Basic Linear Algebra Subprograms Technical (BLAST) Forum
Standard

Basic Linear Algebra Subprograms Technical (BLAST) Forum

January 23, 2001

(©1996-2000 University of Tennessee, Knoxville, Tennessee. Permission to copy without fee all
or part of this material is granted, provided the University of Tennessee copyright notice and the
title of this document appear, and notice is given that copying is by permission of the University
of Tennessee.

ii

Contents

Acknowledgments
Suggestions for Reading

1 Introduction

1.1 Imtroduction e e e e
1.2 Motivation e e e e
1.3 Organization of the Document
1.4 Nomenclature and Conventions oo
1.4.1 Notation e e
1.4.2 Operator Arguments Lo
1.4.3 Scalar Arguments
1.4.4 Vector Operands o o i
1.4.5 Matrix Operands oL
1.4.6 Naming Conventions i
1.5 Overall Functionality L
1.5.1 Scalar and Vector Operations,
1.5.2 Matrix-Vector Operations Lo
1.5.3 Matrix Operations o
1.6 Numerical Accuracy and Environmental Enquiry
1.7 Language Bindings L
1.8 Error Handling e
1.8.1 Error handlers

Dense and Banded BLAS

2.1 Overview and Functionality o
2.1.1 Scalar and Vector Operations
2.1.2 Matrix-Vector Operations oo e
2.1.3 Matrix Operations oo

2.2 Matrix Storage Schemes L
2.2.1 Conventional Storage
2.2.2 Packed Storage
2.2.3 Band Storage
2.2.4 Unit Triangular Matrices
2.2.5 Representation of a Householder Matrix
2.2.6 Representation of a Permutation Matrix

2.3 Imterface Issues e

iii

2.3.1 Naming Conventions e 29

2.3.2 Argument Aliasing L 29

2.4 Interface Issues for Fortran 95 oL o 29
2.4.1 Fortran 95 Modules L 29
242 Indexing o e 29
2.4.3 Design of the Fortran 95 Interfaces, 30
2.4.4 Matrix Storage Schemes L 31
2.4.5 Format of the Fortran 95 bindings 31
24.6 Error Handling 32

2.5 Interface Issues for Fortran 77 o o 33
2.5.1 Fortran 77 Include File 33
252 Indexing e 33
2.5.3 Array Arguments oL L 33
2.5.4 Matrix Storage Schemes L 34
2.5.5 Format of the Fortran 77 bindings, 34
25.6 Error Handling 34

2.6 Interface Issues for C e 35
2.6.1 ClInclude File 35
2.6.2 Indexing e 35
2.6.3 Handling of complex data typeso oL 35
2.6.4 Return values of complex functions oo, 36
2.6.5 Aliasing of arguments L 36

2.6.6 Array argumentso e 36
2.6.7 Matrix Storage Schemes oo o 36
2.6.8 Format of the Cbindings 36
2.6.9 Error Handling 37

2.7 Numerical Accuracy and Environmental Enquiry 37
2.8 Language Bindings 38
2.8.1 Overview e e e e e e e 39
2.8.2 Reduction Operations i i i i e e 41
2.8.3 Generate Transformations Lo Lo 46
2.8.4 Vector Operations i i i i it i e e e 50
2.8.5 Data Movement with Vectors 0. 53
2.8.6 Matrix-Vector Operations oo o 56
2.8.7 Matrix Operations 0 e e 72
2.8.8 Matrix-Matrix Operations oo 86
2.8.9 Data Movement with Matrices, 102
2.8.10 Environmental Enquiry oo oo 106

3 Sparse BLAS 109
3.1 OVErvIEW . . . o Lo 109
3.2 Functionality e 110
3.2.1 Scalar and Vector Operations o 110
3.2.2 Matrix-Vector Operations oo e 110
3.2.3 Matrix-Matrix Operations oo 111

3.3 Describing sparsity L 111
3.3.1 Sparse Vectors 111
3.3.2 Index bases o e 112

v

3.3.3 Repeated Indices 112
3.4 Sparse BLAS Matrices o o e e e 113
3.4.1 Creation Routines 113
3.4.2 Specifying matrix properties.o oo o 113
3.4.3 Sparse Matrices: Inserting List of Entries 115
3.4.4 Sparse Matrices: Inserting Row and Column Vectors 115
3.4.5 Sparse Matrices: Inserting Cliques 115
3.5 Interface Issues e e e e 116
3.5.1 Interface Issues for Fortran 95 oL, 116
3.5.2 Interface Issues for Fortran 77 117
3.5.3 Interface Issuesfor C. e 119
3.6 Numerical Accuracy and Environmental Enquiry 120
3.7 Language Bindings 120
3.7.1 OVerview e e e e e e e e e e e e 120
3.7.2 Level 1 Computational Routines 121
3.7.3 Level 2 Computational Routines, 125
3.7.4 Level 3 Computational Routines 126
3.7.5 Handle Management 127
3.7.6 Creation Routines e 128
3.7.7 Imsertionroutines L. 129
3.7.8 Completion of construction routine 133
3.7.9 Maftrix property routines L 133
3.7.10 Destruction routine.o 135
Extended and Mixed Precision BLAS 137
4.1 OVEIVIEW . . . o o e e e e e e e e e e e e e e e 137
4.2 Design Goals and Summary o 137
4.3 Functionality 139
4.3.1 Specifying Extra Precision o o oo 139
4.3.2 Mixed Precision e e e e 140
4.3.3 Numerical Accuracy and Environmental Enquiries 141
4.3.4 Function Tables. e 144
4.4 Interface Issues e e e e e 144
4.4.1 Interface Issues for Fortran 95. oL, 145
4.4.2 Interface Issues for Fortran 77 146
4.4.3 Interface Issuesfor C 146
4.5 Language Bindings 147
4.5.1 OVErVIEW o i e e e e e e e e e e e e 147
4.5.2 Mixed and Extended Precision Reduction Operations 148
4.5.3 Mixed and Extended Precision Vector Operations. 150
4.5.4 Mixed and Extended Precision Matrix-Vector Operations 152
4.5.5 Mixed and Extended Precision Matrix-Matrix Operations 162
4.5.6 Environmental Enquiry oo oL oo 177

A Appendix

Al Vector Norms L 0 e e e e e e e e
A2 Matrix Norms e
A3 Operator Arguments Lo e
A.4 Fortran 95 Modules.
A5 Fortran 77 Include File o
A6 Clnclude Files e

B Legacy BLAS

B.1 Introduction e e e

B.2 C interface to the Legacy

BLAS.

B.2.1 Namingscheme e

B.2.2 Indices and [_LAMAX
B.2.3 Character arguments
ex data types . .
B.2.5 Return values of complex functions

B.2.4 Handling of compl

B.2.6 Array arguments

B.2.7 Aliasing of arguments
B.2.8 C interface include file

B.2.9 Error checking
B.2.10 Rules for obtaining the C interface from the Fortran 77

B.2.11 cblas.h include file

B.2.12 Using Fortran 77 BLAS to support row-major BLAS operations

C Journal of Development
Bibliography

Index

vi

179
179
180
180
182
184
184

187
187
187
187
188
188
188
189
190
192
193
193
193
193
194

203

204

207

Acknowledgments

The technical development was carried out by subgroups, whose work was reviewed by the full
committee. During the period of development of the Basic Linear Algebra Subprograms (BLAS)
Technical Forum Standard, many people served in positions of responsibility and are listed below.

e Jack Dongarra and Sven Hammarling, Conveners and Meeting Chairs
e Susan Blackford and Andrew Lumsdaine, Minutes

e Susan Blackford, Editor
The primary chapter authors are the following:

e Susan Blackford, Jack Dongarra, and Sven Hammarling, Chapter 1

e Susan Blackford, Jack Dongarra, and Sven Hammarling, Linda Kaufman, Zohair Maany,
Antoine Petitet, Chapter 2

e lain Duff, Mike Heroux, Roldan Pozo, Karin Remington, Chapter 3

e Jim Demmel, Greg Henry, Velvel Kahan, Xiaoye Li, Chapter 4

e Clint Whaley, C Interface to the Legacy BLAS

e Jack Dongarra, Fred Krogh, Journal of Development — Environmental routines

e Antoine Petitet, Journal of Development — Distributed-Memory Dense BLAS

e Sven Hammarling, Zohair Maany, Journal of Development — Fortran95 Thin BLAS

e George Corliss, Chenyi Hu, Baker Kearfoot, Bill Walster, J. Wolff v. Gudenberg, Journal of
Development — Interval BLAS

We would like to thank the individuals from the following organizations who have written the
reference implementations: University of California, Berkeley, University of Houston, Downtown,
University of Notre Dame, University of Tennessee, HP /Convex, NAG, NIST, and CERFACS.

Specifically, we thank the following students at the University of California, Berkeley, for their
work on the reference implementations and proofreading of various versions of the document: Ben
Wanzo, Berkat Tung, Weihua Shen, Anil Kapur, Michael Martin, Jimmy Iskandar, Yozo Hida,
Teresa Tung, Yulin Li.

We would like to thank the following vendors and ISPs: Cray, Digital/Compaq, HP/Convex,
IBM, Intel, NEC, SGI, Tera, NAG, and VNI.

We thank Paul McMahan of the University of Tennessee for preparing the commenting and
voting pages on the BLAS Technical Forum webpage.

vii

We would like to thank the members of the global community who have posted comments,
suggestions, and proposals to the email reflector and the BLAS Technical Forum webpage.

And lastly, we would like to thank the attendees of the BLAS Technical Forum meetings:

Andy Anda, Ed Anderson, Zhaojun Bai, David Bailey, Satish Balay, Puri Bangalore, Claus
Bendtsen, Jesse Bennett, Mike Berry, Jeff Bilmes, Susan Blackford, Phil Bording, Clay Breshears,
Sandra Carney, Mimi Celis, Andrew Chapman, Samar Choudhary, Edmond Chow, Almadena
Chtchelkanova, Andrew Cleary, Isom Crawford, Michel Daydé, John Dempsey, Theresa Do, Dave
Dodson, Jack Dongarra, Craig Douglas, Paul Dressel, Jeremy Du Croz, lain Duff, Carter Ed-
wards, Salvatore Filippone, Rob Gjertsen, Roger Golliver, Cormac Garvey, lan Gladwell, Bruce
Greer, Bill Gropp, John Gunnels, Fred Gustavson, Sven Hammarling, Richard Hanson, Hidehiko
Hasegawa, Satomi Hasegawa, Greg Henry, Mike Heroux, Jeff Horner, Gary Howell, Mary Beth
Hribar, Chenyi Hu, Steve Huss-Lederman, Melody Ivory, Naoki Iwata, Bo Kagstrom, Velvel Kahan,
Chandrika Kamath, Linda Kaufman, David Kincaid, Jim Koehler, Vipin Kumar, Rich Lee, Steve
Lee, Guangye Li, Jin Li, Sherry Li, Hsin-Ying Lin, John Liu, Andew Lumsdaine, Dave Mackay,
Kristin Marshoffe, Kristi Maschhoff, Brian McCandless, Joan McComb, Noel Nachtigal, Jim Nagy,
Esmond Ng, Tom Oppe, Antoine Petitet, Roldan Pozo, Avi Purkayastha, Padma Raghavan, Karin
Remington, Yousef Saad, Majed Sidani, Jeremy Siek, Tony Skjellum, Barry Smith, Ken Stan-
ley, Pete Stewart, Shane Story, Chuck Swanson, Frangoise Tisseur, Anne Trefethen, Anna Tsao,
Robert van de Geijn, Phuong Vu, Kevin Wadleigh, David Walker, Bob Ward, Jerzy Wagniewski,
Clint Whaley, Yuan-Jye Jason Wu, Chao Yang, and Guodong Zhang.

viii

Suggestions for Reading

This document is divided into chapters, appendices, a journal of development, and an index of
routine names. It is large, and it is not necessary for a user to read it in its entirety. A user may
choose to not read certain chapters or sections within this document, depending upon his/her areas
of interest. Chapters 2—4 contain a functionality discussion and language bindings for dense and
band, sparse, and mixed and extended precision BLAS, respectively. Thus, these chapters may
be read independently, referring to Chapter 1 and the Appendix for notation and implemen-
tation details common to all chapters. Refer to section 1.3 for a more detailed description of the
organization of this document.

SUGGESTIONS FOR READING

Chapter 1

Introduction

1.1 Introduction

This document defines the BLAS Technical Forum standard, a specification of a set of kernel
routines for linear algebra, historically called the Basic Linear Algebra Subprograms and commonly
known as the BLAS. In addition to this publication, the complete standard can be found on the
BLAS Technical Forum webpage (http://www.netlib.org/blas/blast-forum/).

Numerical linear algebra, particularly the solution of linear systems of equations, linear least
squares problems, eigenvalue problems and singular value problems, is fundamental to most calcu-
lations in scientific computing, and is often the computationally intense part of such calculations.
Designers of computer programs involving linear algebraic operations have frequently chosen to
implement certain low level operations, such as the dot product or the matrix vector product, as
separate subprograms. This may be observed both in many published codes and in codes written
for specific applications at many computer installations.

This approach encourages structured programming and improves the self-documenting quality
of the software by specifying basic building blocks and identifying these operations with unique
mnemonic names. Since a significant amount of execution time in complicated linear algebraic
programs may be spent in a few low level operations, reducing the execution time spent in these
operations leads to an overall reduction in the execution time of the program. The programming
of some of these low level operations involves algorithmic and implementation subtleties that need
care, and can be easily overlooked. If there is general agreement on standard names and parameter
lists for some of these basic operations, then portability and efficiency can also be achieved.

The first major concerted effort to achieve agreement on the specification of a set of linear algebra
kernels resulted in the Level 1 Basic Linear Algebra Subprograms (BLAS)! [17] and associated test
suite. The Level 1 BLAS are the specification and implementation in Fortran of subprograms for
scalar and vector operations. This was the result of a collaborative project in 1973-77. Following
the distribution of the initial version of the specifications to people active in the development of
numerical linear algebra software, a series of open meetings were held at conferences and, as a result,
extensive modifications were made in an effort to improve the design and make the subprograms
more robust. The Level 1 BLAS were extensively and successfully exploited by LINPACK [8], a
software package for the solution of dense and banded linear equations and linear least squares
problems.

With the advent of vector machines, hierarchical memory machines and shared memory paral-
lel machines, specifications for the Level 2 and 3 BLAS [10, 9], concerned with matrix-vector and

! Originally known just as the BLAS, but in the light of subsequent developments now known as the Level 1 BLAS

4 CHAPTER 1. INTRODUCTION

matrix-matrix operations respectively, were drawn up in 1984-86 and 1987-88. These specifications
made it possible to construct new software to utilize the memory hierarchy of modern comput-
ers more effectively. In particular, the Level 3 BLAS allowed the construction of software based
upon block-partitioned algorithms, typified by the linear algebra software package LAPACK [1].
LAPACK is state-of-the-art software for the solution of dense and banded linear equations, linear
least squares, eigenvalue and singular value problems, makes extensive use of all levels of BLAS
and particularly utilizes the Level 2 and 3 BLAS for portable performance. LAPACK is widely
used in application software and is supported by a number of hardware and software vendors.

To a great extent, the user community embraced the BLAS, not only for performance reasons,
but also because developing software around a core of common routines like the BLAS is good
software engineering practice. Highly efficient machine-specific implementations of the BLAS are
available for most modern high-performance computers. The BLAS have enabled software to
achieve high performance with portable code.

The original BLAS concentrated on dense and banded operations, but many applications require
the solution of problems involving sparse matrices, and there have also been efforts to specify
computational kernels for sparse vector and matrix operations [7, 11].

In the spirit of the earlier BLAS meetings and the standardization efforts of the MPI and
HPF forums, a technical forum was established to consider expanding the BLAS in the light of
modern software, language, and hardware developments. The BLAS Technical Forum meetings
began with a workshop in November 1995 at the University of Tennessee. Meetings were hosted by
universities, government institutions, and software and hardware vendors. Detailed minutes were
taken for each of the meetings, and these minutes are available on the BLAS Technical Forum
webpage (http://www.netlib.org/blas/blast-forum/).

Various working groups within the Technical Forum were established to consider issues such
as the overall functionality, language interfaces, sparse BLAS, distributed-memory dense BLAS,
extended and mixed precision BLAS, interval BLAS, and extensions to the existing BLAS. The
rules of the forum were adopted from those used for the MPI and HPF forums. In other words,
final acceptance of each of the chapters in the BLAS Technical Forum standard were decided at the
meetings using Robert’s Rules. Drafts of the document were also available on the BLAS Technical
Forum webpage, and attendees were permitted to edit chapters, give comments, and vote on-line
in “virtual meetings”, as well as to conduct discussions on the email reflector. The efforts of these
working groups are summarized in this document. Most of these discussions resulted in definitive
proposals which led to the specifications given in Chapters 2 - 4. Not all of the discussions resulted
in definitive proposals, and such discussions are summarized in the Journal of Development in the
hope that they may encourage future efforts to take those discussions to a successful conclusion.

A major aim of the standards defined in this document is to enable linear algebra libraries
(both public domain and commercial) to interoperate efficiently, reliably and easily. We believe
that hardware and software vendors, higher level library writers and application programmers all
benefit from the efforts of this forum and are the intended end users of these standards.

The specification of the original BLAS was given in the form of Fortran 66 and subsequently
Fortran 77 subprograms. In this document we provide specifications for Fortran 952, Fortran 77 and
C. Reference implementations of the standard are provided on the BLAS Technical Forum webpage
(http://www.netlib.org/blas/blast-forum/). Alternative language bindings for C++ and Java
were also discussed during the meetings of the forum, but the specifications for these bindings were
postponed for a future series of meetings.

The remainder of this chapter is organized as follows. Section 1.2 provides motivation for the

2¢he current Fortran standard

1.2. MOTIVATION o

functionality. Section 1.3 outlines the organization of the document, and section 1.4 summarizes the
nomenclature and conventions used in the document. Section 1.5 presents tables of functionality
for the routines, and section 1.6 discusses issues concerning the numerical accuracy of the BLAS.
Section 1.7 briefly describes the presentation of the specifications for the routines, and section 1.8
details the error handling mechanisms utilized within the routines.

1.2 Motivation

The motivation for the kernel operations is proven functionality. Many of the new operations are
based upon auxiliary routines in LAPACK [1] (e.g., SUMSQ, GEN_GROT, GEN_HOUSE, SORT,
GE_NORM, GE_COPY). Only after the LAPACK project was begun was it realized that there
were operations like the matrix copy routine (GE_COPY), the computation of a norm of a matrix
(GE_ZNORM) and the generation of Householder transformations (GEN_HOUSE) that occurred so
often that it was wise to make separate routines for them.

A second group of these operations extended the functionality of some of the existing BLAS (e.g.,
AXPBY, WAXPBY, GER, SYR/HER, SPR/HPR, SYR2/HER2, SPR2/HPR2). For example, the
Level 3 BLAS for the rank £ update of a symmetric matrix only allows a positive update, which
means that it cannot be used for the reduction of a symmetric matrix to tridiagonal form (to
facilitate the computation of the eigensystem of a symmetric matrix), or for the factorization of a
symmetric indefinite matrix, or for a quasi-Newton update in an optimization routine.

Other extensions (e.g., AXPY_DOT, GE.SUM_MV, GEMVT, TRMVT, GEMVER) perform
two Level 1 BLAS (or Level 2 BLAS) routine calls simultaneously to increase performance by
reducing memory traffic.

The original efforts to specify sparse Level 2 and 3 BLAS took considerably longer than the
corresponding efforts for the dense and banded BLAS, principally because of the need to obtain
agreement on the way to represent sparse matrices. The lessons learned from those efforts have
been vital background to the specifications given in this document.

The original Level 2 BLAS included, as an appendix, the specification of extended precision
subprograms. With the widespread adoption of hardware supporting the IEEE extended arithmetic
format [15], as well as other forms of extended precision arithmetic, together with the increased
understanding of algorithms to successfully exploit such arithmetic, it was felt to be timely to
include a complete specification for a set of extra precise BLAS.

1.3 Organization of the Document

This document is divided into chapters, appendices, a journal of development, and an index. It
is large, and it is not necessary for a user to read it in its entirety. A user may choose to not
read certain chapters or sections within this document, depending upon his/her areas of interest.
Chapters 2—4 contain a functionality discussion and language bindings for dense and band, sparse,
and mixed and extended precision BLAS, respectively. The Journal of Development presents
areas of research that are not yet mature enough to be considered as chapters, but were nevertheless
discussed at the meetings of the forum. A Bibliography is also provided, as well as an Index of
routine names.

All users are encouraged to frequently refer to the list of notation denoted in sections 1.4, 2.3,
and 3.3.

e Chapter 1: Introduction provides a brief overview of the background, motivation, and

1.4

CHAPTER 1. INTRODUCTION

history of the BLAS Technical Forum effort. It also outlines the structure of the document,
conventions in notation, and overall functionality contained in the chapters.

Chapter 2: Dense and Banded BLAS presents the functionality and language bind-
ings for proposed “new” dense and banded BLAS routines for serial and shared memory
computing.

Chapter 3: Sparse BLAS presents the functionality and language bindings for proposed
“new” sparse BLAS routines for serial and shared memory computing.

Chapter 4: Extended and Mixed Precision BLAS presents the functionality and lan-
guage bindings for proposed extended- precision and mixed-precision BLAS routines for serial
and shared memory computing.

Appendix contains pertinent definitions and implementation details for the chapters.

Legacy BLAS contains alternative language bindings for the legacy Level 1, 2, and 3 BLAS
for dense and band matrix computations.

Journal of Development contains separate proposals for environmental enquiry routines,
Distributed-memory dense BLAS, Fortran 95 Thin BLAS, and Interval BLAS. This chapter
of the document is only available on the BLAS Technical Forum webpage
(http://www.netlib.org/blas/blast-forum/).

Nomenclature and Conventions

This section addresses mathematical notation and definitions, as well as the numerical accuracy for
the BLAS routines. Language-independent issues are also presented.

1.4.1 Notation

The following notation is used throughout the document.

A, B, C' — matrices

D, Dy, Dgr — diagonal matrices

H — Householder matrix

J — symmetric tridiagonal matrix (including 2 x 2 blocked diagonal)

P — permutation matrix

T — triangular matrix

op(A) — denotes A, or AT or A" where A is a matrix.

transpose — denotes A’ where A is a matrix.

conjugate-transpose — denotes A7 where A is a complex Hermitian matrix.
u, v, W, T, Y, 2 — vectors

Z — specifies the conjugate of the complex vector x

1.4. NOMENCLATURE AND CONVENTIONS 7

mncu, 1ncv, incw, Ince, incy, incz — stride between successive elements of the respective vector
Greek letters - scalars (but not exclusively Greek letters)

z; - an element of a one-dimensional array

Y|, — refers to the elements of y that have common indices with the sparse vector z.

€ - machine epsilon

< — assignment statement

+ — swap (assignment) statement

|| - ||, — the p-norm of a vector or matrix

Additional notation for sparse matrices can be found in 3.3.

For the mathematical formulation of the operations, as well as their algorithmic presentation, we
have chosen to index the vector and matrix operands starting from zero. This decision was taken
to simplify the presentation of the document but has no impact on the convention a particular
language binding may choose.

1.4.2 Operator Arguments

Some BLAS routines take input-only arguments that are called “operator” arguments. These
arguments allow for the specification of multiple related operations to be performed by a single
function.

