINE sy_copy( a, b [, uplo] )

Symmetric Band:

SUBROUTINE sb_copy( a, b [, uplo] )

Symmetric Packed:

SUBROUTINE sp_copy( ap, bp [, uplo] )

Triangular:

SUBROUTINE tr_copy( a, b [, uplo] [,trans] [, diag] )

Triangular Band:

SUBROUTINE tb_copy( a, b [, uplo] [,trans] [, diag] )

Triangular Packed:

SUBROUTINE tp_copy( ap, bp [, uplo] [,trans] [, diag] )

all:

<type>(<wp>), INTENT(IN) :: a(:,:) or ap(:)

<type>(<wp>), INTENT(OUT) :: b(:,:) or bp(:)
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INTEGER, INTENT(IN) :: m, kl

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag

where

a and b have shape (n,n) for symmetric or triangular

(k+1,n) for symmetric banded or triangular

banded (k=band width)

ap and bp have shape (n*(n+1)/2).

For a general or general banded matrix:

If trans = blas_no_trans (the default)

a, b have shape (m,n) for general matrix

(l,n) for general banded matrix (l > kl)

If trans \= blas_no_trans

a has shape (m,n) and b has shape (n,m) for general matrix

(l,n) and b has shape (l,m) for general banded matrix (l > kl)

� Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_COPY( TRANS, M, N, A, LDA, B, LDB )

General Band:

SUBROUTINE BLAS_xGB_COPY( TRANS, M, N, KL, KU, A, LDA, B, LDB )

Symmetric:

SUBROUTINE BLAS_xSY_COPY( UPLO, N, A, LDA, B, LDB )

Symmetric Band:

SUBROUTINE BLAS_xSB_COPY( UPLO, N, K, A, LDA, B, LDB )

Symmetric Packed:

SUBROUTINE BLAS_xSP_COPY( UPLO, N, AP, BP )

Triangular:

SUBROUTINE BLAS_xTR_COPY( UPLO, TRANS, DIAG, N, A, LDA, B, LDB )

Triangular Band:

SUBROUTINE BLAS_xTB_COPY( UPLO, TRANS, DIAG, N, K, A, LDA, B,

$ LDB )

Triangular Packed:

SUBROUTINE BLAS_xTP_COPY( UPLO, TRANS, DIAG, N, AP, BP )

all:

INTEGER DIAG, LDA, LDB, N, K, KL, KU, TRANS, UPLO

<type> A( LDA, * ) or AP( * ), B( LDB, * ) or BP( * )

� C binding:

General:

void BLAS_xge_copy( enum blas_order_type order, enum blas_trans_type trans,

int m, int n, const ARRAY a, int lda, ARRAY b, int ldb );

General Band:

void BLAS_xgb_copy( enum blas_order_type order, enum blas_trans_type trans,

int m, int n, int kl, int ku, const ARRAY a, int lda,
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ARRAY b, int ldb );

Symmetric:

void BLAS_xsy_copy( enum blas_order_type order, enum blas_uplo_type uplo,

int n, const ARRAY a, int lda, ARRAY b, int ldb );

Symmetric Band:

void BLAS_xsb_copy( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, const ARRAY a, int lda, ARRAY b, int ldb );

Symmetric Packed:

void BLAS_xsp_copy( enum blas_order_type order, enum blas_uplo_type uplo,

int n, const ARRAY ap, ARRAY bp );

Triangular:

void BLAS_xtr_copy( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, const ARRAY a, int lda, ARRAY b, int ldb );

Triangular Band:

void BLAS_xtb_copy( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, int k, const ARRAY a, int lda, ARRAY b, int ldb );

Triangular Packed:

void BLAS_xtp_copy( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, const ARRAY ap, ARRAY bp );

fHE,HB,HPg COPY (Matrix copy) B  A

This routine copies a Hermitian matrix A and stores the result in a matrix B. This routine
returns immediately if n or k is less than or equal to zero. For the routine HE COPY, if lda is less
than one or less than n, or if ldb is less than one or less than n, an error ag is set and passed to
the error handler. For the routine HB COPY, if lda is less than k plus one, or if ldb is less than k
plus one, an error ag is set and passed to the error handler.

� Fortran 95 binding:

Hermitian:

SUBROUTINE he_copy( a, b [, uplo] )

Hermitian Band:

SUBROUTINE hb_copy( a, b [, uplo] )

Hermitian Packed:

SUBROUTINE hp_copy( ap, bp [, uplo] )

all:

COMPLEX(<wp>), INTENT(IN) :: a(:,:) or ap(:)

COMPLEX(<wp>), INTENT(OUT) :: b(:,:) or bp(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

where

a and b have shape (n,n)

(k+1,n) for banded (k=band width)

ap and bp have shape (n*(n+1)/2).
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� Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHE_COPY( UPLO, N, A, LDA, B, LDB )

Hermitian Band:

SUBROUTINE BLAS_xHB_COPY( UPLO, N, K, A, LDA, B, LDB )

Hermitian Packed:

SUBROUTINE BLAS_xHP_COPY( UPLO, N, AP, BP )

all:

INTEGER K, LDA, LDB, N, UPLO

<ctype> A( LDA, * ) or AP( * ), B( LDB, * ) or BP( * )

� C binding:

Hermitian:

void BLAS_xhe_copy( enum blas_order_type order, enum blas_uplo_type uplo,

int n, const CARRAY a, int lda, CARRAY b, int ldb );

Hermitian Band:

void BLAS_xhb_copy( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, const CARRAY a, int lda, CARRAY b, int ldb );

Hermitian Packed:

void BLAS_xhp_copy( enum blas_order_type order, enum blas_uplo_type uplo,

int n, const CARRAY ap, CARRAY bp );

GE TRANS (Matrix transposition) A AT , A AH

This routine performs the matrix transposition or conjugate-transposition of a square matrix
A, overwriting the matrix A. This routine returns immediately if n is less than or equal to zero. If
lda is less than one or less than n, an error ag is set and passed to the error handler.

� Fortran 95 binding:

SUBROUTINE ge_trans( a [, conj] )

<type>(<wp>), INTENT(INOUT) :: a(:,:)

TYPE (blas_conj_type), INTENT(IN), OPTIONAL :: conj

where

a has shape (n,n)

� Fortran 77 binding:

SUBROUTINE BLAS_xGE_TRANS( CONJ, N, A, LDA )

INTEGER CONJ, LDA, N

<type> A( LDA, * )

� C binding:

void BLAS_xge_trans( enum blas_order_type order, enum blas_conj_type conj,

int n, ARRAY a, int lda );
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GE PERMUTE (Permute matrix) A PA, or A AP

This routine permutes the rows or columns of a matrix (A  PA or A  AP ) by the permu-
tation matrix P . The representation of the permutation vector p is described in section 2.2.6. This
routine returns immediately if m or n is less than or equal to zero. As described in section 2.5.3,
the value incp less than zero is permitted. However, if incp is equal to zero, an error ag is set and
passed to the error handler. If lda is less than one or less than m, an error ag is set and passed to
the error handler. For the C bindings, if order = blas rowmajor and if lda is less than one or lda
is less than n, an error ag is set and passed to the error handler; if order = blas colmajor and
if lda is less than one or lda is less than m, an error ag is set and passed to the error handler.

� Fortran 95 binding:

SUBROUTINE ge_permute( p, a [, side] )

INTEGER, INTENT(IN) :: p(:)

<type>(<wp>), INTENT(INOUT) :: a(:,:)

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side

where

a has shape (m,n)

d has shape (p) where p = m if side = blas_left_side

p = n if side = blas_right_side

� Fortran 77 binding:

SUBROUTINE BLAS_xGE_PERMUTE( SIDE, M, N, P, INCP, A, LDA )

INTEGER INCP, LDA, M, N, SIDE

INTEGER P( * )

<type> A( LDA, * )

The value of INCP may be positive or negative. A negative value of INCP applies the permu-
tation in the opposite direction.

� C binding:

void BLAS_xge_permute( enum blas_order_type order, enum blas_side_type side,

int m, int n, const int *p, int incp, ARRAY a,

int lda );

The value of incp may be positive or negative. A negative value of incp applies the permu-
tation in the opposite direction.

2.8.10 Environmental Enquiry

FPINFO (Environmental enquiry)
This routine queries for machine-speci�c oating point characteristics. Refer to section 1.6 for a

list of all possible return values of this routine, and sections A.4, A.5, and A.6, for their respective
language dependent representations in Fortran 95, Fortran 77, and C.
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� Fortran 95 binding:

REAL(<wp>) FUNCTION fpinfo( cmach, prec )

TYPE (blas_cmach_type), INTENT(IN) :: cmach

REAL (<wp>), INTENT(IN) :: prec

� Fortran 77 binding:

<rtype> FUNCTION BLAS_xFPINFO( CMACH )

INTEGER CMACH

� C binding:

<rtype> BLAS_xfpinfo( enum blas_cmach_type cmach );
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Chapter 3

Sparse BLAS

3.1 Overview

A matrix which contains many zero entries is often referred to as being sparse. Many problems
arising from engineering and scienti�c computing give rise to large, sparse matrices, hence their
importance in numerical linear algebra. Sparsity provides an opportunity to conserve storage and
reduce computational requirements by storing only the signi�cant (typically, nonzero) entries.

The Sparse BLAS interface addresses computational routines for unstructured sparse matrices.
These are matrices that do not possess a special sparsity pattern (such as banded or triangular
covered in the previous chapter on Dense/Banded speci�cations). Two fundamental di�erences
between the Sparse BLAS and other chapters are

� Functionality: Only a small subset of the BLAS functionality is speci�ed for sparse matrices
{ essentially only matrix multiply and triangular solve, along with sparse vector update, dot
product and gather/scatter. These are among the basic operations used in solving large
sparse linear equations using iterative techniques. Not included are general operations for
direct solvers, functions for explicit matrix reordering, or operations in which both operands
are sparse (e.g. the product of two sparse matrices).

� Generic interface: There is no single \best" method to represent a sparse matrix. The
selection of the possible storage format is dependent on the algorithm being used, the original
sparsity pattern of the matrix, the underlying computer architecture, together with other
considerations such as in what format the data already exists, and so on. Because of this,
sparse matrix arguments to the Level 2 and 3 Sparse BLAS routines are not the actual data
components but rather a placeholder, or handle, which refers to an abstract representation of
a matrix. (For portability, this handle is an integer variable.) Unlike the dense BLAS, there
are many storage representations for sparse matrices, and this handle-based scheme allows
one to write numerical algorithms using the Sparse BLAS independently of the matrix storage
scheme.

Several routines are provided to create Sparse BLAS matrices, but the internal representation
is implementation dependent. This provides BLAS library developers the best opportunity for
optimizing and �ne-tuning their kernels for speci�c situations.

Matrices in the Sparse BLAS can be constructed piece-by-piece, directly from common formats.
The result is a matrix handle that can be passed as a parameter to Sparse BLAS computational
kernels. Routines are also provided to extract information on a matrix identi�ed by its handle and
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to release any resources related to the handle when computations with the matrix are completed.
Thus, typical use of the Sparse BLAS consists of three phases:

1. create an internal sparse matrix representation and return its handle

(Sections 3.7.6, 3.7.7, and 3.7.8).

2. use this handle as a parameter in computational Sparse BLAS routines (Sections 3.7.2, 3.7.3,
and 3.7.4).

3. when the matrix is no longer needed, call a cleanup routine to free resources associated with
the handle (Section 3.7.10).

Note that the routine to release a matrix handle, USDS(), does not a�ect any of the user's data,
but only internal BLAS resources (housekeeping data structures and internal copies of matrix data)
that are not visible to the user. Thus, program resources available to the user after releasing a
matrix handle should be the same as before creating that handle.

In Section 3.2 we describe the functionality of the Level 1, 2 and 3 Sparse BLAS. Section 3.3
provides an overview of the data structures used to express the sparsity of the sparse vectors and
matrices, including a discussion of index bases in Section 3.3.2 and repeated indices in Section 3.3.3.
Section 3.4.1 illustrates how to initialize Sparse BLAS matrices and Section 3.4.2 how to specify
properties of the matrices. Sections 3.5.1{ 3.5.3 discuss interface issues. Section 3.6 briey discusses
numerical accuracy and environmental enquiry. Finally, in Section 3.7, we present the interfaces
for the kernels, giving details for each speci�c language binding for Fortran 95, Fortran 77, and C
programming languages.

3.2 Functionality

This section describes the Level 1, 2, and 3 routines de�ned for sparse vectors and matrices. In all
cases only one of the basic operands is sparse, that is there are no sparse-sparse operations. For
the sake of compactness, the case involving complex operators is usually omitted, For matrices,
whenever a transpose operation is described, the conjugate transpose is implied for the complex
case.

Note that Sparse BLAS routine names use the two-letter identi�er US, for Unstructured Sparse,
e.g. as in xUSMV for matrix/vector multiply1. Further details on function and subroutine names
and conventions are explained in subsequent sections.

3.2.1 Scalar and Vector Operations

This subsection lists the operations corresponding to the Level 1 Sparse BLAS. Table 3.1 lists the
scalar and vector operations. The following notation is used: r and � are scalars, x is a compressed
sparse vector, y is a dense vector, and yjx refers to the entries of y that have common indices with
the sparse vector x. Details of the sparse vector storage format are given in Section 3.3.1.

3.2.2 Matrix-Vector Operations

Table 3.2 lists matrix/vector (Level 2) operations. The notation A represents a sparse matrix and
T denotes a sparse triangular matrix. x and y are dense vectors, � is a scalar.

1The initials SP might have been a better choice, but these are already used by the symmetric-packed case in the
Dense BLAS.
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USDOT sparse dot product r  xT y;
r  xHy

USAXPY sparse vector update y  �x+ y

USGA sparse gather x yjx
USGZ sparse gather and zero x yjx; yjx  0

USSC sparse scatter yjx  x

Table 3.1: Sparse Vector Operations

USMV sparse matrix/vector multiply y  �Ax+ y
y  �ATx+ y
y  �AHx+ y

USSV sparse triangular solve x �T�1x
x �T�Tx
x �T�Hx

Table 3.2: Sparse Matrix-Vector Operations

3.2.3 Matrix-Matrix Operations

USMM sparse matrix/matrix multiply C  �AB + C
C  �ATB + C
C  �AHB + C

USSM sparse triangular solve B  �T�1B
B  �T�TB
B  �T�HB

Table 3.3: Sparse Matrix-Matrix Operations

Table 3.3 lists matrix/matrix (Level 3) operations, using the following notation: � is a scalar, A
denotes a general sparse matrix, T denotes a sparse triangular matrix. B and C are dense matrices.

3.3 Describing sparsity

3.3.1 Sparse Vectors

Sparse vectors are represented by a pair of conventional vectors, one denoting the nonzero values
and the other denoting their indices. That is, if x is a vector that we wish to represent in sparse
format, then it is represented by a one-dimensional array, X, of the entries of x, and an integer
vector of equal length to X whose values indicate the location in x of the corresponding oating-
point values in X. The index values may follow the Fortran convention (where the �rst element has
an index of 1) or the C/C++ convention (where the �rst element has an index of 0). These are
referred to as 1-based and 0-based indexing, respectively, and the Sparse BLAS speci�cation usually
handles both (see Section 3.3.2). For example, using 1-based (Fortran) indexing, the vector

x = ( 11:0 0:0 13:0 14:0 0:0 )
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can be represented by two vectors as

X = ( 11:0 13:0 14:0 )
INDX = ( 1 3 4 )

although the permutation
X = ( 14:0 13:0 11:0 )

INDX = ( 4 3 1 )

or any other such permutation is equally valid.
We illustrate the use of this structure, through the Fortran 77 routine for a double precision

real sparse dot product :

W = BLAS DUSDOT( CONJ, NZ, X, INDX, Y, INCY )

where NZ is the number of nonzero entries in the sparse vector x, the argument X is the double
precision vector containing the entries of x, INDX is the index vector for x, Y is a dense vector
with INCY de�ning the stride between consecutive components, and CONJ is a ag specifying if
�x or x is used (although this has no e�ect in the case of real arguments). This call computes

w =
NZX
I=1

X(I) �Y(INDX(I))

3.3.2 Index bases

The Fortran and C programming languages utilize di�erent conventions to index entries of a vector.
Fortran uses a 1-based convention, (that is x(1) is the �rst entry of vector x); C assumes 0-based
index values (that is x[0] is the �rst entry of the vector x).

For dense array operations, this di�erence can often be dealt with by adjustments to the ar-
ray parameters in function and subroutine calls. For sparse data structures, however, the index
information is part of the semantics of the data structure, so this must be dealt with explicitly.

The Fortran interface for the Sparse BLAS defaults to a 1-based indexing, while the C interface
defaults to 0-base indexing. Both interfaces, however, can explicitly override this default with only
one exception: the Fortran interfaces to the Level 1 sparse routines. In the following sections,
we use 1-based conventions in examples and discussions, unless otherwise stated.

For Level 2 and Level 3 operations, the index base may be speci�ed by the
blas one base/blas zero base property, which can be set when constructing BLAS matrices (see
Section 3.4.2).

3.3.3 Repeated Indices

In general, having the same matrix or vector entry speci�ed multiple times in a sparse representation
can lead to ambiguities. There are some cases, however, where it is useful to de�ne the result as
the sum of all entries with a common index. For example, the sparse data structure

N = 5
X = ( 11:0 13:0 14:0 22:0 )

INDX = ( 1 3 4 3 )

may be interpreted as a representation of the vector

x = ( 11:0 0:0 35:0 14:0 0:0 )
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Analogously, a similar convention can be adopted for sparse matrices: whenever an (i; j) index
is speci�ed multiple times, the result is that its corresponding nonzero values are added together.
(This is useful, for example, in the assembling of elemental matrices from �nite-element formulations
as in Section 3.4.5).

Because of possible ambiguities and ineÆciences, the use of repeated indices is not supported
in the Level 1 BLAS operations. That is, for those routines the sparse vector parameter must have
unique indices, otherwise the computational results are unde�ned.

3.4 Sparse BLAS Matrices

3.4.1 Creation Routines

A Sparse BLAS matrix and its associated handle are created by a sequence of calls to the routines
listed in Sections 3.7.6, 3.7.7, and 3.7.8. A call must �rst be made to a routine to begin the matrix
construction. This can be of three forms depending on whether the input matrix has entries which
are scalars or are dense matrices. The calls for the scalar or single entries case have the form

CALL DUSCR BEGIN( m, n, A, istat ) ( Fortran 95 )
CALL BLAS DUSCR BEGIN( M, N, A, ISTAT ) ( Fortran 77 )
A = BLAS duscr begin( m, n ); ( C )

where m and n are the matrix dimensions and A is the matrix handle.
When initializing Sparse BLAS matrices from a block-structured format, two variants of the

creation routines may be used. For �xed size k � l blocks, the declaration

CALL DUSCR BLOCK BEGIN( mb, nb, k, l, A, istat ) ( Fortran 95 )
CALL BLAS DUSCR BLOCK BEGIN( MB, NB, K, L, A, ISTAT ) ( Fortran 77 )
A = BLAS duscr block begin( Mb, Nb, k, l ); ( C )

signi�es that the input matrix contains Mb � Nb blocks, each of size k�l, that is the total dimensions
of the matrix are (Mb � k) � (Nb � l).

Likewise, for variable block matrices, the declaration

CALL DUSCR VARIABLE BLOCK BEGIN( mb, nb, K, L, A, istat ) ( Fortran 95 )
CALL BLAS DUSCR VARIABLE BLOCK BEGIN( MB, NB, K, L, A, ISTAT ) ( Fortran 77 )
A = BLAS duscr variable block begin(Mb, Nb, K, L ); ( C )

denotes that the input matrix has a variable block structure denoted by the integer vectors K and
L.

3.4.2 Specifying matrix properties

The creation routines allow one to specify various properties about the matrix and optionally pro-
vide hints to the underlying BLAS implementation about how the matrix will be used in subsequent
BLAS calls, so that possible optimization may take place.When creating a handle to a BLAS sparse matrix, one or more of the properties in Table 3.4
may be speci�ed with the use of the USSP (set property) routine (See Section 3.7.9). For example,

USSP( A, blas_lower_triangular );

USSP( A, blas_unit_diag );
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blas_non_unit_diag nonzero diagonal entries are stored (Default)
blas_unit_diag diagonal entries are not stored and assumed to be 1.0

blas_no_repeated_indices indices are unique (Default)
blas_repeated_indices nonzero values of repeated indices are summed

blas_lower_symmetric only lower half of symmetric matrix is speci�ed by user.
blas_upper_symmetric only upper half of symmetric matrix is speci�ed by user.
blas_lower_hermitian only lower half of Hermitian matrix is speci�ed by user.
blas_upper_hermitian only upper half of Hermitian matrix is speci�ed by user.

blas_lower_triangular sparse matrix is lower triangular
blas_upper_triangular sparse matrix is upper triangular

blas_zero_base indices of inserted items are 0-based (Default for C)
blas_one_base indices of inserted items are 1-based (Default for Fortran)

Applicable for block entries only
blas_rowmajor dense block stored row major order (Default for C)
blas_colmajor dense block stored col major order (Default for Fortran)

blas_irregular general unstructured matrix
blas_regular structured matrix
blas_block_irregular unstructured matrix best represented by blocks
blas_block_regular structured matrix best represented by blocks
blas_unassembled matrix is best represented by cliques

Table 3.4: Matrix properties (can be set by USSP).

blas_num_rows returns the number of rows of matrix
blas_num_cols returns the number of columns of matrix
blas_num_nonzeros returns the number of stored entries

blas_complex matrix values are complex
blas_real matrix values are real
blas_integer matrix values are integer
blas_double_precision matrix values are single precision
blas_single_precision matrix values are double precision

blas_general neither symmetric nor Hermitian (Default)
blas_symmetric sparse matrix is symmetric
blas_hermitian (complex) sparse matrix is Hermitian

blas_lower_triangular sparse matrix is lower triangular
blas_upper_triangular sparse matrix is upper triangular

blas_zero_base indices of inserted items are 0-based (Default for C)
blas_one_base indices of inserted items are 1-based (Default for Fortran)

Applicable for block entries only
blas_rowmajor dense block stored row major order (Default for C)
blas_colmajor dense block stored col major order (Default for Fortran)

blas_invalid_handle handle not currently in use
blas_new_handle handle created but no entries inserted so far
blas_open_handle an entry has been inserted but creation not yet �nished
blas_valid_handle creation completed (USCR_END has been called)

Table 3.5: Matrix properties (can be read by USGP).
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denotes a lower triangular matrix, with an implicit unit diagonal.
The input properties (Table 3.4), are mutually exclusive for each category and may be speci�ed

only once. The result is unde�ned if incompatible properties are requested.
An optional description of the sparsity pattern of the matrix may be speci�ed at construction

time. These properties are listed as the last group in Table 3.4 and their use may assist the
underlying implementation in choosing the most eÆcient internal data structure for subsequent
computation. Note that each description is mutually exclusive. The speci�cation of these properties
is optional and does not e�ect the correctness of the program.

3.4.3 Sparse Matrices: Inserting List of Entries

The insertion routine USCR_INSERT_ENTRIES allows us to pass a list of entries with arbitrary row
and column indices. We describe this list with a similar set of data structures as used for sparse
vectors, but now need two integer vectors, one containing the row indices (called INDX) and another
containing the column indices (called JNDX).

