% Profometer

Process: swim at Sun Nov 21 21:03:56 1999
Machine: redwood .cs.utk.edu, a 1 CPU Pentium Pro at 199.8 Mhz.

Real time: | 4.92! s. Process time: |4.79

Location of L1 Data Misses

[=] £

s. Total: 18498516

28

Fig.4 Profometer display L1 data cache misses

SvPablo is a graphical source code browser and perfor-
mance visualizer that has been developed as part of the
University of Illinois’s Pablo project (DeRose and Reed,
1999; DeRose, Zhang, and Reed, 1998). SvPablo supports
automatic instrumentation of HPF codes with Portland
Group’s HPF compiler and interactive instrumentation of
C and Fortran programs. During execution of an instru-
mented code, the SvPablo library maintains statistics on
the execution of each instrumented event on each proces-
sor and maps these statistics to constructs in the original
source code. The current version of SvPablo includes sup-
port for the MIPS R10000 hardware performance coun-
ters. The next version of SvPablo, being developed at the
IBM Advanced Computing Technology Center, has inte-
grated support for PAPI. Screenshots of SvPablo displays
of PAPI metrics are shown in Figures 6 and 7.

DEEP, from Pacific-Sierra Research, stands for devel-
opment environment for parallel programs. DEEP pro-
vides an integrated interactive GUI interface that binds
performance, analysis, and debugging tools back to the
original parallel source code. DEEP supports Fortran
77/90/95, C, and mixed Fortran and C in Unix and Win-
dows 95/98/NT environments. DEEP supports both
shared-memory (automatic parallelization, OpenMP) and
distributed-memory (MPI, HPF, Data Parallel C) parallel
program development. A special version of DEEP, called
DEEP/MPI, is aimed at support of MPI programs. DEEP
provides a graphical user interface for program structure
browsing, profiling analysis, and relating profiling results
to source code. DEEP developers are incorporating sup-

“During execution of an

instrumented code, the SvPablo
library maintains statistics on the
execution of each instrumented event
on each processor and maps these
statistics to constructs in the original
source code.”

Fig.5 vprofdisplaying profiland PAPI_TOT_CYC data

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 16, 2011

Pro;ect Instrument

Project Descriptlon

Source Files: |

Sowrce Flles:§ p),
UM

sy o O

Yiew HW Statistics by Line
MFLOPS:

\ SW|m SPEC CFPSS
_ Specific Metric

HW Statistics by Line i
PI_FP_INS - FP Instructions: |

93.2926 -~ LOOP |

e

Performance;

Disrrryibss ‘

632048018.0000 -- LOOP ‘ SGl Origin 2
: | SGI Power Challenge

Routines in HW Statistics by Line i lorms

calct PAPI_L1_LDM - D1 Load Misses:

calc2

abs 47377596.0000 —— LOOP Cun}ulativle ;ime:
mpi_reduce — or caic |
calcaz 7.28978700 i } :
_________________ Dlsmlss e

| Source File: /bench1fDeRose/PrOJslSrcISWIMlswnmf

Dlsmlss Help | |

A~ D

:

CALL mpi_isend(Z(1,Js),nl,MPI_DOUE
taskid-1,2,MPI_COMM_WORLD,req(6),ierr) ‘

endif |

if(taskid.gt.0)then

CALL mpi_irecv(H(1,js-1),nl,MPI_DOUBLE_PRECISION,

1 taskid-1,3,MPI_COMM_WORLD,req(3),ierr)

CALL mpi_irecv(CU(1,js-1),nl,MPI_DOUBLE_PRECISION,

1 taskid-1,4,MPI_COMM_WORLD,req(4),ierr)

endif

if(taskid.lt.numtasks-1)then

CALL mpi_isend(H(1,je),nl,MPI_DOUER=
taskid+1,3,MPI_COMM_WORLD, req(7)

CALL mpi_isend(CU(1,7je),nl,MPI_DOU
taskid+1,4,MPI_COMM_WORLD,req(8)

endif

CcALL MPI_WAITALL(8,req, istat, ierr)

1

1

1 Loop Statistics

Duration:

CME
e
o]

6.8282

PERIODIC CONTINUATION

Dlsmlss | Help

C$OMP PARALLELDO : il | |
C$OMP&SHARED (TDTSDX, TDTS8, TDTSDY,M,N, UNEW VNEW PNEW UoLD, VO
C$OMP&SHARED(CU,CV,Z,H, js, je) il
C$OMP&PRIVATE (I,J) |

DO I=1,M
UNEW(I+1,J) = UOLD(I+1,J)+

Instrument/Clear Line

View Line Data

Fig. 6 SvPablo source code browser displaying PAPI metrics

port for PAPI so that statistics for the standard PAPI met-
rics can be viewed and analyzed from the DEEP interface.
A screenshot of the DEEP/MPI interface displaying PAPI
data for L2 cache misses is shown in Figure 8.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 16, 2011

http://hpc.sagepub.com/

File Name(s): | swim

Line Number. | 572

uewun,n
1 TVTS.‘(Z(IH,JH»Z(IH.J))’(CV(IH.JH)6CV(I,J+1)0€V(I J)