The operator arguments used in this document are norm, sort, side, uplo, trans, conj, diag, jrot,
order, index_base, and prec. Their possible meanings are defined as follows:

norm:

sort:

side:

uplo:

trans:

conj:

diag:

this argument is used by the routines computing the norm of a vector or matrix. Eight possible
distinct values are valid that specify the norm to be computed, namely the one-norm, real
one-norm, infinity-norm and real infinity norms for vectors and matrices, the 2-norm for
vectors, and the Frobenius-norm, max-norm and real max-norm for matrices.

this argument is used by the sorting routines. Two possible distinct values are valid that
specify whether the data should be sorted in increasing or decreasing order.

this argument is used only by functions computing the product of two matrices A and B.
Two possible distinct values are valid, that specify whether A-B or B- A should be computed.

this argument refers to triangular and symmetric (Hermitian) matrices. Two possible distinct
values are valid distinguishing whether the matrix, or its storage representation, is upper or
lower triangular.

this argument is used by the routines applying a matrix, say A, to another vector or another
matrix. Three possible distinct values are valid that specify whether the matrix A, its trans-
pose AT or its conjugate transpose A should be applied. We use the notation op(A) to refer
to A, AT or A" depending on the input value of the trans operator argument.

this argument is used by the complex routines operating with = or z.

this argument refers exclusively to triangular matrices. Two possible distinct values are valid
distinguishing whether the triangular matrix has unit-diagonal or not.

8 CHAPTER 1. INTRODUCTION

jrot: this argument is used by the routine to generate Jacobi rotations. Three possible distinct
values are valid and specify whether the rotation is an inner rotation, an outer rotation, or a
sorted rotation.

order: this argument is used by the C bindings to specify if elements within a row of an array are
contiguous, or if elements within a column of an array are contiguous (see section 2.6.6).

index_base: this argument is used by Chapter 3 to specify either one-based or zero-based indexing (see
section 3.3.1).

prec: this argument is used in Chapter 4 and specifies the internal precision to be used by an
extended precision routine. Four distinct values are valid and specify whether the internal
precision is single precision, double precision, indigenous, or extra. Details on these settings
can be found in section 4.3.1.

All possible meanings for each operator are listed in section A.3. Their representation is defined
in the interface issues for the specific programming language: sections 2.4, 3.5.1, and 4.4.1 for
Fortran 95; sections 2.5, 3.5.2, and 4.4.2 for Fortran 77; and sections 2.6, 3.5.3, and 4.4.3 for C. The
values of the Fortran 95 derived types (for Chapters 2 and 4) are defined in the Fortran 95 module
blas_operator_arguments, and the values of the Fortran 95 named constants (for Chapter 3) are
defined in blas sparse namedconstants, see section A.4. Similarly, the values of the Fortran 77
named constants are defined in the Fortran 77 include file blas_namedconstants.h, in section A.5.
And finally, the values of the C enumerated types are defined in the C include file blas_enum.h, in
section A.6.

Rationale. The intent is to provide each language binding with the opportunity to choose
the most appropriate form these arguments should take. For example, in Fortran 95, derived
types with named constants have been selected for Chapters 2 and 4, whereas derived types
could not be used in Chapter 3 (see section 3.5.1 for details). In Fortran 77, integers with
named constants have been chosen. And finally, in C, operator arguments are represented by
enumerated types. (End of rationale.)

1.4.3 Scalar Arguments

Many scalar arguments are used in the specifications of the BLAS routines. For example, the size
of a vector or matrix operand is determined by the integer argument(s) m and/or n. Note that
it is permissible to call the routines with m or n equal to zero, in which case the routine exits
immediately without referencing its vector/matrix elements. Some routines return a displacement
denoted by the integer argument k. The scaling of a vector or matrix is often denoted by the
arguments alpha and beta.

The following symbols are used: a, b, c, d, r, s, t, alpha, beta and tau.

1.4.4 Vector Operands

A n-length vector operand z is specified by two arguments — x and incx. x is an array that contains
the entries of the n-length vector x. incx is the stride within x between two successive elements of
the vector x.

The following lowercase letters are used to denote a vector: u, v, w, %, y, and z. The corre-
sponding strides are respectively denoted incu, incv, incw, incx, incy, and incz.

1.4. NOMENCLATURE AND CONVENTIONS 9

Advice to implementors. The increment arguments incu, incv, incw, incx, incy and incz may
not be zero. (End of advice to implementors.)

Example: The mathematical function returning the inner-product r of two real n-length vectors
z and y can be defined by:

n—1
T
r=aly= 3 o
i=0

Rationale. The arguments incx, and incy do not play a role in the mathematical formulation
of the operation. These arguments allow for the specification of subvector operands in various
language bindings. Therefore, some of these arguments may not be present in all language-
dependent specifications. (End of rationale.)

1.4.5 Matrix Operands

A m-by-n matrix operand A is specified by the argument A. A is a language-dependent data
structure containing the entries of the matrix operand A. The representation of the matrix entry
a;j in A is denoted by A(i,j) for all (i,j) in the interval [0...m — 1] x [0...n —1].

Capital letters are used to denote a matrix. The functions involving matrices use only four
symbols, namely A, B, C, and T.

1.4.6 Naming Conventions

Routine names have the prefix BLAS_ to denote the Fortran 77 and C language bindings. The
routines in the Fortran 95 language bindings do not contain a prefix. For Fortran 77, all characters
are uppercase; however, for the Fortran 95 and C interfaces all characters are lowercase. To avoid
possible name collisions, programmers are strongly advised not to declare variables or functions
with names beginning with these defined prefixes.

The Fortran 77 and C language bindings have names of the form BLAS xZZZ, where the
letter x, indicates the data type as follows:

Data type x | Fortran 77 x| C
single precision real S | REAL s | float
double precision real D | DOUBLE PRECISION d | double
single precision complex | C | COMPLEX c | float
double precision complex | Z | COMPLEX*16 or DOUBLE COMPLEX | z | double

The last letters ZZZ indicate the computation performed. In the matrix-vector and matrix-
matrix routines of Chapters 2 and 4 (and Appendix C), the type of the matrix (or of the most
significant matrix) is also specified as part of this ZZZ name of the routine. Most of these matrix
types apply to both real and complex matrices; a few apply specifically to one or the other, as
indicated below. Note that for Appendix C, these matrix types apply to interval matrices.

10 CHAPTER 1. INTRODUCTION

GB general band

GE general (i.e., unsymmetric, in some cases rectangular)
HB (complex) Hermitian band

HE (complex) Hermitian

HP (complex) Hermitian, packed storage

SB (real) symmetric band

SP symmetric, packed storage

SY symmetric

TB triangular band

TP triangular, packed storage

TR triangular (or in some cases quasi-triangular)

The Fortran 95 language bindings have names of the form ZZZ. These bindings use generic
interfaces to manipulate the data type of the routine, and thus their names do not contain a letter
to denote the data type.

A detailed discussion of the format of the ZZZ naming convention is contained in each respective
chapter.

1.5 Overall Functionality

This section summarizes, in tabular form, the functionality of the proposed routines. Issues such
as storage formats or data types are not addressed. The functionality of the existing Level 1, 2 and
3 BLAS [17, 7, 10, 9] is a subset of the functionality proposed in this document.

In the original BLAS, each level was categorized by the type of operation; Level 1 addressed
scalar and vector operations, Level 2 addressed matrix-vector operations, while Level 3 addressed
matrix-matrix operations. The functionality tables in this document are categorized in a similar
manner, with additional categories to cover operations which were not addressed in the original
BLAS.

Unless otherwise specified, the operations apply to both real and complex arguments. For the
sake of compactness the complex operators are omitted, so that whenever a transpose operation is
given the conjugate transpose should also be assumed for the complex case.

The last column of each table denotes in which chapter of this document the functionality
occurs. Specifically,

e “D” denotes dense and banded BLAS (Chapter 2),
e “S” denotes sparse BLAS (Chapter 3), and

e “E” denotes extended and mixed precision BLAS (Chapter 4).

1.5.1 Scalar and Vector Operations

This section lists scalar and vector operations. The functionality tables are organized as follows.
Table 1.1 lists the scalar and vector reduction operations, Table 1.2 lists the vector rotation opera-
tions, Table 1.3 lists the vector operations, and Table 1.4 lists those vector operations that involve
only data movement.

For the Sparse BLAS, = is a compressed sparse vector and y is a dense vector. Details of data
structures are in Section 3.3.1.

For further details of vector norm notation, refer to section 2.1.1.

1.5. OVERALL FUNCTIONALITY

Dot product

Vector norms

Sum

Min value & location
Min abs value & location
Max value & location
Max abs value & location
Sum of squares

r+ fr+azly

r«aly

r < =],

r < |[z]|ig,

r < ||z||2,

||z,

r < ||2|lcor

T4 T

k,xk,; k = argmin; x;

k,zy, k = argmin;(|Re(z;)| + |[Im(z;)|)
k,xk,; k = argmax; x;

k,zy, k = argmax;(|Re(z;)| + [Im(z;)|)
(scl,ssq) < X x2,

ssq - scl® = Ew?

=

whviwlvlviwlelvlwlwlelwitw)
&=

Table 1.1: Reduction Operations

Generate Givens rotation (¢, s,7) « rot(a,b) D
Generate Jacobi rotation (a,b,c,s) < jrot(z,y,z) | D
Generate Householder transform | («,z,7) < house(w, z), | D
H=1I- auu”
Table 1.2: Generate Transformations
Reciprocal Scale T+ z/a D
Scaled vector accumulation y < azx + Py, D,E
Yy ar+y S
Scaled vector addition w 4 az + Py D.E
. W~ w — av
Combined axpy & dot product { v 0Ty
Apply plane rotation (z y)«<(z y)R
Table 1.3: Vector Operations
Copy Y x D
Swap YT D
Sort vector x < sort(x) D
Sort vector & return index vector | (p,z) < sort(z) | D
Permute vector z + Pz D
Sparse gather T4 Y|y S
Sparse gather and zero T Ylg; Yla 0[S
Sparse scatter Ylo S

Table 1.4: Data Movement with Vectors

11

12 CHAPTER 1. INTRODUCTION

1.5.2 Matrix-Vector Operations

This section lists matrix-vector operations in table 1.5. The matrix arguments A, B and T are dense
or banded or sparse. In addition, where appropriate, the matrix A can be symmetric (Hermitian)
or triangular or general. The matrix T represents an upper or lower triangular matrix, which can
be unit or non-unit triangular. For the Sparse BLAS, the matrix A is sparse, the matrix T is sparse
triangular, and the vectors = and y are dense.

Details of the data structures are discussed in sections 2.2, and 3.3.1.

Matrix-vector product y < aAz + By, y — aATz + By | D,S,E
4 oTz, ¢ aTTx D,E
Yy adz+y, y+ aAlz +y S
Summed matrix-vector multiplies | y + a«Ax + SBx D,E
Multiple matrix-vector multiplies z Ty D
w<+ Tz
z — BATY + 2
D
w <+ Az
Multiple matrix-vector mults
A — A+ ulv{ + Ug’l)g
and low rank updates x4 BATy + 2 D
w +— aAz
Triangular solve r—aol 'z, 2+ al Tz D,S,E
Rank one updates A+ azy’ + pA D
and symmetric (A = AT) A+ azz? +BA D
rank one & two updates A+ (az)y” +y(az)’ + BA D

Table 1.5: Matrix-Vector Operations

1.5.3 Matrix Operations

This section lists a variety of matrix operations. The functionality tables are organized as follows.
Table 1.6 lists single matrix operations and matrix operations that involve O(n?) operations, Table
1.7 lists the O(n?) matrix-matrix operations and Table 1.8 lists those matrix operations that involve
only data movement. Where appropriate one or more of the matrices can also be symmetric
(Hermitian) or triangular or general. The matrix T represents an upper or lower triangular matrix,
which can be unit or non-unit triangular. D, Dy, and Dpg represent diagonal matrices, and J
represents a symmetric tridiagonal matrix (including 2 x 2 block diagonal).

Details of the data structures are discussed in sections 2.2, and 3.3.1.

For further details of matrix norm notation, refer to section 2.1.3.

1.5. OVERALL FUNCTIONALITY

Matrix norms

Diagonal scaling

Matrix acc and scale

Matrix add and scale

r < |[All,r < [|Alhr

r < [|A]lp,7 < [|Alloo, 7 < [[Alloor
7 |Allmaz, 7 < ||Allmazr

A+ DA, A< AD, A+ Dy ADp
A<+ DAD

A+ A+ BD

C+ aA+ (B

B < aA + BB, B+ aA” + 3B

Dooogoogod

Table 1.6: Matrix Operations — O(n?) floating point operations

Matrix-matrix product | C < aAB + C, C < aATB + C D.,E
C « aAB" +BC, C + aA"B" + BC | D,E
C « aAB + C, C «— aATB + C S
Triangular multiply B+ aTB, B+ aBT D,E
B« oT"B, B < aBT" D.E
Triangular solve B+ ol 'B, B+ oT "B D,S,E
B+ aBT ', B+ aBT T D.E
Symmetric rank k & 2k | C + aAAT + BC, C + aATA + C D.E
updates (C = CT) C «+— aAJAT + BC, C + aATJA+BC | D
C «+ (cd)BT + B(aA)" + BC, D,E
C + («¢A)"B + BT (aA) + BC
C « (aAJ)BT 4+ B(aAJ)T + BC, D
C + («¢A)"B + BT (aAJ) + BC

Table 1.7: Matrix-Matrix Operations - O(n?) floating point operations

Matrix copy
Matrix transpose
Permute Matrix

B+ A B+ AT |D
A AT D
A+ PA A+ AP | D

Table 1.8:

Data Movement with Matrices

13

14 CHAPTER 1. INTRODUCTION

1.6 Numerical Accuracy and Environmental Enquiry

To understand the numerical behavior of the routines proposed here, certain floating point pa-
rameters are necessary. Detailed error bounds and limitations due to overflow and underflow are
discussed in individual chapters (see sections 2.7, 3.6, and 4.3.3 but all of them depend on details of
how floating point numbers are represented. These details are available by calling an environmental
enquiry function called FPINFO.

Floating point numbers are represented in scientific notation as follows. This discussion follows
the IEEE Floating Point Arithmetic Standard 754 [2].3

x=4+dd---d+ BASEF

where d.d---d is a number represented as a string of T significant digits in base BASE with the
“point” to the right of the leftmost digit, and E is an integer exponent. E ranges from EMIN up
to EMAX. This means that the largest representable number, which is also called the overflow
threshold or OV, is just less than BASEPMAX+1 This also means that the smallest positive “nor-
malized” representable number (i.e. where the leading digit of d.d- - - d is nonzero) is BASEEMIN
which is also called the underflow threshold or UN.

When overflow occurs (because a computed quantity exceeds OV in absolute value), the result is
typically +oo, or perhaps an error message. When underflow occurs (because a computed quantity
is less than UN in absolute magnitude) the returned result may be either 0 or a tiny number less
than UN in magnitude, with minimal exponent EMIN but with a leading zero (0.d - - - d). Such tiny
numbers are often called denormalized or subnormal, and floating point arithmetic which returns
them instead of 0 is said to support gradual underflow.

The relative machine precision (or machine epsilon) of a basic operation ® € {+, —,x,/} is
defined as the smallest FPS > 0 satisfying

flla®b) =(a®b)x(1+0)for somel|d| < EPS

for all arguments ¢ and b that do not cause underflow, overflow, division by zero, or an invalid
operation. When fl(a ® b) is a closest floating point number to the true result a ® b (with ties
broken arbitrarily), then rounding is called “proper” and EPS = .5+ BASE'"T. Otherwise
typically EPS = BASE'~" although it can sometimes be worse if arithmetic is not implemented
carefully. We further say that rounding is “IEEE style” if ties are broken by rounding to the nearest
number whose least significant digit is even (i.e. whose bottom bit is 0).

The function FPINFO returns the above floating point parameters, among others, to help the
user understand the accuracy to which results are computed. FPINFO can return the values for
either single precision or double precision. The way the precision is specified is language dependent,
as is the choice of floating point parameter to return, and described in section 2.7. The names single
and double may have different meanings on different machines: We have long been accustomed to
single precision meaning 32-bits on all IEEE and most other machines [2], except for Cray and
its emulators where single is 64-bits. And there are historical examples of 60-bit formats on some
old CDC machines, etc. Nonetheless, we all agree on single precision as a phrase with a certain
system-dependent meaning, and double precision too, meaning at least twice as many significant
digits as single.

3We ignore implementation details like “hidden bits”, as well as unusual representations like logarithmic arithmetic
and double-double.

1.7. LANGUAGE BINDINGS 15

The values returned by FPINFO are as follows, including the values returned for IEEE single and
TIEEE double, the most common cases. The floating point parameters in column 1 have analogous
meanings as the like-named character arguments of the LAPACK subroutine xLAMCH.*

Floating point | Description Value in Value in
parameter IEEE single IEEE double
BASE base of the machine 2 2
T number of digits 24 53
RND 1 when proper rounding 1 1

occurs in addition
0 otherwise

IEEE 1 when rounding in addition 1 1
is IEEE style
0 otherwise

EMIN minimum exponent before -126 -1022
(gradual) underflow

EMAX maximum exponent before 127 1023
overflow

EPS machine epsilon 2724 ~ 5 x 1078 2753 1016

= 5«xBASE!7 if RND=1
= BASE!T if RND=0

PREC EPS*BASE 223 252

UN underflow threshold 27126 10738 | 271022 10308

ov overflow threshold ~ 2128 5 1038 | ~ 21024 5 19308
= BASEFPMAX+1 4 (1-EPS)

SFMIN safe minimum, such that 27126 5 10738 | 271022 5 1(9—308

1/SFMIN does not overflow
= UN if 1/OV<UN,
else (1+EPS)/OV

Table 1.9: Values returned by FPINFO

Chapter 4 defines an additional FPINFO-like function to supplement this one with additional
information needed for error bounds.

1.7 Language Bindings

Each specification of a routine corresponds to an operation outlined in the functionality tables.
Operations are organized analogous to the order in which they are presented in the functionality
tables. The specification has the form:

NAME (multi-word description of operation) < mathematical representation >

“Here are the differences: In xLAMCH, UN was called RMIN and OV was called RMAX. The value of IEEE was
computed by xLAMCH but not returned. xLAMCH returned EMIN+1 and EMAX+1 instead of EMIN and EMAX,
respectively (this corresponds to a different choice of where to put the “point” in d.d---d * BASET).

16 CHAPTER 1. INTRODUCTION

Optional brief textual description of the functionality including any restrictions that apply to all
language bindings.

e Fortran 95 binding
e Fortran 77 binding
e C binding

Alternative language bindings for C++ and Java were also discussed during the meetings of the
forum, but the specifications for these bindings were postponed for a future series of meetings.

1.8 Error Handling

This document supports two types of error-handling capabilities: an error handler and error return
codes. Each chapter of this document, and thus each flavor of BLAS, has the choice of using either
capability, whichever is more appropriate. Chapters 2 and 4 rely on an error handler, and Chapter 3
provides error return codes.

One error handler, BLAS_ERROR, is defined. A series of error return codes are also defined.
Each function in this document determines when and if an error-handling mechanism is called, and
its function specification must document the conditions (if any) which trigger the error handling
mechanism.

This standard defines some minimal scalar input argument checking which all BLAS-2000 com-
pliant libraries are required to do.

Advice to implementors. A BLAS supplier is free to provide multiple interfaces to the
libraries, so that a second, non-compliant interface may perform no error checking. (End of
advice to implementors.)

Additional error checking may be performed (for instance, checking that there are no zeros on the
diagonal of a triangular solve), but these kinds of tests are too implementation-constraining to be
mandated by the standard. Any additional error checking must not abort execution.

When any of the mandated scalar input argument checks fail, if the BLAS error handler is used,
it must use the API given below. The default behavior of the BLAS-compliant error handler is to
print an informative error message and abort execution. However, the API of this error handler is
mandated by this document specifically so that a user can override the default error handler with
a user-defined routine, so that this behavior can be changed. It is therefore necessary that the
implementor not assume that the error handler stops execution, but rather must return explicitly
before altering the routine’s operands in the event of an error.

The following are defined as errors by this standard. All Fortran 95, Fortran 77, and C routines
must perform the following error check.

e Any value of the operator arguments whose meaning is not specified in section A.3 is invalid.

Additionally, all Fortran 77 and C routines must perform the following error checks, unless otherwise
noted in the specification of the routine.

e Any problem dimension or bandwidth (eg., m, n, k, kl, ku) less than zero
e Any vector increment (eg., incw, incx, incy, incz) equal to zero

e Any leading dimension (eg. Ida, Idb, Idc, Idt) less than one

1.8. ERROR HANDLING 17

e Any leading dimension (eg. Ida, Idb, Idc, Idt) less than the relevant dimension of the problem.
The relevant dimension of the problem is:
— n, for a square, symmetric, or triangular matrix
— m, for a m X n general, non-transposed matrix

— n, for a m X n general, transposed matrix

kl + ku + 1 for a m X n general band matrix

k + 1 for a n X n symmetric or triangular band matrix with k super- or subdiagonals

1.8.1 Error handlers

Each language binding possesses its own unique error handler. However, all error handlers minimally
pass three pieces of information:

1. RNAME, the name of the routine in which the error occurred.

2. IFLAG, an integer flag which, if negative, means that parameter number -IFLAG caused the
error, and if set to nonnegative, is an implementation-specific error code

3. IVAL, the value of parameter number —-IFLAG.

Each language’s BLAS error handler should print an informative error message describing the error,
and halt execution. The API of the error handler is explicitly spelled out in each section, so that if
this behavior is not desired by the user or higher level library provider, it may be changed by the
BLAS user, overriding the BLAS’s error handler with one which performs as required.

The API for each language binding is mandated in the following sections; as an advice to the
implementor, an example of a BLAS-2000 compliant error handler is included as well.

F95 error handler

The Fortran 95 BLAS do not need to test the option arguments, since these are derived types and
hence invalid arguments are flagged by the compiler. The only case where array dimensions are
arguments to the Fortran 95 BLAS are the nonsymmetric band routines where m and kl are passed
as arguments. The other array dimensions can be determined in the BLAS routines using the
intrinsic function SIZE, and arrays should be checked for conformance according to the operation
being performed. For example in the operation AB the second dimension of A must equal the first
dimension of B. Note that, for consistency, m is included in all of the nonsymmetric band routines
although in some cases it is redundant; in those cases it should be tested against the relevant array
dimension.
The mandated API of the routine is:

MODULE blas_error_handler
INTERFACE blas_error
SUBROUTINE blas_error(rname,iflag,ival)
INTEGER, INTENT (IN) :: iflag
INTEGER, OPTIONAL, INTENT (IN) :: ival
CHARACTER (%), INTENT (IN) :: rname
END SUBROUTINE blas_error
END INTERFACE
END MODULE blas_error_handler

18 CHAPTER 1. INTRODUCTION

A possible implementation would be:

SUBROUTINE blas_error(rname,iflag,ival)
! .. Scalar Arguments ..
! The optional argument ival must be present when iflag is in (-98,-1)
INTEGER, INTENT (IN) :: iflag
INTEGER, OPTIONAL, INTENT (IN) :: ival
CHARACTER (%), INTENT (IN) :: rname
[
SELECT CASE (iflag)
CASE (-99)
WRITE (*,1000) rname
CASE (-98:-1)
WRITE (*,2000) rname, -iflag, ival
CASE DEFAULT
WRITE (*,3000) iflag, rname
END SELECT

STOP

1000 FORMAT (’On entry to ’,A, &

’ two or more array argument sizes do not conform’)
2000 FORMAT (’0On entry to ’,A,’ argument number’,I3, &

> had the illegal value of ’,I5)
3000 FORMAT (’Unknown error code ’,I5,’ raised by routine ’,A)

END SUBROUTINE blas_error

F77 error handler
The mandated API of the routine is:

SUBROUTINE BLAS_ERROR(RNAME, IFLAG, IVAL)
CHARACTER* (*) RNAME
INTEGER IFLAG, IVAL

A possible implementation would be:

SUBROUTINE BLAS_ERROR(RNAME, IFLAG, IVAL)
CHARACTER* (*) RNAME
INTEGER IFLAG, IVAL

IF(IFLAG.LT.O0) THEN
WRITE(*,1000) RNAME, -IFLAG, IVAL
ELSE
WRITE(*,2000) IFLAG, RNAME
END TIF
STOP

1000 FORMAT(’On entry to ’,A, ’ parameter number’, I3,

1.8. ERROR HANDLING

$

> had the illegal value of’, I)

2000 FORMAT (’Unknown error code ’,I,’ raised by routine’,A)

END

C error handler

The mandated API of the routine is:

void BLAS_error(char *rname, int iflag, int ival, char *form, ...)