To illustrate this, consider the following matrix:

A =

0
BBB@

1:1 0 0 0
0 2:2 0 2:4
0 0 3:3 0

4:1 0 0 4:4

1
CCCA : (3.1)

We can pass in all entries (following a call to one of the BEGIN routines) by de�ning NZ = 6 and
setting

VAL = ( 1:1 2:2 2:4 3:3 4:1 4:4 )
INDX = ( 1 2 2 3 4 4 )
JNDX = ( 1 2 4 3 1 4 ):

Note that calls to the C interface would default to using 0-based indices (see Section 3.3.2). The
ordering of the entries is arbitrary.

3.4.4 Sparse Matrices: Inserting Row and Column Vectors

The insertion routines USCR_INSERT_COL and USCR_INSERT_ROW allow us to pass a list of entries
that all belong to the same column or row of a matrix. The data structures used to pass the
information are identical to those used to describe a sparse vector in Section 3.3.1.

3.4.5 Sparse Matrices: Inserting Cliques

A clique is a two-dimensional array of values with integer row and column vectors that describe
how the values will be scattered into the sparse matrix. Such data structures are common in �nite
element computations. Consider the matrix A in Section 3.4.3. We can pass in the (2,2), (2,4),
(4,2) and (4,4) entries as a clique by de�ning a two-dimensional array

VAL =

 
2:2 2:4
0:0 4:4

!
(3.2)

and its associated row and column scattering vectors as

INDX = ( 2 4 )
JNDX = ( 2 4 ):
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Note that the structure allows cliques to be other than principal submatrices (in which case arrays
INDX and JNDX could di�er) and indeed allows the clique matrices to be rectangular.

3.5 Interface Issues

3.5.1 Interface Issues for Fortran 95

� Prede�ned constants for the Sparse BLAS are included in the module
\blas sparse namedconstants". These include the sparse matrix properties constants de-
�ned in Tables 3.4 and 3.5. A module \blas sparse proto" of explicit interfaces to all
routines is also provided.

� Sparse matrix/vector indices are assumed to begin at 1 (that is they are 1-based), but can
be overridden by specifying blas_zero_base at the time of creation.

� The values of the named constants are as speci�ed in Section A.4.

� Error handling is as de�ned in Section 2.4.6.

The interface example below illustrates multiplying a sparse 4� 4 matrix

A =

0
BBB@

1:1 0 0 0
0 2:2 0 2:4
0 0 3:3 0

4:1 0 0 4:4

1
CCCA (3.3)

with the vector x = f1:0; 1:0; 1:0; 1:0g performing the operation y  Ax. In this example, the
sparse matrix is input by point (rather than block) entries.

! Fortran 95 example: sparse matrix-vector multiplication

PROGRAM F95_EX

USE blas_sparse

IMPLICIT NONE

INTEGER NMAX, NNZ

PARAMETER (NMAX = 4, NNZ = 6)

INTEGER i, n, a, istat

INTEGER, DIMENSION(:), ALLOCATABLE::indx,jndx

DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE:: val, x, y

ALLOCATE(val(NNZ),x(NMAX),y(NMAX),indx(NNZ),jndx(NNZ))

indx=(/1,2,2,3,4,4/)

jndx=(/1,2,4,3,1,4/)

val=(/1.1,2.2,2.4,3.3,4.1,4.4/)

N = NMAX

!

! ----------------------------------



3.5. INTERFACE ISSUES 117

! Step 1: Create Sparse BLAS Handle

! ----------------------------------

!

CALL duscr_begin(n,n,a,istat)

!

! ----------------------------------

! Step 2: Insert entries one-by-one

! ----------------------------------

!

DO i=1, nnz

CALL uscr_insert_entry(A, val(i), indx(i), jndx(i), istat)

END DO

!

! -----------------------------------------------

! Step 3: Complete construction of sparse matrix

! -----------------------------------------------

!

CALL uscr_end(a,istat)

!

! ---------------------------------------------

! Step 4: Compute Matrix vector product y = A*x

! ---------------------------------------------

!

CALL usmv(a,x,y,istat)

!

! ------------------------------

! Step 5: Release Matrix Handle

! ------------------------------

!

CALL usds(a,istat)

END

3.5.2 Interface Issues for Fortran 77

Although Fortran 77 is no longer a standard, Fortran 77 compilers are still heavily used and there
are many Fortran applications that, even if compiled with a Fortran 95 compiler, use a subset
of the language that is very close to Fortran 77. In addition, we have seen in the C interface
to the legacy BLAS (see Chapter B) that a Fortran 77 library can provide the vast majority
of functionality required by a higher level interface and greatly reduce the overall amount of work
required to develop and support multiple language bindings. For these reasons we provide a Fortran
77 interface to the sparse BLAS.

� Prede�ned constants for the Sparse BLAS are included in the header �le
\blas namedconstants.h". These include the sparse matrix properties constants de�ned
in Tables 3.4 and 3.5.

� Sparse matrix/vector indices are assumed to begin at 1 (that is they are 1-based), but can
be overridden by specifying blas_zero_base at the time of creation.
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� The values of the named constants are as speci�ed in Section A.5.

� Error handling is as de�ned in Section 2.5.6.

The following program illustrates the use of Fortran 77 codes on the matrix 3.3.

C Fortran 77 example: sparse matrix-vector multiplication

PROGRAM F77_EX

IMPLICIT NONE

INCLUDE "blas_namedconstants.h"

INTEGER NMAX, NNZ

PARAMETER (NMAX = 4, NNZ = 6)

INTEGER I, N, ISTAT, A

INTEGER INDX(NNZ), JNDX(NNZ)

DOUBLE PRECISION VAL(NNZ), X(NMAX), Y(NMAX)

C

C -----------------------------------------------

C Define Matrix, LHS and RHS in Coordinate format

C -----------------------------------------------

C

DATA JNDX / 1.1, 2.2, 2.4, 3.3, 4.1, 4.4/

DATA INDX / 1, 2, 2, 3, 4, 4/

DATA VAL / 1, 2, 4, 3, 1, 4/

C

DATA X / 1., 1., 1., 1./

DATA Y / 0., 0., 0., 0./

C

N = NMAX

C

C ----------------------------------

C Step 1: Create Sparse BLAS Handle

C ----------------------------------

C

CALL BLAS_DUSCR_BEGIN( N, N, A, ISTAT)

C

C ----------------------------------

C Step 2: Insert entries one-by-one

C ----------------------------------

C

DO I=1, NNZ

CALL BLAS_DUSCR_INSERT_ENTRY(A, VAL(I), INDX(I), JNDX(I), ISTAT)

END DO

C

C -----------------------------------------------

C Step 3: Complete construction of sparse matrix

C -----------------------------------------------

C

CALL BLAS_DUSCR_END(A, ISTAT)
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C

C ---------------------------------------------

C Step 4: Compute Matrix vector product y = A*x

C ---------------------------------------------

C

CALL BLAS_DUSMV( BLAS_NO_TRANS, 1.0, A, X, 1, Y, 1, ISTAT )

C

C ------------------------------

C Step 5: Release Matrix Handle

C ------------------------------

C

CALL BLAS_DUSDS(A,ISTAT)

END

3.5.3 Interface Issues for C

� Prede�ned constants for the Sparse BLAS are included in the header �le \blas enum.h".
These include the sparse matrix properties constants de�ned in Tables 3.4 and 3.5.

� Sparse matrix/vector indices are assumed to begin at 0 (that is they are 0-based), but can
be overridden by specifying blas_one_base at the time of creation.

� Sparse matrix handles are integers, but are typedef to blas_sparse_matrix for clarity.

� The values of the enumerated types are as speci�ed in Section A.6.

� Error handling is as de�ned in Section 2.6.9.

The following program illustrates the use of C codes on the matrix 3.3.

/* C example: sparse matrix/vector multiplication */

#include "blas_sparse.h"

int main()

{

const int N = 4;

const int nz = 6;

double val[] = { 1.1, 2.2, 2.4, 3.3, 4.1, 4.4 };

int indx[] = { 0, 1, 1, 2, 3, 3};

int jndx[] = { 0, 1, 3, 2, 0, 3};

double x[] = { 1.0, 1.0, 1.0, 1.0 };

double y[] = { 0.0, 0.0, 0.0, 0.0 };

blas_sparse_matrix A;

int istat = 0;

double alpha = 1.0;

/*------------------------------------*/

/* Step 1: Create Sparse BLAS Handle */
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/*------------------------------------*/

A = BLAS_duscr_begin( N, N );

/*-------------------------*/

/* Step 2: insert entries */

/*-------------------------*/

BLAS_duscr_insert_entry(A, nz, val, indx, jndx);

/*-------------------------------------------------*/

/* Step 3: Complete construction of sparse matrix */

/*-------------------------------------------------*/

BLAS_uscr_end(A);

/*------------------------------------------------*/

/* Step 4: Compute Matrix vector product y = A*x */

/*------------------------------------------------*/

BLAS_dusmv( blas_no_trans, alpha, A, x, 1, y, 1 );

/*---------------------------------*/

/* Step 5: Release Matrix Handle */

/*---------------------------------*/

BLAS_usds(A);

return 0;

}

3.6 Numerical Accuracy and Environmental Enquiry

All the comments on the accuracy of numerical methods made in Sections 1.6 and 2.7 apply here.
In particular, subroutine FPINFO described in Section 2.7 should be used to get oating-point
parameters needed for error bounds.

3.7 Language Bindings

3.7.1 Overview

� Level 1 computational routines (Section 3.7.2)

{ USDOT sparse dot product

{ USAXPY sparse vector update

{ USGA sparse gather

{ USGZ sparse gather and zero



3.7. LANGUAGE BINDINGS 121

{ USSC sparse scatter

� Level 2 computational routines (Section 3.7.3)

{ USMV matrix/vector multiply

{ USSV matrix/vector triangular solve

� Level 3 computational routines (Section 3.7.4)

{ USMM matrix/matrix multiply

{ USSM matrix/matrix triangular solve

� Handle Management routines (Level 2/3) (Section 3.7.5)

{ Creation routine (Section 3.7.6)

� USCR_BEGIN begin construction

� USCR_BLOCK_BEGIN begin block-entry construction

� USCR_VARIABLE_BLOCK_BEGIN begin variable block-entry construction

{ Insertion routines (Section 3.7.7)

� USCR_INSERT_ENTRY add point-entry to construction

� USCR_INSERT_ENTRIES add list of point-entries to construction

� USCR_INSERT_COL add a compressed column to construction

� USCR_INSERT_ROW add a compressed row to construction

� USCR_INSERT_CLIQUE add a dense matrix clique to construction

� USCR_INSERT_BLOCK add a block entry at block coordinate (bi, bj)

{ Completion of construction routine (Section 3.7.8)

� USCR_END entries completed; build internal representation

{ Matrix property routines (Section 3.7.9)

� USGP get/test for matrix property

� USSP set matrix property

{ Destruction routine (Section 3.7.10)

� USDS release matrix handle

3.7.2 Level 1 Computational Routines

General conventions: in all Level 1 routines, the following common arguments are used:

� x : a sparse vector x, with nz nonzeros

� indx : an (integer) index vector corresponding to x,

� y : a dense vector

� index base: (C bindings only.) By convention, the Fortran 77 and Fortran 95 bindings assume
that all o�sets begin at 1 (that is x(1) is the �rst entry). For the C language bindings, o�sets
can start at 0 (the default for C arrays) or 1 (for Fortran compatibility).
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Note that, as stated in Section 3.3.3, the result of a Level 1 BLAS operation called with repeated
indices in array indx will be unde�ned. The actual return will be dependent on the implementation.

USDOT (Sparse dot product) r  xT y

The function USDOT computes the dot product of sparse vector x with dense vector y. The
routine returns a real zero if the length of arrays x and indx are less than or equal to zero. When
x and y are complex vectors, the vector components xi are used unconjugated or conjugated as
speci�ed by the operator argument conj. If x and y are real vectors, the operator argument conj
has no e�ect. For the C binding, the lack of a complex data type forces us to return the result in
the parameter r.

� Fortran 95 binding:

<type>(<wp> FUNCTION usdot( x, indx, y [, conj] )

INTEGER, INTENT(IN) :: indx(:)

<type>(<wp>), INTENT(IN) :: x(:), y(:)

TYPE(blas_conj_type), INTENT(IN), OPTIONAL :: conj

� Fortran 77 binding:

<type> FUNCTION BLAS_xUSDOT( CONJ, NZ, X, INDX, Y, INCY )

<type> X( * ), Y( * )

INTEGER NZ, INDX( * ), INCY

INTEGER CONJ

� C binding:

void BLAS_xusdot( enum blas_conj_type conj, int nz, const ARRAY x,

const int *indx, const ARRAY y, int incy,

SCALAR_INOUT r, enum blas_base_type index_base );

USAXPY (Sparse vector update) y  �x+ y

The routine USAXPY scales the sparse vector x by � and adds the result to the dense vector y.
If the length of arrays x and indx are less than or equal to zero or if � is equal to zero, this routine
returns without modifying y. Note that we do not allow a scaling on the vector y (that is, we do
not implement a USAXPBY) as this would change the complexity of our routine because scaling a
dense vector requires n operations while the sparse operations are only O(nz). If the dense vector
y is to be scaled, the appropriate Level 1 dense BLAS kernel should be used.

� Fortran 95 binding:

SUBROUTINE usaxpy( x, indx, y [, alpha] )

<type>(<wp>), INTENT(IN) :: x(:)

<type>(<wp>), INTENT(INOUT) :: y(:)

INTEGER, INTENT(IN) :: indx(:)

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha



3.7. LANGUAGE BINDINGS 123

The default value for � is 1.0.

� Fortran 77 binding:

SUBROUTINE BLAS_xUSAXPY( NZ, ALPHA, X, INDX, Y, INCY )

<type> ALPHA

<type> X( * ), Y( * )

INTEGER NZ, INDX( * ), INCY

� C binding:

void BLAS_xusaxpy( int nz, SCALAR_IN alpha, const ARRAY x, const int *indx,

ARRAY y, int incy, enum blas_base_type index_base );

USGA (Sparse gather into compressed form) x yjx

Using indx to denote the list of indices of the sparse vector x, for each component i in this
list, the routine USGA assigns x(i) = y(indx(i)). For example, if x is a sparse vector with nonzeros
f3:1; 4:9g and indices f1; 4g (using 1-based o�sets), and y is the dense vector f12:7; 68:1; 38:1; 54:0g,
then the USGA routine changes x to f12:7; 54:0g. If the length of x and indx is non-positive, this
routines returns without any modi�cation to its parameters.

� Fortran 95 binding:

SUBROUTINE usga( y, x, indx )

<type>(<wp>), INTENT(IN) :: y(:)

<type>(<wp>), INTENT(OUT) :: x(:)

INTEGER, INTENT(IN) :: indx(:)

� Fortran 77 binding:

SUBROUTINE BLAS_xUSGA( NZ, Y, INCY, X, INDX )

INTEGER NZ, INDX( * ), INCY

<type> Y( * ), X( * )

� C binding:

void BLAS_xusga( int nz, const ARRAY y, int incy, ARRAY x, const int *indx,

enum blas_base_type index_base );

USGZ (Sparse gather and zero) x yjx; yjx  0

This routine combines two operations: (1) a sparse gather of y into x. (see USGA above),
followed by (2) setting the corresponding values of y (y(indx(i)) to zero. For example, if x is a
sparse vector with nonzeros f3:1; 4:9g and indices f1; 4g (using 1-based o�sets), and y is the dense
vector f12:7; 68:1; 38:1; 54:0g, then the USGA routine changes the nonzero values of x to f12:7; 54:0g
and changes y to f0:0; 68:1; 38:1; 0:0g.
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� Fortran 95 binding:

SUBROUTINE usgz( y, x, indx )

<type>(<wp>), INTENT(INOUT) :: y(:)

<type>(<wp>), INTENT(OUT) :: x(:)

INTEGER, INTENT(IN) :: indx(:)

� Fortran 77 binding:

SUBROUTINE BLAS_xUSGZ( NZ, Y, INCY, X, INDX )

INTEGER NZ, INDX( * ), INCY

<type> Y( * ), X( * )

� C binding:

void BLAS_xusgz( int nz, ARRAY y, int incy, ARRAY x, const int *indx,

enum blas_base_type index_base );

USSC (Sparse scatter) yjx  x

This routine copies the nonzero values of x into the corresponding locations in the dense vector
y. For example, if x is a sparse vector with nonzeros f3:1; 4:9g and indices f1; 4g (using 1-based
o�sets), and y is the dense vector f12:7; 68:1; 38:1; 54:0g, then the USSC routine changes y to
f3:1; 68:1; 38:1; 4:9g. If the length of arrays x and indx are less than or equal to zero, this routine
returns without any modi�cation to its parameters.

� Fortran 95 binding:

SUBROUTINE ussc( x, y, indx )

<type>(<wp>), INTENT(IN) :: x(:)

<type>(<wp>), INTENT(INOUT) :: y(:)

INTEGER, INTENT(IN) :: indx(:)

� Fortran 77 binding:

SUBROUTINE BLAS_xUSSC( NZ, X, Y, INCY, INDX )

INTEGER NZ, INDX( * ), INCY

<type> X( * ), Y( * )

� C binding:

void BLAS_xussc( int nz, const ARRAY x, ARRAY y, int incy, const int *indx,

enum blas_base_type index_base );
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3.7.3 Level 2 Computational Routines

USMV (Sparse Matrix/Vector Multiply) y  � Ax+ y
y  � ATx+ y

This routine multiplies a dense vector x by a sparse matrix A (or its transpose), and adds it
to the vector operand y. The matrix handle A must be valid, i.e. USGP(A, blas_valid_handle)

must be true. istat is used as an error ag and will be zero if the routine executes successfully. The
C binding returns istat as the function return value.

� Fortran 95 binding:

SUBROUTINE usmv( a, x, y, istat [, transa] [, alpha] )

INTEGER, INTENT(IN) :: a

<type>(<wp>), INTENT(IN) :: x(:)

<type>(<wp>), INTENT(INOUT) :: y(:)

INTEGER, INTENT(OUT) :: istat

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

Default values for transa and � are blas no trans and 1.0, respectively.

� Fortran 77 binding:

SUBROUTINE BLAS_xUSMV( TRANSA, ALPHA, A, X, INCX, Y, INCY, ISTAT )

INTEGER INCX, INCY, A, TRANSA, ISTAT

<type> ALPHA

<type> X( * ), Y( * )

� C binding:

int BLAS_xusmv( enum blas_trans_type transa, SCALAR_IN alpha,

blas_sparse_matrix A, const ARRAY x, int incx, ARRAY y, int incy );

USSV (Sparse Triangular Solve) x � T�1x
x � T�Tx

This routine solves one of the systems of equations x  �T�1x or x  �T�Tx, where x is a
dense vector and the matrix T is a triangular sparse matrix. The matrix handle Amust be valid, i.e.
USGP(A, blas_valid_handle) is true, and must represent a valid triangular matrix, i.e. either
USGP(A, blas_lower_triangular or USGP(A, blas_upper_triangular) must be true. istat is
used as an error ag and will be zero if the routine executes successfully. The C binding returns
istat as the function return value.

� Fortran 95 binding:

SUBROUTINE ussv( t, x, istat, [, transt] [, alpha] )

INTEGER, INTENT(IN) :: t
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<type>(<wp>), INTENT(INOUT) :: x(:)

INTEGER, INTENT(OUT) :: istat

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

Default values for transt and � are .TRUE. and 1.0 respectively.

� Fortran 77 binding:

SUBROUTINE BLAS_xUSSV( TRANST, ALPHA, T, X, INCX, ISTAT )

INTEGER T, INCX, TRANST, ISTAT

<type> ALPHA

<type> X( * )

� C binding:

int BLAS_xussv( enum blas_trans_type transt, SCALAR_IN alpha,

blas_sparse_matrix T, ARRAY x, int incx );

3.7.4 Level 3 Computational Routines

USMM (Sparse Matrix Multiply) C  � AB + C
C  � ATB + C

This routine multiplies a dense matrix B by a sparse matrix A (or its transpose), and adds it
to a dense matrix operand C. A is of size m by n, B is of size of n by nrhs, and C is of size m by
nrhs. The input argument nrhs must be greater than zero, and the matrix handle A must be valid,
i.e. USGP(A, blas_valid_handle) must be true. istat is used as an error ag and will be zero if
the routine executes successfully. The C binding returns istat as the function return value.

� Fortran 95 binding:

SUBROUTINE usmm( a, b, c, istat, [, transa] [, alpha] )

INTEGER, INTENT(IN) :: a

<type>(<wp>), INTENT(IN) :: b(:,:)

<type>(<wp>), INTENT(INOUT) :: c(:,:)

INTEGER, INTENT(OUT) :: istat

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

Default values for transa and � are .TRUE. and 1.0, respectively.

� Fortran 77 binding:

SUBROUTINE BLAS_xUSMM( TRANSA, NRHS, ALPHA, A, B, LDB, C, LDC,

$ ISTAT )

INTEGER NRHS, A, LDB, LDC, TRANSA, ISTAT

<type> ALPHA

<type> B( LDB, * ), C( LDC, * )
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� C binding:

int BLAS_xusmm( enum blas_order_type order, enum blas_trans_type transa,

int nrhs, SCALAR_IN alpha, blas_sparse_matrix a,

const ARRAY b, int ldb, ARRAY c, int ldc );

USSM (Sparse Triangular Solve) B  � T�1B
B  � T�TB

This routine solves one of the systems of equations B  �T�1B or B  �T�TB, where B is a
dense matrix and T is a triangular sparse matrix. T is of size n by n, B is of size of n by nrhs, and
C is of size n by nrhs. The input argument nrhs must be greater than zero, and the matrix handle
A must be valid, i.e. USGP(A, blas_valid_handle)must be true, and represent a valid triangular
matrix, i.e. either USGP(A, blas_lower_triangular or USGP(A, blas_upper_triangular)must
be true. istat is used as an error ag and will be zero if the routine executes successfully. The C
binding returns istat as the function return value.

� Fortran 95 binding:

SUBROUTINE ussm( t, b, istat [, transt] [, alpha] )

INTEGER, INTENT(IN) :: t

<type>(<wp>), INTENT(INOUT) :: b(:,:)

INTEGER, INTENT(OUT) :: istat

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

Default values for transt and � are .TRUE. and 1.0 respectively.

� Fortran 77 binding:

SUBROUTINE BLAS_xUSSM( TRANST, NRHS, ALPHA, T, B, LDB, ISTAT )

INTEGER NRHS, T, LDB, TRANST, ISTAT

<type> ALPHA

<type> B( LDB, * )

� C binding:

int BLAS_xussm( enum blas_order_type order, enum blas_trans_type transt,

int nrhs, SCALAR_IN alpha, blas_sparse_matrix T, ARRAY b, int ldb );

3.7.5 Handle Management

The Handle Management routines can be divided into �ve sets; the creation routines (Section 3.7.6),
the insertion routines (Section 3.7.7), the completion routine (Section 3.7.8), matrix property rou-
tines (Section 3.7.9), and the destruction routine (Section 3.7.10). A brief discussion of these
routines was given in Section 3.4.1.
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3.7.6 Creation Routines

USCR BEGIN (begin point-entry construction) A (:::)

USCR BEGIN is used to create a sparse matrix handle where the matrix is held in normal point-
wise form (by single scalar entries). m and n must be greater than zero. istat is used as an error
ag and will be zero if the routine executes successfully. The C binding returns a new handle as
its function return value; this handle is invalid, i.e. USGP(return_value, blas_invalid_handle)

is true, if the routine did not execute successfully.