UOLD(I+1,
+CVI(1+1,4)-TDTSDX (H(1+1,J)-H(1.J)

Field Name Mean i St Dev

Count| 240000000 0 000000000

Seconds' 6.802064 0 0.02715500

g)_@_h?ﬂ_l_m 6.802064 0 0.02715500

| PAPI_BR_CN| [16251458.000000 1] 3067800000000

| PAPI_BR_MSP|[26813.000000 1 32.00000000
. _PAPI L1 LDMI [4752834700000 | - Y

L i TEs——

Feformance Data

Seconds Exclusive Seconds PAPI_BR_CN PAPI_BR_MSP PAPI_L1_LDM PAPI_FP_INS Br Misp Perc MFLOPS
B.THBI E77€| 16282137.0000 26845.0000 47281088.0000 632048018.0000 0.1655 l 83.2826 }
68282 6282 IEZ_Z_U_ZZI;_MI 260010000 47775080000] _69125620.0000 01687 2650 \
Help|

- Analyzing : C:\DEEP\z»

Fig. 8 DEEP/MPI displaying PAPI data for L2 cache misses

6 Related Work

6.1 PERFORMANCE COUNTER LIBRARY

The Performance Counter Library (PCL) is a common in-
terface for accessing performance counters built into mod-

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 16, 2011

http://hpc.sagepub.com/

€In microprocessors in a portable way (Berrendorf and
Ziegler). PCL supports query for functionality, start and
stop of counters, and reading the current values of coun-
ters. Performance counter values are returned as 64-bit in-
tegers on all supported platforms. Performance counting
can be down in user mode, system mode, or user-or-sys-
tem mode. PCL supports nested calls to PCL functions to
allow hierarchical performance measurements. However,
nested calls must use exactly the same list of events. PCL
functions are callable from C, C++, Fortran, and Java.
Similar to PAPI, PCL defines a common set of events
across platforms for access to the memory hierarchy, cy-
cle and instruction counts, and the status of functional
units, and it translates these into native events on a given
platforin when possible. In addition, PAPI defines events
related to SMP cache coherence protocols and to cycles
stalled waiting for memory access. Unlike PAPI, PCL
does not support software multi- plexing or user-defined
overflow handling. The PCL API is very similar to the
PAPT high-level API and consists of calls to start a list of
counters and to read or stop the counter most recently
started. PCL is available for Tru64 Unix on Alpha 21164
and Alpha 21264 processors, for CRAY Unicos/mk on
Alpha 21164, for SGIIRI 6.x on R10000 and R12000 pro-
cessors, for Solarts 2.x on UltraSPARC I/TI, and for Linux
2.0.36 on Pentium/ PPro/Pentium II/Pentium III. In the
PCL Solaris and Linux implementations, the counters are
not saved on context switches. PCL does not support na-
tive events.

7 Conclusions

PAPT aims to provide the tool designer and application en-
gineer with a consistent interface and methodology for
use of the performance counter hardware found in most
major microprocessor lines. The main motivation for this
interface is the increasing divergence of application per-
formance from near peak performance of most machines
in the HPC marketplace. This performance gap is largely
due to the disparity in memory and communication band-
width at different levels of the memory hierarchy. With no
viable hardware solution in sight, users requiring the opti-
mal performance must expend significant effort on sin-
gle-processor and shared-memory optimization tech-
niques. To address this problem, users need a compact set
of robust and useful tools to quickly diagnose and analyze
processor-specific performance metrics. To that end,
many design efforts have wastefully reinvented the soft-

ware infrastructure necessary for a swite of program
analysis tools. PAPI directly challenges this model by fo-
cusing on a reusable, portable, and functionality-oriented
infrastructure for performance tool design. It is hoped that
through additional collaborative efforts, PAPI will be-
come one of a number of modular components for ad-
vanced tool design and program analysis,

The PAPI specification and software, as well as docu-
mentation and additional supporting information, are
available from the FPAPI Web site at http:/ficl.cs.utk.

edu/parojects/papi.

APPENDIX

PAPI Standard Event Definitions

Memory hierarchy access events

PAPI_L1_DCM lLevel 1 data cache misses
PAPI_L1_ICM Level 1 instruction cache misses
PAPI_L2 DCM Level 2 data cache misses
PAPI_L2_ICM Level 2 instruction cache misses
PAP_L3_DCM Level 3 data cache misses
PAPI_L3_IiCM Level 3 instruction cache misses
PAPI_L1_TCM Level 1 total cache misses
PAPI_L2_TCM Leve! 2 total cache misses
PAPI_L3_TCM Leve! 3 total cache misses
PAPI_TLB_DM Data translation lookaside buffer
misses
PAPI_TLB_IM Instruction translation lookaside
buffer misses
PAPI_TLB_TL Total translation lookaside buffer
misses
PAPI_L1_LDM Level 1 load misses
PAPI_LL1I_STM Level 1 store misses
PAPI_L2_LDM Level 2 load misses
PAPI_L2_STM Level 2 store misses