A possible implementation would be:

#include <stdio.h>
#include <stdarg.h>
void BLAS_error(char *rname, int iflag, int ival, char *form, ...)

{

va_list argptr;

va_start(argptr, form);
fprintf(stderr, "Error #)d from routine %s:\n", iflag, rname);
if (form) vfprintf(stderr, form, argptr);
else if (iflag < 0)
fprintf (stderr,

Parameter number J%d to routine %s had the illegal value %d\n",
-iflag, rname, ival);

else fprintf(stderr, " Unknown error code %d from routine %s\n",

iflag, rname);

exit(iflag);

19

20

CHAPTER 1. INTRODUCTION

Chapter 2

Dense and Banded BLAS

2.1 Overview and Functionality

This chapter defines the functionality and language bindings for the dense and banded BLAS rou-
tines, addressing mathematical operations with scalars, vectors and dense, banded, and triangular
matrices but not sparse data structures.

The chapter is organized as follows. Sections 2.1.1, 2.1.2, and 2.1.3 list in tabular form the
functionality of the proposed routines. Unless otherwise specified, the operations apply to both
real and complex arguments. For the sake of compactness the complex operators are omitted, so
that whenever a transpose operation is given the conjugate transpose should also be assumed for
the complex case. Section 2.2 defines the matrix storage schemes. Section 2.3 discusses general
interface issues, and sections 2.4, 2.5, and 2.6 detail the interface issues for the respective language
bindings — Fortran 95, Fortran 77, and C. Section 2.7 discusses issues concerning the numerical
accuracy of the BLAS. And lastly, sections 2.8.2 — 2.8.10 present the language bindings for the
proposed routines.

2.1.1 Scalar and Vector Operations

This section lists scalar and vector operations. The functionality tables are organized as follows.
Table 2.1 lists the scalar and vector reduction operations, table 2.2 lists the rotation operations,
table 2.3 lists the vector operations, and table 2.4 lists vector operations involving only data move-
ment. Notation in the tables is defined in section 1.4, and details of the data structures are discussed
in section 2.2. Vector norms are defined in Appendix A.l. The language bindings are presented in
sections 2.8.2, 2.8.4, and 2.8.5.

2.1.2 Matrix-Vector Operations

This section lists the matrix-vectors operations in functionality table 2.5. Unless otherwise specified,
the operations apply to both real and complex arguments. For the sake of compactness the complex
operators are omitted, so that whenever a transpose operation is given both the conjugate and
conjugate transpose should also be assumed for the complex case.

The matrix T" represents an upper or lower triangular matrix, which can be unit or non-unit
triangular. D represents a diagonal matrix. Notation in the tables is defined in section 1.4, and
details of the data structures are discussed in section 2.2. The language bindings are presented in
section 2.8.6.

21

22

CHAPTER 2. DENSE AND BANDED BLAS

Dot product r« Br+azly DOT
Vector norms T ||zl 7 + ||z||1R, NORM
r = [l
1 |[zlloo, 7 4= [|7]|oor
Sum =T SUM
Min value & location k,xy,; k = arg min; x; MIN_VAL
Min abs value & location | k,zg, k = argmin;(|Re(x;)| + [Im(z;)|) | AMIN_VAL
Max value & location k,xy,; k = arg max; x; MAX VAL
Max abs value & location | k,zg, k = arg max;(|Re(x;)| + [Im(z;)|) | AMAX_VAL
Sum of squares (ssq,scl) < X x7, SUMSQ
ssq-scl? =Y x?
Table 2.1: Reduction Operations
Generate Givens rotation (¢, s,7) « rot(a,b) GEN_GROT
Generate Jacobi rotation (a,b,c,s) < jrot(z,y,z) | GEN_JROT
Generate Householder transform | («,z,7) < house(w, z), | GEN_.HOUSE
H=1- auu”
Table 2.2: Generate Transformations
Reciprocal Scale T+ z/a RSCALE
Scaled vector accumulation y < ax + Py, AXPBY
Scaled vector addition w — ar + Py WAXPBY
Combined axpy & dot product { e iﬂT_ v AXPY_DOT
W u
Apply plane rotation (z y)«<(z y)R|APPLY.GROT
Table 2.3: Vector Operations
Copy Yy COPY
Swap Yz SWAP
Sort vector x 4+ sort(x) SORT
Sort vector & return index vector | (p,z) < sort(z) | SORTV
Permute vector T+ Px PERMUTE

Table 2.4: Data Movement with Vectors

2.1.3 Matrix Operations

This section lists single matrix operations, matrix-matrix operations, and matrix operations in-
volving data movement. The functionality tables are organized as follows. Table 2.6 lists single
matrix operations and matrix operations that involve O(n?) floating point operations, Table 2.7
lists the O(n?) matrix-matrix floating point operations and Table 2.8 lists those matrix floating
point operations that involve only data movement. Unless otherwise specified, the operations apply
to both real and complex arguments. For the sake of compactness the complex operators are omit-

2.1. OVERVIEW AND FUNCTIONALITY 23

Matrix vector product y — aAzx + Py GE,GB,SY,HE, | MV
SB,HB,SP,HP
y+— aAlz + By GE,GB MV
z+ oTz, r+ oT"x TR,TB,TP MV
Summed matrix vector multiplies y aAx + fBx GE SUM_MV
. . . T TTy
Multiple matrix vector multiplies TR MVT
w4 Tz
x4+ BATYy+ 2 GE MVT
w 4+ qAzx
A — A+ uo! + ugo?
Multiple mv mults & low rank updates z <+ BATy + z GE MVER
w — aAz
Triangular solve r— ol 'z, 2ol Tz TR,TB,TP SV
Rank one updates A+ azy” + pA GE R
and symmetric (4 = AT) A azzT + BA SY,HE,SP.HP | R
rank one & two updates A« (az)y” +y(ax)” + BA | SY,HE,SP,HP | R2

Table 2.5: Matrix-Vector Operations

ted, so that whenever a transpose operation is given both the conjugate and conjugate transpose
should also be assumed for the complex case. The matrix T represents an upper or lower triangular
matrix, which can be unit or non-unit triangular. D, Dy, and Dpg represent diagonal matrices, and
J is a symmetric tridiagonal matrix. Notation in the tables is defined in section 1.4, and details of
the data structures are discussed in section 2.2. Matrix norms are defined in Appendix A.2. The
language bindings are listed in sections 2.8.6, 2.8.7, 2.8.8, and 2.8.9.

Matrix norms r < ||All1, 7 < ||A|1r, " < ||4]|F, | GE,GB,SY,HE,SB,HB, | .NORM
7 < || Ao, T < ||A]|oor, SP,HP,TR,TB,TP
r 4 |Allmaz, 7 < [|Allmazr
Diagonal scaling A<+ DA, A+ AD GE,GB _DIAG_SCALE
A+ DL ADpg GE,GB _LRSCALE
A<+ DAD SY,HE,SB,HB,SP,HP | .LRSCALE
A+~ A+BD GE,GB _DIAG_SCALE_ACC
Matrix acc and scale | B < aA+ 8B, B < aAT + 3B GE,GB,SY,SB, _ACC
SP,TR,TB,TP
Matrix add and scale | C' + aA + 6B GE,GB,SY,SB, _ADD
SP,TR,TB,TP

Table 2.6: Matrix Operations — O(n?) floating point operations

24

CHAPTER 2. DENSE AND BANDED BLAS

C + (
C « (aAJ)B" + B(aAJ)" + BC,
C + (aAJ)I'B + BT (aAJ) + BC

Matrix matrix product | C « aAB + pC, C + aATB + C GE MM

C «+ aAB" + BC, C + a«ATBT + BC

C <+ aAB+ C, C <+ aBA+ gC SY,HE | MM
Triangular multiply B+ oTB, B < aBT TR MM

B+ oT"B, B + aBT"
Triangular solve B+ oT 'B, B+ aBT ! TR SM

B+ aT "B, B+ aBT T
Symmetric rank k & 2k | C + aAAT + BC, C < aATA + BC SY,HE | RK
updates (C = CT) C «— aAJAT + BC, C + aATJA+ BC | SY,HE | _.TRIDIAG_RK

C + (aAd)B" + B(aA)" + BC, SY,HE | R2K

aA)'B + BT (aA) + BC
SY,HE | _TRIDIAG_R2K

Table 2.7: Matrix-Matrix Operations — O(n?) floating point operations

Matrix copy B+ A GE,GB,SY,HE,SB,HB,SP,HP,TR,TB, TP | _COPY
B« AT GE,GB _COPY

Matrix transpose | A « AT GE _TRANS

Permute Matrix | A+ PA, A+ AP | GE _PERMUTE

Table 2.8: Data Movement with Matrices

2.2. MATRIX STORAGE SCHEMES 25

2.2 Matrix Storage Schemes

The following matrix storage schemes are used:
e column-based and row-based storage in a contiguous array;
e packed storage for symmetric, Hermitian or triangular matrices;
e band storage for band matrices;

In the examples below, * indicates an array element that need not be set and is not referenced
by the BLAS routines. Elements that “need not be set” are never read, written to, or otherwise
accessed by the BLAS routines. The examples illustrate only the relevant part of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing
array arguments in C or Fortran.

2.2.1 Conventional Storage

The default scheme for storing matrices in the Fortran 95 and Fortran 77 interfaces is the one
described in subsection 2.5.3: a matrix A is stored in a two-dimensional array A, with matrix
element a;; stored in array element A(i, j), assuming one-based indexing.

For the C language interfaces, matrices may be stored column-wise or row-wise as described in
subsection 2.6.6: a matrix A is stored in a one-dimensional array A, with matrix element a;; stored
column-wise in array element A(7 + j * lda) or row-wise in array element A(j + i * [da), assuming
zero-based indexing.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements
of the relevant triangle are accessed. The remaining elements of the array need not be set. Such
elements are indicated by * in the examples below. For example, assuming zero-based indexing and
n=3:

order uplo Triangular matrix A Storage in array A
aoo Go1 @02
blas_colmajor | blas_upper ail aio apo * * apl a1l * Qg2 G12 G992
Q22
aoo Go1 @02
blas_rowmajor | blas_upper ail aio apo Aol @p2 * Q11 G2 * * G99
Q22
aoo
blas_colmajor | blas_lower alp a1 apo 1o @20 * G11 G91 * * G99

a0 Q21 a2

aoo
blas_rowmajor | blas_lower a1y a1l apgp * * a1p 11 * G20 421 G922

a0 Q21 a2

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower
triangle of the matrix (as specified by uplo) to be stored in the corresponding elements of the array;
the remaining elements of the array need not be set. For example, when n = 3:

26

CHAPTER 2. DENSE AND BANDED BLAS

order uplo Hermitian matrix A Storage in array A

app a1 Qo2

blas_colmajor | blas_upper ap1 G611 @12 app * * agl a1l * Qo2 G12 499
Go2 Q12 @22
app Go1 Qo2

blas_rowmajor | blas_upper Qo1 G111 @12 app apl G2 * a1l Q12 * * Q99
Go2 Q12 @22
ago G@1p Q20

blas_colmajor | blas_lower alp a1 a9y apgo a1g @29 * G11 G21 * * G922
G20 a1 G22
ago G@1p G20

blas_rowmajor blas_lower alp a1 aoy app * * ajp A1l * Aagp A1 a22
G20 a1 a22

2.2.2 Packed Storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by uplo) is packed by columns or rows in a one-dimensional array. In the
BLAS, arrays that hold matrices in packed storage, have names ending in ‘P’. So, in the case of

zero-based addressing as in C, we have the following formulas (For one-based addressing, as in

Fortran, replace ¢ by ¢ — 1 and j by j — 1 in these formulas).

e if uplo = blas_upper then

— if order

— if order

blas_colmajor,

blas_rowmajor,

e if uplo = blas_lower then

— if order

— if order

blas_colmajor,

blas_rowmajor,

a;j is stored in AP(i 4 j(j +1)/2) for i < j;
a;j is stored in AP(j +i(2n —i —1)/2) for i < j;

a;j is stored in AP(i 4+ j(2n —j —1)/2) for j <.
a;j is stored in AP(j +i(i +1)/2) for j <.

For example, assuming zero-based indexing;:

order uplo Triangular matrix A | Packed storage in array ap
apo Gol Qo2
blas_colmajor | blas_upper a1 a1 ago ap1 G411 Q2 @12 G992
—_—— ———
a22
apo Gol Qo2
blas_rowmajor | blas_upper a1 a1 ago o1 G2 G11 12 G229
—_—————— ——
a22
aoo
blas_colmajor | blas_lower alg a1 ago a10 G20 A11 G21 G992
—_————— ——
azo G211 Q22
aoo
blas_rowmajor | blas_lower alg a1 ago a10 11 Q20 A21 G922
—_———r ————
a0 G211 Q22

2.2. MATRIX STORAGE SCHEMES 27

Note that for real or complex symmetric matrices, packing the upper triangle by columns is
equivalent to packing the lower triangle by rows; packing the lower triangle by columns is equivalent
to packing the upper triangle by rows. For complex Hermitian matrices, packing the upper triangle
by columns is equivalent to packing the conjugate of the lower triangle by rows; packing the lower
triangle by columns is equivalent to packing the conjugate of the upper triangle by rows.

2.2.3 Band Storage

For Fortran (column-major storage), an m-by-n band matrix with kl subdiagonals and ku super-
diagonals may be stored compactly in a two-dimensional array with kIl +ku+1 rows and n columns.
Columns of the matrix are stored in corresponding columns (contiguous storage dimension) of the
array, and diagonals of the matrix are stored in rows (non-contiguous or strided dimension) of the
array. This storage scheme should be used in practice only if kl, ku < min(m,n), although BLAS
routines work correctly for all values of kI and ku. In the BLAS, arrays that hold matrices in band
storage have names ending in ‘B’.

To be precise, for column-major storage, a;; is stored in AB(ku + i — j,7) for max(0,j — ku) <
i < min(m — 1, j +kl). For row-major storage, a;; is stored in AB(7, kl 4 j — i) for max (0, j — ku) <
i < min(n — 1,7 + kl). For example, assuming column-major storage, when m =n =5, kl = 2 and
ku=1:

Band matrix A Band storage in array AB

apo ao1
aio a4l a2
G20 421 G222 a23
az1r az2 aszz as4
42 Q43 Q44

* o apl G122 G023 (34
app a1l G2 G33 (44
aip a21 a3 a43 %
azp asr G42 % *

The elements marked * in the upper left and lower right corners of the array AB need not be
set, and are not referenced by BLAS routines.

For C (row-major storage), order = blas_rowmajor, the rows of the matrix are stored in
corresponding rows (contiguous storage dimension) of the array, and diagonals of the matrix are
stored in columns (non-contiguous or strided dimension) of the array. The m-by-n band matrix
with k[subdiagonals and ku superdiagonals is stored in a one-dimensional array with n rows and
kl+ku+1 columuns, strided by lda. The padding with elements marked * is now shifted to ensure
that rows of the matrix are stored contiguously. Refer to section B.2.12 for full details.

Triangular band matrices are stored in the same format, with either kIl = 0 if upper triangular,
or ku = 0 if lower triangular.

For Fortran 77, and symmetric or Hermitian band matrices with kd subdiagonals or superdiag-
onals, only the upper or lower triangle (as specified by uplo) need be stored:

e if uplo = blas_upper, a;; is stored in AB(kd + i — j,j) for max(0,j — kd) <i < j;

e if uplo = blas_lower, a;; is stored in AB(i — j,) for j <4 < min(n — 1,5 + kd).

For example, assuming zero-based indexing and n = 5 and kd = 2:

28 CHAPTER 2. DENSE AND BANDED BLAS

uplo Hermitian band matrix A Band storage in array AB
Goo Go1 Q02
Gol G611 a12 013 * ¥ Gp2 413 424
blas_upper Go2 G12 @22 G23 G24 ¥ apr @12 Q23 G34
G13 Q23 a3z G34 Goo A11 G222 G633 (44

Q24 34 Q44
agp Q10 @20

a10 G11 G21 Q31 app @11 22 Q33 @44
blas_lower asp Q21 Q92 G32 (42 alp a1 G32 G43 %
a3l G32 G33 (43 a0 G31 Q42 % *

a42 Q43 Ga4

Similarly, for C (row-major storage), order = blas_rowmajor, the contiguous dimension (rows)
of the matrix is stored in the contiguous dimension (rows) of the array, strided by Ida. And picto-
rially, the one-dimensional array is the tranpose of the AB storage as depicted above. The padding
with elements marked * is now shifted to ensure that rows of the matrix are stored contiguously.
Refer to section B.2.12 for full details.

2.2.4 Unit Triangular Matrices

Some BLAS routines have an option to handle unit triangular matrices (that is, triangular ma-
trices with diagonal elements = 1). This option is specified by an argument diag. If diag =
blas_unit_diag (Unit triangular)), the array elements corresponding to the diagonal elements of
the matrix are not referenced by the BLAS routines. The storage scheme for the matrix (whether
conventional, packed or band) remains unchanged, as described in subsection 2.2.1.

2.2.5 Representation of a Householder Matrix

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix
of the form
H=1-rwl (2.1)

where 7 is a scalar, and v is an n-vector, with |7|2||v||3 = 2Re(7); v is often referred to as the
Householder vector. Often v has several leading or trailing zero elements, but for the purpose
of this discussion assume that H has no such special structure.

This representation agrees with what is used in LAPACK [1] (which differs from those used in
LINPACK [8] or EISPACK |21, 12]) sets v; = 1; hence v; need not be stored. In real arithmetic,
1 <7 <2, except that 7 = 0 implies H = I.

In complex arithmetic, 7 may be complex, and satisfies 1 < Re(7) < 2 and |7 — 1] < 1. Thus
a complex H is not Hermitian (as it is in other representations), but it is unitary, which is the
important property. The advantage of allowing 7 to be complex is that, given an arbitrary complex
vector z, H can be computed so that

with real 8. This is useful, for example, when reducing a complex Hermitian matrix to real sym-
metric tridiagonal matrix, or a complex rectangular matrix to real bidiagonal form.

2.3. INTERFACE ISSUES 29

2.2.6 Representation of a Permutation Matrix

An n-by-n permutation matrix P is represented as a product of at most n interchange permutations.
An interchange permutation E is a permutation obtained by swapping two rows of the identity ma-
trix. An efficient way to represent a general permutation matrix P is with an integer vector p of
length n. In other words, P = E,, ... E; and each Ej; is the identity with rows ¢ and p; interchanged.

Doi=0ton—-1 or Doi=n—-1to0

x(i)) <> x(p(i)))) x(i)) <> x(p(i))))
End do End do

2.3 Interface Issues

2.3.1 Naming Conventions

The naming conventions adopted for the routines are as defined in section 1.4.6.

2.3.2 Argument Aliasing

Correctness is only guaranteed if output arguments are not aliased with any other arguments.

2.4 Interface Issues for Fortran 95

Some of the functions in the tables of this chapter can be replaced by simple array expressions
and assignments in Fortran 95, without loss of convenience or performance (assuming a reasonable
degree of optimization by the compiler). Fortran 95 also allows groups of related functions to be
merged together, each group being covered by a single interface.

The following sections discuss the indexing base for vector and matrix operands, the features of
the Fortran 95 language that are used, the matrix storage schemes that are supported, and error
handling.

We strongly recommend that optional arguments be supplied by keyword, not by position,
since the order in which they are described may differ from the order in which they appear in the
argument list.

2.4.1 Fortran 95 Modules

Refer to Appendix A.4 for the Fortran 95 module blas_dense. The module blas_operator_arguments
contains the derived type values, and separate modules are supplied with explicit interfaces to the
routines. If the module blas_dense is accessed by a USE statement in any program which makes
calls to these BLAS routines, then those calls can be checked by the compiler for errors in the
numbers or types of arguments.

2.4.2 Indexing

The Fortran 95 interface returns indices in the range 1 < I < N (where N is the number of entries
in the dimension in question, and I is the index). This allows functions returning indices to be
directly used to index standard arrays.

30 CHAPTER 2. DENSE AND BANDED BLAS

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at one.

2.4.3 Design of the Fortran 95 Interfaces

The proposed design utilizes the following features of the Fortran 95 language.

Generic interfaces: all procedures are accessed through generic interfaces. A single generic name
covers several specific instances whose arguments may differ in the following properties:

data type (real or complex).

precision (or equivalently, kind type parameter “kind-value”). However, all real or complex
arguments must have the same precision. We allow both single and double precision.

rank Some arguments may either have rank 2 (to store a matrix) or rank 1 (to store a vector).
In other cases an argument may be either a rank 1 array or a scalar.

different argument lists Some of the arguments are optional. If one of these arguments
does not appear in the calling sequence, a predefined value or a predefined action is
assumed. Table 2.9 contains the predefined value or action for these arguments.

Assumed-shape arrays: all array arguments are assumed-shape arrays, which must have the
exact shape required to store the corresponding matrix or vector. Hence arguments to specify
array-dimensions or problem-dimensions are not required. The procedures assume that the
supplied arrays have valid and consistent shapes. Zero dimensions (implying empty arrays)
are allowed.

This means that, for a vector operand, the offset and stride are not needed as arguments.
The actual argument corresponding to a n-length vector dummy argument could be:

actual argument comments

x(ix:ix+(n-1)*incx) | ix# 1 and incx# 1

x(1:14+(n-1)*incx) | ix= 1 and incx# 1

x(0:(n-1)*incx) ix= 0 and incx# 1

x(ix:ix+n-1) ix# 1 and incx= 1

x(1:n) ix=1 and incx=1

X if x is declared with shape (n), i.e.
x(n)

x(ix) where iz is an integer vector of n elements
containing valid indices of z

a(:j) column j of a two-dimension array assuming
that it has n rows (SIZE(a,1) = n)

a(i,:) row i of a two-dimension array assuming
that it has n columns (SIZE(a,2) = n)

Derived types: In the Fortran 95 bindings, we use dummy arguments whose actual argument
must be a named constant of a derived type, which is defined within the BLAS module (and
accessible via the BLAS module).

2.4. INTERFACE ISSUES FOR FORTRAN 95 31

2.4.4 Matrix Storage Schemes

The matrix storage schemes for the Fortran 95 interfaces are as described in section 2.2. As with
the Fortran 77 interfaces, only column-major storage is permitted. However, assumed-shape arrays
are used instead of assumed-size arrays.

For a general banded matrix, a, three arguments a, m and kl are used to define the matrix since
ku is defined from the shape of the matrix and kl (ku = SIZE(a,1) — kl — 1). For a symmetric
banded matrix, a Hermitian banded matrix or triangular banded matrix, a, only a is used as an
argument to define the matrix as the band width is defined from the shape of the matrix and is
equal to SIZE(a,1) —1 and m = n.

2.45 Format of the Fortran 95 bindings

Each interface is summarized in the form of a SUBROUTINE statement (or in few cases a FUNCTION
statement), in which all of the potential arguments appear. Arguments which need not be supplied
are grouped after the mandatory arguments and enclosed in square brackets, for example:

SUBROUTINE axpby(x, y [, alphal [, betal])
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (INOUT) :: y(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

The default value for 8 is 1.0 or (1.0,0.0).
As generic interfaces are used, floating point variables that can be REAL or COMPLEX are denoted
by the keyword <type> which designates the data type for the operand

<type> ::= REAL | COMPLEX

In some routines, however, some of the floating point arguments must be of a specific data type. If
this is the case, then the argument type REAL or COMPLEX is used.
The precision of the floating point variable is denoted by <wp> (i.e., “working precision”) where

<wp> ::= KIND(1.0) | KIND(1.0DO)

and KIND(1.0) and KIND(1.0D0) represent single precision and double precision, respectively.
Some arguments may either have rank 2 (to store a matrix) or rank 1 (to store a vector). In
this case, the following notation is used:

<bb> ::=b(:,:) | b(:)
The same notation is used in the case of an argument that may either have rank 1 or is a scalar.
<bb> ::=b(:) | b

Fortran 95 bindings use assumed shape arrays. The actual arguments must have the correct
dimension. For all the procedures that contain array arguments the shape of the array arguments
is given in detail after the specification. For example the specification of the SUBROUTINE axpby
given above is followed by:

x and y have shape (n)

which indicates that both arrays x and y must be rank 1 with the same number of elements.