� Fortran 95 binding:

SUBROUTINE xuscr_begin( m, n, a, istat )

INTEGER, INTENT(IN) :: m, n

INTEGER, INTENT(OUT) :: a, istat

� Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_BEGIN( M, N, A, ISTAT )

INTEGER M, N, A, ISTAT

� C binding:

blas_sparse_matrix blas_xuscr_begin( int m, int n );

USCR BLOCK BEGIN (begin constant block-entry construction) A (:::)

USCR BLOCK BEGIN is used to create a sparse matrix handle referring to a block-entry matrix
where the blocksize of all entries is constant, that is block entries are k � l. Mb, Nb, k and l must
all be greater than zero. istat is used as an error ag and will be zero if the routine executes
successfully. The C binding returns a new handle as its function return value; this handle is
invalid, i.e. USGP(return_value, blas_invalid_handle) is true, if the routine did not execute
successfully.

� Fortran 95 binding:

SUBROUTINE xuscr_block_begin( Mb, Nb, k, l, a, istat )

INTEGER, INTENT(IN) :: Mb, Nb, k, l

INTEGER, INTENT(OUT) :: a, istat

� Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_BLOCK_BEGIN( MB, NB, K, L, A, ISTAT )

INTEGER MB, NB, K, L, A, ISTAT

� C binding:

blas_sparse_matrix blas_xuscr_block_begin( int Mb, int Nb, int k, int l );
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USCR VARIABLE BLOCK BEGIN (begin variable block-entry construction) A (:::)

USCR VARIABLE BLOCK BEGIN is used to create a sparse matrix handle referring to a block-
entry matrix whose entries may have variable block sizes. The blocksizes are given by the integer
arrays K and L such that the dimension of the (i, j) block entry is K(i) � L(j). Mb, Nb, and all
elements of K and L must be greater than zero. istat is used as an error ag and will be zero if the
routine executes successfully. The C binding returns a new handle as its function return value; this
handle is invalid, i.e. USGP(return_value, blas_invalid_handle) is true, if the routine did not
execute successfully.

� Fortran 95 binding:

SUBROUTINE xuscr_variable_block_begin( Mb, Nb, k, l, a, istat )

INTEGER, INTENT(IN) :: Mb, Nb, k(:), l(:)

INTEGER, INTENT(OUT) :: a, istat

� Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_VARIABLE_BLOCK_BEGIN( MB, NB, K, L, A, ISTAT )

INTEGER MB, NB, A, ISTAT

INTEGER K( * ), L( * )

� C binding:

blas_sparse_matrix blas_xuscr_variable_block_begin( int Mb, int Nb,

const int *k,

const int *l );

3.7.7 Insertion routines

USCR INSERT ENTRY (insert single value at coordinate (i, j)) A (val; i; j)

USCR INSERT ENTRY is used to build a sparse matrix, passing in one scalar entry at a time.
This routine may only be called on a matrix handle that was opened via the USCR BEGIN routine
and has not yet been closed via the USCR END routine. That is, the matrix handle must be in an
open state, i.e. USGP(A, blas_open_handle) is true. istat is used as an error ag and will be zero
if the routine executes successfully. The C binding returns istat as the function return value.

� Fortran 95 binding:

SUBROUTINE uscr_insert_entry( a, val, i, j, istat )

INTEGER, INTENT(IN) :: a, i, j

<type>(<wp>), INTENT(IN) :: val

INTEGER, INTENT(OUT) :: istat

� Fortran 77 binding:
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SUBROUTINE BLAS_xUSCR_INSERT_ENTRY ( A, VAL, I, J, ISTAT )

INTEGER A, I, J, ISTAT

<type> VAL

� C binding:

int BLAS_xuscr_insert( blas_sparse_matrix A, SCALAR val, int i, int j );

USCR INSERT ENTRIES (insert a list of values in coordinate form (val, i, j)) A (val; i; j)

USCR INSERT ENTRIES is used to build a sparse matrix, passing in a list of point entries.
This routine may only be called on a matrix handle that was opened via the USCR BEGIN routine
and has not yet been closed via the USCR END routine. That is, the matrix handle must be in an
open state, i.e. USGP(A, blas_open_handle) is true. istat is used as an error ag and will be zero
if the routine executes successfully. The C binding returns istat as the function return value.

� Fortran 95 binding:

SUBROUTINE uscr_insert_entries( a, val, indx, jndx, istat )

INTEGER, INTENT(IN) :: a, indx( : ), jndx( : )

<type>(<wp>), INTENT(IN) :: val ( : )

INTEGER, INTENT(OUT) :: istat

� Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_INSERT_ENTRIES( A, NZ, VAL, INDX, JNDX,

$ ISTAT )

INTEGER A, NZ, INDX( * ), JNDX( * ), ISTAT

<type> VAL( * )

� C binding:

int BLAS_xuscr_insert_entries( blas_sparse_matrix A, int nz, const ARRAY val,

const int *indx, const int *jndx );

USCR INSERT COL (insert a compressed column) A (:::)

USCR INSERT COL is used to build a sparse matrix, passing in one column at a time.
This routine may only be called on a matrix handle that was opened via the USCR BEGIN routine
and has not yet been closed via the USCR END routine. That is, the matrix handle must be in an
open state, i.e. USGP(A, blas_open_handle) is true. istat is used as an error ag and will be zero
if the routine executes successfully. The C binding returns istat as the function return value.

� Fortran 95 binding:

SUBROUTINE uscr_insert_col( a, j, val, indx, istat )

INTEGER, INTENT(IN) :: a, j, indx(:)

<type>(<wp>), INTENT(IN) :: val(:)

INTEGER, INTENT(OUT) :: istat
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� Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_INSERT_COL( A, J, NZ, VAL, INDX, ISTAT )

INTEGER A, J, NZ, INDX( * ), ISTAT

<type> VAL( * )

� C binding:

int BLAS_xuscr_insert_col( blas_sparse_matrix A, int j, int nz,

const ARRAY val, const int *indx );

USCR INSERT ROW (insert a compressed row) A (:::)

USCR INSERT ROW is used to build a sparse matrix, passing in one row at a time. This routine
may only be called on a matrix handle that was opened via the USCR BEGIN routine and has not
yet been closed via the USCR END routine. That is, the matrix handle must be in an open state,
i.e. USGP(A, blas_open_handle) is true. istat is used as an error ag and will be zero if the
routine executes successfully. The C binding returns istat as the function return value.

� Fortran 95 binding:

SUBROUTINE uscr_insert_row( a, i, val, indx, istat )

INTEGER, INTENT(IN) :: a, i, indx(:)

<type>(<wp>), INTENT(IN) :: val(:)

INTEGER, INTENT(OUT) :: istat

� Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_INSERT_ROW( A, I, NZ, VAL, INDX, ISTAT )

INTEGER A, I, NZ, INDX( * ), ISTAT

<type> VAL( * )

� C binding:

int BLAS_xuscr_insert_row( blas_sparse_matrix A, int i, int nz,

const ARRAY val, const int *indx );

USCR INSERT CLIQUE (insert a dense matrix clique) A (val; i; j)

USCR INSERT CLIQUE is used to build a sparse matrix, passing in a dense matrix val of dimen-
sion k� l and corresponding integer arrays containing the list of (i, j) indices describing the clique.
This routine may only be called on a matrix handle that was opened via the USCR BEGIN routine
and has not yet been closed via the USCR END routine. That is, the matrix handle must be in an
open state, i.e. USGP(A, blas_open_handle) is true. istat is used as an error ag and will be zero
if the routine executes successfully. The C binding returns istat as the function return value.

� Fortran 95 binding:
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SUBROUTINE uscr_insert_clique( a, val, indx, jndx, istat )

INTEGER, INTENT(IN) :: a, indx(:), jndx(:)

<type>(<wp>), INTENT(IN) :: val(:,:)

INTEGER, INTENT(OUT) :: istat

� Fortran 77 binding:

SUBROUTINE BLAS_xUSCR_INSERT_CLIQUE( A, K, L, VAL, LDV, INDX,

$ JNDX, ISTAT )

INTEGER A, K, L, LDV, INDX( * ), JNDX( * ), ISTAT

<type> VAL( LDV, * )

� C binding:

int BLAS_xuscr_insert_clique( blas_sparse_matrix A, const int k, const int l,

const ARRAY val, const int row_stride,

const int col_stride, const int *indx,

const int *jndx );

USCR INSERT BLOCK (insert a block entry at block coordinate (bi, bj)) A (val; bi; bj)

USCR INSERT BLOCK is used to insert a block entry into a block-entry matrix. This routine
may only be called on a matrix handle that was opened with one of the block creation routines
( USCR BLOCK BEGIN or USCR VARIABLE BLOCK BEGIN) and has not yet been closed via the
USCR END routine. That is, the matrix handle must be in an open state, that is
USGP(A, blas_open_handle) is true. The dimensions of the block entry are determined from
the blocksize information passed to USCR BLOCK BEGIN or USCR VARIABLE BLOCK BEGIN. In
the Fortran 77 binding, LDV denotes the leading dimension of the dense array VAL. istat is used as
an error ag and will be zero if the routine executes successfully. The C binding returns istat as
the function return value.

� Fortran 95 binding:

SUBROUTINE uscr_insert_block( a, val, bi, bj, istat )

INTEGER, INTENT(IN) :: a, bi, bj

INTEGER, INTENT(OUT) :: istat

<type>(<wp>), INTENT(IN) :: val(:,:)

� Fortran 77 binding:

SUBROUTINE F_xUSCR_INSERT_BLOCK( A, VAL, LDV, BI, BJ, ISTAT )

INTEGER A, LDV, BI, BJ, ISTAT

<type> VAL( LDV, * )

� C binding:

int c_xuscr_insert_block( int a, const ARRAY val, int row_stride,

int col_stride, int bi, int bj );
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3.7.8 Completion of construction routine

USCR END (entries completed; build valid matrix handle) A (:::)

USCR END is used to complete the construction phase and build a valid sparse matrix handle.
This routine may be called with only a sparse matrix handle that was previously created via
the routines USCR BEGIN, USCR BLOCK BEGIN or USCR VARIABLE BLOCK BEGIN. That is, the
matrix handle must be in an open state, i.e. USGP(A, blas_open_handle) is true. istat is used as
an error ag and will be zero if the routine executes successfully. The C binding returns istat as
the function return value.

� Fortran 95 binding:

SUBROUTINE uscr_end( a, istat )

INTEGER, INTENT(IN) :: a

INTEGER, INTENT(OUT) :: istat

� Fortran 77 binding:

SUBROUTINE BLAS_USCR_END( A, ISTAT )

INTEGER A, ISTAT

� C binding:

int BLAS_xuscr_end( blas_sparse_matrix A );

3.7.9 Matrix property routines

USGP (get/test matrix property) property-value A

For a given sparse matrix A, the routine USGP returns the value of the given property name.
The �rst argument is the matrix handle and the second argument is one of the properties listed in
in Table 3.5. Each grouping denotes a subset of mutually exclusive properties. If the matrix handle
is invalid, the routine returns a value of -1. The properties blas_num_rows, blas_num_cols, and
blas_num_nonzeros return integer values, all other properties return 1 if true, and 0 otherwise.

� Fortran 95 binding:

SUBROUTINE usgp( a, pname, m )

INTEGER, INTENT(IN) :: a

INTEGER, INTENT(IN) :: pname

INTEGER, INTENT(OUT) :: m

� Fortran 77 binding:

SUBROUTINE BLAS_USGP( A, PNAME, M )

INTEGER A, PNAME, M
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� C binding:

int BLAS_usgp( blas_sparse_matrix A, int pname );

USSP (set matrix property) A  property-value

For a given valid sparse matrix handle A, the routine USSP sets the value of the given ma-
trix property. This routine must be called after the handle has been created, and before any of
the INSERT routines have been called. That is, the matrix handle must be in a new state, i.e.
USGP(A, blas_new_handle) is true. istat is used as an error ag and will be zero if the routine
executes successfully and is set to -1 if the handle is invalid, i.e. if USGP(A, blas_invalid_handle)

is true. The C binding returns istat as the function return value.
The �rst argument is the matrix handle; the second argument is one of the properties listed in

in Table 3.4. Each grouping denotes a subset of mutually exclusive properties.
If two incompatible properties from the same group are set, the results are unde�ned. For

example, the sequence

BLAS_ussp(A, blas_zero_base);

BLAS_ussp(A, blas_one_base);

leads to an ambiguity and the resulting handle is no longer valid (i.e. USGP(A, blas_invalid_handle)

is true). It is possible to guard against this by testing the properties �rst.

� Fortran 95 binding:

SUBROUTINE ussp( a, pname, istat )

INTEGER, INTENT(INOUT) :: a

INTEGER, INTENT(IN) :: pname

INTEGER, INTENT(OUT) :: istat

� Fortran 77 binding:

SUBROUTINE BLAS_USSP( A, PNAME, ISTAT )

INTEGER A, PNAME, ISTAT

� C binding:

int BLAS_ussp( blas_sparse_matrix A, int pname );
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3.7.10 Destruction routine

USDS (release matrix handle) (:::) A

The routine USDS releases any memory internally used by the sparse matrix handle A. The han-
dle must have been previously closed by the USCR_END routine, i.e. USGP(A, blas_valid_handle)

must be true. It turns this into an invalid handle that is no longer in use. istat is used as an error
ag and will be zero if the routine executes successfully. The C binding returns istat as the function
return value.

� Fortran 95 binding:

SUBROUTINE usds( a, istat )

INTEGER, INTENT(IN) :: a

INTEGER, INTENT(OUT) :: istat

� Fortran 77 binding:

SUBROUTINE BLAS_USDS( A, ISTAT )

INTEGER A, ISTAT

� C binding:

int BLAS_usds( blas_sparse_matrix A );
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Chapter 4

Extended and Mixed Precision BLAS

4.1 Overview

This Chapter describes extended and mixed precision implementations of the BLAS described in
other chapters. Extended precision is used only internally to the BLAS; the input and output
arguments remain as before. Extended precision permits us to implement some algorithms that
may be simpler, more accurate, and sometimes even faster than without it. Mixed precision refers to
having some input/output parameters that are both single precision and double precision, or both
real and complex. Mixed precision similarly permits us to write simpler or faster algorithms. But
given the complexity that could result by allowing too many combinations of types and precisions,
we must choose a parsimonious subset that is both useful and reasonable to implement.

The rest of this chapter is organized as follows. Section 4.2 summarizes the designs goals and
decisions that guide our design, with details left to [18]. Section 4.3 summarizes the functions
supported in extended and mixed precision. This includes a discussion of the error bounds that
routines must satisfy. Section 4.4 summarizes the issues in our design of language bindings for
Fortran 95, Fortran 77 and C. Section 4.5 contains the detailed calling sequences for the subroutines
in the three languages. A complete justi�cation of our design appears in [18].

4.2 Design Goals and Summary

Our proposal to have extended and mixed precision in the BLAS is motivated by the following
facts:

� A number of important linear algebra algorithms can become simpler, more accurate and
sometimes faster if internal computations carry more precision (and sometimes more range)
than is used for the input and output arguments. These include linear system solving, least
squares problems, and eigenvalue problems. Often the bene�ts of wider arithmetic cost only
a small fractional addition to the total work.

� For single precision input, the computer's native double precision is a way to achieve these ben-
e�ts easily on all commercially signi�cant computers, at least when only a few extra-precision
operations are needed. (Crays and their emulators implement 64-bit single in hardware and
much slower 128-bit double in software, so if a great many double precision operations are
needed, these machines will slow down signi�cantly.)

� Intel and similar processors are designed to run fastest performing arithmetic to the full 80-
bit width, wider than double precision, of their internal registers. These computers confer
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some bene�ts of wider arithmetic at little or no performance penalty. Some BLAS on these
computers already perform wider arithmetic internally but, without knowing this for sure,
programmers cannot exploit it.

� All computers can simulate quadruple precision or something like it in software at the cost of
arithmetic slower than double precision by at worst an order of magnitude. Less slowdown
is incurred for a rough double-double precision on machines (IBM RS/6000, PowerPC/Mac,
SGI/MIPS R8000,HP PA RISC 2.0) with special fused multiply-accumulate instructions.
Since some algorithms require very little extra precise arithmetic to get a large bene�t, the
slowdown is practically negligible.

Given the variety of implementation techniques hinted at above, we need to carefully examine
the costs and bene�ts of exploiting various arithmetic features beyond the most basic ones, and
choose a parsimonious subset that

Goal 1: is reasonable to implement,

Goal 2: supports some if not all important application examples,

Goal 3: is easy to use,

Goal 4: encourages the writing of portable code, and

Goal 5: accommodates growth as we learn about new algorithms exploiting our arithmetic fea-
tures.

Here is an outline of our design decisions. These are discussed and justi�ed in detail in [18].

1. We will not require that the user explicitly declare or use any new extended precision data
types, i.e. beyond the standard single and double precisions, since these are not supported
in a standard way by every language and compiler. Thus the only extended precision that
we mandate will be hidden inside the BLAS, and so can be implemented in any convenient
machine dependent way. This supports Goals 1, 3 and 4 above.

2. This internal extended precision will support most of the application examples listed in [18],
supporting Goal 2.

3. Since we cannot predict all the future applications of extended or mixed precision, we will
accommodate growth by making our proposal as orthogonal as possible to the rest of this
proposal, showing how to take any BLAS routine, determine whether extra precision is worth
using (since sometimes it is not), and de�ne the extended precision version if it is. This
supports Goal 5.

4. Since the number of possible routines with mixed precision inputs is very large, we will specify
a small subset of mixed precision routines which seems to cover most foreseeable needs. This
supports Goals 1 and 2.

5. In order to easily estimate error bounds in code by running with di�erent internal precisions
and then comparing the answers, (see Example 8 in [18]), we need to be able to specify
the extended precision at runtime; we will do this with a variable we will call PREC. This
supports Goal 2.
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6. Since di�erent machines may best support extended precision in di�erent ways, PREC could
potentially take on many machine-dependent values. Instead we have chosen a parsimonious
subset that will be available on all machines, permitting the implementor to support others
if desired. This supports all the Goals 1 and 4 above.

7. Since the precision speci�ed by one value of PREC can still have di�erent implementations
and so di�erent error bounds on di�erent machines, we have speci�ed environmental enquiries
for the user to be able to discover the actual machine precision (or over/underow thresholds)
used at runtime. This lets the user pick appropriate stopping criteria for iterations, etc. This
supports Goals 3 and 4.

4.3 Functionality

This section describes the functionality of extended and mixed precision BLAS in a language in-
dependent way. Section 4.3.1 describes how extra precision is speci�ed via the PREC argument.
Section 4.3.2 describes in general what kind of mixed precision operations will be supported. Sec-
tion 4.3.3 describes the error bounds that BLAS operations must satisfy; this is where the semantics
of \extra precision" are precisely speci�ed. Finally, section 4.3.4 lists the functions that will be
supported in extra and/or mixed precision.

4.3.1 Specifying Extra Precision

The internal precision to be used by an extended precision routine will be speci�ed by an argument
called PREC. It is not entirely straightforward to describe PREC because even on a single machine
there may be multiple ways of implementing wider-than-double-precision arithmetic (see [18]).

To encourage portability, we specify names for precisions that may map to di�erent formats and
techniques on di�erent machines. As discussed in section 1.6, historically the words \single" and
\double" have referred to very di�erent formats on di�erent architectures. Nonetheless, we all agree
on single precision as a word with a certain meaning, and double precision too, meaning twice or
more precision than single. The de�nitions below add two more precisions, whose implementation
details are discussed in [18].

PREC = Single . This means single precision, whatever single means on the particular machine,
language and compiler.

PREC = Double . This means double precision, again whatever that means on a particular
machine, language and compiler.

PREC = Indigenous . This means the widest hardware-supported format available. Its intention
is to let the machine run close to top speed, while being as accurate as possible. On some
machines this would be a 64-bit format (whether it is called single or double), but on Intel
machines and ones like them it means the 80-bit IEEE format of the oating point registers.

PREC = Extra . This means anything at least 1.5 times as accurate than double, and in partic-
ular wider than 80-bits (see section 4.3.3 for details). An existing quadruple precision format
could be used to implement this, but it can probably be implemented implemented more eÆ-
ciently using native double (or indigenous) operations in a technique called \double-double",
described in [18, 19, 20]. It is possible to write a portable and reasonably eÆcient reference
implementation of all proposed routines using these techniques [18].
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The actual names for PREC values are speci�ed in section A.3. Here are the rules for using
PREC:

1. The internal precision used must always be at least as high as the most precise input or output.
So if the user requests less internal precision than in the most precise input or output, then
the implementor must use more than requested.

2. The implementor may always use a higher precision than the one requested in the subroutine
call, if this is convenient or faster.

3. The precision actually used is available to the user via the environmental enquiry in sec-
tion 4.3.3.

4. PREC may take on other machine dependent values provided by the implementor, provided
these are documented via the environmental enquiry routine.

Advice to implementors: While it appears that as many as seven new implementations of each
routine are needed (four when the arguments are single, and three when the arguments are double),
in fact fewer are needed: Two exist already as the standard BLAS (single input/output with PREC
= Single, and double input/output when PREC = Double), Indigenous = Double or Indigenous =
Single on many machines, and wider precision than requested may be used. Thus the only really
new implementations may be single input/output with Double or Extra internal precision, and
double input/output with Extra internal precision. Of these, only Extra internal precision may
need arithmetic not already native to the machine. A reference implementation is described in [18].

4.3.2 Mixed Precision

Suppose a subroutine has several oating point arguments, some scalars and some arrays. Mixed
precision refers to permitting these arguments to have di�erent mathematical types, meaning real
and complex, or di�erent precisions, meaning single and double. Some BLAS in Chapter 2 are
naturally de�ned with arguments of mixed mathematical type (e.g. HERK), but most have a
single mathematical type; all are de�ned with the same precision for all arguments.

The permitted combinations of mathematical types and precisions are de�ned as follows. There
are two cases:

1. The mathematical types of the input/output oating point arguments are identical to the
BLAS as de�ned in Chapter 1. All scalar arguments and the output argument (scalar or
array) are double precision. At least one array argument must be single precision.

For example, suppose the function being implemented is matrix-matrix multiplication C =
� �A �B+� �C, where � and � are scalars and A, B and C are arrays. Then the allowed types
are as follows (S = Single real, D = Double real, C = Single complex, Z = Double complex).

� A B � C

D S S D D
D S D D D
D D S D D
Z C C Z Z
Z C Z Z Z
Z Z C Z Z
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2. The precision of all oating point arguments must be single, or all must be double. All scalar
arguments and the output argument (scalar or array) are complex (unless a scalar argument
must be real for mathematical reasons, like � and � in HERK). At least one input array
argument must be real.

