
SvPablo is a graphical source code browser and perfor-
mance visualizer that has been developed as part of the
University of Illinois’s Pablo project (DeRose and Reed,
1999; DeRose, Zhang, and Reed, 1998). SvPablo supports
automatic instrumentation of HPF codes with Portland
Group’s HPF compiler and interactive instrumentation of
C and Fortran programs. During execution of an instru-
mented code, the SvPablo library maintains statistics on
the execution of each instrumented event on each proces-
sor and maps these statistics to constructs in the original
source code. The current version of SvPablo includes sup-
port for the MIPS R10000 hardware performance coun-
ters. The next version of SvPablo, being developed at the
IBM Advanced Computing Technology Center, has inte-
grated support for PAPI. Screenshots of SvPablo displays
of PAPI metrics are shown in Figures 6 and 7.

DEEP, from Pacific-Sierra Research, stands for devel-
opment environment for parallel programs. DEEP pro-
vides an integrated interactive GUI interface that binds
performance, analysis, and debugging tools back to the
original parallel source code. DEEP supports Fortran
77/90/95, C, and mixed Fortran and C in Unix and Win-
dows 95/98/NT environments. DEEP supports both
shared-memory (automatic parallelization, OpenMP) and
distributed-memory (MPI, HPF, Data Parallel C) parallel
program development. A special version of DEEP, called
DEEP/MPI, is aimed at support of MPI programs. DEEP
provides a graphical user interface for program structure
browsing, profiling analysis, and relating profiling results
to source code. DEEP developers are incorporating sup-

PORTABLE PROGRAMMING INTERFACE 199

Fig. 4 Profometer display L1 data cache misses

Fig. 5 vprof displaying profil and PAPI_TOT_CYC data

“During execution of an
instrumented code, the SvPablo
library maintains statistics on the
execution of each instrumented event
on each processor and maps these
statistics to constructs in the original
source code.”
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port for PAPI so that statistics for the standard PAPI met-
rics can be viewed and analyzed from the DEEP interface.
A screenshot of the DEEP/MPI interface displaying PAPI
data for L2 cache misses is shown in Figure 8.
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Fig. 6 SvPablo source code browser displaying PAPI metrics
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6 Related Work

6.1 PERFORMANCE COUNTER LIBRARY

The Performance Counter Library (PCL) is a common in-
terface for accessing performance counters built into mod-
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Fig. 7 SvPablo statistics displays showing PAPI data

Fig. 8 DEEP/MPI displaying PAPI data for L2 cache misses
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Cycle and instruction counts
PAPI_TOT_CYC Total cycles
PAPI_TOT_IIS Total instructions issued
PAPI_TOT_INS Total instruction completed
PAPI_INT_INS Integer instructions completed
PAPI_FP_INS Floating-point instructions completed
PAPI_LD_INS Load instructions completed
PAPI_SR_INS Store instructions completed
PAPI_LST_INS Total load/store instructions

completed
PAPI_FMA_INS Floating-point multiply add (FMA)

instructions completed
PAPI_VEC_INS Vector/SIMD instructions completed
PAPI_BR_UCN Unconditional branch instructions

completed
PAPI_BR_CN Conditional branch instructions

completed
PAPI_BR_TKN Conditional branch instructions taken
PAPI_BR_NTK Conditional branch instructions not

taken
PAPI_BR_MSP Conditional branch instructions

mispredicted
PAPI_BR_PRC Conditional branch instructions

correctly predicted
PAPI_BR_INS Total branch instructions completed
PAPI_CSR_FAL Failed store conditional instructions
PAPI_CSR_SUC Successful store conditional

instructions
PAPI_CSR_TOT Total store conditional instructions
PAPI_SYC_INS Synchronization instructions

completed
PAPI_FLOPS Floating-point instructions completed

per second
PAPI_IPS Instructions completed per second

Functional unit and pipeline status events
PAPI_BRU_IDL Cycles branch units are idle
PAPI_FXU_IDL Cycles integer units are idle
PAPI_FPU_IDL Cycles floating-point units are idle
PAPI_LSU_IDL Cycles load/store units are idle
PAPI_MEM_SCY Cycles stalled waiting for memory

access
PAPI_MEM_RCY Cycles stalled waiting for memory

read
PAPI_MEM_WCY Cycles stalled waiting for memory

write
PAPI_STL_CYC Cycles with no instruction issue

PAPI_FUL_ICY Cycles with maximum instruction
issue

PAPI_STL_CCY Cycles with no instruction completion
PAPI_FUL_CCY Cycles with maximum instruction

completion
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