The calling sequence may be followed by a table which lists the different variants of the oper-
ation, depending either on the ranks of some of the arguments or on the optional arguments. The
scalar values alpha and beta take the defaults given in the following table:

32 CHAPTER 2. DENSE AND BANDED BLAS
Argument | default value in real case | default value in complex case
alpha 1.0 (1.0,0.0)
beta 0.0 OR 1.0 (0.0,0.0) OR (1.0,0.0)

Procedures that contain the optional scalar beta state the default value for beta only if it is

1.0 or (1.0,0.0), otherwise the default is assumed to be 0.0 or (0.0,0.0).

The following table shows the notation that is used for the values of optional arguments (since

alpha and beta are also optional, for example):

Dummy | Notation in table Named constant Default value
argument
norm 1-norm blas_one norm blas_one norm
1R-norm blas_real_one_norm
2-norm blas_two_norm
Frobenius-norm blas_frobenius norm
inf-norm blas_inf norm
real-inf-norm blas_real_inf norm
max-norm blas_max norm
real-max-norm blas_real max_norm
sort sort in decreasing order | blas_decreasing order | blas_increasing order
sort in increasing order | blas_increasing order
side L blas_left_side blas_left
R blas_right_side
uplo U blas_upper blas_upper
L blas_lower
transz N blas no_trans blas no_trans
T blas_trans
C blas_conj
H blas_conj_trans
conj blas no_conj blas_no_conj
blas_conj
diag N blas non unit_diag blas non unit_diag
U blas_unit_diag
jrot inner rotation blas_jrot_inner blas_jrot_inner
outer rotation blas_jrot_outer
sorted rotation blas_jrot_sorted

Table 2.9: Default values of Operator Arguments

2.4.6 Error Handling

The Fortran 95 interface must supply an error-handling routine blas_error. The API for this
error-handling routine is defined in section 1.8. By default, this routine will print an error message
and stop execution. The user may modify the action performed by the error-handling routine, and
this modification must be documented.

The following values of arguments are invalid and will be flagged by the error-handling routine:

2.5. INTERFACE ISSUES FOR FORTRAN 77 33

e Any value of the operator arguments whose meaning is not specified in the language-dependent
section is invalid;

Routine-specific error conditions are listed in the respective language bindings.

2.5 Interface Issues for Fortran 77

Unless explicitly stated, the Fortran 77 binding is consistent with ANSI standard Fortran 77. There
are several points where this standard diverges from the ANSI Fortran 77 standard. In particular:

e Subroutine names are not limited to six significant characters.
e Subroutine names contain an underscore.
e Subroutines may use the INCLUDE statement for include files.

Section 2.5.2 discusses the indexing of vector and matrix operands. Section A.5 defines the
operator arguments, section 2.5.3 defines array arguments, and section 2.2 lists the matrix storage
schemes that are supported. Section 2.5.5 details the format of the language binding, and section
2.5.6 discusses error handling.

2.5.1 Fortran 77 Include File

Refer to Appendix A.5 for details of the Fortran 77 include file blas_namedconstants.h.

2.5.2 Indexing

The Fortran 77 interface returns indices in the range 1 < I < N (where N is the number of entries
in the dimension in question, and I is the index). This allows functions returning indices to be
directly used to index standard arrays.

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at one.

2.5.3 Array Arguments

Vector arguments are permitted to have a storage spacing between elements. This spacing is
specified by an increment argument. For example, suppose a vector z having components z;,
i=1,...,N, is stored in an array X () with increment argument INCX. If INCX > 0 then z; is
stored in X(1+ (i — 1)« INCX). If INCX < 0 then z; is stored in X (14 (N —4) *« [INCX]). This
method of indexing when INCX < 0 avoids negative indices in the array X () and thus permits
the subprograms to be written in Fortran 77. INCX = 0 is an illegal value.

Each two-dimensional array argument is immediately followed in the argument list by its leading
dimension, whose name has the form LD<array-name>. If a two-dimensional array A of dimension
(LDA,N) holds an m-by-n matrix A, then A(4,7) holds a;; fori =1,...,mand j =1,...,n (LDA
must be at least m). See Section 2.2 for more about storage of matrices.

Note that array arguments are usually declared in the software as assumed-size arrays (last
dimension *), for example:

REAL A(LDA, *)

34 CHAPTER 2. DENSE AND BANDED BLAS

although the documentation gives the dimensions as (LDA,N). The latter form is more informative
since it specifies the required minimum value of the last dimension. However an assumed-size array
declaration has been used in the software in order to overcome some limitations in the Fortran 77
standard. In particular it allows the routine to be called when the relevant dimension (N, in this
case) is zero. However actual array dimensions in the calling program must be at least 1 (LDA in
this example).

2.5.4 Matrix Storage Schemes

The matrix storage schemes for the Fortran 77 interfaces are as described in section 2.2. Only
column-major storage is permitted, and all two-dimensional arrays are assumed-size arrays.

2.5.5 Format of the Fortran 77 bindings

Each interface is summarized in the form of a SUBROUTINE statement (or a FUNCTION statement).
The declarations of the arguments are listed in alphabetical order. For example,

SUBROUTINE BLAS_xAXPBY(N, ALPHA, X, INCX, BETA, Y, INCY)

INTEGER INCX, INCY, N
<type> ATL.PHA, BETA
<type> XC*), Y(*)

Floating point variables are denoted by the keyword <type> which designates the data type for
the operand (REAL, DOUBLE PRECISION, COMPLEX, or COMPLEX*16). This data type will agree with
the x letter in the naming convention of the routine. In some routines, however, not all floating
point variables will be of the same data type. If this is the case, then a variable may be denoted by
the keyword <ctype> to restrict the data type to COMPLEX or COMPLEX*16, or <rtype> to restrict
the data type to REAL or DOUBLE PRECISION.

The language binding will be followed by any restrictions dictated for this interface.

2.5.6 Error Handling

The Fortran 77 interface supplies an error-handling routine BLAS_ERROR, as defined in section 1.8.
By default, this routine will print an error message and stop execution. The user may modify the
action performed by the error-handling routine, and this modification must be documented.

The following values of arguments are invalid and will be flagged by the error-handling routine:

e Any value of the operator arguments whose meaning is not specified in the language-dependent
section is invalid;

e incw=0 or incx=0 or incy=0 or incz=0;

e Ida, Idb, Idc, or Idt < 1;

e |lda < m if the matrix is an m X n general matrix and trans = blas_no_trans;
e Ida < n if the matrix is an m X n general matrix and trans = blas_trans;

e Ida < n if the matrix is an n X n square, symmetric, or triangular matrix;

e Ida < kl + ku + 1, if the matrix is an m X n general band matrix;

2.6. INTERFACE ISSUES FOR C 35

e Ida < k+1, if the matrix is an n X n symmetric or triangular band matrix with k super- or
subdiagonals;

Routine-specific error conditions are listed in the respective language bindings.

2.6 Interface Issues for C

The interface is expressed in terms of ANSI/ISO C. Most platforms provide ANSI/ISO C compilers,
and if this is not the case, free ANSI/ISO C compilers are available (eg., gcc).

Section 2.6.2 discusses the indexing of vector and matrix operands. Section A.6 defines the
operator arguments, section 2.6.3 discusses the handling of complex data types, section 2.6.4 defines
return values of complex functions, and section 2.6.5 provides the rule for argument aliasing. Section
2.6.6 defines array arguments, and section 2.6.7 lists the matrix storage schemes that are supported.
Section 2.6.8 details the format of the language binding, and section 2.6.9 discusses error handling.

2.6.1 C Include File

The C interface to the BLAS has a standard include file, called blas_dense.h, which minimally
contains the values of the enumerated types and ANSI/ISO C prototypes for all BLAS routines.
Refer to Appendix A.6 for details of the C include files pertaining to Chapters 2 — 4.

Advice to implementors. Note that the vendor is not constrained to using precisely this
include file; only the enumerated type definitions are fully specified. The implementor is
free to make any other changes which are not apparent to the user. For instance, all matrix
dimensions might be accepted as size_t instead of int, or the implementor might choose to
make some routines in-line. (End of advice to implementors.)

2.6.2 Indexing

The C interface returns indices in the range 0 < I < N —1 (where N is the number of entries in the
dimension in question, and I is the index). This allows functions returning indices to be directly
used to index standard arrays.

Likewise, for routines returning an index within a vector or matrix operand, this reference point
is indexed starting at zero.

2.6.3 Handling of complex data types

All complex arguments are accepted as void *. A complex element consists of two consecutive
memory locations of the underlying data type (i.e., float or double), where the first location
contains the real component, and the second contains the imaginary component.

An ISO/IEC committee (WG14/X3J11) [16] is presently working on an extension to ANSI/ISO
C which defines complex data types. This extension is one of several additions to the C language,
commonly referred to as the C9X standard. The definition of a complex element is the same as
given above, and so the handling of complex types by this interface will not need to be changed
when ANSI/ISO C standard is extended.

36 CHAPTER 2. DENSE AND BANDED BLAS

2.6.4 Return values of complex functions

BLAS routines which return complex values in Fortran 77 are instead recast as subroutines in the
C interface, with the return value being an output parameter added to the end of the argument
list. This allows the output parameter to be accepted as a void pointer, as discussed above.

2.6.5 Aliasing of arguments

Unless specified otherwise, only input-only arguments (specified with the const qualifier), may be
legally aliased on a call to the C interface to the BLAS.

2.6.6 Array arguments

Arrays are constrained to being contiguous in memory. They are accepted as pointers, not as arrays
of pointers. Note that this means that two-dimensional array arguments in C are not permitted.

All BLAS routines which take one or more two dimensional arrays as arguments receive one
extra parameter as their first argument. This argument is an enumerated type (see Appendix A).
If this parameter is set to blas_rowmajor, it is assumed that elements within a row of the array(s)
are contiguous in memory, while elements within array columns are separated by a constant stride
given in the stride parameter (this parameter corresponds to the leading dimension [e.g. LDA] in
the Fortran 77 interface).

If the order is given as blas_colmajor, elements within array columns are assumed to be
contiguous, with elements within array rows separated by stride memory elements.

Note that there is only one blas_order_type parameter to a given routine: all array operands
are required to use the same ordering.

2.6.7 Matrix Storage Schemes

The matrix storage schemes for the C interfaces are as described in section 2.2. Column-major
storage and row-major storage in a contiguous array are permitted.

2.6.8 Format of the C bindings
Each routine is summarized in the form of an ANSI/ISO C prototype. For example:

void BLAS_xaxpby(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY y, int incy);

Floating point variables are denoted by the keywords SCALAR and ARRAY to denote scalar argu-
ments and array arguments respectively.

SCALAR_IN ARRAY or SCALAR_INOUT | operation
float or double | float * or double * real arithmetic
const void * void * complex arithmetic

This data type will agree with the x letter in the naming convention of the routine. In some
routines, however, not all floating point variables will be of the same data type. If this is the
case, then a variable may be denoted by the keyword RSCALAR_INOUT, CSCALAR_INOUT, RARRAY, or
CARRAY, to restrict the data type to real or complex arithmetic, respectively.

The language binding will be followed by any restrictions dictated for this interface.

2.7. NUMERICAL ACCURACY AND ENVIRONMENTAL ENQUIRY 37

2.6.9 Error Handling

The C interface must supply an error-handling routine BLAS error. This error-handling routine
will accept as input a character string, specifying the name of the routine where the error occurred.
By default, this routine will print an error message and stop execution. The user may modify the
action performed by the error-handling routine, and this modification must be documented.

The following values of arguments are invalid and will be flagged by the error-handling routine:

e Any value of the operator arguments whose meaning is not specified in the language-dependent
section is invalid;

e incw=0 or incx=0 or incy=0 or incz=0;

e |da, Idb, Idc, or Idt < 1;

e |lda < m if the matrix is an m X n general matrix;

e Ida < n if the matrix is an n X n square, symmetric, or triangular matrix;
e Ida < kl + ku + 1, if the matrix is an m X n general band matrix;

e Ida < k+1, if the matrix is an n X n symmetric or triangular band matrix with k super- or
subdiagonals;

Routine-specific error conditions are listed in the respective language bindings.

2.7 Numerical Accuracy and Environmental Enquiry

With a few exceptions that are explicitly described below, no particular computational order is
mandated by the function specifications. In other words, any algorithm that produces results “close
enough” to the usual algorithms presented in a standard book on matrix computations [13, 4, 14]
is acceptable. For example, Strassen’s algorithm may be used for matrix multiplication, even
though it can be significantly less accurate than conventional matrix multiplication for some pairs
of matrices [14]. Also, matrix multiplication may be implemented either as C' = («-A)-B+ (8- C)
orC=a-(A-B)+(8-C)or C=A-(a-B)+ (8-C), whichever is convenient.

To use the error bounds in [13, 4, 14] and elsewhere, certain machine parameters are needed to
describe the accuracy of the arithmetic.

These are described in detail in section 1.6, and returned by function xFPINFQ. Its calling
sequence in C or Fortran 77 is

result = xFPINFO(CMACH)
where x=S for single precision and x=D for double precision. In Fortran 95, its calling sequence is
result = FPINFO(CMACH, float)

where the “kind” of float (single or double) is used to determine the kind of the result. The
argument CMACH can take on the following named constant values (the exact representations
are language dependent, with CMACH available as a derived type in Fortran 95, named integer
constants in Fortran 77, and an enumerated type in C). The named constant values are defined in
sections A.4, A.5, and A.6. CMACH has the analogous meaning (see footnote 4 in section 1.6 for
a discussion) as the like-named character argument of the LAPACK auxiliary routine xLAMCH:

38

CHAPTER 2. DENSE AND BANDED BLAS

Value of CMACH | Name of floating point parameter
(see Table 1.9 in section 1.6 for details)

blas_base BASE

blas_t T

blas_rnd RND

blas_ieee TEEE

blas_emin EMIN

blas_emax EMAX

blas_eps EPS

blas_prec PREC

blas_underflow UN

blas_overflow ov

blas_sfmin SFMIN

Here are the exceptional routines where we ask for particularly careful implementations to avoid
unnecessary over/underflows, that could make the output unnecessarily inaccurate or unreliable.
The details of each routine are described with the language dependent calling sequences. Model
implementations that avoid unnecessary over/underflows are based on corresponding LAPACK
auxiliary routines, NAG routines, or cited reports.

1. Reduction Operations (Section 2.8.2)

e NORM (Vector norms)
e SUMSQ (Sum of squares)

2. Generate Transformations (Section 2.8.3)

e GEN_GROT (Generate Givens rotation)
e GEN_JROT (Generate Jacobi rotation)
¢ GEN_HOUSE (Generate Householder transform)

3. Vector Operations (Section 2.8.4)
e RSCALE (Reciprocal scale)
4. Matrix Operations (Section 2.8.7)

e {GE,GB,SY,HE,SB,SP,HP,TR,TB,TP}.NORM (Matrix norms)

2.8 Language Bindings
Each specification of a routine will correspond to an operation outlined in the functionality tables.

Operations are organized analogous to the order in which they are presented in the functionality
tables. The specification will have the form:

NAME (multi-word description of operation) < mathematical representation >

Optional brief textual description of the functionality including any restrictions that apply to all
language bindings.

2.8. LANGUAGE BINDINGS

Fortran 95 binding
Fortran 77 binding
C binding

2.8.1 Overview

Reduction Operations (section 2.8.2)

DOT (Dot product)

— NORM (Vector norms)

SUM (Sum)

— MIN_VAL (Min value & location)
AMIN_VAL (Min absolute value & location)
MAX_VAL (Max value & location)

— AMAX_VAL (Max absolute value & location)
SUMSQ (Sum of squares)

Generate Transformations (section 2.8.3)

— GEN_GROT (Generate Givens rotation)
— GEN_JROT (Generate Jacobi rotation)
— GEN_HOUSE (Generate Householder transform)

Vector Operations (section 2.8.4)

— RSCALE (Reciprocal Scale)

— AXPBY (Scaled vector accumulation)

— WAXPBY (Scaled vector addition)

— AXPY_DOT (Combined AXPY and DOT)
— APPLY_GROT (Apply plane rotation)

Data Movement with Vectors (section 2.8.5)

— COPY (Vector copy)

SWAP (Swap)

SORT (Sort vector)

— SORTYV (Sort vector & return index vector)
PERMUTE (Permute vector)

Matrix-Vector Operations (section 2.8.6)

— {GE,GB}MV (Matrix vector product)
— {SY,SB,SP}MV (Symmetric matrix vector product)
— {HE,HB,HP}MV (Hermitian matrix vector product)

39

CHAPTER 2. DENSE AND BANDED BLAS

{TR,TB,TP}MV (Triangular matrix vector product)
— GE_.SUM_MV (Summed matrix vector multiplies)

— GEMVT (Combined matrix vector product)

— TRMVT (Combined triangular matrix vector product)
GEMVER (Combined matrix vector product with a rank 2 update)
{TR,TB,TP}SV (Triangular solve)

GER (Rank one update)

— {SY,SP}R (Symmetric rank one update)

— {HE,HP}R (Hermitian rank one update)

— {SY,SP}R2 (Symmetric rank two update)

— {HE,HP}R2 (Hermitian rank two update)

e Matrix Operations (section 2.8.7)

— {GE,GB,SY,HE,SB,HB,SP,HP,TR,TB,TP}_.NORM (Matrix norms)

— {GE,GB}_.DIAG_SCALE (Diagonal scaling)

— {GE,GB}_.LRSCALE (Two-sided diagonal scaling)

— {SY,SB,SP}_LRSCALE (Two-sided diagonal scaling of a symmetric matrix)
— {HE,HB,HP} LRSCALE (Two-sided diagonal scaling of a Hermitian matrix)
— {GE,GB}_.DIAG_SCALE_ACC (Diagonal scaling and accumulation)

- {GE,GB,SY,SB,SP,TR,TB,TP}_ACC (Matrix accumulation and scale)

- {GE,GB,SY,SB,SP,TR,TB,TP}_ADD (Matrix add and scale)

e Matrix-Matrix Operations (section 2.8.8)

- GEMM
- SYMM
— HEMM
— TRMM
— TRSM (Triangular solve)

— SYRK (Symmetric rank-k update)

— HERK (Hermitian rank-k update)

— SY_TRIDIAG_RK (Symmetric rank-k update with tridiagonal matrix)

— HE_TRIDIAG_RK (Hermitian rank-k update with tridiagonal matrix)

— SYR2K (Symmetric rank-2k update)

— HER2K (Hermitian rank-2k update)

— SY_TRIDIAG_R2K (Symmetric rank-2k update with tridiagonal matrix)
— HE_TRIDIAG_R2K (Hermitian rank-2k update with tridiagonal matrix)

—~

General Matrix Matrix product)

—~

Symmetric matrix matrix product)

Hermitian matrix matrix product)

Triangular matrix matrix multiply)

e Data Movement with Matrices (section 2.8.9)

- {GE,GB,SY,SB,SP,TR,TB,TP}_COPY (Matrix copy)

2.8. LANGUAGE BINDINGS 41

— {HE,HB,HP}_COPY (Matrix copy)
— {GE}.TRANS (Matrix transposition)
— {GE}.PERMUTE (Permute matrix)

e Environmental Enquiry (section 2.8.10)

— FPINFO (Environmental enquiry)

2.8.2 Reduction Operations

n—1
DOT (Dot Product) z,y € R, r + Br+oaxly =pr+a Z Y
i=0
n—1 n—1
T,y E@’",r<—BT+axTy:Br+aZ$iyi 0rr<—ﬁr+a:1:Hy:ﬁr+osziyi
i=0 i=0

The routine DOT adds the scaled dot product of two vectors x and y into a scaled scalar . The
routine returns immediately if n is less than zero, or, if beta is equal to one and either alpha or n
is equal to zero. If alpha is equal to zero then x and y are not read. Similarly, if beta is equal to
zero, r is not read. As described in section 2.5.3, the value incx or incy less than zero is permitted.
However, if incx or incy is equal to zero, an error flag is set and passed to the error handler.

When z and y are complex vectors, the vector components z; are used unconjugated or conju-
gated as specified by the operator argument conj. If z and y are real vectors, the operator argument
conj has no effect.

e Fortran 95 binding;:

SUBROUTINE dot(x, y, r [, conjl [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: x(:), y(:)
<type>(<wp>), INTENT (INOUT) :: r
TYPE (blas_conj_type), INTENT(IN), OPTIONAL :: conj
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xDOT(CONJ, N, ALPHA, X, INCX, BETA, Y, INCY, R)

INTEGER CONJ, INCX, INCY, N
<type> ALPHA, BETA, R
<type> XC*), Y(*)

e C binding:

void BLAS_xdot(enum blas_conj_type conj, int n, SCALAR_IN alpha,
const ARRAY x, int incx, SCALAR_IN beta, const ARRAY y,
int incy, SCALAR_INQUT r);

42 CHAPTER 2. DENSE AND BANDED BLAS

NORM (Vector norms) r < ||lz|l1, |1z|lirs [1Z]l2, [|%]l00, o7 ||Z||cor

The routine NORM computes the ||-||1, || |l1r, || |l2, || - [|oos OF || - ||cor Of a vector z depending
on the value passed as the norm operator argument.

If norm = blas frobenius norm, an error flag is not raised, and the two-norm is returned to
the user. If n is less than or equal to zero, this routine returns immediately with the output scalar
r set to zero. The resulting scalar r is always real and its value is as defined in section 2.1.1. As
described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error flag is set and passed to the error handler.

e Fortran 95 binding:

REAL (<wp>) FUNCTION norm(x [, norm])

<type>(<wp>), INTENT (IN) :: x(:)

TYPE (blas_norm_type), INTENT (IN), OPTIONAL :: norm
where

x has shape (n)

e Fortran 77 binding;:

<rtype> FUNCTION BLAS_xNORM(NORM, N, X, INCX)

INTEGER INCX, N, NORM
<type> X(*)
e C binding:

void BLAS_xnorm(enum blas_norm_type norm, int n, const ARRAY x,
int incx, RSCALAR_INOUT r);

n—1
SUM (Sum) T Z x;
i=0

The routine SUM computes the sum of the entries of a vector z. If n is less than or equal to
zero, this routine returns immediately with the output scalar r set to zero. As described in section
2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error flag is
set and passed to the error handler.

e Fortran 95 binding;:

<type>(<wp>) FUNCTION sum(x)
<type>(<wp>), INTENT (IN) :: x(:)
where
x has shape (n)

This is the same as the Fortran 95 intrinsic function SUM.

e Fortran 77 binding;:

2.8. LANGUAGE BINDINGS 43

<type> FUNCTION BLAS_xSUM(N, X, INCX)

INTEGER INCX, N
<type> X(*)
e C binding:

void BLAS_xsum(int n, const ARRAY x, int incx, SCALAR_INOUT sum);

MIN_VAL (Min value & location) k,xp such that k = arg 01r<n.in T
<i<n
The routine MIN_VAL finds the smallest component of a real vector z and determines the
smallest offset or index k such that z;, = Oréljél x;. This value zj is returned by the routine and
<i<n

denoted by arg Org_in z; below. When the value of the n argument is less than or equal to zero, the
i<n

routine should initialize the output scalars k to the largest invalid index or offset value (negative
one or zero) and r to zero. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

Advice to users. The routine MIN_VAL strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

e Fortran 95 binding;:

SUBROUTINE min_val(x, k, r)
REAL(<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL(<wp>), INTENT (OUT) :: r

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xMIN_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<rtype> X(*)

e C binding:

void BLAS_xmin_val(int n, const RARRAY x, int incx, int k,
RSCALAR_INOUT r);

AMIN_VAL (Min absolute value & location) k,z; such that k = arg Or<n.i£1 (|Re(zi)| + [Im(z;)|)
<i<n

The routine AMIN_VAL finds the offset or index of the smallest component of a vector z and
also returns the smallest component of the vector z with respect to the absolute value. When the
value of the n argument is less than or equal to zero, the routine should initialize the output scalars
k to the largest invalid index or offset value (negative one or zero) and r to zero. The resulting
scalar r is always real. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

44 CHAPTER 2. DENSE AND BANDED BLAS

e Fortran 95 binding:

SUBROUTINE amin_val(x, k, r)
<type>(<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL(<wp>), INTENT (OUT) :: r

where
x has shape (n)

A Fortran 95 interface was defined for this routine since it would have been too expensive
using Fortran 95 intrinsics.

e Fortran 77 binding;:

SUBROUTINE BLAS_xAMIN_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<type> X(%)

e C binding:

void BLAS_xamin_val(int n, const ARRAY x, int incx, int k,
RSCALAR_INOUT r);

MAX_VAL (Max value & location) k,xp such that k = arg Jnax ;
<i<n
The routine MAX_VAL finds the largest component of a real vector z and determines the smallest

offset or index k such that z, = Or£1a<x x;. This value x, is returned by the routine and denoted
<<n

by arg J0axX T below. When the value of the n argument is less than or equal to zero, the routine
<i<n

should initialize the output scalars k to the largest invalid index or offset value (negative one or zero)

and r to zero. As described in section 2.5.3, the value incx less than zero is permitted. However, if

incx is equal to zero, an error flag is set and passed to the error handler.