For example, suppose the function being implemented is matrix-matrix multiplication as
before. Then the allowed types are as follows:

� A B � C

C S S C C
C S C C C
C C S C C
Z D D Z Z
Z D Z Z Z
Z Z D Z Z

Note that we specify only 16 versions of matrix-matrix multiplication (the 12 mixed ones above,
and 4 unmixed), in contrast to the maximum possible 45 = 1024.

4.3.3 Numerical Accuracy and Environmental Enquiries

The machine dependent interpretations of PREC require us to have a more complicated environ-
mental enquiry routine to describe the numerical behavior of the routine in this chapter than the
simpler FPINFO routine described in sections 1.6 and 2.7. While FPINFO should still be available
for the user to call to get basic properties of the single and double precision oating point types,
here we will specify an additional routine FPINFO X that depends on PREC.

The calling sequence of this function is

result = FPINFO X (CMACH, PREC)

Both arguments are input arguments, with the requested information returned as the integer value
of FPINFO X. The exact input values depend on the language, and are described in section 4.4.
PREC has the same meaning as before. Input argument CMACH may take on the named constant
values below, which are a subset of those permitted by function FPINFO as described in section 2.7.
Only the �rst six values of CMACH from section 2.7 are permitted, because 1) they are suÆcient
to de�ne the remaining parameters by using the formulas in section 1.6, and 2) the values returned
by FPINFO X are representable integer values, whereas the other possible return values, like the
overow and underow thresholds, may not be representable in any user-declarable format.

Floating Point Description
parameter

BASE base of the machine
T number of (BASE) digits in the mantissa
RND 1 when \proper rounding" occurs in addition,

0 otherwise
IEEE 1 when rounding in addition occurs in \IEEE style",

0 otherwise
EMIN minimum exponent before (gradual) underow
EMAX largest exponent before overow
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We will use the following notation to describe machine parameters derivable from the values
returned by FPINFO X using the formulas in section 1.6:

� �PREC is relative machine precision or machine epsilon of the internal precision speci�ed by
PREC,

� �o is the machine epsilon for the output precision,

� OVPREC and UNPREC are the overow and underow thresholds for internal precision
PREC, and

� OVo and UNo are the overow and underow thresholds for for the output precision.

Here are the error bounds satis�ed by the extra precision routines, and how they depend on �.
There are two cases of interest.

1. Suppose each component of the computed result is of the form

rtrue = � � (
nX
i=1

ai � bi) + � � c ;

where all quantities are scalars. This covers the dot product, scaled vector addition and scaled
vector accumulation, all variants of matrix-vector and matrix-matrix products, and low-rank
updates (sometimes with � and � taking on special values like zero and one). In this case
the error bound, in the absence of over/underow of any intermediate or output quantities,
should satisfy

jrcomputed � rtruej � (n+ 2) � �PREC(j�j �
nX
i=1

jai � bij+ j� � cj) + �o � jrtruej :

where  = 1 if all data is real and  = 2
p
2 if any data is complex.

Rationale: This accommodates all reasonable, non-Strassen based implementations, with real
or complex scalars (and conventional multiplication of complex scalars), that perform all
intermediate oating point operations with machine epsilon �PREC, with or without a guard
digit, before rounding the �nal result to precision �o. Underow is guaranteed to be absent
if no intermediate quantity stored in precision PREC is less than UNPREC in magnitude
(unless its exact value is zero) and jrcomputedj is not less than UNo (unless its exact value is
zero). Similarly, overow is guaranteed to be absent if no intermediate quantity in precision
PREC= exceeds OVPREC in magnitude, and jrcomputedj does not exceed OVo. We avoid
specifying what happens with underow, because the implementor may reasonably choose to
compute r using � � (P ai � bi),

P
(� � ai) � bi or

P
ai � (� � bi) depending on dimensions, and the

error bounds in the presence of underow can di�er signi�cantly in these three cases. See [18]
for implementation recommendations and detailed error bounds in the presence of underow.

2. Suppose the computed solution consists of one or more vectors x satisfying an n-by-n trian-
gular system of equations

Tx = �b

where � is a scalar, b is a vector (or vectors), and T is a triangular matrix. In this case the
computed solution, in the absence of over/underow in intermediate or output quantities,
satis�es

(T +E)(xcomputed + e) = �(b+ f)
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where jEij j � �n�PRECjTij j, jeij � �ojxcomputed;ij, jfij � �n�PRECjbij, � = 1 if all data is

real, and � = 6 + 4
p
2 if any data is complex.

Rationale: This accommodates all reasonable, substitution-based methods of solution, with
summations evaluated in any order, with all intermediate oating point operations done with
machine epsilon �PREC, and with all intermediate quantities stored to the same precision. In
particular, this means that the entries of xcomputed must be temporarily stored with precision
�PREC before being rounded to the output precision at the end. Overow and underow
are de�ned and treated as before. See [18] for implementation recommendations and detailed
error bounds in the presence of underow.

The values of �PREC must satisfy the following inequalities:

�DOUBLE � �2SINGLE

�INDIGENOUS � �SINGLE

�EXTRA � �1:5DOUBLE

The �rst inequality says that double precision is at least twice as accurate (has twice as many
signi�cant digits) as single precision. The second inequality says that indigenous is at least as
accurate as single precision. The third inequality says that extra precision is at least 1.5 times as
accurate (has 1.5 times as many signi�cant digits) as double precision.

Advice to implementors: This is only a lower bound on the number of signi�cant digits in
extra precision; most reasonable implementations can get close to twice as many digits as double
precision [18]. The lower bound is intended to exclude the use of the 80-bit IEEE format as Extra
precision when Double is the 64-bit IEEE format. It is important that BASE, T , and RND are
chosen so that EPS de�ned by EPS = BASE1�T if RND = 0 and EPS = :5 � BASE1�T if
RND = 1 can be used for error analysis. For example in the reference implementation of EXTRA
precision in [18], T = 105 even though 106 bits are stored. Though we do not require this, the
simplest way to achieve the error bounds described above is for oating operations � 2 f+;�; �; =g
to satisfy the following bounds in the absense of over/underow: fl(a� b) = (a� b)(1+ Æ) for some
jÆj � EPS when a and b are real, fl(a� b) = (a� b)(1 + Æ) for some jÆj � p2 � EPS when a and
b are complex, fl(a � b) = (a � b)(1 + Æ) for some jÆj � 2

p
2 � EPS when a and b are complex, and

fl(a=b) = (a=b)(1 + Æ) for some jÆj � (6 + 4
p
2) �EPS when a and b are complex.

The semantics of overow and underow are discussed more carefully in [18]; they become more
complicated concepts when using implementation techniques like double-double for extra precision.
The important properties they should satisfy are

1. In any precision, a quantity greater than OV generates an exception, a �1 symbol, or
otherwise somehow indicates its complete loss of precision.

2. In any precision, the error in a oating point operation that might underow (during some part
of the calculation, if for example it is double-double) is described by fl(a�b) = (a�b)(1+Æ)+�,
for some jÆj � EPS and j�j � UN if a and b are real, and for slighlty larger jÆj and j�j if a
and b are complex.

We choose not to specify the overow and underow thresholds in more detail, in order not to
eliminate innovative ways of implementing extra precision.
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4.3.4 Function Tables

As discussed in [18], not all BLAS routines from Chapter 2 are worth converting to extra or mixed
precision, so we only include the subset that is worth converting.

Table 4.1 is a subset of Table 2.1 in Chapter 2, Reduction Operations.
Table 4.2 is a subset of Table 2.3 in Chapter 2, Vector Operations.
Table 4.3 is a subset of Table 2.5 in Chapter 2, Matrix-Vector Operations.
Table 4.4 is a subset of Table 2.7 in Chapter 2, Matrix Matrix Operations.

Dot product r  �r + �xT y DOT
Sum r  P

i xi SUM

Table 4.1: Extra and Mixed Precision Reduction Operations

Scaled vector accumulation y  �x+ �y; AXPBY
Scaled vector addition w �x+ �y WAXPBY

Table 4.2: Extra and Mixed Precision Vector Operations

Matrix vector product y  �Ax+ �y GE, GB, SY, SP, SB, MV
HE, HP, HB

y  �ATx+ �y GE, GB MV
x �Tx; x �T Tx TR, TB, TP MV

Summed matrix vector multiplies y  �Ax+ �Bx GE SUM MV
Triangular solve x �T�1x; x �T�Tx TR, TB, TP SV

Table 4.3: Extra and Mixed Precision Matrix Vector Operations

Matrix matrix product C  �AB + �C; C  �ATB + �C GE MM
C  �ABT + �C; C  �ATBT + �C
C  �AB + �C; C  �BA+ �C SY, HE MM

Triangular multiply B  �TB; B  �BT TR MM
B  �T TB; B  �BT T

Triangular solve B  �T�1B; B  �BT�1 TR SM
B  �T�TB; B  �BT�T

Symmetric rank k & 2k C  �AAT + �C; C  �ATA+ �C SY, HE RK
updates (C = CT ) C  (�A)BT +B(�A)T + �C SY, HE R2K

Table 4.4: Extra and Mixed Precision Matrix Matrix Operations

4.4 Interface Issues

This section describes the common issues for our three language bindings: Fortran 95, Fortran 77
and C. Here is a summary of the systematic way we take a subroutine name and its argument list,
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Environmental Enquiry machine epsilon, over/underow thresholds

Table 4.5: Environmental Enquiries for Extra and Mixed Precision Operations

and modify them to allow for extra or mixed precision:

1. Subroutine names and mixed precision inputs. If the language permits a subroutine
argument to have more than one type, because it can dispatch the right routine based on the
actual type at compile time (Fortran 95, but not Fortran 77 or C), then the subroutine name
does not have to change to accommodate mixed precision. Otherwise, a new subroutine name
is required, and will be created from the old one by appending characters indicating the types
of the arguments.

2. Subroutine names and extended precision. If the language permits PREC to be an
optional argument (Fortran 95, but not Fortran 77 or C), then the same subroutine name as
for the non-extended precision version can be used without change. If a new name is required,
it will be formed by appending X (or x) to the existing name. If the name has already been
modi�ed to accommodate mixed precision, X (or x) should be added to the end of the new
name.

3. Location of PREC in the calling sequence. The new calling sequence will consist of the
original calling sequence (for the BLAS routine without extra or mixed precision) with PREC
appended at the end.

4. Type of PREC. It will be a derived type in Fortran 95, an integer in Fortran 77, and an
enumerated type in C. Standard names are listed below.

5. Environmental enquiry function. Its output type is an integer. The input PREC is
speci�ed as above.

4.4.1 Interface Issues for Fortran 95

1. Subroutine names and mixed precision inputs. No new subroutine names are needed
because we can exploit the optional argument interface of Fortran 95.

2. Subroutine names and extended precision. No new subroutine names are needed by
letting PREC be an optional argument. The default in the case of no mixed precision is
the standard BLAS implementation. The default in the case of mixed precision is at the
discretion of the implementor, subject to the constraints of section 4.3.1.

3. Type of PREC. PREC is a derived type, as de�ned in the module blas operator arguments

(see section A.4).

4. Environmental enquiry function. fpinfo x(CMACH,PREC) returns an integer. PREC is
as speci�ed above. CMACH is as de�ned in sections 1.6, 2.7, 4.3.3, and A.4.

5. Error Handling. Error handling is as de�ned in section 2.4.6.
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4.4.2 Interface Issues for Fortran 77

As described in Chapter 2, this proposal violates the letter of the ANSI Fortran 77 standard by
having subroutine and variable names longer than 6 characters and with embedded underscores.

1. Subroutine names and mixed precision inputs. The unmodi�ed subroutine name has
a character (S, D, C or Z) that speci�es the oating point argument types. This will be the
type of the output argument. By applying the rules in Section 4.3.2, this also determines
the types of the scalar arguments. The possible types of the remaining array arguments are
listed in Section 4.3.2. The types of these arguments (written S, D, C or Z) are appended
to the unmodi�ed subroutine name, in the order in which they appear in the argument list.

For example, consider BLAS ZGEMM(�,A,B,�,C) (only the oating point arguments are
shown). The Z in BLAS ZGEMM means that C, � and � are all double-complex. The
possible types of A and B, and the corresponding subroutine names, are:

Type of A Type of B Modi�ed subroutine name

C C BLAS ZGEMM C C
C Z BLAS ZGEMM C Z
Z C BLAS ZGEMM Z C
D D BLAS ZGEMM D D
D Z BLAS ZGEMM D Z
Z D BLAS ZGEMM Z D

2. Subroutine names and extended precision. To accommodate extended precision, PREC
is added as the last argument, and X is appended to the end of subroutine name (which may
already have been modi�ed to accommodate mixed precision).

For example, double-complex matrix-matrix multiplication implemented with extended pre-
cision is named BLAS ZGEMM X. Double-complex matrix-matrix multiplication where the
A and B arguments are single-complex is named BLAS ZGEMM C C X.

3. Type of PREC. PREC is an integer (named constant), as de�ned in the include �le
blas namedconstants.h (see section A.5).

4. Environmental enquiry function. BLAS FPINFO X(CMACH,PREC) returns an integer.
PREC is as speci�ed above. CMACH is as de�ned in sections 1.6, 2.7, 4.3.3, and A.5.

5. Error Handling. Error handling is as de�ned in section 2.5.6.

To shorten the subroutine speci�cations in section 4.5, we will abbreviate the list of possible
subroutine names for GEMM to a single one: BLAS xGEMMf a bgf Xg The pre�x x may be S
(single), D (double), C (complex) or Z (double complex). Also, the subroutine name may optionally
be appended with a b, where a and b are the types of A and B respectively, and then optionally
be appended with X. At least one of a b or X must appear.

4.4.3 Interface Issues for C

1. Subroutine names and mixed precision inputs. The same scheme is used as in For-
tran 77, as described above, except that all characters in subroutine names are lower case.
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2. Subroutine names and extended precision. The same scheme is used as in Fortran 77,
as described above, except that all characters in subroutine names are lower case.

3. Type of PREC. PREC is an enumerated type, as de�ned in the include �le blas enum.h

(see section A.6).

4. Environmental enquiry function. BLAS fpinfo x(CMACH,PREC) returns an integer.
PREC is as speci�ed above. CMACH is as de�ned in sections 1.6, 2.7, 4.3.3, and A.6.

5. Error Handling. Error handling is as de�ned in section 2.6.9.

4.5 Language Bindings

4.5.1 Overview

As in Chapter 2, each speci�cation of a routine will correspond to an operation outlined in the
functionality tables. Operations are organized analogous to the order in which they are presented
in the functionality tables. The speci�cation will have the form:

NAME (multi-word description of operation) < mathematical representation >

� Fortran 95 binding

� Fortran 77 binding

� C binding

Section 4.4 describes abbreviations we use below. For example,

SUBROUTINE BLAS_xDOT{_a_b}{_X}( N, ALPHA, X, INCX, BETA,

Y, INCY, R [, PREC])

means that the subroutine name may optionally be appended with a b, where a and b are the
types of X and Y, respectively, and also optionally appended with X, in which case the parameter
PREC must also appear.

The routines speci�ed here are

� Reduction Operations (section 4.5.2)

{ DOT (Dot product)

{ SUM (Sum)

� Vector Operations (section 4.5.3)

{ AXPBY (Scaled vector accumulation)

{ WAXPBY (Scaled vector addition)

� Matrix-Vector Operations (section 4.5.4)

{ fGE,GBgMV (Matrix vector product)

{ fSY,SB,SPgMV (Symmetric matrix vector product)
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{ fHE,HB,HPgMV (Hermitian matrix vector product)

{ fTR,TB,TPgMV (Triangular matrix vector product)

{ GE SUM MV (Summed matrix vector multiplies)

{ fTR,TB,TPgSV (Triangular solve)

� Matrix-Matrix Operations (section 4.5.5)

{ GEMM (General Matrix Matrix product)

{ SYMM (Symmetric matrix matrix product)

{ HEMM (Hermitian matrix matrix product)

{ TRMM (Triangular matrix matrix multiply)

{ TRSM (Triangular solve)

{ SYRK (Symmetric rank-k update)

{ HERK (Hermitian rank-k update)

{ SYR2K (Symmetric rank-2k update)

{ HER2K (Hermitian rank-2k update)

4.5.2 Mixed and Extended Precision Reduction Operations

DOT (Dot Product) x; y 2 IRn; r  �r + �xT y = �r + �
n�1X
i=0

xiyi

x; y 2 lC n; r  �r + �xT y = �r + �
n�1X
i=0

xiyi or r  �r + �xHy = �r + �
n�1X
i=0

�xiyi

The routine DOT adds the scaled dot product of two vectors x and y into a scaled scalar r. The
routine returns immediately if n is less than zero, or, if beta is equal to one and either alpha or n is
equal to zero. If alpha is equal to zero then x and y are not read. Similarly, if beta is equal to zero,
r is not read. As described in section 2.5.3, the value incx less than zero is permitted. However, if
incx is equal to zero, an error ag is set and passed to the error handler.

When x and y are complex vectors, the vector components xi are used unconjugated or conju-
gated as speci�ed by the operator argument conj. If x and y are real vectors, the operator argument
conj has no e�ect.

Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE dot( x, y, r [, conj] [, alpha] [, beta] [, prec] )

<type>(<wp>), INTENT (IN) :: x(:)

<type>(<wp>), INTENT (IN) :: y(:)

<type>(<wp>), INTENT (INOUT) :: r

TYPE (blas_conj_type), INTENT(IN), OPTIONAL :: conj

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

x and y have shape (n)
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The types of alpha, x, y, beta and r are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of x and y can optionally di�er from that of r,
alpha and beta.

� Fortran 77 binding:

SUBROUTINE BLAS_xDOT{_a_b}{_X}( CONJ, N, ALPHA, X, INCX, BETA, Y, INCY,

$ R, [, PREC] )

INTEGER CONJ, INCX, INCY, N [, PREC]

<type> ALPHA, BETA, R

<type> X( * )

<type> Y( * )

The types of ALPHA, X, Y, BETA and R are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of X and b is the type of Y. The suÆx X is present
if and only if PREC is present. One or both of the suÆxes a b and X must be present.

� C binding:

void BLAS_xdot{_a_b}{_x}( enum blas_conj_type conj, int n, SCALAR_IN alpha,

const ARRAY x, int incx, SCALAR_IN beta,

const ARRAY y, int incy, SCALAR_INOUT r,

[, enum blas_prec_type prec] );

The types of alpha, x, y, beta and r are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of argument x and b is the type of argument y. The
suÆx x is present if and only if prec is present. One or both of the suÆxes a b and x must
be present.

SUM (Sum) r  
n�1X
i=0

xi

The routine SUM computes the sum of the entries of a vector x. If n is less than or equal to
zero, this routine returns immediately with the output scalar r set to zero. As described in section
2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error ag is
set and passed to the error handler.

Extended precision is permitted, but not mixed precision.
This routine has the same speci�cation as in Chapter 2, except that extended precision is

permitted. Mixed precision is not permitted.

� Fortran 95 binding:

<type>(<wp>) FUNCTION sum( x, prec )

<type>(<wp>), INTENT (IN) :: x(:)

TYPE (blas_prec_type), INTENT (IN) :: prec

where

x has shape (n)
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The types of sum and x are identical.

� Fortran 77 binding:

<type> FUNCTION BLAS_xSUM_X( N, X, INCX, PREC )

INTEGER INCX, N, PREC

<type> X( * )

The types of BLAS xSUM X and argument X are both speci�ed by the pre�x x.

� C binding:

void BLAS_xsum_x( int n, const ARRAY x, int incx, SCALAR_INOUT sum,

enum blas_prec_type prec );

The types of arguments sum and x are both speci�ed by the pre�x x.

4.5.3 Mixed and Extended Precision Vector Operations

AXPBY (Scaled vector accumulation) y  �x+ �y

The routine AXPBY scales the vector x by � and the vector y by �, adds these two vectors to
one another and stores the result in the vector y. If n is less than or equal to zero, or if � is equal
to zero and � is equal to one, this routine returns immediately. As described in section 2.5.3, the
value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero, an
error ag is set and passed to the error handler.

Extended and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE axpby( x, y [, alpha] [, beta] [, prec] )

<type>(<wp>), INTENT (IN) :: x(:)

<type>(<wp>), INTENT (INOUT) :: y(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

x and y have shape (n)

The default value for � is 1.0 and (1.0,0.0).

The types of x, y, alpha, and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the type of x can optionally di�er from that of alpha,
beta and y.

� Fortran 77 binding:
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SUBROUTINE BLAS_xAXPBY{_a}{_X}( N, ALPHA, X, INCX, BETA, Y, INCY

[, PREC] )

INTEGER INCX, INCY, N [, PREC]

<type> ALPHA, BETA

<type> X( * )

<type> Y( * )

The types of ALPHA, X, Y, and BETA are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of X. The suÆx X is present if and only if PREC is
present. One or both of the suÆxes a and X must be present.

� C binding:

void BLAS_xaxpby{_a}{_x}( int n, SCALAR_IN alpha, const ARRAY x, int incx,

SCALAR_IN beta, ARRAY y, int incy,

[, enum blas_prec_type prec] );

The types of alpha, x, y, and beta are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of argument x. The suÆx x is present if and only if
prec is present. One or both of the suÆxes a and x must be present.

WAXPBY (Scaled vector addition) w  �x+ �y

The routine WAXPBY scales the vector x by � and the vector y by �, adds these two vectors
to one another and stores the result in the vector w. If n is less than or equal to zero, this routine
returns immediately. As described in section 2.5.3, the value incx or incy or incw less than zero is
permitted. However, if either incx or incy or incw is equal to zero, an error ag is set and passed to
the error handler.

Extended and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE waxpby( x, y, w [, alpha] [, beta] [, prec] )

<type>(<wp>), INTENT (IN) :: x(:)

<type>(<wp>), INTENT (IN) :: y(:)

<type>(<wp>), INTENT (OUT) :: w(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

x, y and w have shape (n)

The default value for � is 1.0 and (1.0,0.0).

The types of x, y, w, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of x and y can optionally di�er from that of w,
alpha and beta.
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� Fortran 77 binding:

SUBROUTINE BLAS_xWAXPBY{_a_b}{_X}( N, ALPHA, X, INCX, BETA, Y, INCY,

$ W, INCW [, PREC] )

INTEGER INCW, INCX, INCY, N [, PREC]

<type> ALPHA, BETA

<type> W( * )

<type> X( * )

<type> Y( * )

The types of X, Y, W, ALPHA and BETA are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of X and b is the type of Y. The suÆx X is present
if and only if PREC is present. One or both of the suÆxes a b and X must be present.

� C binding:

void BLAS_xwaxpby{_a_b}{_x}( int n, SCALAR_IN alpha, const ARRAY x, int incx,

SCALAR_IN beta, const ARRAY y, int incy, ARRAY w,

int incw [, enum blas_prec_type prec] );

The types of x, y, w, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of argument x and b is the type of argument y. The
suÆx x is present if and only if prec is present. One or both of the suÆxes a b and x must
be present.

4.5.4 Mixed and Extended Precision Matrix-Vector Operations

fGE,GBgMV (Matrix vector product) y  �Ax+ �y, y  �ATx+ �y or y  �AHx+ �y

The routines multiply a vector x by a general (or general band) matrix A or its transpose, or
its conjugate transpose, scales the resulting vector and adds it to the scaled vector operand y. If
m or n is less than or equal to zero or if beta is equal to one and alpha is equal to zero, this routine
returns immediately. As described in section 2.5.3, the value incx or incy less than zero is permitted.
However, if either incx or incy is equal to zero, an error ag is set and passed to the error handler.
For the routine GEMV, if lda is less than one or lda is less than m, an error ag is set and passed to
the error handler. For the routine GBMV, if kl or ku is less than zero, or if lda is less than kl plus
ku plus one, an error ag is set and passed to the error handler.

Extended and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE gbmv( a, m, kl, x, y [, trans] [, alpha] [, beta] [, prec] )

<type>(<wp>), INTENT(IN) :: a(:,:), x(:)
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INTEGER, INTENT(IN) :: m, kl

<type>(<wp>), INTENT(INOUT) :: y(:)

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec

where

if trans = blas_no_trans then

x has shape (n)

y has shape (m)

else if trans =/ blas_no_trans then

x has shape (m)

y has shape (n)

end if

The functionality of gemv is covered by gemm.

� Fortran 77 binding:

General:

SUBROUTINE BLAS_xGEMV{_a_b}{_X}( TRANS, M, N, ALPHA, A, LDA,

$ X, INCX, BETA, Y, INCY [, PREC] )

General Band:

SUBROUTINE BLAS_xGBMV{_a_b}{_X}( TRANS, M, N, KL, KU, ALPHA, A,

$ LDA, X, INCX, BETA, Y, INCY [, PREC] )

all:

INTEGER INCX, INCY, KL, KU, LDA, M, N, [PREC,] TRANS

<type> ALPHA, BETA

<type> A( LDA, * )

<type> X( * )

<type> Y( * )

The types of ALPHA, A, X, Y, and BETA are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of A and b is the type of X. The suÆx X is present
if and only if PREC is present. One or both of the suÆxes a b and X must be present.

� C binding:

General:

void BLAS_xgemv{_a_b}{_x}( enum blas_order_type order,

enum blas_trans_type trans, int m, int n,

SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y,

int incy [, enum blas_prec_type prec] );

General Band:

void BLAS_xgbmv{_a_b}{_x}( enum blas_order_type order,

enum blas_trans_type trans, int m, int n,

int kl, int ku, SCALAR_IN alpha,

const ARRAY a, int lda, const ARRAY x, int incx,
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SCALAR_IN beta, ARRAY y, int incy

[, enum blas_prec_type prec] );

The types of alpha, a, x, y and beta are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of argument a and b is the type of argument x. The
suÆx x is present if and only if prec is present. One or both of the suÆxes a b and x must
be present.

fSY,SB,SPgMV (Symmetric matrix vector multiply) y  �Ax+ �y with A = AT

The routines multiply a vector x by a real or complex symmetric matrix A, scales the resulting
vector and adds it to the scaled vector operand y. If n is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error ag is set and passed to the error handler. For the routine SYMV, if lda is less than
one or lda is less than n, an error ag is set and passed to the error handler. For the routine SBMV,
if lda is less than k plus one, an error ag is set and passed to the error handler.

Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

Symmetric Band:

SUBROUTINE sbmv( a, x, y [, uplo] [, alpha] [, beta] [, prec] )

Symmetric Packed:

SUBROUTINE spmv( ap, x, y [, uplo] [, alpha] [, beta] [, prec] )

<type>(<wp>), INTENT(IN) :: <aa>

<type>(<wp>), INTENT(IN) :: x(:)

<type>(<wp>), INTENT(INOUT) :: y(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec

where

<aa> ::= a(:,:) or ap(:)

and

SB a has shape (k+1,n)

SP ap has shape (n*(n+1)/2)

x and y have shape (n)

The types of alpha, a or ap, x, beta, and y are governed by the rules of mixed precision
arguments set down in section 4.3: the types of a or ap and x can optionally di�er from that
of y, alpha and beta.

The functionality of symv is covered by symm.

� Fortran 77 binding:
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Symmetric:

SUBROUTINE BLAS_xSYMV{_a_b}{_X}( UPLO, N, ALPHA, A, LDA, X, INCX,

$ BETA, Y, INCY [, PREC] )

Symmetric Band:

SUBROUTINE BLAS_xSBMV{_a_b}{_X}( UPLO, N, K, ALPHA, A, LDA, X, INCX,

$ BETA, Y, INCY [, PREC] )

Symmetric Packed:

SUBROUTINE BLAS_xSPMV{_a_b}{_X}( UPLO, N, ALPHA, AP, X, INCX, BETA,

$ Y, INCY [, PREC] )

all:

INTEGER INCX, INCY, K, LDA, N, UPLO [, PREC]

<type> ALPHA, BETA

<type> A( LDA, * ) or AP( * )

<type> X( * )

<type> Y( * )

The types of ALPHA, A or AP, X, Y and BETA are governed according to the rules of mixed
precision arguments set down in section 4.3. The pre�x x is the oating point type of the
arguments, but if a b is present then a is the type of A or AP, and b is the type of X. The
suÆx X is present if and only if PREC is present. One or both of the suÆxes a b and X must
be present.

� C binding:

Symmetric:

void BLAS_xsymv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y,

int incy [, enum blas_prec_type prec] );

Symmetric Band:

void BLAS_xsbmv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, SCALAR_IN alpha, const ARRAY a,

int lda, const ARRAY x, int incx, SCALAR_IN beta,

ARRAY y, int incy [, enum blas_prec_type prec] );

Symmetric Packed:

void BLAS_xspmv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY ap,

const ARRAY x, int incx, SCALAR_IN beta, ARRAY y,

int incy [, enum blas_prec_type prec] );

The types of alpha, a or ap, x, y, and beta are governed according to the rules of mixed
precision arguments set down in section 4.3. The pre�x x is the oating point type of the
arguments, but if a b is present then a is the type of argument a or ap and b is the type of
argument x. The suÆx x is present if and only if prec is present. One or both of the suÆxes
a b and x must be present.

fHE,HB,HPgMV (Hermitian matrix vector product) y  �Ax+ �y with A = AH
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The routines multiply a vector x by a Hermitian matrix A, scales the resulting vector and adds
it to the scaled vector operand y. If n is less than or equal to zero or if beta is equal to one and alpha
is equal to zero, this routine returns immediately. The imaginary part of the diagonal entries of
the matrix operand are supposed to be zero and should not be referenced. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error ag is set and passed to the error handler. For the routine HEMV, if lda is less than
one or lda is less than n, an error ag is set and passed to the error handler. For the routine HBMV,
if lda is less than k plus one, an error ag is set and passed to the error handler.

Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

Hermitian Band:

SUBROUTINE hbmv{_a}{_x}( a, x, y [, uplo] [, alpha] [, beta] [, prec] )

Hermitian Packed:

SUBROUTINE hpmv{_a}{_x}( ap, x, y [, uplo] [, alpha] [, beta] [, prec] )

COMPLEX(<wp>), INTENT(IN) :: <aa>

COMPLEX(<wp>), INTENT(IN) :: x(:)

COMPLEX(<wp>), INTENT(INOUT) :: y(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec

where

<aa> ::= a(:,:) or ap(:)

and

HB a has shape (k+1,n)

HP ap has shape (n*(n+1)/2)

x and y have shape (n)

The types of alpha, a or ap, x, beta, and y are governed by the rules of mixed precision
arguments set down in section 4.3: the types of a or ap and x can optionally di�er from that
of y, alpha and beta.

The functionality of hemv is covered by hemm.

� Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHEMV{_a_b}{_X}( UPLO, N, ALPHA, A, LDA, X, INCX,

$ BETA, Y, INCY [, PREC] )

Hermitian Band:

SUBROUTINE BLAS_xHBMV{_a_b}{_X}( UPLO, N, K, ALPHA, A, LDA, X, INCX,

$ BETA, Y, INCY [, PREC] )

Hermitian Packed:

SUBROUTINE BLAS_xHPMV{_a_b}{_X}( UPLO, N, ALPHA, AP, X, INCX,

$ BETA, Y, INCY [, PREC] )

all:



4.5. LANGUAGE BINDINGS 157

INTEGER INCX, INCY, K, LDA, N, UPLO [, PREC]

<ctype> ALPHA, BETA

<ctype> A( LDA, * ) or AP( * )

<ctype> X( * )

<ctype> Y( * )

The types of ALPHA, A or AP, X, Y, and BETA are governed according to the rules of mixed
precision arguments set down in section 4.3. The pre�x x is the oating point type of the
arguments, but if a b is present then a is the type of A or AP and b is the type of X. The
suÆx X is present if and only if PREC is present. One or both of the suÆxes a b and X must
be present.

� C binding:

Hermitian:

void BLAS_xhemv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, CSCALAR_IN alpha, const CARRAY a, int lda,

const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,

int incy [, enum blas_prec_type prec] );

Hermitian Band:

void BLAS_xhbmv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, int k, CSCALAR_IN alpha, const CARRAY a,

int lda, const CARRAY x, int incx, CSCALAR_IN beta,

CARRAY y, int incy [, enum blas_prec_type prec] );

Hermitian Packed:

void BLAS_xhpmv{_a_b}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

int n, CSCALAR_IN alpha, const CARRAY ap,

const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,

int incy [, enum blas_prec_type prec] );

The types of alpha, a or ap, x, y, and beta are governed according to the rules of mixed
precision arguments set down in section 4.3. The pre�x x is the oating point type of the
arguments, but if a b is present then a is the type of argument a or ap and b is the type of
argument x. The suÆx x is present if and only if prec is present. One or both of the suÆxes
a b and x must be present.

fTR,TB,TPgMV (Triangular matrix vector product) x �Tx, x �T Tx or x �THx

The routines multiply a vector x by a general triangular matrix T or its transpose, or its
conjugate transpose, and copies the resulting vector in the vector operand x. If n is less than or
equal to zero, this routine returns immediately. As described in section 2.5.3, the value incx less
than zero is permitted. However, if incx is equal to zero, an error ag is set and passed to the error
handler. For the routine TRMV, if ldt is less than one or ldt is less than n, an error ag is set and
passed to the error handler. For the routine TBMV, if ldt is less than k plus one, an error ag is
set and passed to the error handler.

Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.
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� Fortran 95 binding:

Triangular Band:

SUBROUTINE tbmv( t, x [, uplo] [, transt] [, diag] [, alpha] [, prec] )

Triangular Packed:

SUBROUTINE tpmv( tp, x [, uplo] [, transt] [, diag] [, alpha] [, prec] )

<type>(<wp>), INTENT(IN) :: <tt>

<type>(<wp>), INTENT(INOUT) :: x(:)

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec

where

<tt> ::= t(:,:) or tp(:)

and

x has shape (n)

TB t has shape (k+1,n)

TP tp has shape (n*(n+1)/2)

(k=band width)

The types of alpha, t or tp, and x are governed by the rules of mixed precision arguments
set down in section 4.3: the type of t or tp can optionally di�er from that of x and alpha.

The functionality of trmv is covered by trmm.

� Fortran 77 binding:

Triangular:

SUBROUTINE BLAS_xTRMV{_a}{_X}( UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,

$ INCX [, PREC] )

Triangular Band:

SUBROUTINE BLAS_xTBMV{_a}{_X}( UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,

$ X, INCX [, PREC] )

Triangular Packed:

SUBROUTINE BLAS_xTPMV{_a}{_X}( UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX

$ [, PREC] )

all:

INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO [, PREC]

<type> ALPHA

<type> T( LDT, * ) or TP( * )

<type> X( * )

The types of ALPHA, T or TP, and X are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of T or TP. The suÆx X is present if and only if PREC
is present. One or both of the suÆxes a and X must be present.

� C binding:
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Triangular:

void BLAS_xtrmv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, SCALAR_IN alpha, const ARRAY t, int ldt,

ARRAY x, int incx [, enum blas_prec_type prec] );

Triangular Band:

void BLAS_xtbmv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, int k, SCALAR_IN alpha, const ARRAY t, int ldt,

ARRAY x, int incx [, enum blas_prec_type prec] );

Triangular Packed:

void BLAS_xtpmv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, SCALAR_IN alpha, const ARRAY tp,

ARRAY x, int incx [, enum blas_prec_type prec] );

The types of alpha, t or tp, and x are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of argument t or tp. The suÆx x is present if and
only if prec is present. One or both of the suÆxes a and x must be present.

GE SUM MV (Summed matrix vector multiplies) y  �Ax+ �Bx

This routine adds the product of two scaled matrix vector products. It can be used to compute
the residual of an approximate eigenvector and eigenvalue of the generalized eigenvalue problem
A � x = � �B � x. If m or n is less than or equal to zero or if beta is equal to one and alpha is equal
to zero, this routine returns immediately. As described in section 2.5.3, the value incx or incy less
than zero is permitted. However, if incx or incy is equal to zero, an error ag is set and passed to
the error handler. If lda is less than one or lda is less than m, or ldb is less than one or ldb is less
than m, an error ag is set and passed to the error handler.

Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE ge_sum_mv( a, x, b, y [, alpha] [, beta] [, prec])

<type>(<wp>), INTENT (IN) :: a(:,:), b(:,:)

<type>(<wp>), INTENT (IN) :: x(:)

<type>(<wp>), INTENT (OUT) :: y(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

<type>(blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

x has shape (n);

y has shape (m);

a and b have shape (m,n) for general matrices
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The types of alpha, a, x, beta, b, and y are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally di�er from that of x,
y, alpha and beta. Arguments a and b must have the same type.

� Fortran 77 binding:

SUBROUTINE BLAS_xGE_SUM_MV{_a_b}{_X}( M, N, ALPHA, A, LDA, X, INCX,

$ BETA, B, LDB, Y, INCY

$ [, PREC] )

INTEGER INCX, INCY, LDA, LDB, M, N [, PREC]

<type> ALPHA, BETA

<type> A( LDA, * ), B( LDB, * )

<type> X( * )

<type> Y( * )

The types of ALPHA, A, X, BETA, B, and Y are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of A and B, and b is the type of x. The suÆx X is
present if and only if PREC is present. One or both of the suÆxes a b and X must be present.

� C binding:

void BLAS_xge_sum_mv{_a_b}{_x}( enum blas_order_type order, int m, int n,

SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY x, int incx, SCALAR_IN beta,

const ARRAY B, int ldb, ARRAY y, int incy

[, enum blas_prec_type prec] );

The types of alpha, a, x, beta, b, and y are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of a and b, and b is the type of x. The suÆx x is
present if and only if prec is present. One or both of the suÆxes a b and x must be present.

fTR,TB,TPgSV (Triangular solve) x �T�1x, x �T�Tx

These functions solve one of the systems of equations x �T�1x or y  �T�1x, where x and
y are vectors and the matrix T is a unit, non-unit, upper or lower triangular (or triangular banded
or triangular packed) matrix. If n is less than or equal to zero, this function returns immediately.
As described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal
to zero, an error ag is set and passed to the error handler. If ldt is less than one or ldt is less than
n, an error ag is set and passed to the error handler.

Extended precision and mixed precision are permitted.

Advice to implementors. Note that no check for singularity, or near singularity is speci�ed for
these triangular equation-solving functions. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver.

To implement this function when the internal precision requested is higher than the precision
of x, temporary workspace is needed to compute and store x internally to higher precision.
(End of advice to implementors.)
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This routine has the same speci�cation as in Chapter 2, except that extended precision and
mixed precision are permitted.

� Fortran 95 binding:

Triangular Band:

SUBROUTINE tbsv( t, x [, uplo] [, transt] [, diag] [, alpha] [, prec] )

Triangular Packed:

SUBROUTINE tpsv( tp, x [, uplo] [, trans] [, diag] [, alpha] [, prec] )

<type>(<wp>), INTENT(IN) :: <tt>

<type>(<wp>), INTENT(INOUT) :: x(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

TYPE (blas_prec_type), INTENT(IN), OPTIONAL :: prec

where

<tt> ::= t(:,:) or tp(:)

and

x has shape (n)

TB t has shape (k+1,n)

TP tp has shape (n*(n+1)/2)

(k=band width)

The types of alpha, t or tp, and x are governed by the rules of mixed precision arguments
set down in section 4.3: the type of t or tp can optionally di�er from that of x and alpha.

The functionality of trsv is covered by trsm.

� Fortran 77 binding:

Triangular:

SUBROUTINE BLAS_xTRSV{_a}{_X}( UPLO, TRANS, DIAG, N, ALPHA, T, LDT,

$ X, INCX [, PREC] )

Triangular Band:

SUBROUTINE BLAS_xTBSV{_a}{_X}( UPLO, TRANS, DIAG, N, K, ALPHA, T,

$ LDT, X, INCX [, PREC] )

Triangular Packed:

SUBROUTINE BLAS_xTPSV{_a}{_X}( UPLO, TRANS, DIAG, N, ALPHA, TP, X,

$ INCX [, PREC] )

all:

INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO [, PREC]

<type> ALPHA

<type> T( LDT, * ) or TP( * )

<type> X( * )

The types of ALPHA, T or TP, and X are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of T or TP. The suÆx X is present if and only if PREC
is present. One or both of the suÆxes a and X must be present.
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� C binding:

Triangular:

void BLAS_xtrsv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, SCALAR_IN alpha, const ARRAY t, int ldt,

ARRAY x, int incx [, enum blas_prec_type prec] );

Triangular Band:

void BLAS_xtbsv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, int k, SCALAR_IN alpha, const ARRAY t, int ldt,

ARRAY x, int incx [, enum blas_prec_type prec] );

Triangular Packed:

void BLAS_xtpsv{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, enum blas_diag_type diag,

int n, SCALAR_IN alpha, const ARRAY tp, ARRAY x,

int incx [, enum blas_prec_type prec] );

The types of alpha, t or tp, and x are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of argument t or tp. The suÆx x is present if and
only if prec is present. One or both of the suÆxes a and x must be present.

4.5.5 Mixed and Extended Precision Matrix-Matrix Operations

In the following section, op(X) denotes X, or XT or XH where X is a matrix.

GEMM (General Matrix Matrix Product) C  �op(A)op(B) + �C

The routine performs a general matrix matrix multiply C  �op(A)op(B) + �C where � and
� are scalars, and A, B, and C are general matrices. This routine returns immediately if m or n or
k is less than or equal to zero. If lda is less than one or less than m, or if ldb is less than one or less
than k, or if ldc is less than one or less than m, an error ag is set and passed to the error handler.

This interface encompasses the Legacy BLAS routine xGEMM.
Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE gemm( a, b, c [, transa] [, transb] [, alpha] [, beta] &

[, prec] )

<type>(<wp>), INTENT(IN) :: <aa>

<type>(<wp>), INTENT(IN) :: <bb>

<type>(<wp>), INTENT(INOUT) :: <cc>

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa, transb

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
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TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

<aa> ::= a(:,:) or a(:)

<bb> ::= b(:,:) or b(:)

<cc> ::= c(:,:) or c(:)

and

c, rank 2, has shape (m,n)

a has shape (m,k) if transa = blas_no_trans (the default)

(k,m) if transa /= blas_no_trans

(m) if rank 1

b has shape (k,n) if transb = blas_no_trans (the default)

(n,k) if transb /= blas_no_trans

(n) if rank 1

c, rank 1, has shape (m)

a has shape (m,n) if transa = blas_no_trans (the default)

(n,m) if transa /= blas_no_trans

b has shape (n)

Rank a Rank b Rank c transa transb Operation Arguments

2 2 2 N N C  �AB + �C real or complex

2 2 2 N T C  �ABT + �C real or complex

2 2 2 N H C  �ABH + �C complex

2 2 2 T N C  �ATB + �C real or complex

2 2 2 T T C  �ATB + �C real or complex

2 2 2 H N C  �AHB + �C complex

2 2 2 H H C  �AHBH + �C complex

2 1 1 N - c �Ab+ �c real or complex

2 1 1 T - c �AT b+ �c real or complex

2 1 1 H - c �AHb+ �c complex

1 1 2 - - C  �abT + �C real or complex

1 1 2 - H C  �abH + �C complex

The table de�ning the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xGEMV is also covered by this generic procedure.

The types of a, b, c, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally di�er from that of c,
alpha and beta.

� Fortran 77 binding:

General:

SUBROUTINE BLAS_xGEMM{_a_b}{_X}( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC] )

INTEGER K, LDA, LDB, LDC, M, N, TRANSA, TRANSB [, PREC]

<type> ALPHA, BETA

<type> A( LDA, * )



164 CHAPTER 4. EXTENDED AND MIXED PRECISION BLAS

<type> B( LDB, * )

<type> C( LDC, * )

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of A and b is the type of B. The suÆx X is present
if and only if PREC is present. One or both of the suÆxes a b and X must be present.

� C binding:

void BLAS_xgemm{_a_b}{_x}( enum blas_order_type order,

enum blas_trans_type transa,

enum blas_trans_type transb, int m, int n, int k,

SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY b, int ldb,

SCALAR_IN beta, ARRAY c, int ldc

[, enum blas_prec_type prec] );

The types of alpha, a, b, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of argument a and b is the type of argument b. The
suÆx x is present if and only if prec is present. One or both of the suÆxes a b and x must
be present.

SYMM (Symmetric Matrix Matrix Product) C  �AB + �C or C  �BA+ �C

This routine performs one of the symmetric matrix matrix operations C  �AB + �C or
C  �BA + �C where � and � are scalars, A is a symmetric matrix, and B and C are general
matrices. This routine returns immediately if m or n is less than or equal to zero. For side equal to
blas left side, and if lda is less than one or less than m, or if ldb is less than one or less than m, or
if ldc is less than one or less than m, an error ag is set and passed to the error handler. For side
equal to blas right side, and if lda is less than one or less than n, or if ldb is less than one or less
than n, or if ldc is less than one or less than n, an error ag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xSYMM with added functionality for com-
plex symmetric matrices.

Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE symm( a, b, c [, side] [, uplo] [, alpha] [, beta] [, prec] )

<type>(<wp>), INTENT(IN) :: a(:,:)

<type>(<wp>), INTENT(IN) :: <bb>

<type>(<wp>), INTENT(INOUT) :: <cc>

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
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TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

<bb> ::= b(:,:) or b(:)

<cc> ::= c(:,:) or c(:)

and

c, rank 2, has shape (m,n), b same shape as c

SY a has shape (m,m) if side = blas_left_side (the default)

a has shape (n,n) if side /= blas_left_side

c, rank 1, has shape (m), b same shape as c

SY a has shape (m,m)

Rank b Rank c side Operation

2 2 L C  �AB + �C
2 2 R C  �BA+ �C
1 1 - c �Ab+ �c

The table de�ning the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xSYMV is covered by symm.

The types of a, b, c, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally di�er from that of c,
alpha and beta.

� Fortran 77 binding:

SUBROUTINE BLAS_xSYMM{_a_b}{_X}( SIDE, UPLO, M, N, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC] )

INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO [, PREC]

<type> ALPHA, BETA

<type> A( LDA, * )

<type> B( LDB, * )

<type> C( LDC, * )

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of A and b is the type of B. The suÆx X is present
if and only if PREC is present. One or both of the suÆxes a b and X must be present.