Advice to users. The routine MAX_VAL strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

e Fortran 95 binding:

SUBROUTINE max_val(x, k, r)
REAL(<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL(<wp>), INTENT (OUT) :: r

where
x has shape (n)

e Fortran 77 binding:

2.8. LANGUAGE BINDINGS 45

SUBROUTINE BLAS_xMAX_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<rtype> X(*)

e C binding:

void BLAS_xmax_val(int n, const RARRAY x, int incx, int k,
RSCALAR_INOUT r);

AMAX_VAL (Max absolute value & location) k,z; such that k = arg max (|Re(xs)| + [Im(x;)])

The routine AMAX_VAL finds the offset or index of the largest component of a vector « and also
returns the largest component of the vector x with respect to the absolute value. When the value
of the n argument is less than or equal to zero, the routine should initialize the output scalars k to
the largest invalid index or offset value (negative one or zero) and r to zero. The resulting scalar r
is always real. As described in section 2.5.3, the value incx less than zero is permitted. However, if
incx is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding;:

SUBROUTINE amax_val(x, k, r)
<type>(<wp>), INTENT (IN) :: x(:)
INTEGER, INTENT (OUT) :: k
REAL(<wp>), INTENT (OUT) :: r

where
x has shape (n)

e Fortran 77 binding;:

SUBROUTINE BLAS_xAMAX_VAL(N, X, INCX, K, R)

INTEGER INCX, K, N
<rtype> R
<type> X(%)

e C binding:

void BLAS_xamax_val(int n, const ARRAY x, int incx, int k,
RSCALAR_INOUT r);

SUMSQ (Sum of squares) (scl, ssq) < Y a2,

The routine SUMSQ returns the values scl and ssq such that

n—1
scl? x ssq = scale® * sumsq + 2:(1126(332-)2 + Im(z;)?),
1=0

46 CHAPTER 2. DENSE AND BANDED BLAS

The value of sumsq is assumed to be at least unity and the value of ssq will then satisfy 1.0 <
ssq < (sumsq +n) when z is a real vector and 1.0 < ssq < (sumsq + 2n) when z is a complex
vector. scale is assumed to be non-negative and scl returns the value

scl = max (scale, abs(Re(x;)), abs(Im(x;))).
0<i<n

scale and sumsq must be supplied on entry in scl and ssq respectively. scl and ssq are overwritten
by scl and ssq respectively. The arguments scl and ssq are therefore always real scalars. If scl is
less than zero or ssq is less than one, an error flag is set and passed to the error handler. If n is less
than or equal to zero, this routine returns immediately with scl and ssq unchanged. As described
in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error
flag is set and passed to the error handler.

Advice to implementors. High-quality implementations of this routine SUMSQ should be
accurate. The subroutine SLASSQ of the LAPACK [1] software library is an example of such
an accurate implementation. High-quality implementations should document the accuracy of
the algorithms used in this routine so as to alleviate the portability problems this represents.
(End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE sumsq(x, ssq, scl)
<type>(<wp>), INTENT (IN) :: x(:)
REAL (<wp>), INTENT (INOUT) :: ssq, scl
where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xSUMSQ(N, X, INCX, SSQ, SCL)

INTEGER INCX, N
<rtype> SCL, SSQ
<type> X(*)

e C binding:

void BLAS_xsumsq(int n, const ARRAY x, int incx, RSCALAR_INOUT ssq,
RSCALAR_INOUT scl);

2.8.3 Generate Transformations

GEN_GROT (Generate Givens rotation) (¢,s,7) < rot(a,b)

The routine GEN_GROT constructs a Givens plane rotation so that

(50 ()-(0),

2.8. LANGUAGE BINDINGS 47

where c is always a real scalar and c? + |s|? is equal to one. The scalars a and b are unchanged on
exit. ¢, s and r are defined precisely as follows, where we use the function

) /|l fx#£0
S‘g“(x)z{ 1/| | ifxio

Defining Givens rotations:
if b = 0 (includes the case a = b = 0)

c=1
s=0
r=a
elseif a = 0 (b must be nonzero)
c=0
s = sign(b)
r = 0]

else (a and b both nonzero)
¢ = lal/\/]a]* + [b?
s = sign(a)b/+/]a]?> + |b|?
r = sign(a)+/|a|? + |b|2

endif
When a and b are real, b may be replaced by b.

Advice to implementors. High-quality implementations of this routine GEN_GROT should
be accurate. We recommend one of the implementations described in [3]. We note that
the above definition of Givens rotations matches the one in the subroutine CLARTG of the
LAPACK [1] software library, but differs slightly from the definitions used in LAPACK rou-
tines SLARTG, SLARGV and CLARGV. LAPACK routines using these slightly different Givens
rotations continue to function correctly [3]. (End of advice to implementors.)

e Fortran 95 binding;:

SUBROUTINE gen_grot(a, b, ¢, s, r)
<type>(<wp>), INTENT (IN) :: a, b
REAL(<wp>), INTENT (OUT) :: c
<type>(<wp>), INTENT (OUT) :: s, r

e Fortran 77 binding:

SUBROUTINE BLAS_xGEN_GROT(A, B, C, S, R)

<rtype> C
<type> A, B, R, S
e C binding:

void BLAS_xgen_grot(SCALAR_IN a, SCALAR_IN b, RSCALAR_INQUT c,
SCALAR_INOUT s, SCALAR_INQUT r);

48 CHAPTER 2. DENSE AND BANDED BLAS

GEN_JROT (Generate Jacobi rotation) (a,b,c,8) «+ jrot(z,y, z)

The routine GEN_JROT constructs a Jacobi rotation so that

a 0) c s\ [z y) [c —=s
0b) \ —-s ¢ y z s ¢)’
If JROT = blas_inner_rotation, then the rotation is chosen so that ¢ > %

If JROT = blas_outer_rotation, then the rotation is chosen so that 0 < ¢ < %
If JROT = blas_sorted_rotation, then the rotation is chosen so that abs(a) > abs(b).

On entry, the argument x contains the value x, and on exit it contains the value a. On entry,
the argument y contains the value y. On entry, the argument z contains the value z, and on exit
it contains the value b. The arguments x and z are real scalars, and argument c is always a real
scalar and ¢? + |s|? is equal to one.

Advice to implementors. High-quality implementations of this routine GEN_JROT should
document the accuracy of the algorithms used in those functions so as to alleviate the porta-
bility problems this represents. (See NAG routine FO6BEF). (End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE gen_jrot(x, y, z, ¢, s [, jrot]l)
REAL(<wp>), INTENT (INOUT) :: x, z
<type>(<wp>), INTENT (IN) :: y
REAL(<wp>), INTENT (OUT) :: c
<type>(<wp>), INTENT (OUT) :: s
TYPE (blas_jrot_type), INTENT(IN), OPTIONAL :: jrot

e Fortran 77 binding;:

SUBROUTINE BLAS_xGEN_JROT(JROT, X, Y, Z, C, S)

INTEGER JROT
<rtype> C, X, Z
<type> S, Y

e C binding:

void BLAS_xgen_jrot(enum blas_jrot_type jrot, RSCALAR_INOUT x,
SCALAR_IN y, RSCALAR_INOUT z, RSCALAR_INOUT c,
SCALAR_INOUT s);

GEN_HOUSE (Generate Householder transform) (o, 2, 7) + house(a,),

The routine GEN_HOUSE generates an elementary reflector H of order n, such that

):(B)andHHH:I,

2.8. LANGUAGE BINDINGS 49

where a and f are scalars, and z is an (n — 1)-element vector. (3 is always a real scalar. H is
represented in the form

H=T—7(1)(1 o),

where 7 is a scalar and v is a (n — 1)-element vector. 7 is called the Householder scalar and

the Householder vector. Note that when x is a complex vector, H is not Hermitian. If the elements
of x are zero, and « is real, then 7 is equal to zero and H is taken to be the unit matrix. Otherwise,
the real part of 7 is greater than or equal to one and less than or equal to two. Moreover, the
absolute value of the quantity 7 — 1 is less than or equal to one.

On exit, the scalar argument alpha is overwritten with the value of the scalar 5. Similarly, the
vector argument x is overwritten with the vector v. If n is less than or equal to zero, this function
returns immediately with the output scalar tau set to zero. As described in section 2.5.3, the value
incx less than zero is permitted. However, if incx is equal to zero, an error flag is set and passed to
the error handler.

Advice to implementors. High-quality implementations of this routine GEN_HOUSE should
be accurate. The subroutines SLARFG and CLARFG of the LAPACK [1] software library are
examples of such an accurate implementation. High-quality implementations should docu-
ment the accuracy of the algorithms used in those functions so as to alleviate the portability
problems this represents. (End of advice to implementors.)

Advice to users. Routines to apply Householder transformations are not provided. The sub-
routines xORMyy of the LAPACK [1] software library are examples of such implementations.
(End of advice to users.)

e Fortran 95 binding:

SUBROUTINE gen_house(alpha, x, tau)
<type>(<wp>), INTENT (INOUT) :: alpha
<type>(<wp>), INTENT (INOUT) :: x(:)
<type>(<wp>), INTENT (OUT) :: tau

where
x has shape (n)

e Fortran 77 binding;:

SUBROUTINE BLAS_xGEN_HOUSE(N, ALPHA, X, INCX, TAU)

INTEGER INCX, N
<type> ALPHA, TAU
<type> X(*)

e C binding:

void BLAS_xgen_house(int n, SCALAR_INOUT alpha, ARRAY x, int incx,
SCALAR_INOUT tau);

50 CHAPTER 2. DENSE AND BANDED BLAS

2.8.4 Vector Operations
RSCALE (Reciprocal Scale) z < x/a

The routine RSCALE scales the entries of a vector = by the real scalar 1/c. The scalar « is
always real and supposed to be nonzero. This should be done without overflow or underflow as
long as the final result z/a does not overflow or underflow. If n is less than or equal to zero,
this routine returns immediately. As described in section 2.5.3, the value incx less than zero is
permitted. However, if incx is equal to zero or if alpha is equal to zero, an error flag is set and
passed to the error handler.

Advice to implementors. High-quality implementations of this routine RSCALE should be
accurate. The subroutine xRSCL of the LAPACK [1] software library is an example of such an
accurate implementation. High-quality implementations should document the accuracy of the
algorithms used in those functions so as to alleviate the portability problems this represents.
(End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE rscale(alpha, x)
REAL(<wp>), INTENT (IN) :: alpha
<type>(<wp>), INTENT (INOUT) :: x(:)

where
x has shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xRSCALE(N, ALPHA, X, INCX)

INTEGER INCX, N

<rtype> ALPHA

<type> X(%)
e C binding:

void BLAS_xrscale(int n, RSCALAR_IN alpha, ARRAY x, int incx);

AXPBY (Scaled vector accumulation) Yy — ax + By

The routine AXPBY scales the vector z by « and the vector y by 3, adds these two vectors to
one another and stores the result in the vector y. If n is less than or equal to zero, or if « is equal
to zero and (is equal to one, this routine returns immediately. As described in section 2.5.3, the
value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero, an
error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE axpby(x, y [, alphal [, betal])
<type>(<wp>), INTENT (IN) :: x(:)

2.8. LANGUAGE BINDINGS ol

<type>(<wp>), INTENT (INOUT) :: y(:)

<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
where

x and y have shape (n)

The default value for g is 1.0 or (1.0,0.0).

e Fortran 77 binding;:

SUBROUTINE BLAS_xAXPBY(N, ALPHA, X, INCX, BETA, Y, INCY)

INTEGER INCX, INCY, N

<type> ALPHA, BETA

<type> XC*), Y(*)
e C binding:

void BLAS_xaxpby(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY y, int incy);

WAXPBY (Scaled vector addition) w 4 ax + Py

The routine WAXPBY scales the vector by « and the vector y by 3, adds these two vectors
to one another and stores the result in the vector w. If n is less than or equal to zero, this routine
returns immediately. As described in section 2.5.3, the value incx or incy or incw less than zero is
permitted. However, if either incx or incy or incw is equal to zero, an error flag is set and passed to
the error handler.

e Fortran 95 binding;:

SUBROUTINE waxpby(x, y, w [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: x(:), y(:)
<type>(<wp>), INTENT (OUT) :: w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
X, y and w have shape (n)

The default value for g is 1.0 or (1.0,0.0).

e Fortran 77 binding;:

SUBROUTINE BLAS_xWAXPBY(N, ALPHA, X, INCX, BETA, Y, INCY, W, INCW)

INTEGER INCW, INCX, INCY, N
<type> ALPHA, BETA
<type> WC*), XC*x), Y(C *)

e C binding:

52 CHAPTER 2. DENSE AND BANDED BLAS

void BLAS_xwaxpby(int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, const ARRAY y, int incy, ARRAY w,
int incw);

AXPY_DOT (Combined AXPY and DOT) W w— av,r + T u

The routine combines an axpy and a dot product. w is decremented by a multiple of v. A dot
product is then computed with the decremented w.

Advice to implementors. Note that @w may be used to update r before it is written back
to memory. This optimization, which accelerates algorithms like modified Gram-Schmidt
orthogonalization, is the justification for AXPY_DOT, which could otherwise be implemented
by calls to AXPBY and DOT. (End of advice to implementors.)

If n is less than or equal to zero, this routine returns immediately. As described in section 2.5.3,
the value incw or incv or incu less than zero is permitted. However, if either incw or incv or incu is
equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding;:

SUBROUTINE axpy_dot(w, v, u, r [, alpha])
<type>(<wp>), INTENT (IN) :: v(:), u(:)
<type>(<wp>), INTENT (INOUT) :: w(:)
<type>(<wp>), INTENT (OUT) :: r
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha

where
u, v and w have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xAXPY_DOT(N, ALPHA, W, INCW, V, INCV, U, INCU,

$ R)
INTEGER INCW, INCV, INCU, N
<type> ALPHA, R
<type> WC*), VO *x), UC *)
e C binding:

void BLAS_xaxpy_dot(int n, SCALAR_IN alpha, ARRAY w, int incw,
const ARRAY v, int incv, const ARRAY u, int incu,
SCALAR_INOUT r);

APPLY_GROT (Apply plane rotation) (z y)«<(z y)R

2.8. LANGUAGE BINDINGS 93

The routine APPLY_GROT applies a plane rotation to the vectors z and y. When the vectors x
and y are real vectors, the scalars ¢ and s are real scalars. When the vectors and y are complex
vectors, c is a real scalar and s is a complex scalar. This routine computes

reomen(2)=(5 (%),

If n is less than or equal to zero or if ¢ is one and s is zero, the routine APPLY_GROT returns
immediately. As described in section 2.5.3, the value of incx or incy less than zero is permitted.
However, if incx or incy is equal to zero, an error flag is set and passed to the error handler.

e Fortran 95 binding;:

SUBROUTINE apply_grot(c, s, x, y)
REAL(<wp>), INTENT (IN) :: c
<type>(<wp>), INTENT (IN) :: s
<type>(<wp>), INTENT (INOUT) :: x(:), y(:)
where
x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xAPPLY_GROT(N, C, S, X, INCX, Y, INCY)

INTEGER INCX, INCY, N

<rtype> C

<type> S

<type> XC*), Y(*)
e C binding:

void BLAS_xapply_grot(int n, RSCALAR_IN c, SCALAR_IN s, ARRAY x, int incx,
ARRAY y, int incy);

2.8.5 Data Movement with Vectors
COPY (Vector copy) Yz

The routine COPY copies the vector x into the vector y. If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incy less than zero is
permitted. However, if either incx or incy is equal to zero, an error flag is set and passed to the
error handler.

e Fortran 95 binding;:

SUBROUTINE copy(x, y)
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (OUT) :: y(:)

where
x and y have shape (n)

o4 CHAPTER 2. DENSE AND BANDED BLAS

This is similar to the Fortran 95 assignment y=z.

e Fortran 77 binding:

SUBROUTINE BLAS_xCOPY(N, X, INCX, Y, INCY)

INTEGER INCX, INCY, N
<type> XC*), YO *)
e C binding:

void BLAS_xcopy(int n, const ARRAY x, int incx, ARRAY y, int incy);

SWAP (Swap) Yz

The routine SWAP interchanges the vectors x and y. If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incy less than zero is
permitted. However, if either incx or incy is equal to zero, an error flag is set and passed to the

error handler.
e Fortran 95 binding:

SUBROUTINE swap(x, y)

<type>(<wp>), INTENT (INOUT) :: x(:), y(:)
where

x and y have shape (n)

e Fortran 77 binding:

SUBROUTINE BLAS_xSWAP(N, X, INCX, Y, INCY)

INTEGER INCX, INCY, N
<type> XC*x), Y(*x)
e C binding:

void BLAS_xswap(int n, ARRAY x, int incx, ARRAY y, int incy);

SORT (Sort vector) x < sort(x)

The routine SORT sorts the entries of a real vector z in increasing or decreasing order and
overwrites this vector x with the sorted vector. If n is less than or equal to zero, the function
returns immediately. As described in section 2.5.3, the value incx less than zero is permitted.
However, if incx is equal to zero, an error flag is set and passed to the error handler.

Advice to users. The routine SORT strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

Advice to implementors. The subroutine xXLASRT of the LAPACK [1] software library is an
example of such a routine. (End of advice to implementors.)

2.8. LANGUAGE BINDINGS 95

e Fortran 95 binding: Refer to SORTYV specification

e Fortran 77 binding:

SUBROUTINE BLAS_xSORT(SORT, N, X, INCX)

INTEGER INCX, N, SORT
<rtype> X(*)
e C binding:

void BLAS_xsort(enum blas_sort_type sort, int n, RARRAY x, int incx);

SORTV (Sort vector & return index vector) (p, x) + sort(x)

The routine SORTV sorts the entries of a real vector z in increasing or decreasing order and
overwrites this vector x with the sorted vector (z = P * z). If n is less than or equal to zero, the
routine returns immediately. As described in section 2.5.3, the value incx or incp less than zero is
permitted. However, if either incx or incp is equal to zero, an error flag is set and passed to the
error handler.

The representation of the permutation vector p is described in section 2.2.6.

Advice to users. The routine SORTV strictly operates on real vectors. This routine is not
defined for complex vectors. (End of advice to users.)

e Fortran 95 binding;:

SUBROUTINE sortv(x [, sort]l [, pl)
REAL(<wp>), INTENT (INOUT) :: x(:)
TYPE (blas_sort_type), INTENT (IN), OPTIONAL :: sort
INTEGER, INTENT (OUT), OPTIONAL :: p(:)
where
x and p have shape (n)

The functionality of SORT is covered by SORTV.

e Fortran 77 binding;:

SUBROUTINE BLAS_xSORTV(SORT, N, X, INCX, P, INCP)

INTEGER INCP, INCX, N, SORT
INTEGER P(*)
<rtype> X(*)

e C binding:

void BLAS_xsortv(enum blas_sort_type sort, int n, RARRAY x, int incx,
int *p, int incp);

56 CHAPTER 2. DENSE AND BANDED BLAS

PERMUTE (Permute vector) x + Pz

The routine PERMUTE permutes the entries of a vector z according to the permutation vector
p. If n is less than or equal to zero, the routine returns immediately. As described in section 2.5.3,
the value incx or incp less than zero is permitted. However, if either incx or incp is equal to zero,
an error flag is set and passed to the error handler.

The encoding of the permutation P in the vector p follows the same conventions as the ones
described above for the routine SORTV. Refer to section 2.2.6 for complete details.

e Fortran 95 binding:

SUBROUTINE permute(x, p)
<type>(<wp>), INTENT (INOUT) :: x(:)
INTEGER, INTENT (IN) :: p(:)

where
x and p have shape (n)

e Fortran 77 binding;:

SUBROUTINE BLAS_xPERMUTE(N, P, INCP, X, INCX)

INTEGER INCP, INCX, N
INTEGER P(*)
<type> X(*)

The value of INCP may be positive or negative. A negative value of INCP applies the permu-
tation in the opposite direction.

e C binding:
void BLAS_xpermute(int n, const int *p, int incp, ARRAY x, int incx);

The value of incp may be positive or negative. A negative value of incp applies the permu-
tation in the opposite direction.

2.8.6 Matrix-Vector Operations

In the following section, op(X) denotes X, or X7 or X where X is a matrix.
{GE,GB}MV (Matrix vector product) y < aop(A)z + By

The routines perform a matrix vector multiply y < aop(A)z + By where o and [are scalars,
and A is a general (or general band) matrix. If m or n is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine GEMV, if Ida is less than
one, or trans = blas_no_trans and lda is less than m, or trans = blas_trans and lda is less than
n, an error flag is set and passed to the error handler. For the C bindings of GEMV, if order =
blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and passed to the

2.8. LANGUAGE BINDINGS o7

error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than m, an error
flag is set and passed to the error handler. For the routine GBMV, if kl or ku is less than zero, or
if Ida is less than kl plus ku plus one, an error flag is set and passed to the error handler. For the
C bindings of GBMV, if order = blas_rowmajor and if Ida is less than n, an error flag is set and
passed to the error handler; if order = blas_colmajor and if |da is less than kl plus ku plus one,
an error flag is set and passed to the error handler.

e Fortran 95 binding;:

SUBROUTINE gbmv(a, m, k1, x, y [, trans] [, alphal [, betal)
<type>(<wp>), INTENT(IN) :: a(:,:), x(:)
INTEGER, INTENT(IN) :: m, k1
<type>(<wp>), INTENT(INQUT) :: y(:)
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
if trans = blas_no_trans then
x has shape (n)
y has shape (m)
else if trans =/ blas_no_trans then
x has shape (m)
y has shape (n)
end if

The functionality of gemv is covered by gemm.