� C binding:

void BLAS_xsymm{_a_b}{_x}( enum blas_order_type order,

enum blas_side_type side,

enum blas_uplo_type uplo, int m, int n,

SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY b, int ldb, SCALAR_IN beta, ARRAY c,

int ldc [, enum blas_prec_type prec] );
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The types of alpha, a, b, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of argument a, and b is the type of argument b.
The suÆx x is present if and only if prec is present. One or both of the suÆxes a b and x

must be present.

HEMM (Hermitian Matrix Matrix Product) C  �AB + �C or C  �BA+ �C

This routine performs one of the Hermitian matrix matrix operations C  �AB + �C or
C  �BA + �C where � and � are scalars, A is a Hermitian matrix, and B and C are general
matrices. This routine returns immediately if m or n is less than or equal to zero. For side equal to
blas left side, and if lda is less than one or less than m, or if ldb is less than one or less than m, or
if ldc is less than one or less than m, an error ag is set and passed to the error handler. For side
equal to blas right side, and if lda is less than one or less than n, or if ldb is less than one or less
than n, or if ldc is less than one or less than n, an error ag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xHEMM.
Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

Hermitian:

SUBROUTINE hemm( a, b, c [, side] [, uplo] [, alpha] [, beta] [, prec] )

COMPLEX(<wp>), INTENT(IN) :: a(:,:)

COMPLEX(<wp>), INTENT(IN) :: <bb>

COMPLEX(<wp>), INTENT(INOUT) :: <cc>

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

<bb> ::= b(:,:) or b(:)

<cc> ::= c(:,:) or c(:)

and

c, rank 2, has shape (m,n), b same shape as c

HE a has shape (m,m) if "side" = blas_left_side (the default)

a has shape (n,n) if "side" /= blas_left_side

c, rank 1, has shape (m), b same shape as c

HE a has shape (m,m)

Rank b Rank c side Operation

2 2 L C  �AB + �C
2 2 R C  �BA+ �C
1 1 - c �Ab+ �c

The table de�ning the operation as a function of the operator arguments is identical to
Chapter 2.
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The functionality of xHEMV is covered by hemm.

The types of a, b, c, alpha and beta are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally di�er from that of c,
alpha and beta.

� Fortran 77 binding:

SUBROUTINE BLAS_xHEMM{_a_b}{_X}( SIDE, UPLO, M, N, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC] )

INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO [, PREC]

<ctype> ALPHA, BETA

<ctype> A( LDA, * )

<ctype> B( LDB, * )

<ctype> C( LDC, * )

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of A and b is the type of B. The suÆx X is present
if and only if PREC is present. One or both of the suÆxes a b and X must be present.

� C binding:

void BLAS_xhemm{_a_b}{_x}( enum blas_order_type order,

enum blas_side_type side,

enum blas_uplo_type uplo, int m, int n,

CSCALAR_IN alpha, const CARRAY a, int lda,

const CARRAY b, int ldb, CSCALAR_IN beta, CARRAY c,

int ldc [, enum blas_prec_type prec] );

The types of alpha, a, b, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of argument a, and b is the type of argument b.
The suÆx x is present if and only if prec is present. One or both of the suÆxes a b and x

must be present.

TRMM (Triangular Matrix Matrix Multiply) B  �op(T )B or B  �Bop(T )

These routines perform one of the matrix-matrix operations B  �op(T )B or B  �Bop(T )
where � is a scalar, B is a general matrix, and T is a unit, or non-unit, upper or lower triangular
matrix. This routine returns immediately if m or n is less than or equal to zero. For side equal to
blas left side, and if ldt is less than one or less than m, or if ldb is less than one or less than m, an
error ag is set and passed to the error handler. For side equal to blas right side, and if ldt is less
than one or less than n, or if ldb is less than one or less than m, an error ag is set and passed to
the error handler.

These interfaces encompass the Legacy BLAS routine xTRMM.
Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.
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� Fortran 95 binding:

SUBROUTINE trmm( t, b [, side] [, uplo] [, transt] [, diag] &

[, alpha] [, prec] )

<type>(<wp>), INTENT(IN) :: t(:,:)

<type>(<wp>), INTENT(INOUT) :: <bb>

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

<bb> ::= b(:,:) or b(:)

and

b, rank 2, has shape (m,n)

TR t has shape (m,m) if side = blas_left_side (the default)

t has shape (n,n) if side /= blas_left_side

b, rank 1, has shape (m)

TR t has shape (m,m)

Rank b transa side Operation

2 N L B  �TB
2 T L B  �T TB
2 H L B  �THB
2 N R B  �BT
2 T R B  �BT T

2 H R B  �BTH

1 N - b �Tb
1 T - b �T T b
1 H - b �THb

The table de�ning the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xTRMV is covered by trmm.

The types of alpha, t, and b are governed according to the rules of mixed precision arguments
set down in section 4.3: the type of t can optionally di�er from that of b and alpha.

� Fortran 77 binding:

SUBROUTINE BLAS_xTRMM{_a}{_X}( SIDE, UPLO, TRANST, DIAG, M, N,

$ ALPHA, T, LDT, B, LDB [, PREC] )

INTEGER DIAG, LDT, LDB, M, N, SIDE, TRANST, UPLO

$ [, PREC]

<type> ALPHA

<type> T( LDT, * )

<type> B( LDB, * )
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The types of ALPHA, T, and B are governed according to the rules of mixed precision arguments
set down in section 4.3. The pre�x x is the oating point type of the arguments, but if a is
present then a is the type of T. The suÆx X is present if and only if PREC is present. One or
both of the suÆxes a and X must be present.

� C binding:

void BLAS_xtrmm{_a}{_x}(enum blas_order_type order, enum blas_side_type side,

enum blas_uplo_type uplo, enum blas_trans_type transa,

enum blas_diag_type diag, int m, int n,

SCALAR_IN alpha, const ARRAY t, int ldt, ARRAY b,

int ldb [, enum blas_prec_type prec] );

The types of alpha, t, and b are governed according to the rules of mixed precision arguments
set down in section 4.3. The pre�x x is the oating point type of the arguments, but if a

is present then a is the type of argument t. The suÆx x is present if and only if prec is
present. One or both of the suÆxes a and x must be present.

TRSM (Triangular Solve) B  �op(T�1)B or B  �Bop(T�1)

This routine solves one of the matrix equations B  �op(T�1)B or B  �Bop(T�1) where � is
a scalar, B is a general matrix, and T is a unit, or non-unit, upper or lower triangular matrix. This
routine returns immediately if m or n is less than or equal to zero. For side equal to blas left side,
and if ldt is less than one or less than m, or if ldb is less than one or less than m, an error ag is set
and passed to the error handler. For side equal to blas right side, and if ldt is less than one or less
than n, or if ldb is less than one or less than m, an error ag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xTRSM.
Extended precision and mixed precision are permitted.

Advice to implementors. Note that no check for singularity, or near singularity is speci�ed for
these triangular equation-solving functions. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver.

To implement this function when the internal precision requested is higher than the precision
of B, temporary workspace is needed to compute and store B internally to higher precision.
(End of advice to implementors.)

This routine has the same speci�cation as in Chapter 2, except that extended precision and
mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE trsm( t, b [, side] [, uplo] [, transt] [, diag] &

[, alpha] [, prec] )

<type>(<wp>), INTENT(IN) :: t(:,:)

<type>(<wp>), INTENT(INOUT) :: <bb>

TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
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TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt

TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

<bb> ::= b(:,:) or b(:)

and

b, rank 2, has shape (m,n)

TR t has shape (m,m) if side = blas_left_side (the default)

t has shape (n,n) if side /= blas_left_side

b, rank 1, has shape (m)

TR t has shape (m,m)

Rank b transa side Operation

2 N L B  �T�1B
2 T L B  �T�TB
2 H L B  �T�HB
2 N R B  �BT�1

2 T R B  �BT�T

2 H R B  �BT�H

1 N - b �T�1b
1 T - b �T�T b
1 H - b �T�Hb

The table de�ning the operation as a function of the operator arguments is identical to
Chapter 2.

The functionality of xTRSV is covered by trsm.

The types of t, x and alpha are governed according to the rules of mixed precision arguments
set down in section 4.3: the type of t can optionally di�er from that of x and alpha.

� Fortran 77 binding:

SUBROUTINE BLAS_xTRSM{_a}{_X}( SIDE, UPLO, TRANST, DIAG, M, N,

$ ALPHA, T, LDT, B, LDB [, PREC] )

INTEGER DIAG, LDT, LDB, M, N, SIDE, TRANST, UPLO

$ [, PREC]

<type> ALPHA

<type> T( LDT, * )

<type> B( LDB, * )

The types of ALPHA, T, and B are governed according to the rules of mixed precision arguments
set down in section 4.3. The pre�x x is the oating point type of the arguments, but if a is
present then a is the type of T. The suÆx X is present if and only if PREC is present. One or
both of the suÆxes a and X must be present.

� C binding:
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void BLAS_xtrsm{_a}{_x}( enum blas_order_type order, enum blas_side_type side,

enum blas_uplo_type uplo, enum blas_trans_type transt,

enum blas_diag_type diag, int m, int n,

SCALAR_IN alpha, const ARRAY t, int ldt, ARRAY b,

int ldb [, enum blas_prec_type prec] );

The types of alpha, t, and b are governed according to the rules of mixed precision arguments
set down in section 4.3. The pre�x x is the oating point type of the arguments, but if a

is present then a is the type of argument t. The suÆx x is present if and only if prec is
present. One or both of the suÆxes a and x must be present.

SYRK (Symmetric Rank K update) C  �AAT + �C, C  �ATA+ �C

This routine performs one of the symmetric rank k operations C  �AAT + �C or C  
�ATA+ �C where � and � are scalars, C is a symmetric matrix, and A is a general matrix. This
routine returns immediately if n or k is less than or equal to zero. If ldc is less than one or less
than n, an error ag is set and passed to the error handler. For trans equal to blas no trans, and if
lda is less than one or less than n, an error ag is set and passed to the error handler. For trans
equal to blas trans, and if lda is less than one or less than k, an error ag is set and passed to the
error handler.

These interfaces encompass the Legacy BLAS routine xSYRK with added functionality for
complex symmetric matrices.

Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE syrk( a, c [, uplo] [, trans] [, alpha] [, beta] &

[, prec] )

<type>(<wp>), INTENT(IN) :: <aa>

<type>(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

<aa> ::= a(:,:) or a(:)

and

c has shape (n,n)

a has shape (n,k) if trans = blas_no_trans (the default)

(k,n) if trans /= blas_no_trans

(n) if rank 1

Rank a trans Operation

2 N C  �AAT + �C
2 T C  �ATA+ �C
1 - C  �aaT + �C
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The table de�ning the operation as a function of the operator arguments is identical to
Chapter 2.

The types of alpha, a, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3: the type of a can optionally di�er from those of c, alpha
and beta.

� Fortran 77 binding:

SUBROUTINE BLAS_xSYRK{_a}{_X}( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,

$ C, LDC [, PREC] )

INTEGER K, LDA, LDC, N, TRANS, UPLO [, PREC]

<type> ALPHA, BETA

<type> A( LDA, * )

<type> C( LDC, * )

The types of ALPHA, A, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of A. The suÆx X is present if and only if PREC is
present. One or both of the suÆxes a and X must be present.

� C binding:

void BLAS_xsyrk{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k,

SCALAR_IN alpha, const ARRAY a, int lda,

SCALAR_IN beta, ARRAY c, int ldc

[, enum blas_prec_type prec] );

The types of alpha, a, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of argument a. The suÆx x is present if and only if
prec is present. One or both of the suÆxes a and x must be present.

HERK (Hermitian Rank K update) C  �AAH + �C, C  �AHA+ �C

This routine performs one of the Hermitian rank k operations C  �AAH + �C or C  
�AHA+ �C where � and � are scalars, C is a Hermitian matrix, and A is a general matrix. This
routine returns immediately if n or k is less than or equal to zero. If ldc is less than one or less
than n, an error ag is set and passed to the error handler. For trans equal to blas no trans, and if
lda is less than one or less than n, an error ag is set and passed to the error handler. For trans
equal to blas trans, and if lda is less than one or less than k, an error ag is set and passed to the
error handler.

These interfaces encompass the Legacy BLAS routine xHERK.
Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:
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SUBROUTINE herk( a, c [, uplo] [, trans] [, alpha] [, beta] &

[, prec] )

COMPLEX(<wp>), INTENT(IN) :: <aa>

COMPLEX(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

REAL(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

<aa> ::= a(:,:) or a(:)

and

c has shape (n,n)

a has shape (n,k) if trans = blas_no_trans (the default)

(k,n) if trans /= blas_no_trans

(n) if rank 1

Rank a trans Operation

2 N C  �AAH + �C
2 T C  �AHA+ �C
1 - C  �aaH + �C

The table de�ning the operation as a function of the operator arguments is identical to
Chapter 2.

The types of alpha, a, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3: the type of a can optionally di�er from those of c, alpha
and beta.

� Fortran 77 binding:

SUBROUTINE BLAS_xHERK{_a}{_X}( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,

$ C, LDC [, PREC] )

INTEGER K, LDA, LDC, N, TRANS, UPLO [, PREC]

<rtype> ALPHA, BETA

<ctype> A( LDA, * )

<ctype> C( LDC, * )

The types of ALPHA, A, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of A. The suÆx X is present if and only if PREC is
present. One or both of the suÆxes a and X must be present.

� C binding:

void BLAS_xherk{_a}{_x}( enum blas_order_type order, enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k,

RSCALAR_IN alpha, const CARRAY a, int lda,

RSCALAR_IN beta, CARRAY c, int ldc

[, enum blas_prec_type prec] );
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The types of alpha, a, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a is present then a is the type of argument a. The suÆx x is present if and only if
prec is present. One or both of the suÆxes a and x must be present.

SYR2K (Symmetric rank 2k update) C  (�A)BT +B(�A)T + �C

C  (�A)TB +BT (�A) + �C

These routines perform the symmetric rank 2k operation C  (�A)BT + B(�A)T + �C or
C  (�A)TB +BT (�A) + �C where � and � are scalars, C is a symmetric matrix, and A and B
are general matrices. This routine returns immediately if n or k is less than or equal to zero. If ldc
is less than one or less than n, an error ag is set and passed to the error handler. For trans equal
to blas no trans, and if lda is less than one or less than n, or if ldb is less than one or less than n,
an error ag is set and passed to the error handler. For trans equal to blas trans, and if lda is less
than one or less than k, or if ldb is less than one or less than k, an error ag is set and passed to
the error handler.

These interfaces encompass the Legacy BLAS routine xSYR2K with added functionality for
complex symmetric matrices.

Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE syr2k( a, b, c [, uplo] [, trans] [, alpha] [, beta]

[, prec] )

<type>(<wp>), INTENT(IN) :: <aa>

<type>(<wp>), INTENT(IN) :: <bb>

<type>(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

<aa> ::= a(:,:) or a(:)

<bb> ::= b(:,:) or b(:)

and

c has shape (n,n)

if trans = blas_no_trans (the default)

a has shape (n,k)

b has shape (n,k)

if trans /= blas_no_trans

a has shape (k,n)

b has shape (k,n)

Rank a Rank b trans Operation

2 2 N C  �ABT + �BAT + �C
2 2 T C  �ATB + �BTA+ �C
1 1 - C  �abT + �baT + �C
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The table de�ning the operation as a function of the operator arguments is identical to
Chapter 2.

The types of alpha, a, b, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally di�er from those of c,
alpha and beta.

� Fortran 77 binding:

SUBROUTINE BLAS_xSYR2K{_a_b}{_X}( UPLO, TRANS, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC] )

INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO [, PREC]

<type> ALPHA, BETA

<type> A( LDA, * )

<type> B( LDB, * )

<type> C( LDC, * )

The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of A and b is the type of B. The suÆx X is present
if and only if PREC is present. One or both of the suÆxes a b and X must be present.

� C binding:

void BLAS_xsyr2k{_a_b}{_x}( enum blas_order_type order,

enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k,

SCALAR_IN alpha, const ARRAY a, int lda,

const ARRAY b, int ldb,

SCALAR_IN beta, ARRAY c, int ldc

[, enum blas_prec_type prec] );

The types of alpha, a, b, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of argument a and b is the type of argument b. The
suÆx x is present if and only if prec is present. One or both of the suÆxes a b and x must
be present.

HER2K (Hermitian rank 2k update) C  (�A)BH +B(�A)H + �C

C  (�A)HB +BH(�A) + �C

These routines perform the Hermitian rank 2k operation C  (�A)BH + B(�A)H + �C or
C  (�A)HB +BH(�A) + �C where � and � are scalars, C is a Hermitian matrix, and A and B
are general matrices. This routine returns immediately if n or k is less than or equal to zero. If ldc
is less than one or less than n, an error ag is set and passed to the error handler. For trans equal
to blas no trans, and if lda is less than one or less than n, or if ldb is less than one or less than n,
an error ag is set and passed to the error handler. For trans equal to blas trans, and if lda is less
than one or less than k, or if ldb is less than one or less than k, an error ag is set and passed to
the error handler.
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These interfaces encompass the Legacy BLAS routine xHER2K.
Extended precision and mixed precision are permitted.
This routine has the same speci�cation as in Chapter 2, except that extended precision and

mixed precision are permitted.

� Fortran 95 binding:

SUBROUTINE her2k( a, b, c [, uplo] [, trans] [, alpha] [, beta]

[, prec] )

COMPLEX(<wp>), INTENT(IN) :: <aa>

COMPLEX(<wp>), INTENT(IN) :: <bb>

COMPLEX(<wp>), INTENT(INOUT) :: c(:,:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

COMPLEX(<wp>), INTENT(IN), OPTIONAL :: alpha

REAL(<wp>), INTENT(IN), OPTIONAL :: beta

TYPE (blas_prec_type), INTENT (IN), OPTIONAL :: prec

where

<aa> ::= a(:,:) or a(:)

<bb> ::= b(:,:) or b(:)

and

c has shape (n,n)

a and b have shape (n,k) if trans = blas_no_trans (the default)

(k,n) if trans /= blas_no_trans

(n) if rank 1

Rank a Rank b trans Operation

2 2 N C  �ABH + ��BAH + �C
2 2 T C  �AHB + ��BHA+ �C
1 1 - C  �abH + ��baH + �C

The table de�ning the operation as a function of the operator arguments is identical to
Chapter 2.

The types of alpha, a, b, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3: the types of a and b can optionally di�er from those of c,
alpha and beta.

� Fortran 77 binding:

SUBROUTINE BLAS_xHER2K{_a_b}{_X}( UPLO, TRANS, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC [, PREC] )

INTEGER K, LDA, LDB, LDC, N, TRANS, UPLO [, PREC]

<ctype> ALPHA

<rtype> BETA

<ctype> A( LDA, * )

<ctype> B( LDB, * )

<ctype> C( LDC, * )
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The types of ALPHA, A, B, BETA and C are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of A and b is the type of B. The suÆx X is present
if and only if PREC is present. One or both of the suÆxes a b and X must be present.

� C binding:

void BLAS_xher2k{_a_b}{_x}( enum blas_order_type order,

enum blas_uplo_type uplo,

enum blas_trans_type trans, int n, int k,

CSCALAR_IN alpha, const CARRAY A, int lda,

const CARRAY b, int ldb,

RSCALAR_IN beta, CARRAY c, int ldc

[, enum blas_prec_type prec] );

The types of alpha, a, b, beta and c are governed according to the rules of mixed precision
arguments set down in section 4.3. The pre�x x is the oating point type of the arguments,
but if a b is present then a is the type of argument a and b is the type of argument b. The
suÆx x is present if and only if prec is present. One or both of the suÆxes a b and x must
be present.

4.5.6 Environmental Enquiry

FPINFO X (Environmental enquiry)
This routine queries for machine-speci�c oating point characteristics.

� Fortran 95 binding:

INTEGER FUNCTION fpinfo_x( cmach, prec )

TYPE (blas_cmach_type), INTENT (IN) :: cmach

TYPE (blas_prec_type), INTENT (IN) :: prec

� Fortran 77 binding:

INTEGER FUNCTION BLAS_FPINFO_X( cmach, prec )

INTEGER cmach, prec

� C binding:

int BLAS_fpinfo_x( enum blas_cmach_type cmach,

enum blas_prec_type prec );
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Annex A

Appendix

This appendix contains overall notation, de�nitions, and implementation details for the chapters
of the BLAS Technical Forum Standard.

A.1 Vector Norms

There are a variety of ways to de�ne the norm of a vector, in particular for vectors of complex
numbers, several of which have been used in the existing Level 1 BLAS and in various LAPACK
auxiliary routines. Our de�nitions include all of these in a systematic way.

Data Type Name Notation De�nition

Real one-norm kxk1
P

i jxij
two-norm kxk2

qP
i x

2
i

in�nity-norm kxk1 maxi jxij
Complex one-norm kxk1

P
i jxij

=
P

i(Re(xi)
2 + Im(xi)

2)1=2

real one-norm kxk1R
P

i(jRe(xi)j+ jIm(xi)j)
two-norm kxk2

pP
i jxij2

= (
P

i(Re(xi)
2 + Im(xi)

2))1=2

in�nity-norm kxk1 maxi jxij
= maxi(Re(xi)

2 + Im(xi)
2)1=2

real in�nity-norm kxk1R maxi(jRe(xi)j+ jIm(xi)j)
Table A.1: Vector Norms

Rationale. The reason for the two extra norms of complex vectors, the real one-norm and
real in�nity-norm, is to avoid the expense of up to n square roots, where n is the length of
the vector x. The two-norm only requires one square root, so a real version is not needed.
The in�nity norm only requires one square root in principle, but this would require tests and
branches, making it more complicated and slower than the real in�nity-norm. When x is real,
the one-norm and real one-norm are identical, as are the in�nity-norm and real in�nity-norm.
We note that the Level 1 BLAS routine ICAMAX, which �nds the largest entry of a complex
vector, �nds the largest value of jRe(xi)j+ jIm(xi)j. (End of rationale.)
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Computing the two-norm or Frobenius-norm of a vector is equivalent. However, this is not the
case for computing matrix norms. For consistency of notation between vector and matrix norms,
both norms are available.

A.2 Matrix Norms

Analogously to vector norms as discussed in Section A.1, there are a variety of ways to de�ne the
norm of a matrix, in particular for matrices of complex numbers. Our de�nitions include all of
these in a systematic way.

Data Type Name Notation De�nition

Real one-norm kAk1 maxj
P

i jaij j
Frobenius-norm kAkF

qP
i

P
j a

2
ij

in�nity-norm kAk1 maxi
P

j jaij j
max-norm kAkmax maximaxj jaij j

Complex one-norm kAk1 maxj
P

i jaij j
= maxj

P
i(Re(aij)

2 + Im(aij)
2)1=2

real one-norm kAk1R maxj
P

i(jRe(aij)j+ jIm(aij)j)
Frobenius-norm kAkF

qP
i

P
j jaij j2

= (
P

i

P
j(Re(aij)

2 + Im(aij)
2))1=2

in�nity-norm kAk1 maxi
P

j jaij j
= maxi

P
j(Re(aij)

2 + Im(aij)
2)1=2

real in�nity-norm kAk1R maxi
P

j(jRe(aij)j+ jIm(aij)j)
max-norm kAkmax maximaxj jaij j

= maximaxj(Re(aij)
2 + Im(aij)

2)1=2

real max-norm kAkmaxR = maximaxj(jRe(aij)j+ jIm(aij)j)
Table A.2: Matrix Norms

In contrast to computing vector norms, computing the two-norm and Frobenius-norm of a
matrix are not equivalent. If the user asks for the two-norm of a matrix, where the matrix is 2-by-2
or larger, an error ag is raised. The one exception occurs when the matrix is a single column or
a single row. In this case, the two-norm is requested and the Frobenius-norm is returned.

A.3 Operator Arguments

The following table lists the operator arguments and their associated named constants. For com-
plete details of the meanings of the operator prec, refer to section 4.3.1.
Example: Consider the matrix-vector products x = Ax, x = ATx and x = AHx. It is convenient
to use the trans operator and de�ne op(A) as being A, AT or AH depending on the value of the
trans operator argument. Again, the speci�cation of the type and the valid values such an operator
should have will be de�ned in the language-dependent section and may vary from one language
binding to another.

It is worthwhile noticing that in some rare cases, the meaning of the trans operator argument
is extended to a function of the matrix to which it applies. Consider for example the symmetric
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operator argument named constant meaning

norm blas one norm 1-norm
blas real one norm real 1-norm
blas two norm 2-norm
blas frobenius norm Frobenius-norm
blas inf norm in�nity-norm
blas real inf norm real in�nity-norm
blas max norm max-norm
blas real max norm real max-norm

sort blas increasing order sort in increasing order
blas decreasing order sort in decreasing order

side blas left side operate on the left-hand side
blas right side operate on the right-hand side

uplo blas upper reference upper triangle only
blas lower reference lower triangle only

transx blas no trans operate with x
blas trans operate with xT

blas conj trans operate with xH

conj blas conj operate with �x
blas no conj operate with x

diag blas non unit diag non-unit triangular
blas unit diag unit triangular

jrot blas jrot inner inner rotation c � 1p
2

blas jrot outer outer rotation 0 � c � 1p
2

blas jrot sorted sorted rotation abs(a) � abs(b)

order blas colmajor assume column-major ordering
blas rowmajor assume row-major ordering

index base blas zero base assumes zero-based indexing
blas one base assumes one-based indexing

prec blas prec single internal computation performed
in single precision

blas prec double internal computation performed
in double precision

blas prec indigenous internal computation performed
in the widest hardware-supported
format available

blas prec extra internal computation performed
in format wider than 80-bits

Table A.3: Operator Arguments

rank-k update operations, C  C + AAT and C  C + ATA where C is a symmetric matrix.
The value of the trans operator refers to the product AAT . It follows that these operations can be
speci�ed by C  C + op(AAT ) where op(AAT ) is AAT or ATA depending on the input value of
the trans argument.

All possible values of the operator argument trans are not always meaningful. For example, in
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the symmetric rank-k update operations de�ned above, when the matrix C is complex symmetric,
the only valid values of op(AAT ) are AAT or ATA. Similarly, when the matrix C is complex
Hermitian, the only valid values of op(AAH) are AAH or AHA. Such restrictions are detailed for
each dense and banded BLAS function to which they apply.

Some BLAS routines have more than one trans operator argument because such an argument
is needed for each matrix to which it applies. For example, a general matrix-multiply operation
can be speci�ed as C  op(A)op(B) where A, B and C are general matrices. A trans argument is
needed for each of the input matrices A and B; by convention we denote those formal arguments
transA and transB.

Rationale. As mentioned above, section (1.4) does not specify how the objects manipu-
lated by the BLAS routines are stored. This important aspect of the interface speci�cation is
deferred to the language-dependent speci�cation sections. In particular, the operator argu-
ments do not indicate whether only half or all entries of triangular, symmetric and Hermitian
matrices are stored, or even how these entries are stored. The intent is to provide each lan-
guage binding with the opportunity to choose the appropriate data structures for each object.
Note that a given language binding speci�cation may provide multiple functions performing
the same operation on operands stored di�erently. For example, triangular matrices may be
stored within conventional two-dimensional arrays or in packed storage, where the triangle
may be packed by rows or columns. Consequently, a BLAS routine speci�ed in the function-
ality tables may induce multiple functions in a particular language binding, say for instance,
to provide the user with the same operation on objects that are stored di�erently. (End of
rationale.)

It follows that, in general, a mathematical operation involving a matrix A, where A could be
general or banded, triangular, symmetric or Hermitian, induces the language-independent speci-
�cation of multiple routines. However, this language-independent section ignores the fact that a
given language binding may choose to provide multiple storage schemes for some speci�c classes of
matrices, such as triangular matrices.

A.4 Fortran 95 Modules

Several Fortran 95 modules are provided, allowing for the exible inclusion of only select portions
of the document. The modules blas dense, blas sparse, and blas extended, are provided for
Chapters 2, 3, and 4, respectively.

http://www.netlib.org/blas/blast-forum/blas dense.f90

http://www.netlib.org/blas/blast-forum/blas sparse.f90

http://www.netlib.org/blas/blast-forum/blas extended.f90

Each of these modules in turn contains a USE statement to include the module of operator arguments
(blas operator arguments for Chapters 2 and 4, and blas sparse namedconstants for Chapter
3), and the respective module(s) of explicit interfaces for that chapter.

For Chapters 2 and 4, one derived type is speci�ed for each category of operator arguments (such
as trans) and some parameters are de�ned of this type (for the di�erent settings). For consistency,
the suÆx type is used to name all of the derived types. This suÆx is needed in some cases to
di�erentiate between the type and one of the parameters (for example, blas trans type is a type
and blas trans is a parameter of this type). The Sparse BLAS chapter represents its operator
arguments and a list of matrix properties (see section 3.4.1) as named constants.
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Advice to implementors. For Chapter 2, all the entities (derived types, named constants and
BLAS procedures) must be accessible to the user via the module blas dense.

There are many ways to create this module. However the following three conditions MUST

be adhered to:

� all entities can be accessed by the module

� the generic names must be the same as in the Fortran 95 bindings

� the speci�c name must be standard. The standard that we recommend is \suÆx d, z,
s and c" for double precision, double complex, real and complex.

For example the Fortran 95 bindings gives the generic name gemm. This is a generic procedure
for the following 12 speci�c procedures:

gemm d corresponds to BLAS DGEMM (legacy DGEMM)
gemm z corresponds to BLAS ZGEMM (legacy ZGEMM)
gemm s corresponds to BLAS SGEMM (legacy SGEMM)
gemm c corresponds to BLAS CGEMM (legacy CGEMM)
gemv d corresponds to BLAS DGEMV (legacy DGEMV)
gemv z corresponds to BLAS ZGEMV (legacy ZGEMV)
gemv s corresponds to BLAS SGEMV (legacy SGEMV)
gemv c corresponds to BLAS CGEMV (legacy CGEMV)
ger d corresponds to BLAS DGER (legacy DGER)
ger z corresponds to BLAS ZGER (legacy SGER)
ger s corresponds to BLAS SGER (legacy ZGERU, ZGERC)
ger c corresponds to BLAS CGER (legacy CGERU, CGERC)

A speci�c procedure could be an external procedure or a module procedure.

One approach for creating the module blas dense is to:

� create one �le for each procedure

� create the interface blocks for the generic names using one or more modules

� create the module blas dense from the modules in the last step and other modules such
as blas operator arguments

Assuming we are using external procedures, the following �les could be used as templates to
create the module blas dense. The interface blocks are grouped according to the grouping
in section 2.8.1. The �les are:

� http://www.netlib.org/blas/blast-forum/blas operator arguments.f90

�le containing the module blas operator arguments

� http://www.netlib.org/blas/blast-forum/blas precision.f90

�le containing the module used to specify the precision (not visible to the user)

� http://www.netlib.org/blas/blast-forum/blas dense red op.f90

�le containing the interface blocks for the reduction operations (section 2.8.2)

� http://www.netlib.org/blas/blast-forum/blas dense gen trans.f90

�le containing the interface blocks for the generate transformations procedures (sec-
tion 2.8.3)
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� http://www.netlib.org/blas/blast-forum/blas dense vec op.f90

�le containing the interface blocks for the vector operations (section 2.8.4)

� http://www.netlib.org/blas/blast-forum/blas dense vec mov.f90

�le containing the interface blocks for the data movement with vectors (section 2.8.5)

� http://www.netlib.org/blas/blast-forum/blas dense mat vec op.f90

�le containing the interface blocks for the matrix vector operations (section 2.8.6)

� http://www.netlib.org/blas/blast-forum/blas dense mat op.f90

�le containing the interface blocks for the matrix operations (section 2.8.7)

� http://www.netlib.org/blas/blast-forum/blas dense mat mat op.f90

�le containing the interface blocks for the matrix matrix operations (section 2.8.8)

� http://www.netlib.org/blas/blast-forum/blas dense mat mov.f90

�le containing the interface blocks for the data movement with matrices (section 2.8.9)

� http://www.netlib.org/blas/blast-forum/blas dense fpinfo.f90

�le containing the interface blocks for the environmental enquiry (section 2.8.10)

� http://www.netlib.org/blas/blast-forum/blas dense.f90

�le containing the module blas dense that imports the information from all other mod-
ules and makes them available.

The speci�cations for all speci�c procedures MUST be as they appear in the above �les. The
only change is the way that the precision is speci�ed. (End of advice to implementors.)

A.5 Fortran 77 Include File

One Fortran 77 include �le is provided, blas namedconstants.h. This include �le contains the
values of all named constants, and applies to Chapters 2, 3, and 4.

http://www.netlib.org/blas/blast-forum/blas namedconstants.h

Operator arguments norm, sort, side, uplo, trans, conj, diag, jrot, index base, and prec are rep-
resented in the Fortran 77 interface as INTEGERs. These operator arguments assume the named
constant values as de�ned in section A.3. The Sparse BLAS chapter de�nes a list of matrix prop-
erties (see section 3.4.1) that must also be de�ned.

Advice to implementors. This speci�cation is a deviation from the Legacy BLAS, where
these operator arguments were de�ned as CHARACTER*1. (End of advice to implementors.)

A.6 C Include Files

Several C include �les are provided, allowing for the exible inclusion of only select portions of the
document. The �le blas.h contains the enumerated types and all prototypes for Chapters 2, 3,
and 4. The �les blas dense.h, blas sparse.h, and blas extended.h, include the values of the
operator arguments (enumerated types) and the function prototypes for the respective chapter.

http://www.netlib.org/blas/blast-forum/blas.h

http://www.netlib.org/blas/blast-forum/blas dense.h

http://www.netlib.org/blas/blast-forum/blas sparse.h

http://www.netlib.org/blas/blast-forum/blas extended.h
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The �le blas enum.h contains the values of all enumerated types, applying to all chapters. The �les
blas dense proto.h, blas sparse proto.h, and blas extended proto.h, contain the respective
function prototypes for Chapters 2, 3, and 4.

http://www.netlib.org/blas/blast-forum/blas enum.h

http://www.netlib.org/blas/blast-forum/blas dense proto.h

http://www.netlib.org/blas/blast-forum/blas sparse proto.h

http://www.netlib.org/blas/blast-forum/blas extended proto.h

All operator arguments are handled by enumerated types in the C interface. This allows for
tighter error checking, and provides less opportunity for user error. In addition to the operator
arguments of norm, sort, side, uplo, trans, conj, diag, jrot, index base, and prec, this interface adds
another such argument to all routines involving two dimensional arrays, order. order designates if
the array elements are stored in row-major or column-major ordering. Refer to section 2.6.6 for
further details. The Sparse BLAS chapter de�nes a list of matrix properties (see section 3.4.1) that
must also be de�ned.
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Annex B

Legacy BLAS

B.1 Introduction

This chapter addresses additional language bindings for the original Level 1, 2, and 3 BLAS. The
Level 1, 2, and 3 BLAS will hereafter be referred to as the Legacy BLAS.

B.2 C interface to the Legacy BLAS

This section gives a detailed discussion of the proposed C interface to the legacy BLAS. Every
mention of \BLAS" in this chapter should be taken to mean the legacy BLAS. Each interface
decision is discussed in its own section. Each section also contains a Considered methods subsection,
where other solutions to that particular problem are discussed, along with the reasons why those
options were not chosen. These Considered methods subsections are indented and italicized in order
to distinguish them from the rest of the text.

It is largely agreed among the group (and unanimous among the vendors) that user demand
for a C interface to the BLAS is insuÆcient to motivate vendors to support a completely separate
standard. This proposal therefore con�nes itself to an interface which can be readily supported on
top of the already existing Fortran 77 callable BLAS (i.e., the legacy BLAS).

The interface is expressed in terms of ANSI/ISO C. Very few platforms fail to provide ANSI/ISO
C compilers at this time, and for those platforms, free ANSI/ISO C compilers are almost always
available (eg., gcc).

B.2.1 Naming scheme

The naming scheme consists of taking the Fortran 77 routine name, making it lower case, and
adding the pre�x cblas . Therefore, the routine DGEMM becomes cblas dgemm.

Considered methods

Various other naming schemes have been proposed, such as adding C or c to the
name. Most of these schemes accomplish the requirement of separating the Fortran 77
and C name spaces. It was argued, however, that the addition of the blas pre�x uni�es
the naming scheme in a logical and useful way (making it easy to search for BLAS use
in a code, for instance), while not placing too great a burden on the typist. The letter c
is used to distinguish this language interface from possible future interfaces.

187
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B.2.2 Indices and I AMAX

The Fortran 77 BLAS return indices in the range 1 � I � N (where N is the number of entries
in the dimension in question, and I is the index), in accordance with Fortran 77 array indexing
conventions. This allows functions returning indices to be directly used to index standard arrays.
The C interface therefore returns indices in the range 0 � I < N for the same reason.

The only BLAS routine which returns an index is the function I AMAX. This function is declared
to be of type CBLAS INDEX, which is guaranteed to be an integer type (i.e., no cast is required when
assigning to any integer type). CBLAS INDEX will usually correspond to size t to ensure any array
can be indexed, but implementors might choose the integer type which matches their Fortran 77
INTEGER, for instance. It is de�ned that zero is returned as the index for a zero length vector (eg.,
For N = 0, I AMAX will always return zero).

B.2.3 Character arguments

All arguments which were characters in the Fortran 77 interface are handled by enumerated types
in the C interface. This allows for tighter error checking, and provides less opportunity for user
error. The character arguments present in the Fortran 77 interface are: SIDE, UPLO, TRANSPOSE,
and DIAG. This interface adds another such argument to all routines involving two dimensional
arrays, ORDER. The standard dictates the following enumerated types:

enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};

enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};

enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};

enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};

enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};

Considered methods

The other two most commonly suggested methods were accepting these arguments as
either char * or char. It was noted that both of these options require twice as many
comparisons as normally required to branch (so that the character may be either upper
or lower case). Both methods also su�ered from ambiguity (what does it mean to have
DIAG='H', for instance). If char was chosen, the words could not be written out as they
can for the Fortran 77 interface (you couldn't write "NoTranspose"). If char * were
used, some compilers might fail to optimize string constant use, causing unnecessary
memory usage.

The main advantage of enumerated data types, however, is that much of the error
checking can be done at compile time, rather than at runtime (i.e., if the user fails to
pass one of the valid options, the compiler can issue the error).

There was much discussion as to whether the integer values should be speci�ed, or
whether only the enumerated names should be so speci�ed. The group could �nd no
substansive way in which specifying the integer values would restrict an implementor,
and specifying the integer values was seen as an aid to inter-language calls.

B.2.4 Handling of complex data types

All complex arguments are accepted as void *. A complex element consists of two consecutive
memory locations of the underlying data type (i.e., float or double), where the �rst location
contains the real component, and the second contains the imaginary part of the number.
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In practice, programmers' methods of handling complex types in C vary. Some use various data
structures (some examples are discussed below). Others accept complex numbers as arrays of the
underlying type.

Complex numbers are accepted as void pointers so that widespread type casting will not be
required to avoid warning or errors during compilation of complex code.

An ANSI/ISO committee is presently working on an extension to ANSI/ISO C which de�nes
complex data types. The de�nition of a complex element is the same as given above, and so the
handling of complex types by this interface will not need to be changed when ANSI/ISO C standard
is extended.

Considered methods

Probably the most strongly advocated alternative was de�ning complex numbers via
a structure such as
struct NON PORTABLE COMPLEX ffloat r; float i;g; The main problem with this
solution is the lack of portability. By the ANSI/ISO C standard, elements in a structure
are not guaranteed to be contiguous. With the above structure, padding between elements
has been experimentally observed (on the CRAY T3D), so this problem is not purely
theoretical.

To get around padding problems within the structure, a structure such as
struct NON PORTABLE COMPLEX ffloat v[2];g; has been suggested. With this struc-
ture there will obviously be no padding between the real and imaginary parts. However,
there still exists the possibility of padding between elements within an array. More im-
portantly, this structure does not lend itself nearly as well as the �rst to code clarity.

A �nal proposal is to de�ne a structure which may be addressed the same as the
one above (i.e., ptr->r, ptr->i), but whose actual de�nition is platform dependent.
Then, hopefully, various vendors will either use the above structure and ensure via
their compilers its contiguousness, or they will create a di�erent structure which can be
accessed in the same way.

This requires vendors to support something which is not in the ANSI C standard,
and so there is no way to ensure this would take place. More to the point, use of such a
structure turns out to not o�er much in the way of real advantage, as discussed in the
following section.

All of these approaches require the programmer to either use the speci�ed data type
throughout the code which will call the BLAS, or to perform type casting on each BLAS
call. When complex numbers are accepted as void pointers, no type casting or data type
is dictated, with the only restriction being that a complex number have the de�nition
given above.

B.2.5 Return values of complex functions

BLAS routines which return complex values in Fortran 77 are instead recast as subroutines in the
C interface, with the return value being an output parameter added to the end of the argument
list. This allows the output parameter to be accepted as void pointers, as discussed above.

Further, the name is suÆxed by sub. There are two main reasons for this name change.
First, the change from a function to a subroutine is a signi�cant change, and thus the name should
reect this. More importantly, the \traditional" name space is speci�cally reserved for use when the
forthcoming ANSI/ISO C extension is �nalized. When this is done, this C interface will be extended
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to include functions using the \traditional" names which utilize the new ANSI/ISO complex type
to return the values.

Considered methods

This is the area where use of a structure is most desired. Again, the most common
suggestion is a structure such as struct NON_PORTABLE_COMPLEX {float r; float i;};.

If one is willing to use this structure throughout one's code, then this provides a
natural and convenient mechanism. If, however, the programmer has utilized a di�erent
structure for complex, this ease of use breaks down. Then, something like the following
code fragment is required:

NON_PORTABLE_COMPLEX ctmp;

float cdot[2];

ctmp = cblas_cdotc(n, x, 1, y, 1);

cdot[0] = ctmp.r;

cdot[1] = ctmp.i;

which is certainly much less convenient than: cblas_cdotc_sub(n, x, 1, y, 1, cdot).
It should also be noted that the primary reason for having a function instead of a

subroutine is already invalidated by C's lack of a standard complex type. Functions
are most useful when the result may be used directly as part of an in-line computation.
However, since ANSI/ISO C lacks support for complex arithmetic primitives or operator
overloading, complex functions cannot be standardly used in this way. Since the function
cannot be used as a part of a larger expression, nothing is lost by recasting it as a
subroutine; indeed a slight performance win may be obtained.

B.2.6 Array arguments

Arrays are constrained to being contiguous in memory. They are accepted as pointers, not as arrays
of pointers.

All BLAS routines which take one or more two dimensional arrays as arguments receive one
extra parameter as their �rst argument. This argument is of the enumerated type
enum CBLAS ORDER fCblasRowMajor=101, CblasColMajor=102g;.
If this parameter is set to CblasRowMajor, it is assumed that elements within a row of the array(s)
are contiguous in memory, while elements within array columns are separated by a constant stride
given in the stride parameter (this parameter corresponds to the leading dimension [e.g. LDA] in
the Fortran 77 interface).

If the order is given as CblasColMajor, elements within array columns are assumed to be
contiguous, with elements within array rows separated by stride memory elements.

Note that there is only one CBLAS ORDER parameter to a given routine: all array operands are
required to use the same ordering.

Considered methods

This solution comes after much discussion. C users appear to split roughly into two
camps. Those people who have a history of mixing C and Fortran 77 (in particular
making use of the Fortran 77 BLAS from C), tend to use column-major arrays in order
to allow ease of inter-language operations. Because of the exibility of pointers, this is
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not appreciably harder than using row-major arrays, even though C \natively" possesses
row-major arrays.

The second camp of C users are not interested in overt C/Fortran 77 interoperability,
and wish to have arrays which are row-major, in accordance with standard C conven-
tions. The idea that they must recast their row-oriented algorithms to column-major
algorithms is unacceptable; many in this camp would probably not utilize any BLAS
which enforced a column-major constraint.

Because both camps are fairly widely represented within the target audience, it is
impossible to choose one solution to the exclusion of the other.

Column-major array storage can obviously be supported directly on top of the legacy
Fortran 77 BLAS. Recent work, particularly code provided by D.P. Manley of DEC, has
shown that row-major array storage may also be supported in this way with little cost.
Appendix B.2.12 discusses this issue in detail. To preview it here, we can say the level
1 and 3 BLAS require no extra operations or storage to support row-major operations
on top of the legacy BLAS. Level 2 real routines also require no extra operations or
storage. Some complex level 2 routines involving the conjugate transpose will require
extra storage and operations in order to form explicit conjugates. However, this will
always involve vectors, not the matrix. In the worst case, we will need n extra storage,
and 3n sign changes.

One proposal was to accept arrays as arrays of pointers, instead of as a single pointer.
The problems with this approach are manifold. First, the existing Fortran 77 BLAS
could not be used, since they demand contiguous (though strided) storage. Second, this
approach requires users of standard C 2D arrays or 1D arrays to allocate and assign the
appropriate pointer array.

Beyond this, many of the vectors used in level 1 and level 2 BLAS come from rows
or columns of two dimensional arrays. Elements within columns of row-major arrays
are not uniformly strided, which means that a n-element column vector would need n

pointers to represent it. This then leads to vectors being accepted as arrays of pointers
as well.

Now, assuming both our one and two dimensional arrays are accepted as arrays of
pointers, we have a problem when we wish to perform sub-array access. If we wish to
pass an m�n subsection of a this array of pointers, starting at row i and column j, we
must allocate m pointers, and assign them in a section of code such as:

float **A, **subA;

subA = malloc(m*sizeof(float*));

for (k=0; k != m; k++) subA[k] = A[i+k] + j;

cblas_rout(... subA ...);

The same operation must be done if we wish to use a row or column as a vector.
This is not only an inconvenience, but can add up to a non-negligible performance loss
as well.

A �x for these problems is that one and two dimensional arrays be passed as arrays
of pointers, and then indices are passed in to indicate the sub-portion to access. Thus
you have a call that looks like: cblas_rout(... A, i, j, ...);. This solution still
requires some additional tweaks to allow using two dimensional array rows and columns
as vectors. Users presently using C 2D arrays or 1D arrays would have to malloc the
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array of pointers as shown in the preceding example in order to use this kind of interface.
At any rate, a library accepting pointers to pointers cannot be supported on top of the
Fortran 77 BLAS, while one supporting simple pointers can.