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGEMV(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
$ Y, INCY)

General Band:
SUBROUTINE BLAS_xGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA, X,

$ INCX, BETA, Y, INCY)
all:
INTEGER INCX, INCY, KL, KU, LDA, M, N, TRANS
<type> ALPHA, BETA
<type> ACLDA, *), X(Cx), Y(%)
e C binding:
General:

void BLAS_xgemv(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy);
General Band:
void BLAS_xgbmv(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, int k1, int ku, SCALAR_IN alpha, const ARRAY a,
int lda, const ARRAY x, int incx, SCALAR_IN beta,
ARRAY y, int incy);

o8 CHAPTER 2. DENSE AND BANDED BLAS

{SY,SB,SP}MV (Symmetric matrix vector product) y < oAz + By with A = AT

The routines multiply a vector x by a real or complex symmetric matrix A, scales the resulting
vector and adds it to the scaled vector operand y. If n or k is less than or equal to zero or if beta is
equal to one and alpha is equal to zero, this routine returns immediately. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine SYMV, if Ida is less than
one or |da is less than n, an error flag is set and passed to the error handler. For the routine SBMV,
if Ida is less than k plus one, an error flag is set and passed to the error handler. For the C bindings
for SBMV, if order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag
is set and passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida
is less than k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Symmetric Band:
SUBROUTINE sbmv(a, x, y [, uplo]l [, alphal [, betal)
Symmetric Packed:
SUBROUTINE spmv(ap, x, y [, uplo] [, alpha] [, betal)
all:
<type>(<wp>), INTENT(IN) :: <aa>, x(:)
<type>(<wp>), INTENT(INQUT) :: y(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
<aa> ::= a(:,:) or ap(:)
and
SB a has shape (k+1,n)
SP ap has shape (n*(n+1)/2)
x and y have shape (n)
(k=band width)

The funtionality of symv is covered by symm.

e Fortran 77 binding:

Symmetric:
SUBROUTINE BLAS_xSYMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY)
Symmetric Band:
SUBROUTINE BLAS_xSBMV(UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY)
Symmetric Packed:
SUBROUTINE BLAS_xSPMV(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
all:
INTEGER INCX, INCY, K, LDA, N, UPLO
<type> ALPHA, BETA
<type> AC LDA, *) or AP(*), X(*), Y(*x)

2.8. LANGUAGE BINDINGS 99

e C binding:

Symmetric:
void BLAS_xsymv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy);
Symmetric Band:
void BLAS_xsbmv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, SCALAR_IN alpha, const ARRAY a, int 1lda,
const ARRAY x, int incx, SCALAR_IN beta, ARRAY y, int incy);
Symmetric Packed:
void BLAS_xspmv(enum blas_order_type order, enum blas_uplo_type uplo, int n,
SCALAR_IN alpha, const ARRAY ap, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY y, int incy);

{HE,HB,HP}MV (Hermitian matrix vector product) y + aAzx + By with A = AH

The routines multiply a vector z by a Hermitian matrix A, scales the resulting vector and adds
it to the scaled vector operand y. If n is less than or equal to zero or if beta is equal to one and alpha
is equal to zero, this routine returns immediately. The imaginary part of the diagonal entries of
the matrix operand are supposed to be zero and should not be referenced. As described in section
2.5.3, the value incx or incy less than zero is permitted. However, if either incx or incy is equal to
zero, an error flag is set and passed to the error handler. For the routine HEMV, if Ida is less than
one or Ida is less than n, an error flag is set and passed to the error handler. For the routine HBMV,
if Ida is less than k plus one, an error flag is set and passed to the error handler. For the C bindings
for HBMV, if order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag
is set and passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida
is less than k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding;:

Hermitian Band:
SUBROUTINE hbmv(a, x, y [, uplo]l [, alphal [, betal)
Hermitian Packed:
SUBROUTINE hpmv(ap, x, y [, uplo] [, alphal] [, betal)
all:
COMPLEX (Kwp>), INTENT(IN) :: <aa>, x(:)
COMPLEX (<wp>) , INTENT(INOUT) :: y(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
COMPLEX (<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
<aa> ::= a(:,:) or ap(:)
and
HB a has shape (k+1,n)
HP ap has shape (n*(n+1)/2)
x and y have shape (n)
(k=band width)

60 CHAPTER 2. DENSE AND BANDED BLAS

The funtionality of hemv is covered by hemm.

e Fortran 77 binding:

Hermitian:
SUBROUTINE BLAS_xHEMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY)
Hermitian Band:
SUBROUTINE BLAS_xHBMV(UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA,
$ Y, INCY)
Hermitian Packed:
SUBROUTINE BLAS_xHPMV(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)

all:
INTEGER INCX, INCY, K, LDA, N, UPLD
<ctype> ALPHA, BETA
<ctype> AC LDA, *) or AP(*x), X(*), Y(*)
e C binding:
Hermitian:

void BLAS_xhemv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY x, int incx, CSCALAR_IN beta, CARRAY vy,
int incy);

Hermitian Band:

void BLAS_xhbmv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, CSCALAR_IN alpha, const CARRAY a, int 1lda,
const CARRAY x, int incx, CSCALAR_IN beta, CARRAY y,
int incy);

Hermitian Packed:

void BLAS_xhpmv(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY ap, const CARRAY x,
int incx, CSCALAR_IN beta, CARRAY y, int incy);

TR, TB, TPIMV (Triangular matrix vector product x4+ oTz, x — oTTz or x + oT
{TR,TB, g p ;

The routines multiply a vector = by a general triangular matrix T or its transpose, or its
conjugate transpose, and copies the resulting vector in the vector operand z. If n is less than or
equal to zero, this routine returns immediately. As described in section 2.5.3, the value incx less
than zero is permitted. However, if incx is equal to zero, an error flag is set and passed to the error
handler. For the routine TRMV, if Idt is less than one or Idt is less than n, an error flag is set and
passed to the error handler. For the routine TBMV, if Idt is less than k plus one, an error flag
is set and passed to the error handler. For the C bindings of TBMV, if order = blas_rowmajor
and if Idt is less than k plus one, an error flag is set and passed to the error handler; if order =
blas_colmajor and if Idt is less than one or Idt is less than n, an error flag is set and passed to the
error handler.

e Fortran 95 binding;:

2.8. LANGUAGE BINDINGS 61

Triangular Band:
SUBROUTINE tbmv(t, x [, uplo] [, trans] [, diagl [, alphal)
Triangular Packed:
SUBROUTINE tpmv(tp, x [, uplo] [, trans] [, diagl [, alphal)
all:
<type>(<wp>), INTENT(IN) :: <tt>
<type>(<wp>), INTENT(INOUT) :: x(:)
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
where
<tt> = t(:,:) or tp(:)
and
TB t has shape (k+1,n)
TP tp has shape (n*(n+1)/2)
x has shape (n)
(k=band width)

The funtionality of trmv is covered by trmm.

e Fortran 77 binding:

Triangular:
SUBROUTINE BLAS_xTRMV(UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,
$ INCX)
Triangular Band:
SUBROUTINE BLAS_xTBMV(UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,
$ X, INCX)
Triangular Packed:
SUBROUTINE BLAS_xTPMV(UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX)

all:
INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO
<type> ALPHA
<type> T(LDT, *) or TP(*), X(*)
e C binding:
Triangular:

void BLAS_xtrmv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag, int n,
SCALAR_IN alpha, const ARRAY t, int 1dt, ARRAY x, int incx);
Triangular Band:
void BLAS_xtbmv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag, int n,
int k, SCALAR_IN alpha, const ARRAY t, int 1ldt, ARRAY x,
int incx);
Triangular Packed:

62 CHAPTER 2. DENSE AND BANDED BLAS

void BLAS_xtpmv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag, int n,
SCALAR_IN alpha, const ARRAY tp, ARRAY x, int incx);

GE_SUM_MV (Summed matrix vector multiplies) y < oAz + BBz

This routine adds the product of two scaled matrix vector products. It can be used to compute
the residual of an approximate eigenvector and eigenvalue of the generalized eigenvalue problem
Axx = AxBxx. If mor n is less than or equal to zero, then this routine returns immediately.
As described in section 2.5.3, the value incx or incy less than zero is permitted. However, if incx
or incy is equal to zero, an error flag is set and passed to the error handler. If Ida is less than one
or Ida is less than m, or Idb is less than one or Idb is less than m, an error flag is set and passed
to the error handler. For the C bindings for GE_.SUM_MV, if order = blas_rowmajor and if Ida is
less than one or Ida is less than n, or if Idb is less than one or Idb is less than n, an error flag is set
and passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less
than m, or if Idb is less than one or Idb is less than m, an error flag is set and passed to the error
handler.

e Fortran 95 binding;:

SUBROUTINE ge_sum_mv(a, x, b, y [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: a(:,:), b(:,:)
<type>(<wp>), INTENT (IN) :: x(:)
<type>(<wp>), INTENT (OUT) :: y(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
x has shape (n);

y has shape (m);
a and b have shape (m,n) for general matrices

e Fortran 77 binding;:

SUBROUTINE BLAS_xGE_SUM_MV(M, N, ALPHA, A, LDA, X, INCX, BETA,

$ B, LDB, Y, INCY)
INTEGER INCX, INCY, LDA, LDB, M, N
<type> ALPHA, BETA
<type> AC LDA, *), BCLDB, *), X(*), Y(x)
e C binding:

void BLAS_xge_sum_mv(enum blas_order_type order, int m, int n,
SCALAR_IN alpha, const ARRAY a, int lda,
const ARRAY x, int incx, SCALAR_IN beta,
const ARRAY B, int 1db, ARRAY y, int incy);

GEMVT (Multiple matrix vector multiplies) z +— BATYy 4+ z,w +— aAx

2.8. LANGUAGE BINDINGS 63

The routine combines a matrix vector and a transposed matrix vector multiply. It multiplies a
vector y by a general matrix AT, scales the resulting vector and adds the result to z, storing the
result in the vector operand z. It then multiplies the matrix A by z, scales the resulting vector
and stores it in the vector operand w.

Advice to implementors. Note that and w may be computed while passing A through the
top of the memory just once. This optimization, which accelerates algorithms like reducing a
symmetric matrix to tridiagonal form, is the justification for GEMVT, which could otherwise
be implemented by two calls to GEMV. (End of advice to implementors.)

If m or n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error flag is set and passed to the error handler. If Ida is less than
one or Ida is less than m, an error flag is set and passed to the error handler. For the C bindings,
if order = blas_rowmajor and if Ida is less than one or lda is less than n, an error flag is set and
passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than
m, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE gemvt(a, x, y, w, z [, alphal [, beta])
<type>(<wp>), INTENT (IN) :: a(:,:)
<type>(<wp>), INTENT (IN) :: y(:), z(:)
<type>(<wp>), INTENT (OUT) :: x(:), w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta
where
w and y have shape (m);
x and z have shape (n);
a has shape (m,n) for general matrix

e Fortran 77 binding:

SUBROUTINE BLAS_xGEMVT(M, N, ALPHA, A, LDA, X, INCX, Y, INCY,

$ BETA, W, INCW, Z, INCZ)
INTEGER INCW, INCX, INCY, INCZ, LDA, M, N
<type> ALPHA, BETA
<type> ACLDA, *), XC*), YC*x), WC*), Z(*)
e C binding:

void BLAS_xgemvt(enum blas_order_type order, int m, int n, SCALAR_IN alpha,
const ARRAY a, int 1lda, ARRAY x, int incx, const ARRAY y,
int incy, SCALAR_IN beta, ARRAY w, int incw, const ARRAY z,
int incz);

TRMVT (Multiple triangular matrix vector product) x4 TTy and w < Tz

The routine combines a matrix vector and a transposed matrix vector multiply. It multiplies
a vector y by a triangular matrix 77, storing the result as z. It also multiplies the matrix by the
vector z, storing the result as w.

64 CHAPTER 2. DENSE AND BANDED BLAS

Advice to implementors. Note that z and w may be computed while passing T through the
top of the memory just once. This optimization, which accelerates algorithms like reducing a
symmetric matrix to tridiagonal form, is the justification for TRMVT, which could otherwise
be implemented by two calls to TRMV. (End of advice to implementors.)

If n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error flag is set and passed to the error handler. If Idt is less than
one or ldt is less than n, an error flag is set and passed to the error handler.

e Fortran 95 binding;:

SUBROUTINE trmvt(t, x, y, w, z [, uplo])
<type>(<wp>), INTENT (IN) :: t(:,:)
<type>(<wp>), INTENT (IN) :: y(:), z(:)
<type>(<wp>), INTENT (OUT) :: x(:), w(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
where
W, X, y and z have shape (n);
t has shape (n,n).

e Fortran 77 binding;:

SUBROUTINE BLAS_xTRMVT(UPLO, N, T, LDT, X, INCX, Y, INCY, W, INCW,

$ Z, INCZ)
INTEGER INCW, INCX, INCY, INCZ, LDT, N, UPLO
<type> TC LDT, *), WC *), XC*), YC*), Z(x)
e C binding:

void BLAS_xtrmvt(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY t, int 1dt, ARRAY x, int incx,
const ARRAY y, int incy, ARRAY w, int incw, const ARRAY z,
int incz);

GEMVER (Multiple matrix vector multiply with a rank 2 update)
A A4 uo! +ugel and 2+ BATYy + z and w + aAz

The routine precedes a combined matrix vector and a transposed matrix vector multiply by a
rank two update. A matrix A is updated by ujv{ and usvl. The transpose of the updated matrix
is multiplied by a vector y. The resulting vector is scaled and added to the vector operand z, and
stored in z . The operand z is multiplied by the updated matrix A. The resulting vector is scaled
and stored as w.

Advice to implementors. Note that A, z and w may be computed while passing A through the
top of the memory just once. This optimization, which accelerates algorithms like reducing
a general matrix to bidiagonal form, is the justification for GEMVER, which could otherwise
be implemented by calls to other BLAS routines. (End of advice to implementors.)

2.8. LANGUAGE BINDINGS 65

If m or n is less than or equal to zero, this function returns immediately. As described in section
2.5.3, the value incx or incy or incw or incz less than zero is permitted. However, if either incx, incy,
incw, or incz is equal to zero, an error flag is set and passed to the error handler. If Ida is less than
one or Ida is less than m, an error flag is set and passed to the error handler. For the C bindings,
if order = blas_rowmajor and if Ida is less than one or lda is less than n, an error flag is set and
passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than
m, an error flag is set and passed to the error handler.

e Fortran 95 binding:

SUBROUTINE gemver(a, ul, vi, u2, v2, x, y, z, w [, alphal [, betal)
<type>(<wp>), INTENT (IN) :: ul(:), u2(:), vi(:), v2(:), y(:), z(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:), x(:)
<type>(<wp>), INTENT (OUT) :: w(:)
<type>(<wp>), INTENT (IN), OPTIONAL :: alpha, beta

where
ul, u2, w and y have shape (m);

vl, v2, x and z have shape (n);
a has shape (m,n).

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGEMVER(M, N, A, LDA, U1, Vi, U2, V2, ALPHA, X,
$ INCX, Y, INCY, BETA, W, INCW, Z, INCZ)
INTEGER INCW, INCX, INCY, INCZ, LDA, M, N
<type> ALPHA, BETA
<type> UL(*), V1(*), U2(*), V2(*)
<type> ACLDA, *), W(C*), XC*x), Y(C*x), Z()
e C binding:
General:

void BLAS_xgemver (enum blas_order_type order, int m, int n, ARRAY a,
int lda, const ARRAY ul, const ARRAY vi,
const ARRAY u2, const ARRAY v2, SCALAR_IN alpha,
ARRAY x, int incx, const ARRAY y, int incy, ARRAY w,
int incw, SCALAR_IN beta, const ARRAY z, int incz);

{TR,TB,TP}SV (Triangular solve) z—al 'z, c—al Tx

These routines solve one of the systems of equations z <+ oT 'z or z + aT~ 'z, where z is
a vector and the matrix 7" is a unit, non-unit, upper or lower triangular (or triangular banded or
triangular packed) matrix. If n is less than or equal to zero, this function returns immediately. As
described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error flag is set and passed to the error handler. For TRSV, if Idt is less than one or Idt is
less than n, an error flag is set and passed to the error handler. For TBSV, if Idt is less than one or

66 CHAPTER 2. DENSE AND BANDED BLAS

|dt is less than k plus one, an error flag is set and passed to the error handler. For the C bindings
for TBSV, if order = blas_rowmajor and if Idt is less than one or Idt is less than n, an error flag
is set and passed to the error handler; if order = blas_colmajor and if Idt is less than one or Idt
is less than k plus one, an error flag is set and passed to the error handler.

Advice to implementors. Note that no check for singularity, or near singularity is specified
for these triangular equation-solving routines. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver. (End of advice to implementors.)

e Fortran 95 binding;:

Triangular Band:
SUBROUTINE tbsv(t, x [, uplo] [, tramns] [, diag]l [, alphal])
Triangular Packed:
SUBROUTINE tpsv(tp, x [, uplo]l [, trans] [, diag] [, alphal)
all:
<type>(<wp>), INTENT(IN) :: <tt>
<type>(<wp>), INTENT(INQUT) :: x(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
where
<tt> ::=t(:,:) or tp(:)
and
x has shape (n)
TB t has shape (k+1,n)
TP tp has shape (n*(n+1)/2)
(k=band width)

The funtionality of trsv is covered by trsm.

e Fortran 77 binding;:

Triangular:
SUBROUTINE BLAS_xTRSV(UPLO, TRANS, DIAG, N, ALPHA, T, LDT, X,
$ INCX)
Triangular Band:
SUBROUTINE BLAS_xTBSV(UPLO, TRANS, DIAG, N, K, ALPHA, T, LDT,
$ X, INCX)
Triangular Packed:
SUBROUTINE BLAS_xTPSV(UPLO, TRANS, DIAG, N, ALPHA, TP, X, INCX)

all:
INTEGER DIAG, INCX, K, LDT, N, TRANS, UPLO
<type> ALPHA
<type> T(LDT, *) or TP(*), X(*)

e C binding:

2.8. LANGUAGE BINDINGS 67

Triangular:

void BLAS_xtrsv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, SCALAR_IN alpha, const ARRAY t, int 1dt,
ARRAY x, int incx);

Triangular Band:

void BLAS_xtbsv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, int k, SCALAR_IN alpha, const ARRAY t, int 1dt,
ARRAY x, int incx);

Triangular Packed:

void BLAS_xtpsv(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, enum blas_diag_type diag,
int n, SCALAR_IN alpha, const ARRAY tp, ARRAY x,
int incx);

GER (Rank one update) A € IR"Z,A —aryl +BA A€ @”2, A — azyl + A or A — azy + A

This routine performs the rank 1 operation A < axy’ + A where « and f are scalars, « and
y are vectors, and and A is a matrix. If m or n is less than or equal to zero or if beta is equal to
one and alpha is equal to zero, this function returns immediately. As described in section 2.5.3,
the value incx or incy less than zero is permitted. However, if either incx or incy is equal to zero,
an error flag is set and passed to the error handler. If Ida is less than one or Ida is less than m, an
error flag is set and passed to the error handler. For the C bindings, if order = blas_rowmajor
and if Ida is less than one or Ida is less than n, an error flag is set and passed to the error handler;
if order = blas_colmajor and if Ida is less than one or Ida is less than m, an error flag is set and
passed to the error handler.

The operator argument conj is only referenced when x and y are complex vectors. When z and
y are complex vectors, the vector components y; are used unconjugated or conjugated as specified
by the operator argument conj.

e Fortran 95 binding: Refer to GEMM specification

e Fortran 77 binding;:

SUBROUTINE BLAS_xGER(CONJ, M, N, ALPHA, X, INCX, Y, INCY, BETA,

$ A, LDA)
INTEGER CONJ, INCX, INCY, LDA, M, N
<type> ALPHA, BETA
<type> ACLDA, *), X(C*x), Y(x)
e C binding:

void BLAS_xger(enum blas_order_type order, enum blas_conj_type conj,
int m, int n, SCALAR_IN alpha, const ARRAY x, int incx,
const ARRAY y, int incy, SCALAR_IN beta, ARRAY a, int lda);

68 CHAPTER 2. DENSE AND BANDED BLAS

{SY,SP}R (Symmetric Rank One Update) A+ azz’ + BA with A = AT

The routine performs the symmetric rank-1 update A = azz? + A, where a and f3 are scalars,
x is a vector and A is a symmetric (symmetric packed) matrix. This routine returns immediately
if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero. As described in
section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to zero, an error
flag is set and passed to the error handler. If Ida is less than one or Ida is less than n, an error flag
is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routines xSYR and xSPR with added functionality
for complex symmetric matrices.

e Fortran 95 binding:

Symmetric Packed:

SUBROUTINE spr(x, ap [, uplo] [, trans] [, alphal [, beta])

<type>(<wp>), INTENT(IN) :: x(:)

<type>(<wp>), INTENT(INQUT) :: ap(:)

TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where

x has shape (n)

ap has shape (n*(n+1)/2)

The functionality of syr is covered by syrk.

e Fortran 77 binding:

Symmetric:

SUBROUTINE BLAS_xSYR(UPLO, N, ALPHA, X, INCX, BETA, A, LDA)
Symmetric Packed:

SUBROUTINE BLAS_xSPR(UPLO, N, ALPHA, X, INCX, BETA, AP)

all:
INTEGER INCX, LDA, N, UPLO
<type> ALPHA, BETA
<type> AC LDA, *) or AP(*), X(*)
e C binding:
Symmetric:

void BLAS_xsyr(enum blas_order_type order, enum blas_uplo_type uplo,
int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY a, int 1lda);

Symmetric Packed:

void BLAS_xspr(enum blas_order_type order, enum blas_uplo_type uplo,
int n, SCALAR_IN alpha, const ARRAY x, int incx,
SCALAR_IN beta, ARRAY ap);

2.8. LANGUAGE BINDINGS 69

{HE,HP}R (Hermitian Rank One Update) A azzf + BA with A = AH

The routine performs the Hermitian rank-1 update A = azz + SA, where o and 3 are real
scalars, z is a complex vector and A is a Hermitian (Hermitian packed) matrix. This routine returns
immediately if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero.
As described in section 2.5.3, the value incx less than zero is permitted. However, if incx is equal to
zero, an error flag is set and passed to the error handler. If Ida is less than one or Ida is less than
n, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Hermitian Packed:

SUBROUTINE hpr(x, ap [, uplo] [, trans] [, alphal [, beta])
COMPLEX (<wp>), INTENT(IN) :: x(:)
COMPLEX (<wp>) , INTENT(INOUT) :: ap(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
REAL (<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
x has shape (n)
ap has shape (n*(n+1)/2)

The functionality of her is covered by herk.

e Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHER(UPLO, N, ALPHA, X, INCX, BETA, A, LDA)
Hermitian Packed:

SUBROUTINE BLAS_xHPR(UPLO, N, ALPHA, X, INCX, BETA, AP)

all:
INTEGER INCX, LDA, N, UPLO
<rtype> ALPHA, BETA
<ctype> AC LDA, *) or AP(*), X(*)
e C binding:
Hermitian:

void BLAS_xher(enum blas_order_type order, enum blas_uplo_type uplo,
int n, RSCALAR_IN alpha, const CARRAY x, int incx,
RSCALAR_IN beta, CARRAY a, int 1lda);

Hermitian Packed:

void BLAS_xhpr(enum blas_order_type order, enum blas_uplo_type uplo,
int n, RSCALAR_IN alpha, const CARRAY x, int incx,
RSCALAR_IN beta, CARRAY ap);

70 CHAPTER 2. DENSE AND BANDED BLAS

{SY,SP}R2 (Symmetric Rank two update) A azy” + ayz” + BA with A = AT

The routine performs the symmetric rank-2 update A = azy’ + ayz’ + BA, where a and S
are scalars, x is a vector and A is a symmetric (symmetric packed) matrix. This routine returns
immediately if n is less than or equal to zero or if beta is equal to one and alpha is equal to zero.
As described in section 2.5.3, the value incx or incy less than zero is permitted. However, if either
incx or incy is equal to zero, an error flag is set and passed to the error handler. If |da is less than
one or lda is less than n, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routines xSYR2 and xSPR2 with added function-
ality for complex symmetric matrices.

e Fortran 95 binding;:

Symmetric Packed:
SUBROUTINE spr2(x, y, ap [, uplo]l [, trans] [, alphal [, betal)
<type>(<wp>), INTENT(IN) :: x(:), y(:)
<type>(<wp>), INTENT(INOUT) :: ap(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
x and y have shape (n)
ap has shape (nx(n+1)/2)

The functionality of syr2 is covered by syr2k.

e Fortran 77 binding:

Symmetric:
SUBROUTINE BLAS_xSYR2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A,
$ LDA)

Symmetric Packed:
SUBROUTINE BLAS_xSPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA,

$ AP)
all:
INTEGER INCX, LDA, N, UPLO
<type> ALPHA, BETA
<type> ACLDA, *) or AP(*), X(*), Y(*)
e C binding:
Symmetric:

void BLAS_xsyr2(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,

const ARRAY y, int incy, SCALAR_IN beta, ARRAY a, int lda);
Symmetric Packed:
void BLAS_xspr2(enum blas_order_type order, enum blas_uplo_type uplo,

int n, SCALAR_IN alpha, const ARRAY x, int incx,

const ARRAY y, int incy, SCALAR_IN beta, ARRAY ap);