If the programmer is utilizing the pointer to pointer style of array indexing, it is still
possible to use this library providing that the user ensures that the operand matrix is
contiguous, and that the rows are constantly strided. If this is the case, the user may
pass the operand matrix to the library in precicely the same way as with a 2D C array:
cblas_rout(... &A[i][j] ...);.
Example 1: making a library call with a C 2D array:

double A[50][25]; /* standard C 2D array */

cblas_rout(CblasRowMajor, ... &A[i][j], 25, ...);

Example 2: Legal use of pointer to pointer style programming and the

CBLAS

double **A, *p;

A = malloc(M);

p = malloc(M*N*sizeof(double));

for (i=0; i < M; i++) A[i] = &p[i*N];

cblas_rout(CblasRowMajor, ... &A[i][j], N, ...);

Example 3: Illegal use of pointer to pointer style programming and the

CBLAS

double **A, *p;

A = malloc(M);

p = malloc(M*N*sizeof(double));

for (i=0; i < M; i++) A[i] = malloc(N*sizeof(double));

cblas_rout(CblasRowMajor, ... &A[i][j], N, ...);

Note that Example 3 is illegal because the rows of A have no guaranteed stride.

B.2.7 Aliasing of arguments

Unless speci�ed otherwise, only input-only arguments (speci�ed with the const quali�er), may be
legally aliased on a call to the C interface to the BLAS.

Considered methods

The ANSI C standard allows for the aliasing of output arguments. However, allowing this often
carries a substantial performance penalty. This, along with the fact that Fortran 77 (which we
hope to call for optimized libraries) does not allow aliasing of output arguments, led us to make
this restriction.
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B.2.8 C interface include �le

The C interface to the BLAS will have a standard include �le, called cblas.h, which minimally
contains the de�nition of the CBLAS types and ANSI/ISO C prototypes for all BLAS routines.
It is not an error to include this �le multiple times. Refer to section B.2.11 for an example of a
minimal cblas.h.

ADVICE TO THE IMPLEMENTOR:

Note that the vendor is not constrained to using precisely this include �le; only the enumerated type
de�nitions are fully speci�ed. The implementor is free to make any other changes which are not
apparent to the user. For instance, all matrix dimensions might be accepted as size t instead of
int, or the implementor might choose to make some routines inline.

B.2.9 Error checking

The C interface to the legacy BLAS must supply error checking corresponding to that provided by
the reference Fortran 77 BLAS implementation.

B.2.10 Rules for obtaining the C interface from the Fortran 77

� The Fortran 77 routine name is changed to lower case, and pre�xed by cblas .

� All routines which accept two dimensional arrays (i.e., level 2 and 3), acquire a new parameter
of type CBLAS ORDER as their �rst argument, which determines if the two dimensional arrays
are row or column major.

� Character arguments are replaced by the appropriate enumerated type, as shown in Sec-
tion B.2.3.

� Input arguments are declared with the const modi�er.

� Non-complex scalar input arguments are passed by value. This allows the user to put in
constants when desired (eg., passing 10 on the command line for N).

� Complex scalar input arguments are passed as void pointers, since they do not exist as a
prede�ned data type in ANSI/ISO C.

� Array arguments are passed by address.

� Output scalar arguments are passed by address.

� Complex functions become subroutines which return the result via a void pointer, added as
the last parameter. The name is suÆxed with sub.

B.2.11 cblas.h include �le

The cblas.h include �le can be found on the BLAS Technical Forum webpage:

http://www.netlib.org/blas/blast-forum/cblas.h
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B.2.12 Using Fortran 77 BLAS to support row-major BLAS operations

This section is not part of the standard per se. Rather, it exists as an advice to the implementor
on how row-major BLAS operations may be implemented using column-major BLAS. This allows
vendors to leverage years of Fortran 77 BLAS developement in producing the C BLAS.

Before this issue is examined in detail, a few general observations on array storage are helpful.
We must distinguish between the matrix and the array which is used to store the matrix. The
matrix, and its rows and columns, have mathematical meaning. The array is simply the method of
storing the matrix, and its rows and columns are signi�cant only for memory addressing.

Thus we see we can store the columns of a matrix in the rows of an array, for instance. When
this occurs in the BLAS, the matrix is said to be stored in transposed form.

A row-major array stores elements along a row in contiguous storage, and separates the column
elements by some constant stride (often the actual length of a row). Column-major arrays have
contiguous columns, and strided rows. The importance of this is to note that a row-major array
storing a matrix in the natural way, is a transposed column-major array (i.e., it can be thought of
as a column-major array where the rows of the matrix are stored in the columns of the array).

Similarly, an upper triangular row-major array corresponds to a transposed lower triangular
column-major array (the same is true in reverse [i.e., lower-to-upper], obviously). To see this,
simply think of what a upper triangular matrix stored in a row-major array looks like. The �rst n
entries contain the �rst matrix row, followed by a non-negative gap, followed by the second matrix
row.

If this same array is viewed as column-major, the �rst n entries are a column, instead of a row,
so that the columns of the array store the rows of the matrix (i.e., it is transposed). This means
that if we wish to use the Fortran 77 (column-major) BLAS with triangular matrices coming from
C (possibly row-major), we will be reversing the setting of UPLO, while simultaneously reversing
the setting of TRANS (this gets slightly more complicated when the conjugate transpose is involved,
as we will see).

Finally, note that if a matrix is symmetric or Hermitian, its rows are the same as its columns,
so we may merely switch UPLO, without bothering with TRANS.

In the BLAS, there are two separate cases of importance. one dimensional arrays (storage for
vectors) have the same meaning in both C and Fortran 77, so if we are solving a linear algebra
problem who's answer is a vector, we will need to solve the same problem for both languages.
However, if the answer is a matrix, in terms of calling routines which use column-major storage
from one using row-major storage, we will want to solve the transpose of the problem.

To get an idea of what this means, consider a contrived example. Say we have routines for
simple matrix-matrix and matrix-vector multiply. The vector operation is y  A � x, and the
matrix operation is C  A � B. Now say we are implementing these as calls from row-major
array storage to column-major storage. Since the matrix-vector multiply's answer is a vector, the
problem we are solving is remains the same, but we must remember that our C array A is a Fortran
77 AT . On the other hand, the matrix-matrix multiply has a matrix for a result, so when the
di�ering array storage is taken into account, the problem we want to solve is CT  BT �AT .

This last example demonstrates another general result. Some level 3 BLAS contain a SIDE

parameter, determining which side a matrix is applied on. In general, if we are solving the transpose
of this operation, the side parameter will be reversed.

With these general principles, it is possible to show that all that row-major level 3 BLAS can
be expressed in terms of column-major BLAS without any extra array storage or extra operations.
In the level 2 BLAS, no extra storage or array accesses are required for the real routines. Complex
routines involving the conjugate transpose, however, may require a n-element temporary, and up
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to 3n more operations (vendors may avoid all extra workspace and operations by overloading the
TRANS option for the level 2 BLAS: letting it also allow conjugation without doing the transpose).
The level 1 BLAS, which deal exclusively with vectors, are una�ected by this storage issue.

With these ideas in mind, we will now show how to support a row-major BLAS on top of a
column major BLAS. This information will be presented in tabular form. For brevity, row-major
storage will be referred to as coming from C (even though column-major arrays can also come from
C), while column-major storage will be referred to as F77.

Each table will show a BLAS invocation coming from C, the operation that the BLAS should
perform, the operation required once F77 storage is taken into account (if this changes), and the call
to the appropriate F77 BLAS. Not every possible combination of parameters is shown, since many
are simply reections of another (i.e., when we are applying the Upper, NoTranspose becomes
Lower, Transpose rule, we will show it for only the upper case. In order to make the notation
more concise, let us de�ne x to be conj(x).

Level 2 BLAS

GEMV

C call cblas cgemv(CblasRowMajor, CblasNoTrans, m, n, �, A, lda, x, incx, �, y, incy)

op y  �Ax+ �y

F77 call CGEMV('T', n, m, �, A, lda, x, incx, �, y, incy)

C call cblas cgemv(CblasRowMajor, CblasTrans, m, n, �, A, lda, x, incx, �, y, incy)

op y  �ATx+ �y

F77 call CGEMV('N', n, m, �, A, lda, x, incx, �, y, incy)

C call cblas cgemv(CblasRowMajor, CblasConjTrans, m, n, �, A, lda, x, incx, �, y, incy)

op y  �AHx+ �y ) (y  �ATx+ �y)

F77 call CGEMV('N', n, m, �, A, lda, x, 1, �, y, incy)

Note that we switch the value of transpose to handle the row/column major ordering di�erence.
In the last case, we will require n elements of workspace so that we may store the conjugated vector
x. Then, we set y = y, and make the call. This gives us the conjugate of the answer, so we once
again set y = y. Therefore, we see that to support the conjugate transpose, we will need to allocate
an n-element vector, and perform 2m+ n extra operations.

SYMV

SYMV requires no extra workspace or operations.
C call cblas csymv(CblasRowMajor, CblasUpper, n, �, A, lda, x, incx, �, y, incy)

op y  �Ax+ �y ) y  �ATx+ �y

F77 call CSYMV('L', n, �, A, lda, x, incx, �, y, incy)

HEMV

HEMV routine requires 3n conjugations, and n extra storage.
C call cblas chemv(CblasRowMajor, CblasUpper, n, �, A, lda, x, incx, �, y, incy)

op y  �Ax+ �y ) y  �AHx+ �y ) (y  �ATx+ �y)

F77 call CHEMV('L', n, �, A, lda, x, incx, �, y, incy)
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TRMV/TRSV

C call cblas ctrmv(CblasRowMajor, CblasUpper, CblasNoTrans, diag, n, A, lda, x, incx)

op x Ax

F77 call CTRMV('L', 'T', diag, n, A, lda, x, incx)

C call cblas ctrmv(CblasRowMajor, CblasUpper, CblasTrans, diag, n, A, lda, x, incx)

op x ATx

F77 call CTRMV('L', 'N', diag, n, A, lda, x, incx)

C call cblas ctrmv(CblasRowMajor, CblasUpper, CblasConjTrans, diag, n, A, lda, x, incx)

op x AHx) (x = ATx)
F77 call CTRMV('L', 'N', diag, n, A, lda, x, incx)

Again, we see that we will need some extra operations when we are handling the conjugate
transpose. We conjugate x before the call, giving us the conjugate of the answer we seek. We then
conjugate this again to return the correct answer. This routine therefore needs 2n extra operations
for the complex conjugate case.

The calls with the C array being Lower are merely the reection of these calls, and thus are
not shown. The analysis for TRMV is the same, since it involves the same principle of what a
transpose of a triangular matrix is.

GER/GERU

This is our �rst routine that has a matrix as the solution. Recalling that this means we solve the
transpose of the original problem, we get:
C call cblas cgeru(CblasRowMajor, m, n, �, x, incx, y, incy, A, lda)

C op A �xyT +A

F77 op AT  �yxT +AT

F77 call CGERU(n, m, �, y, incy, x, incx, A, lda)

No extra storage or operations are required.

GERC

C call cblas cgerc(CblasRowMajor, m, n, �, x, incx, y, incy, A, lda)

C op A �xyH +A

F77 op AT  �(xyH)T +AT = �yxT +AT

F77 call CGERU(n, m, �, y, incy, x, incx, A, lda)

Note that we need to allocate n-element workspace to hold the conjugated y, and we call GERU,
not GERC.

HER

C call cblas cher(CblasRowMajor, CblasUpper, n, �, x, incx, A, lda)

C op A �xxH +A

F77 op AT  �xxT +AT

F77 call CHER('L', n, �, x, 1, A, lda)

Again, we have an n-element workspace and n extra operations.
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HER2

C call cblas cher2(CblasRowMajor, CblasUpper, n, �, x, incx, y, incy, A, lda)

C op A �xyH + y(�x)H +A

F77 op AT  �yxT + �xyT +AT = �y(x)H + x(�y)H +AT

F77 call CHER2('L', n, �, y, 1, x, 1, A, lda)

So we need 2n extra workspace and operations to form the conjugates of x and y.

SYR

C call cblas ssyr(CblasRowMajor, CblasUpper, n, �, x, incx, A, lda)

C op A �xxT +A

F77 op AT  �xxT +AT

F77 call SSYR('L', n, �, x, incx, A, lda)

No extra storage or operations required.

SYR2

C call cblas ssyr2(CblasRowMajor, CblasUpper, n, �, x, incx, y, incy, A, lda)

C op A �xyT + �yxT +A

F77 op AT  �yxT + �xyT +AT

F77 call SSYR2('L', n, �, y, incy, x, incx, A, lda)

No extra storage or operations required.
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Level 3 BLAS

GEMM

C call cblas cgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �AB + �C

F77 op CT  �BTAT + �CT

F77 call CGEMM('N', 'N', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasRowMajor, CblasNoTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �ABT + �C

F77 op CT  �BAT + �CT

F77 call CGEMM('T', 'N', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasRowMajor, CblasNoTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �ABH + �C

F77 op CT  �BAT + �CT

F77 call CGEMM('C', 'N', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasRowMajor, CblasTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �ATB + �C

F77 op CT  �BTA+ �CT

F77 call CGEMM('N', 'T', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasRowMajor, CblasTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �ATBT + �C

F77 op CT  �BA+ �CT

F77 call CGEMM('T', 'T', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasRowMajor, CblasTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �ATBH + �C

F77 op CT  �BA+ �CT

F77 call CGEMM('C', 'T', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasRowMajor, CblasConjTrans, CblasNoTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �AHB + �C

F77 op CT  �BTA+ �CT

F77 call CGEMM('N', 'C', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasRowMajor, CblasConjTrans, CblasTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �AHBT + �C

F77 op CT  �BA+ �CT

F77 call CGEMM('T', 'C', n, m, k, �, B, ldb, A, lda, �, C, ldc)

C call cblas cgemm(CblasRowMajor, CblasConjTrans, CblasConjTrans, m, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �AHBH + �C

F77 op CT  �BA+ �CT

F77 call CGEMM('C', 'C', n, m, k, �, B, ldb, A, lda, �, C, ldc)
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SYMM/HEMM

C call cblas chemm(CblasRowMajor, CblasLeft, CblasUpper, m, n, �, A, lda, B, ldb, �, C, ldc)

C op C  �AB + �C

F77 op CT  �BTAT + �CT

F77 call CHEMM('R', 'L', n, m, �, A, lda, B, ldb, �, C, ldc)

C call cblas chemm(CblasRowMajor, CblasRight, CblasUpper, m, n, �, A, lda, B, ldb, �, C, ldc)

C op C  �BA + �C

F77 op CT  �ATBT + �CT

F77 call CHEMM('L', 'L', n, m, �, A, lda, B, ldb, �, C, ldc)

SYRK

C call cblas csyrk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, �, C, ldc)

C op C  �AAT + �C

F77 op CT  �AAT + �CT

F77 call CSYRK('L', 'T', n, k, �, A, lda, B, ldb, �, C, ldc)

C call cblas csyrk(CblasRowMajor, CblasUpper, CblasTrans, n, k, �, A, lda, �, C, ldc)

C op C  �ATA+ �C

F77 op CT  �ATA+ �CT

F77 call CSYRK('L', 'N', n, k, �, A, lda, B, ldb, �, C, ldc)

In reading the above descriptions, it is important to remember a few things. First, the symmetric
matrix is C, and thus we change UPLO to accommodate the di�ering storage of C. TRANSPOSE is
then varied to handle the storage e�ects on A.

HERK

C call cblas cherk(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, �, C, ldc)

C op C  �AAH + �C

F77 op CT  �AAT + �CT

F77 call CHERK('L', 'C', n, k, �, A, lda, B, ldb, �, C, ldc)

C call cblas cherk(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, �, A, lda, �, C, ldc)

C op C  �AHA+ �C

F77 op CT  �ATA+ �CT

F77 call CHERK('L', 'N', n, k, �, A, lda, B, ldb, �, C, ldc)

SYR2K

C call cblas csyr2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �ABT + �BAT + �C

F77 op CT  �BAT + �ABT + �CT = �ABT + �BAT + �CT

F77 call CSYR2K('L', 'T', n, k, �, A, lda, B, ldb, �, C, ldc)

C call cblas csyr2k(CblasRowMajor, CblasUpper, CblasTrans, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �ATB + �BTA+ �C

F77 op CT  �BTA+ �ATB + �CT = �ATB + �BTA+ �CT

F77 call CSYR2K('L', 'N', n, k, �, A, lda, B, ldb, �, C, ldc)
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Note that we once again wind up with an operation that looks the same from C and Fortran
77, saving that the C operations wishes to form CT , instead of C. So once again we ip the setting
of UPLO to handle the di�erence in the storage of C. We then ip the setting of TRANS to handle
the storage e�ects for A and B.

HER2K

C call cblas cher2k(CblasRowMajor, CblasUpper, CblasNoTrans, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �ABH + �BAH + �C

F77 op CT  �BAT + �ABT + �CT = �ABT + �BAT + �CT

F77 call CHER2K('L', 'C', n, k, �, A, lda, B, ldb, �, C, ldc)

C call cblas cher2k(CblasRowMajor, CblasUpper, CblasConjTrans, n, k, �, A, lda, B, ldb, �, C, ldc)

C op C  �AHB + �BHA+ �C

F77 op CT  �BTA+ �ATB + �CT = �ATB + �BTA+ �CT

F77 call CHER2K('L', 'N', n, k, �, A, lda, B, ldb, �, C, ldc)

TRMM/TRSM

Because of their identical use of the SIDE, UPLO, and TRANSA parameters, TRMM and TRSM share
the same general analysis. Remember that A is a triangular matrix, and thus when we handle its
storage by ipping UPLO, we implicitly change its TRANS setting as well. With this in mind, we
have:
C call cblas ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasNoTrans, diag, m, n, �, A, lda, B, ldb)

C op B  �AB

F77 op BT  �BTAT

F77 call CTRMM('R', 'L', 'N', diag, n, m, �, A, lda, B, ldb)

C call cblas ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasTrans, diag, m, n, �, A, lda, B, ldb)

C op B  �ATB

F77 op BT  �BTA

F77 call CTRMM('R', 'L', 'T', diag, n, m, �, A, lda, B, ldb)

C call cblas ctrmm(CblasRowMajor, CblasLeft, CblasUpper, CblasConjTrans, diag, m, n, �, A, lda, B, ldb)

C op B  �AHB

F77 op BT  �BTA

F77 call CTRMM('R', 'L', 'C', diag, n, m, �, A, lda, B, ldb)

Banded routines

The above techniques can be used for the banded routines only if a C (row-major) banded array
has some sort of meaning when expanded as a Fortran banded array. It turns out that when this
is done, you get the transpose of the C array, just as in the dense case.

In Fortran 77, the banded array is an array whose rows correspond to the diagonals of the
matrix, and whose columns contain the selected portion of the matrix column. To rephrase this,
the diagonals of the matrix are stored in strided storage, and the relevant pieces of the columns of
the matrix are stored in contiguous memory. This makes sense: in a column-based algorithm, you
will want your columns to be contiguous for eÆciency reasons.

In order to ensure our columns are contiguous, we will structure the banded array as shown
below. Notice that the �rst KU rows of the array store the superdiagonals, appropriately spaced
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to line up correctly in the column direction with the main diagonal. The last KL rows contain the
subdiagonals.

------ Super diagonal KU

----------- Super diagonal 2

------------ Super diagonal 1

------------- main diagonal (D)

------------ Sub diagonal 1

----------- Sub diagonal 2

------ Sub diagonal KL

If we have a row-major storage, and thus a row-oriented algorithm, we will similarly want our
rows to be contiguous in order to ensure eÆciency. The storage scheme that is thus dictated is
shown below. Notice that the �rst KL columns store the subdiagonals, appropriately padded to
line up with the main diagonal along rows.

KL D KU

| | | |

| | | | |

| | | | | |

| | | | | |

| | | | |

| | | |

Now, let us contrast these two storage schemes. Both store the diagonals of the matrix along
the non-contiguous dimension of the matrix. The column-major banded array stores the matrix
columns along the contiguous dimension, whereas the row-major banded array stores the matrix
rows along the contiguous storage.

This gives us our �rst hint as to what to do: rows stored where columns should be, indicated,
in the dense routines, that we needed to set a transpose parameter. We will see that we can do
this for the banded routines as well.

We can further note that in the column-major banded array, the �rst part of the non-contiguous
dimension (i.e. the �rst rows) store superdiagonals, whereas the �rst part of the non-contiguous
dimension of row-major arrays (i.e., the �rst columns) store the subdiagonals.

We now note that when you transpose a matrix, the superdiagonals of the matrix become the
subdiagonals of the matrix transpose (and vice versa).

Along the contiguous dimension, we note that we skip KU elements before coming to our �rst
entry in a column-major banded array. The same happens in our row-major banded array, except
that the skipping factor is KL.

All this leads to the idea that when we have a row-major banded array, we can consider it as
a transpose of the Fortran 77 column-major banded array, where we will swap not only m and n,
but also KU and KL. An example should help demonstrate this principle. Let us say we have the

matrix A =

"
1 3 5 7
2 4 6 8

#
If we express this entire array in banded form (a fairly dumb thing to do, but good for

example purposes), we get KU = 3, KL = 1. In row-major banded storage this becomes:

Cb =

"
X 1 3 5 7
2 4 6 8 X

#
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So, we believe this should be the transpose if interpreted as a Fortran 77 banded array. The
matrix transpose, and its Fortran 77 banded storage is shown below:

AT =

2
6664
1 2
3 4
5 6
7 8

3
7775) Fb =

2
666664
X 2
1 4
3 6
5 8
7 X

3
777775

Now we simply note that since Cb is row major, and Fb is column-major, they are actually the
same array in memory.

With the idea that row-major banded matrices produce the transpose of the matrix when
interpreted as column-major banded matrices, we can use the same analysis for the banded BLAS
as we used for the dense BLAS, noting that we must also always swap KU and KL.

Packed routines

Packed routines are much simpler than banded. Here we have a triangular, symmetric or Hermitian
matrix which is packed so that only the relevant triangle is stored. Thus if we have an upper tri-
angular matrix stored in column-major packed storage, the �rst element holds the relevant portion
of the �rst column of the matrix, the next two elements hold the relevant portion of the second
column, etc.

With an upper triangular matrix stored in row-major packed storage, the �rst N elements hold
the �rst row of the matrix, the next N � 1 elements hold the next row, etc.

Thus we see in the Hermitian and symmetric cases, to get a row-major packed array correctly
interpreted by Fortran 77, we will simply switch the setting of UPLO. This will mean that the rows
of the matrix will be read in as the columns, but this is not a problem, as we have seen before.
In the symmetric case, since A = AT the column and rows are the same, so there is obviously no
problem. In the Hermitian case, we must be sure that the imaginary component of the diagonal is
not used, and it assumed to be zero. However, the diagonal element in a row when our matrix is
upper will correspond to the diagonal element in a column when our matrix is called lower, so this
is handled as well.

In the triangular cases, we will need to change both UPLO and TRANS, just as in the dense
routines.

With these ideas in mind, the analysis for the dense routines may be used unchanged for packed.
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The \Journal of Develpment" for the BLAS Technical Forum Standard is available on the BLAS
Technical Forum webpage:

http://www.netlib.org/blas/blast-forum/
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