2.8. LANGUAGE BINDINGS 71

{HE,HP}R2 (Hermitian Rank two update) A azy™ + ayz™ + BA with A = A7

The routine performs the Hermitian rank-2 update A = azy™ + ayz™ + SA, where « is a
complex scalar and and f is a real scalar, z and y are complex vectors and A is a Hermitian
(Hermitian packed) matrix. This routine returns immediately if n is less than or equal to zero or
if beta is equal to one and alpha is equal to zero. As described in section 2.5.3, the value incx or
incy less than zero is permitted. However, if either incx or incy is equal to zero, an error flag is set
and passed to the error handler. If Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler.

e Fortran 95 binding:

Hermitian Packed:

SUBROUTINE hpr2(x, y, ap [, uplo] [, trans] [, alphal [, betal)
COMPLEX (<wp>), INTENT(IN) :: x(:), y(:)
COMPLEX (<wp>), INTENT(INOUT) :: ap(:)
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: trans
COMPLEX (<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
x and y have shape (n)
ap has shape (n*(n+1)/2)

The functionality of her2 is covered by her2k.

e Fortran 77 binding:

Hermitian:
SUBROUTINE BLAS_xHER2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA, A,
$ LDA)

Hermitian Packed:
SUBROUTINE BLAS_xHPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, BETA,

$ AP)
all:
INTEGER INCX, LDA, N, UPLO
<ctype> ALPHA
<rtype> BETA
<ctype> AC LDA, *) or AP(*), X(*), Y(*x)
e C binding:
Hermitian:

void BLAS_xher2(enum blas_order_type order, enum blas_uplo_type uplo,
int n, CSCALAR_IN alpha, const CARRAY x, int incx,
const CARRAY y, int incy, RSCALAR_IN beta, CARRAY a,
int 1lda);

Hermitian Packed:

void BLAS_xhpr2(enum blas_order_type order, enum blas_uplo_type uplo,

72 CHAPTER 2. DENSE AND BANDED BLAS

int n, CSCALAR_IN alpha, const CARRAY x, int incx,
const CARRAY y, int incy, RSCALAR_IN beta, CARRAY ap);

2.8.7 Matrix Operations
{GE,GB,SY,HE,SB,HB,SP,HP,TR,TB,TP}_.NORM (Matrix norms)
r < |[A[l1, [|Allir, [[AllF, [[Alloos [[Allsors |Allmazs or ||Allmaer

These routines compute the one-norm, real one-norm, Frobenius-norm, infinity-norm, real
infinity-norm, max-norm, or real max-norm of a general matrix A depending on the value passed
as the norm operator argument. This routine returns immediately with the output scalar r set to
zero if m (for nonsymmetric matrices) or n or kl or ku (for band matrices) or k (for symmetric
band matrices) is less than or equal to zero. The resulting scalar r is always real and as defined in
section 2.1.3. If norm = blas_two_norm, requesting the two-norm of a matrix, an error flag is set
and passed to the error handler. The only exception to this rule is if the matrix is a single column
or a single row, whereby the Frobenius-norm is returned since the two-norm and Frobenius-norm
of a vector are identical. For the routine GE_NORM, if Ida is less than one or Ida is less than m,
an error flag is set and passed to the error handler. For the C bindings of GE_LNORM, if order
= blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and passed
to the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than m,
an error flag is set and passed to the error handler. For the routine GB_NORM, if Ida is less than
kl plus ku plus one, an error flag is set and passed to the error handler. For the C bindings of
GB_NORM, if order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag
is set and passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida
is less than kl plus ku plus one, an error flag is set and passed to the error handler. For the routines
SY_NORM, HE_NORM, and TR_NORM, if Ida is less than one or Ida is less than n, an error flag is
set and passed to the error handler. For the routines SB_LNORM, HB_NORM, and TB_NORM, if Ida
is less than k plus one, an error flag is set and passed to the error handler. For the C bindings of
SB_NORM, HB_NORM, and TB_NORM, if order = blas_rowmajor and if Ida is less than one or
|da is less than n, an error flag is set and passed to the error handler; if order = blas_colmajor
and if Ida is less than one or Ida is less than k plus one, an error flag is set and passed to the error
handler.

Advice to implementors. High-quality implementations of these routines should be accu-
rate. The subroutines SLANGB, SLANGE, SLANGT, SLANHS, SLANSB, SLANSP, SLANST,
SLANSY, SLANTB, SLANTP, and SLANTR, of the LAPACK [1] software library are examples
of accurate implementations. High-quality implementations should document the accuracy of
the algorithms used in this routine so as to alleviate the portability problems this represents.
(End of advice to implementors.)

e Fortran 95 binding;:

General:

REAL (<wp>) FUNCTION ge_norm(a [, norm])
General Band:

REAL (<wp>) FUNCTION gb_norm(a, m, k1 [, norm])

2.8. LANGUAGE BINDINGS

Symmetric:
REAL (<wp>) FUNCTION sy_norm(a [, norm] [, uplo])
Hermitian:
REAL (<wp>) FUNCTION he_norm(a [, norm] [, uplo]l)
Symmetric Band:
REAL (<wp>) FUNCTION sb_norm(a [, norm] [, uplo])
Hermitian Band:
REAL (<wp>) FUNCTION hb_norm(a [, norm] [, uplo])
Symmetric Packed:
REAL (<wp>) FUNCTION sp_norm(ap [, norm] [, uplo])
Hermitian Packed:
REAL (Kwp>) FUNCTION hp_norm(ap [, norm] [, uplo])
Triangular:
REAL (<wp>) FUNCTION tr_norm(a [, norm] [, uplo] [, diag])
Triangular Band:
REAL (<wp>) FUNCTION tb_norm(a [, norm] [, uplo] [, diag])
Triangular Packed:
REAL (<wp>) FUNCTION tp_norm(ap [, norm] [, uplo] [, diag]l)
all:
<type>(<wp>), INTENT (IN) :: a(:,:) | ap(:)
INTEGER, INTENT (IN) :: m, k1
TYPE (blas_norm_type), INTENT (IN), OPTIONAL :: norm
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
TYPE (blas_diag_type), INTENT (IN), OPTIONAL :: diag
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
(n,n) for symmetric, Hermitian or triangular
(k+1,n) for symmetric banded, Hermitian banded
or triangular banded (k=band width)
ap has shape (nx(n+1)/2).

e Fortran 77 binding:

General:

<rtype> FUNCTION BLAS_xGE_NORM(NORM, M, N, A, LDA)
General Band:

<rtype> FUNCTION BLAS_xGB_NORM(NORM, M, N, KL, KU, A, LDA)
Symmetric:

<rtype> FUNCTION BLAS_xSY_NORM(NORM, UPLO, N, A, LDA)
Hermitian:

<rtype> FUNCTION BLAS_xHE_NORM(NORM, UPLO, N, A, LDA)
Symmetric Band:

<rtype> FUNCTION BLAS_xSB_NORM(NORM, UPLO, N, K, A, LDA)
Hermitian Band:

<rtype> FUNCTION BLAS_xHB_NORM(NORM, UPLO, N, K, A, LDA)
Symmetric Packed:

<rtype> FUNCTION BLAS_xSP_NORM(NORM, UPLO, N, AP)

74

Hermitian Packed:

CHAPTER 2. DENSE AND BANDED BLAS

<rtype> FUNCTION BLAS_xHP_NORM(NORM, UPLO, N, AP)
Triangular:

<rtype> FUNCTION BLAS_xTR_NORM(NORM, UPLO, DIAG, N, A, LDA)
Triangular Band:

<rtype> FUNCTION BLAS_xTB_NORM(NORM, UPLO, DIAG, N, K, A, LDA)
Triangular Packed:

<rtype> FUNCTION BLAS_xTP_NORM(NORM, UPLO, DIAG, N, AP)
all:

INTEGER DIAG, K, KL, KU, LDA, M, N, NORM, UPLO

<type> AC LDA, *) or AP(*)
C binding:
General:

void BLAS_xge_norm(
General Band:

void BLAS_xgb_norm(

Symmetric:
void BLAS_xsy_norm(

Hermitian:
void BLAS_xhe_norm(

Symmetric Band:
void BLAS_xsb_norm(

Hermitian Band:
void BLAS_xhb_norm(

Symmetric Packed:
void BLAS_xsp_norm(

Hermitian Packed:
void BLAS_xhp_norm(

Triangular:
void BLAS_xtr_norm(

enum blas_order_type order, enum
int m, int n, const ARRAY a, int

enum blas_order_type order, enum

blas_norm_type norm,

lda, RSCALAR_INQOUT r);

blas_norm_type norm,

int m, int n, int k1, int ku, const ARRAY a, int 1lda,

RSCALAR_INQUT r);

enum blas_order_type order, enum
enum blas_uplo_type uplo, int n,
int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum
enum blas_uplo_type uplo, int n,
int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum
enum blas_uplo_type uplo, int n,
int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum
enum blas_uplo_type uplo, int n,
int 1da, RSCALAR_INOUT r);

enum blas_order_type order, enum
enum blas_uplo_type uplo, int n,
RSCALAR_INOUT r);

enum blas_order_type order, enum
enum blas_uplo_type uplo, int n,

RSCALAR_INQUT r);

enum blas_order_type order, enum

blas_norm_type norm,
const ARRAY a,

blas_norm_type norm,
const CARRAY a,

blas_norm_type norm,
int k, const ARRAY a,

blas_norm_type norm,

int k, const CARRAY a,

blas_norm_type norm,
const ARRAY ap,

blas_norm_type norm,
const CARRAY ap,

blas_norm_type norm,

enum blas_uplo_type uplo, enum blas_diag_type diag,

2.8. LANGUAGE BINDINGS 75

int n, const ARRAY a, int lda, RSCALAR_INOUT r);
Triangular Band:
void BLAS_xtb_norm(enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,
int n, int k, const ARRAY a, int lda, RSCALAR_INOUT r);
Triangular Packed:
void BLAS_xtp_norm(enum blas_order_type order, enum blas_norm_type norm,
enum blas_uplo_type uplo, enum blas_diag_type diag,
int n, const ARRAY ap, RSCALAR_INOUT r);

{GE,GB}_DIAG_SCALE (Diagonal scaling) A+ DA, AD with D diagonal

These routines scale a general (or banded) matrix A on the left side or the right side by a
diagonal matrix D. This routine returns immediately if m or n or kl or ku (for band matrices) is
less than or equal to zero. As described in section 2.5.3, the value incd less than zero is permitted.
However, if incd is equal to zero, an error flag is set and passed to the error handler. For the
routine GE_DIAG_SCALE, if Ida is less than one or Ida is less than m, an error flag is set and passed
to the error handler. For the C bindings of GE_LDIAG_SCALE, if order = blas_rowmajor and if |da
is less than one or Ida is less than n, an error flag is set and passed to the error handler; if order
= blas_colmajor and if Ida is less than one or Ida is less than m, an error flag is set and passed
to the error handler. For the routine GB_DIAG_SCALE, if Ida is less than kl plus ku plus one, an
error flag is set and passed to the error handler. For the C bindings of GB_DIAG_SCALE, if order
= blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and passed to
the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than kI plus
ku plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding;:

General:
SUBROUTINE ge_diag_scale(d, a [, sidel])
General Band:
SUBROUTINE gb_diag_scale(d, a, m, k1 [, side])
all:
<type>(<wp>), INTENT (IN) :: d(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:)
INTEGER, INTENT (IN) :: m, k1l
TYPE (blas_side_type), INTENT (IN), OPTIONAL :: side
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
d has shape (p) where p = m if side = blas_left_side
p = n if side = blas_right_side

e Fortran 77 binding;:

General:
SUBROUTINE BLAS_xGE_DIAG_SCALE(SIDE, M, N, D, INCD, A, LDA)

76 CHAPTER 2. DENSE AND BANDED BLAS

General Band:
SUBROUTINE BLAS_xGB_DIAG_SCALE(SIDE, M, N, KL, KU, D, INCD, A,

$ LDA)
all:
INTEGER INCD, KL, KU, LDA, M, N, SIDE
<type> AC LDA, *), D(*)
e C binding:
General:

void BLAS_xge_diag_scale(enum blas_order_type order,
enum blas_side_type side, int m, int n,
const ARRAY d, int incd, ARRAY a, int 1lda);
General Band:
void BLAS_xgb_diag_scale(enum blas_order_type order,
enum blas_side_type side, int m, int n, int k1,
int ku, const ARRAY d, int incd, ARRAY a, int 1lda);

{GE,GB}_.LRSCALE (Two-sided diagonal scaling) A<« D ADp

These routines scale a general (or banded) matrix A on the left side by a diagonal matrix Dy,
and on the right side by a diagonal matrix Dpg. This routine returns immediately if m or n or kl or
ku (for band matrices) is less than or equal to zero. As described in section 2.5.3, the value incdl or
incdr less than zero is permitted. However, if either incdl or incdr is equal to zero, an error flag is set
and passed to the error handler. For the routine GE_LRSCALE, if Ida is less than one or Ida is less
than m, an error flag is set and passed to the error handler. For the C bindings of GE_LRSCALE,
if order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than
m, an error flag is set and passed to the error handler. For the routine GB_.LRSCALE, if Ida is less
than kI plus ku plus one, an error flag is set and passed to the error handler. For the C bindings of
GB_LRSCALE, if order = blas rowmajor and if Ida is less than one or Ida is less than n, an error
flag is set and passed to the error handler; if order = blas_colmajor and if Ida is less than one or
|da is less than kl plus ku plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding;:

General:
SUBROUTINE ge_lrscale(dl, dr, a)
General Band:
SUBROUTINE gb_lrscale(dl, dr, a, m, k1)
all:
<type>(<wp>), INTENT (IN) :: d1(:), dr(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:)
INTEGER, INTENT (IN) :: m, kl
where
a has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > kl)

2.8. LANGUAGE BINDINGS 77

dl has shape (m)
dr has shape (n)

e Fortran 77 binding:

General:

SUBROUTINE BLAS_xGE_LRSCALE(M, N, DL, INCDL, DR, INCDR, A, LDA)
General Band:

SUBROUTINE BLAS_xGB_LRSCALE(M, N, KL, KU, DL, INCDL, DR, INCDR,

$ A, LDA)
all:
INTEGER INCDL, INCDR, KL, KU, LDA, M, N
<type> AC LDA, *), DL(*), DR(*)
e C binding:
General:

void BLAS_xge_lrscale(enum blas_order_type order, int m, int n,
const ARRAY dl, int incdl, const ARRAY dr,
int incdr, ARRAY a, int lda);

General Band:

void BLAS_xgb_lrscale(enum blas_order_type order, int m, int n, int kI,
int ku, const ARRAY dl, int incdl, const ARRAY dr,
int incdr, ARRAY a, int lda);

{SY,SB,SP}_.LRSCALE (Two-sided diagonal scaling of a symmetric matrix)
A« DAD with A = AT

These routines perform a two-sided scaling of a symmetric (or symmetric banded or symmetric
packed) matrix A by a diagonal matrix D. This routine returns immediately if n or k (for symmetric
band matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than
zero is permitted. However, if incd is equal to zero, an error flag is set and passed to the error
handler. For the routines SY_LRSCALE and SP_LRSCALE, if Ida is less than one or Ida is less than n,
an error flag is set and passed to the error handler. For the routine SB_LRSCALE, if Ida is less than
k plus one, an error flag is set and passed to the error handler. For the C bindings of SB_LRSCALE,
if order = blas_rowmajor and if Ida is less than one or lda is less than n, an error flag is set and
passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than
k plus one, an error flag is set and passed to the error handler.

e Fortran 95 binding:

Symmetric:

SUBROUTINE sy_lrscale(d, a [, uplo]l)
Symmetric Band:

SUBROUTINE sb_lrscale(d, a [, uplo]l)
Symmetric Packed:

SUBROUTINE sp_lrscale(d, ap [, uplol)

78 CHAPTER 2. DENSE AND BANDED BLAS

all:
<type>(<wp>), INTENT (IN) :: d(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:) | ap(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
where
a has shape (n,n) for symmetric
(k+1,n) for symmetric banded (k=band width)
ap has shape (n*x(n+1)/2).
d has shape (n)

e Fortran 77 binding;:

Symmetric:

SUBROUTINE BLAS_xSY_LRSCALE(UPLO, N, D, INCD, A, LDA)
Symmetric Band:

SUBROUTINE BLAS_xSB_LRSCALE(UPLO, N, K, D, INCD, A, LDA)
Symmetric Packed:

SUBROUTINE BLAS_xSP_LRSCALE(UPLO, N, D, INCD, AP)

all:
INTEGER INCD, K, LDA, N, UPLO
<type> AC LDA, *) or AP(*), D(*)
e C binding:
Symmetric:

void BLAS_xsy_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY d, int incd, ARRAY a, int 1lda);

Symmetric Band:

void BLAS_xsb_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const ARRAY d, int incd, ARRAY a,
int 1lda);

Symmetric Packed:

void BLAS_xsp_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY d, int incd, ARRAY ap);

{HE,HB,HP}_LRSCALE (Two-sided diagonal scaling of a Hermitian matrix)
A+ DAD" with A = A"

These routines perform a two-sided scaling of a Hermitian (or Hermitian banded or Hermitian
packed) matrix A by a diagonal matrix D. This routine returns immediately if n or k (for Hermitian
band matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than
zero is permitted. However, if incd is equal to zero, an error flag is set and passed to the error
handler. For the routines HE_LRSCALE, if Ida is less than one or Ida is less than n, an error flag is
set and passed to the error handler. For the routine HB_LRSCALE, if Ida is less than k plus one,
an error flag is set and passed to the error handler. For the C bindings of HB_LRSCALE, if order
= blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and passed to
the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less than k plus
one, an error flag is set and passed to the error handler.

2.8. LANGUAGE BINDINGS 79

e Fortran 95 binding:

Hermitian:
SUBROUTINE he_lrscale(d, a [, uplo])
Hermitian Band:
SUBROUTINE hb_lrscale(d, a [, uplo])
Hermitian Packed:
SUBROUTINE hp_lrscale(d, ap [, uplol)
all:
COMPLEX (<wp>), INTENT (IN) :: d4(:)
COMPLEX (<wp>), INTENT (INOUT) :: a(:,:) | ap(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
where
a has shape (n,n) for Hermitian
(k+1,n) for Hermitian banded (k=band width)
ap has shape (nx(n+1)/2).
d has shape (n)

e Fortran 77 binding:

Hermitian:

SUBROUTINE BLAS_xHE_LRSCALE(UPLO, N, D, INCD, A, LDA)
Hermitian Band:

SUBROUTINE BLAS_xHB_LRSCALE(UPLO, N, K, D, INCD, A, LDA)
Hermitian Packed:

SUBROUTINE BLAS_xHP_LRSCALE(UPLO, N, D, INCD, AP)

all:
INTEGER INCD, K, LDA, N, UPLO
<ctype> AC LDA, *) or AP(*), D(*)
e C binding:
Hermitian:

void BLAS_xhe_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY d, int incd, ARRAY a, int lda);

Hermitian Band:

void BLAS_xhb_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, const ARRAY d, int incd, ARRAY a,
int lda);

Hermitian Packed:

void BLAS_xhp_lrscale(enum blas_order_type order, enum blas_uplo_type uplo,
int n, const ARRAY d, int incd, ARRAY ap);

{GE,GB}_DIAG_SCALE_ACC (Diagonal scaling and accumulation) A+ A+ BD

These routines perform the diagonal scaling of a general (or banded) matrix B and accumulate
the result in the matrix A. This routine returns immediately if m or n or kl or ku (for band

80 CHAPTER 2. DENSE AND BANDED BLAS

matrices) is less than or equal to zero. As described in section 2.5.3, the value incd less than zero
is permitted. However, if incd is equal to zero, an error flag is set and passed to the error handler.
For the routine GE_DIAG_SCALE_ACC, if Ida or Idb is less than one or Ida or Idb is less than m, an
error flag is set and passed to the error handler. For the C bindings of GE_DIAG_SCALE_ACC, if
order = blas rowmajor and if Ida or Idb is less than one or Ida or Idb is less than n, an error flag
is set and passed to the error handler; if order = blas_colmajor and if Ida or Idb is less than one
or Ida or Idb is less than m, an error flag is set and passed to the error handler. For the routine
GB_DIAG_SCALE_ACC, if Ida is less than kl plus ku plus one, an error flag is set and passed to the
error handler. For the C bindings of GB_DIAG_SCALE_ACC, if order = blas_rowmajor and if I|da
is less than one or Ida is less than n, an error flag is set and passed to the error handler; if order
= blas_colmajor and if Ida is less than one or Ida is less than kl plus ku plus one, an error flag is
set and passed to the error handler.

e Fortran 95 binding;:

General:
SUBROUTINE ge_diag_scale_acc(b, d, a)
Band:
SUBROUTINE gb_diag_scale_acc(b, m, k1, d, a)
all:
<type>(<wp>), INTENT (IN) :: b(:,:), d(:)
<type>(<wp>), INTENT (INOUT) :: a(:,:)
INTEGER, INTENT (IN) :: m, kl
where
a has shape (m,n)
b has shape (m,n) for general matrix
(1,n) for general banded matrix (1 > k1)
d has shape (n)

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGE_DIAG_SCALE_ACC(M, N, B, LDB, D, INCD, A,
$ LDA)
Band:
SUBROUTINE BLAS_xGB_DIAG_SCALE_ACC(M, N, KL, KU, B, LDB, D, INCD,
$ A, LDA)
all:
INTEGER INCD, KL, KU, LDA, LDB, M, N
<type> AC LDA, *), B(LDB, *), D(*)
e C binding:
General:

void BLAS_xge_diag_scale_acc(enum blas_order_type order, int m, int n,
const ARRAY b, int 1db, const ARRAY d,
int incd, ARRAY a, int 1lda);

General Band:

2.8. LANGUAGE BINDINGS 81

void BLAS_xgb_diag_scale_acc(enum blas_order_type order, int m, int n,
int k1, int ku, const ARRAY b, int 1ldb,
const ARRAY d, int incd, ARRAY a, int 1lda);

{GE,SY,SB,SP}_ACC (Matrix accumulation and scale) B < oA + BB, B + aA” + 8B

These routines scale a matrix A (or its transpose) and scale a matrix B and accumulate the
result in the matrix B. Matrices A and B have the same storage format. These routines return
immediately if alpha is equal to zero and beta is equal to one, or if m (for nonsymmetric matrices)
or n or k (for symmetric band matrices) is less than or equal to zero. As described in section 2.5.3,
for the routine GE_ACC, if Ida or Idb is less than one or Ida or Idb is less than m, an error flag is set
and passed to the error handler. For the C bindings for GE_ACC, if order = blas_rowmajor and
if Ida or Idb is less than one or Ida or Idb is less than n, an error flag is set and passed to the error
handler; if order = blas_colmajor and if Ida or Idb is less than one or Ida or Idb is less than m, an
error flag is set and passed to the error handler. For the routine SY_ACC, if Ida or Idb is less than
one or Ida or Idb is less than n, an error flag is set and passed to the error handler. For the routine
SB_ACC, if Ida or Idb is less than k plus one, an error flag is set and passed to the error handler.
For the C bindings of SB_ACC, if order = blas_rowmajor and if Ida or Idb is less than one or Ida
or Idb is less than n, an error flag is set and passed to the error handler; if order = blas_colmajor
and if Ida or Idb is less than one or Ida or Idb is less than k plus one, an error flag is set and passed
to the error handler.

e Fortran 95 binding:

General:
SUBROUTINE ge_acc(a, b [, trans] [, alphal [, betal)
Symmetric:
SUBROUTINE sy_acc(a, b [, uplo]l [, trans] [, alphal [, betal)
Symmetric Band:
SUBROUTINE sb_acc(a, b [, uplo]l [, trans] [, alphal [, betal)
Symmetric Packed:
SUBROUTINE sp_acc(ap, bp [, uplo] [, trams] [, alphal [, betal])
all:
<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)
<type>(<wp>), INTENT(INOUT) :: b(:,:) | bp(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
TYPE (blas_trans_type), INTENT (IN), OPTIONAL :: trans
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

The default value for £ is 1.0 or (1.0,0.0).

e Fortran 77 binding;:

General:
SUBROUTINE BLAS_xGE_ACC(TRANS, M, N, ALPHA, A, LDA, BETA, B,
$ LDB)

Symmetric:

82 CHAPTER 2. DENSE AND BANDED BLAS

SUBROUTINE BLAS_xSY_ACC(UPLO, TRANS, N, ALPHA, A, LDA, BETA, B,
$ LDB)

Symmetric Band:
SUBROUTINE BLAS_xSB_ACC(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
$ B, LDB)

Symmetric Packed:
SUBROUTINE BLAS_xSP_ACC(UPLO, TRANS, N, ALPHA, AP, BETA, BP)

all:
INTEGER K, LDA, LDB, M, N, TRANS, UPLO
<type> ALPHA, BETA
<type> AC LDA, *) or AP(*), B(LDB, *) or BP(*)
e C binding:
General:

void BLAS_xge_acc(enum blas_order_type order, enum blas_trans_type trans,
int m, int n, SCALAR_IN alpha, const ARRAY a, int lda,
SCALAR_IN beta, ARRAY b, int 1db);
Symmetric:
void BLAS_xsy_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, SCALAR_IN alpha,
const ARRAY a, int lda, SCALAR_IN beta, ARRAY b, int 1ldb);
Symmetric Band:
void BLAS_xsb_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, int k, SCALAR_IN alpha,
const ARRAY a, int 1lda, SCALAR_IN beta, ARRAY b, int 1db);
Symmetric Packed:
void BLAS_xsp_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_trans_type trans, int n, SCALAR_IN alpha,
const ARRAY ap, SCALAR_IN beta, ARRAY bp);

{GB,TR,TB,TP}_ACC (Matrix accumulation and scale) B+ adA+ (B

These routines scale matrices A and B and accumulate the result in the matrix B. Matrices A
and B have the same storage format. These routines return immediately if alpha is equal to zero
and beta is equal to one, or if m or kl or ku (for general band matrices) or n or k (for triangular
band matrices) is less than or equal to zero. For the routine GB_ACC, if Ida is less than kl plus ku
plus one, an error flag is set and passed to the error handler. For the C bindings for GB_ACC, if
order = blas_rowmajor and if Ida is less than one or Ida is less than n, an error flag is set and
passed to the error handler; if order = blas_colmajor and if Ida is less than one or Ida is less
than kl plus ku plus one, an error flag is set and passed to the error handler. For the routines
TR_ACC and TP_ACC, if Ida is less than one or Ida is less than n, an error flag is set and passed to
the error handler. For the routine TB_ACC, if Ida is less than k plus one, an error flag is set and
passed to the error handler. For the C bindings for TB_ACC, if order = blas_rowmajor and if Ida
is less than one or Ida is less than n, an error flag is set and passed to the error handler; if order
= blas_colmajor and if Ida is less than one or Ida is less than k plus one, an error flag is set and
passed to the error handler.

2.8. LANGUAGE BINDINGS 83
e Fortran 95 binding:

General Band:
SUBROUTINE gb_acc(a, m, k1, b [, alpha] [, betal)
Triangular:
SUBROUTINE tr_acc(a, b [, uplo] [, diag]l [, alphal [, betal)
Triangular Band:
SUBROUTINE tb_acc(a, b [, uplo] [, diag]l [, alphal [, betal)
Triangular Packed:
SUBROUTINE tp_acc(ap, bp [, uplo] [, diag]l [, alphal [, betal)
all:
<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)
INTEGER, INTENT (IN) :: m, k1
<type>(<wp>), INTENT(INOUT) :: b(:,:) | bp(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
TYPE (blas_diag_type), INTENT (IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

The default value for g is 1.0 or (1.0,0.0).

e Fortran 77 binding:

General Band:
SUBROUTINE BLAS_xGB_ACC(M, N, KL, KU, ALPHA, A, LDA, BETA, B,

$ LDB)
Triangular:
SUBROUTINE BLAS_xTR_ACC(UPLO, DIAG, N, ALPHA, A, LDA, BETA, B,
$ LDB)

Triangular Band:
SUBROUTINE BLAS_xTB_ACC(UPLO, DIAG, N, K, ALPHA, A, LDA, BETA, B,
$ LDB)

Triangular Packed:
SUBROUTINE BLAS_xTP_ACC(UPLO, DIAG, N, ALPHA, AP, BETA, BP)

all:
INTEGER DIAG, K, KL, KU, LDA, LDB, M, N, UPLO
<type> ALPHA, BETA
<type> AC LDA, *) or AP(*), B(LDB, *) or BP(*)
e C binding:

General Band:

void BLAS_xgb_acc(enum blas_order_type order, int m, int n, int k1, int ku,
SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,
ARRAY b, int 1db);

Triangular:

void BLAS_xtr_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY a, int 1lda, SCALAR_IN beta, ARRAY b, int 1db);

84 CHAPTER 2. DENSE AND BANDED BLAS

Triangular Band:
void BLAS_xtb_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k, SCALAR_IN alpha,
const ARRAY a, int 1lda, SCALAR_IN beta, ARRAY b, int 1db);
Triangular Packed:
void BLAS_xtp_acc(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY ap, SCALAR_IN beta, ARRAY bp);

{GE,GB,SY,SB,SP,TR,TB,TP}_ADD (Matrix add and scale) C«+ aA+ B

This routine scales two matrices A and B and stores their sum in a matrix C. Matrices A, B,
and C have the same storage format. This routine returns immediately if m or kl or ku (for general
band matrices) or n or k (for symmetric or triangular band matrices) is less than or equal to zero.
For the routine GE_ADD, if Ida or Idb is less than one or less than m, an error flag is set and passed
to the error handler. For the C bindings for GE_ADD, if order = blas_rowmajor and if |da or |db
is less than one or Ida or Idb is less than n, an error flag is set and passed to the error handler; if
order = blas_colmajor and if Ida or Idb is less than one or Ida or Idb is less than m, an error flag
is set and passed to the error handler. For the routine GB_ADD, if Ida or Idb is less than k| plus ku
plus one, an error flag is set and passed to the error handler. For the C bindings for GB_ADD, if
order = blas_rowmajor and if Ida or Idb is less than one or Ida or Idb is less than n, an error flag
is set and passed to the error handler; if order = blas_colmajor and if Ida or Idb is less than one
or Ida or Idb is less than kl plus ku plus one, an error flag is set and passed to the error handler. For
the routines SY_ADD, TR_ADD, SP_ADD, and TP_ADD, if Ida or Idb is less than one or Ida or Idb
is less than n, an error flag is set and passed to the error handler. For the routines SB_ADD and
TB_ADD, if Ida or Idb is less than k plus one, an error flag is set and passed to the error handler.
For the C bindings for SB_ADD and TB_ADD, if order = blas_rowmajor and if Ida or Idb is less
than one or Ida or Idb is less than n, an error flag is set and passed to the error handler; if order =
blas_colmajor and if Ida or Idb is less than one or Ida or Idb is less than k plus one, an error flag
is set and passed to the error handler.

e Fortran 95 binding:

General:

SUBROUTINE ge_add(a, b, ¢ [, alphal [, betal)
General Band:

SUBROUTINE gb_add(a, m, k1, b, ¢ [, alphal [, betal)
Symmetric:

SUBROUTINE sy_add(a, b, ¢ [, uplo]l [, alphal [, betal)
Symmetric Band:

SUBROUTINE sb_add(a, b, ¢ [, uplo]l [, alphal [, betal)
Symmetric Packed:

SUBROUTINE sp_add(ap, bp, cp [, uplo]l [, alphal [, betal)
Triangular:

SUBROUTINE tr_add(a, b, ¢ [, uplo] [, diag] [, alphal [, betal])
Triangular Band:

SUBROUTINE tb_add(a, b, ¢ [, uplo] [, diag] [, alphal [, betal])

2.8. LANGUAGE BINDINGS

Triangular Packed:
SUBROUTINE tp_add(ap, bp, cp [, uplo]l [, diag]l [, alphal] [, betal)
all:
<type>(<wp>), INTENT(IN) :: a(:,:) | ap(:)
INTEGER, INTENT (IN) :: m, kl
<type>(<wp>), INTENT(IN) :: b(:,:) | bp(:)
<type>(<wp>), INTENT(OUT) :: c(:,:) | cp(:)
TYPE (blas_uplo_type), INTENT (IN), OPTIONAL :: uplo
TYPE (blas_diag_type), INTENT (IN), OPTIONAL :: diag
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta
where
assuming A, B and C all the same (general, banded or packed) with
the same size.
a, b and c have shape (m,n) for general matrix
(1,n) for general banded matrix (1 > kl)
(n,n) for symmetric or triangular
(k+1,n) for symmetric banded or triangular
banded (k=band width)
ap, bp and cp have shape (n*x(n+1)/2).

The default value for g is 1.0 or (1.0,0.0).

e Fortran 77 binding:

General:
SUBROUTINE BLAS_xGE_ADD(M, N, ALPHA, A, LDA, BETA, B, LDB, C,
$ LDC)

General Band:
SUBROUTINE BLAS_xGB_ADD(M, N, KL, KU, ALPHA, A, LDA, BETA, B,

$ LDB, C, LDC)
Symmetric:
SUBROUTINE BLAS_xSY_ADD(UPLO, N, ALPHA, A, LDA, BETA, B, LDB,
$ C, LDC)

Symmetric Band:
SUBROUTINE BLAS_xSB_ADD(UPLO, N, K, ALPHA, A, LDA, BETA, B, LDB,
$ C, LDC)
Symmetric Packed:
SUBROUTINE BLAS_xSP_ADD(UPLO, N, ALPHA, AP, BETA, BP, CP)
Triangular:
SUBROUTINE BLAS_xTR_ADD(UPLO, DIAG, N, ALPHA, A, LDA, BETA, B,
$ LDB, C, LDC)
Triangular Band:
SUBROUTINE BLAS_xTB_ADD(UPLO, DIAG, N, K, ALPHA, A, LDA, BETA,
$ B, LDB, C, LDC)
Triangular Packed:
SUBROUTINE BLAS_xTP_ADD(UPLO, DIAG, N, ALPHA, AP, BETA, BP, CP)
all:
INTEGER DIAG, K, KL, KU, LDA, LDB, M, N, TRANS, UPLO

86 CHAPTER 2. DENSE AND BANDED BLAS

<type> ALPHA, BETA
<type> AC LDA, *) or AP(*), B(LDB, *) or BP(*),
<type> C(LDC, *) or CP(*)
e C binding:
General:

void BLAS_xge_add(enum blas_order_type order, int m, int n, SCALAR_IN alpha,
const ARRAY a, int 1lda, SCALAR_IN beta, const ARRAY b,
int 1db, ARRAY c, int ldc);

General Band:

void BLAS_xgb_add(enum blas_order_type order, int m, int n, int k1, int ku,
SCALAR_IN alpha, const ARRAY a, int lda, SCALAR_IN beta,
const ARRAY b, int 1db, ARRAY c, int 1ldc);

Symmetric:

void BLAS_xsy_add(enum blas_order_type order, enum blas_uplo_type uplo, int n,
SCALAR_IN alpha, const ARRAY a, int 1lda, SCALAR_IN beta,
const ARRAY b, int 1db, ARRAY c, int 1ldc);

Symmetric Band:

void BLAS_xsb_add(enum blas_order_type order, enum blas_uplo_type uplo,
int n, int k, SCALAR_IN alpha, const ARRAY a, int lda,
SCALAR_IN beta, const ARRAY b, int 1db, ARRAY c, int ldc);

Symmetric Packed:

void BLAS_xsp_add(enum blas_order_type order, enum blas_uplo_type uplo,
int n, SCALAR_IN alpha, const ARRAY ap, SCALAR_IN beta,
const ARRAY bp, ARRAY cp);

Triangular:

void BLAS_xtr_add(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY a, int lda, SCALAR_IN beta, const ARRAY b,
int 1db, ARRAY c, int ldc);

Triangular Band:

void BLAS_xtb_add(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, int k, SCALAR_IN alpha,
const ARRAY a, int 1lda, SCALAR_IN beta, const ARRAY b,
int 1db, ARRAY c, int ldc);

Triangular Packed:

void BLAS_xtp_add(enum blas_order_type order, enum blas_uplo_type uplo,
enum blas_diag_type diag, int n, SCALAR_IN alpha,
const ARRAY ap, SCALAR_IN beta, const ARRAY bp,
ARRAY cp);

2.8.8 Matrix-Matrix Operations

In the following section, op(X) denotes X, or X7 or X where X is a matrix.

2.8. LANGUAGE BINDINGS

87

GEMM (General Matrix Matrix Product) C + aop(A)op(B) + pC

The routine performs a general matrix matrix multiply C' < aop(A)op(B) + BC where « and
B are scalars, and A, B, and C' are general matrices. This routine returns immediately if alpha
is equal to zero and beta is equal to one, or if m or n or k is less than or equal to zero. If Ida is
less than one, or transae = blas_no_trans and lda is less than m, or transe # blas_no_trans and
Ida is less than k, or Idb is less than one, or transb = blas_no_trans and Idb is less than k, or
transb # blas_no_trans and Idb is less than n, or Idc is less than one or less than m, an error flag

is set and passed to the error handler.
This interface encompasses the Legacy BLAS routine xGEMM.

e Fortran 95 binding;:

SUBROUTINE gemm(a, b, ¢ [, transal [, transb] [, alphal [, betal])

<type>(<wp>), INTENT(IN) :: <aa>, <bb>
<type>(<wp>), INTENT(INOUT) :: <cc>

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transa, transb

<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
<aa> = a(:,:) or a(:)
<bb> = b(:,:) or b(:)
<cc> = ¢c(:,:) or c(:)
and

¢, rank 2, has shape (m,n)
a has shape (m,k) if transa =
(k,m) if transa /= blas_no_trans
(m) if rank 1
b has shape (k,n) if transb =
(n,k) if transb /= blas_no_trans
(n) if rank 1
¢, rank 1, has shape (m)

a has shape (m,n) if transa = blas_no_trans (the default)

(n,m) if transa /= blas_no_trans
b has shape (n)

blas_no_trans (the default)

blas_no_trans (the default)

Rank a | Rank b | Rank ¢ | transa | transb | Operation Arguments
2 2 2 N N C +— aAB + pC real or complex
2 2 2 N T C + aAB" + BC real or complex
2 2 2 N H C + aABH 4 pC complex
2 2 2 T N C + aA"B + BC real or complex
2 2 2 T T C < aATBT + BC | real or complex
2 2 2 H N C + aA"B 4+ BC | complex
2 2 2 H H C + aA"YBH 4 BC | complex
2 1 1 N - ¢+ aAb+ Be real or complex
2 1 1 T - c <+ aATb+ e real or complex
2 1 1 H - ¢+ aAfb+ pe complex
1 1 2 - - C <+ aab” 4 pC real or complex
1 1 2 - C + aab® + pC complex

88 CHAPTER 2. DENSE AND BANDED BLAS

The functionality of xGEMV, xGER, xGERU, and xGERC are also covered by this generic
procedure.

e Fortran 77 binding;:

SUBROUTINE BLAS_xGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,

$ B, LDB, BETA, C, LDC)
INTEGER K, LDA, LDB, LDC, M, N, TRANSA, TRANSB
<type> ALPHA, BETA
<type> AC LDA, *), B(LDB, *), C(LDC, *)
e C binding:

void BLAS_xgemm(enum blas_order_type order, enum blas_trans_type transa,
enum blas_trans_type transb, int m, int n, int k,
SCALAR_IN alpha, const ARRAY a, int lda, const ARRAY b,
int 1db, SCALAR_IN beta, ARRAY c, int 1ldc);

SYMM (Symmetric Matrix Matrix Product) C < aAB + pC or C < aBA+ C

This routine performs one of the symmetric matrix matrix operations C' <+ aAB + BC or
C + aBA + BC where a and 8 are scalars, A is a symmetric matrix, and B and C' are general
matrices. This routine returns immediately if alpha is equal to zero and beta is equal to one, or if
m or n is less than or equal to zero. For side equal to blas_left_side, and if Ida is less than one or less
than m, or if Idb is less than one or less than m, or if Idc is less than one or less than m, an error
flag is set and passed to the error handler. For side equal to blas_right_side, and if Ida is less than
one or less than n, or if Idb is less than one or less than n, or if Idc is less than one or less than n,
an error flag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xSYMM with added functionality for com-
plex symmetric matrices.

e Fortran 95 binding;:

SUBROUTINE symm(a, b, ¢ [, side]l [, uplo] [, alphal] [, betal)
<type>(<wp>), INTENT(IN) :: a(:,:), <bb>
<type>(<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha, beta

where
<bb> = b(:,:) or b(:)
<cc> = c¢c(:,:) or c(:)
and

¢, rank 2, has shape (m,n), b same shape as ¢
SY a has shape (m,m) if side = blas_left_side (the default)
a has shape (n,n) if side /= blas_left_side
c, rank 1, has shape (m), b same shape as c
SY a has shape (m,m)

2.8. LANGUAGE BINDINGS 89

Rank b | Rank ¢ | side | Operation
2 2 L C < aAB + pC
2 2 R | C+ aBA+ pC
1 1 - ¢ aAb+ Be

The functionality of xSYMV is covered by symm.

e Fortran 77 binding;:

SUBROUTINE BLAS_xSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO
<type> ALPHA, BETA
<type> A(C LDA, =), B(LDB, *), C(LDC, *)
e C binding:

void BLAS_xsymm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, int m, int n, SCALAR_IN alpha,
const ARRAY a, int lda, const ARRAY b, int 1db,
SCALAR_IN beta, ARRAY c, int 1ldc);

HEMM (Hermitian Matrix Matrix Product) C < aAB + pC or C < aBA+ C

This routine performs one of the Hermitian matrix matrix operations C < aAB + BC or
C + aBA + pC where a and 8 are scalars, A is a Hermitian matrix, and B and C are general
matrices. This routine returns immediately if alpha is equal to zero and beta is equal to one, or if
m or n is less than or equal to zero. For side equal to blas_left_side, and if Ida is less than one or less
than m, or if Idb is less than one or less than m, or if Idc is less than one or less than m, an error
flag is set and passed to the error handler. For side equal to blas_right_side, and if Ida is less than
one or less than n, or if Idb is less than one or less than n, or if Idc is less than one or less than n,
an error flag is set and passed to the error handler.

The interfaces encompass the Legacy BLAS routine xHEMM.

e Fortran 95 binding:

Hermitian:
SUBROUTINE hemm(a, b, ¢ [, side]l [, uplo] [, alphal [, betal)
COMPLEX (Kwp>), INTENT(IN) :: a(:,:), <bb>
COMPLEX (<wp>), INTENT(INOUT) :: <cc>
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
COMPLEX (Kwp>), INTENT(IN), OPTIONAL :: alpha, beta

where
<bb> = b(:,:) or b(:)
<cc> = ¢c(:,:) or c(:)

and

90 CHAPTER 2. DENSE AND BANDED BLAS

c, rank 2, has shape (m,n), b same shape as ¢
HE a has shape (m,m) if "side" = blas_left_side (the default)
a has shape (n,n) if "side" /= blas_left_side
c, rank 1, has shape (m), b same shape as ¢
HE a has shape (m,m)

Rank b | Rank ¢ | side | Operation
2 2 L C < aAB + pC
2 2 R | C+ aBA+pC
1 1 - ¢+ aAb+ (e

The functionality of xHEMYV is covered by hemm.

e Fortran 77 binding;:

SUBROUTINE BLAS_xHEMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC)
INTEGER LDA, LDB, LDC, M, N, SIDE, UPLO
<ctype> ALPHA, BETA
<ctype> A(C LDA, =), B(LDB, *), C(LDC, *)
e C binding:

void BLAS_xhemm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, int m, int n, CSCALAR_IN alpha,
const CARRAY a, int 1lda, const CARRAY b, int 1db,
CSCALAR_IN beta, CARRAY c, int ldc);

TRMM (Triangular Matrix Matrix Multiply) B «+ aop(T)B or B < aBop(T)

These routines perform one of the matrix-matrix operations B «— aop(T)B or B < aBop(T')
where « is a scalar, B is a general matrix, and 7' is a unit, or non-unit, upper or lower triangular
(or triangular band) matrix. This routine returns immediately if m, n, or k (for triangular band
matrices), is less than or equal to zero. For side equal to blas_left_side, and if Idt is less than one
or less than m, or if Idb is less than one or less than m, an error flag is set and passed to the error
handler. For side equal to blas_right_side, and if Idt is less than one or less than n, or if Idb is less
than one or less than m, an error flag is set and passed to the error handler.

These interfaces encompass the Legacy BLAS routine xTRMM.

e Fortran 95 binding:

SUBROUTINE trmm(t, b [, side] [, uplo] [, tramst] [, diag]l [, alpha])
<type>(<wp>), INTENT(IN) :: t(:,:)
<type>(<wp>), INTENT(INOUT) :: <bb>
<type>(<wp>), INTENT(IN), OPTIONAL :: alpha
TYPE (blas_diag_type), INTENT(IN), OPTIONAL :: diag
TYPE (blas_side_type), INTENT(IN), OPTIONAL :: side

2.8. LANGUAGE BINDINGS 91

TYPE (blas_trans_type), INTENT(IN), OPTIONAL :: transt
TYPE (blas_uplo_type), INTENT(IN), OPTIONAL :: uplo
where
<bb> ::=b(:,:) or b(:)
and
b, rank 2, has shape (m,n)
TR t has shape (m,m) if side = blas_left_side (the default)
t has shape (n,n) if side /= blas_left_side
b, rank 1, has shape (m)
TR t has shape (m,m)

Rank b | transt | side | Operation
2 N L | B+~ aTB
2 T L | B+« al'B
2 H L | B+ aT!B
2 N R | B+ aBT
2 T R | B+ aBT?
2 H R | B+ aBTH
1 N - | b+ aTb
1 T - | b+ aTTh
1 H - b+ oTHp

The functionality of xXTRMYV is covered by trmm.

e Fortran 77 binding;:

SUBROUTINE BLAS_xTRMM(SIDE, UPLO, TRANST, DIAG, M, N, ALPHA, T,

$ LDT, B, LDB)
INTEGER DIAG, LDB, LDT, M, N, SIDE, TRANST, UPLO
<type> ALPHA
<type> T(LDT, *), B(LDB, *)

e C binding:

void BLAS_xtrmm(enum blas_order_type order, enum blas_side_type side,
enum blas_uplo_type uplo, enum blas_trans_type transt,
enum blas_diag_type diag, int m, int n, SCALAR_IN alpha,
const ARRAY t, int 1dt, ARRAY b, int 1db);

TRSM (Triangular Solve) B + aop(T~')B or B + aBop(T™")

This routine solves one of the matrix equations B + aop(T~')B or B < aBop(T~"') where « is
a scalar, B is a general matrix, and 7' is a unit, or non-unit, upper or lower triangular matrix. This
routine returns immediately if m or n is less than or equal to zero. For side equal to blas_left_side,
and if Idt is less than one or less than m, or if Idb is less than one or less than m, an error flag is set
and passed to the error handler. For side equal to blas_right_side, and if Idt is less than one or less
than n, or if Idb is less than one or less than m, an error flag is set and passed to the error handler.
These interfaces encompass the Legacy BLAS routine xXTRSM.

92 CHAPTER 2. DENSE AND BANDED BLAS

Advice to implementors. Note that no check for singularity, or near singularity is specified
for these triangular equation-solving routines. The requirements for such a test depend on the
application, and so we felt that this should not be included, but should instead be performed
before calling the triangular solver. (End of advice to implementors.)

e Fortran 95 binding:

SUBROUTINE trsm(t, b [, side] [, uplo]l [, transt] [, diagl [, alphal)
<type>(<wp>), INTENT(IN) :