Cache coherence events

PAPI_CA_SNP Snoops

PAPI_CA_SHR Request for access to shared cache
line

PAPI_CA_CLN Request for access to clean cache
line

PAPI_CA_INV Cache line invalidation

PAPI_CA_ITV Cache fine intervention

PAPI_TLB_SD Translation lookaside buffer shoot-

downs

http://hpc.sagepub.com/

Cycle and instruction counts
PAPI_TOT_CYC Total cycles
PAPI_TOT_IIS Total instructions issued
PAPI_TOT_INS Total instruction completed

PAPI_INT_INS Integer instructions completed
PAPI_FP_INS Floating-point instructions completed
PAPI_LD_INS Load instructions completed
PAPI_SR_INS Store instructions completed

PAPI_LST_INS Total load/store instructions
completed

PAPI_FMA_INS Floating-point multiply add (FMA)
instructions completed

PAPI_VEC_INS Vector/SIMD instructions completed

PAPI_BR_UCN Unconditional branch instructions
completed

Conditional branch instructions
completed

PAPI_BR_TKN Conditional branch instructions taken

PAPI_BR_NTK Conditional branch instructions not
taken

PAPI_BR_MSP Conditional branch instructions
mispredicted

PAPI_BR_PRC Conditional branch instructions
correctly predicted

PAPI_BR_INS Total branch instructions completed

PAPI_CSR_FAL Failed store conditional instructions

PAPI_CSR_SUC Successful store conditional
instructions

PAPI_CSR_TOT Total store conditional instructions

PAPI_SYC_INS Synchronization instructions

PAPI_BR_CN

completed

PAPI_FLOPS Floating-point instructions completed
per second

PAPI_IPS Instructions completed per second

Functional unit and pipeline status events

PAPI_BRU_IDL Cycles branch units are idle

PAPI_FXU_IDL Cycles integer units are idle

PAPI_FPU_IDL Cycles floating-point units are idle

PAPI_LSU_IDL Cycles load/store units are idle

PAPI_MEM_SCY Cycles stalled waiting for memory
access

PAPI_MEM_RCY Cycles stalled waiting for memory
read

PAPI_MEM_WCY Cycles stalled waiting for memory
write

PAPI_STL_CYC Cycles with no instruction issue

PAPI_FUL_ICY Cycles with maximum instruction
issue

PAPI_STL_CCY Cycles with no instruction completion

PAPI_FUL_CCY Cycles with maximum instruction
completion

ACKNOWLEDGMENTS

The authors would like to thank John Levesque and Luiz
DeRose at the IBM Advanced Computing Technology
Center for assistance with the IBM reference implemen-
tation and integration of PAPI with SvPablo, Curtis
Janssen at Sandia National Laboratory for integration
with vprof and comments on PAPI profiling, Alex Poulos
and Uros Prestor at SGI/Cray for assistance with the
MIPS R10K/R12K implementation, and Monika ten
Bruggencate at SGI/Cray for assistance with the Cray
T3E implementation. The authors would also like to
thank the Parallel Tools Consortium (Ptools) (http://
www.ptools.org/) for sponsoring PAPI as a Ptools project.
This work was partially supported by NASA Ames Re-
search Center, ERDC MSRC under prime contract
#DAHC94-96-C-0002; by ARL MSRC under prime con-
tract #DAHC94-96-C-0010; by ASC MSRC under prime
contract #DAHC94-96-C-0005; and by NSF PACI under
Cooperative Agreement #ACI-9619019.

BIOGRAPHIES

Shirley Browne received her Ph.D. in computer sciences
from Purdue University in 1990. She is currently associate di-
rector of research at the Innovative Computing Laboratory at the
University of Tennessee—Knoxville. She participates in research
and development for the Department of Defense High Perfor-
mance Computing Modernization Program and the Department
of Energy Accelerated Strategic Computing Initiative program.
Her research interests are in debugging and performance analy-
sis tools, performance optimization, and parallel and distributed
file access. She serves on the Parallel Tools Consortium and Na-
tional Computer Science Technical Reports steering commit-
tees.

Jack Dongarra holds an appointment as University Distin-
guished Professor in the Computer Science Department at the
University of Tennessee and is an adjunct research and develop-
ment participant in the Computer Science and Mathematics Di-
vision at Oak Ridge National Laboratory (ORNL). He special-
izes in numerical algorithms in linear algebra, parallel
computing, use of advanced-computer architectures, program-
ming methodology, and tools for parallel computers. Other cur-
rent research involves the development, testing, and documenta-
tion of high-quality mathematical software. He was involved in
the design and implementation of the software packages

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 16, 2011

http://hpc.sagepub.com/

EISPACK, LINPACK, the BLAS, LAPACK, ScaLAPACK,
Netlib, PVM, MPI, the National High-Performance Software
Exchange, NetSolve, and ATLAS, and he is currently involved
in the design of algorithms and techniques for high performance
computer architectures.

Nathan Garnerreceived a B.S. degree in computer science in
1997 from the University of Tennessee—Chattanooga and an
M.S. degree in computer science in 1999 from the University of
Tennessee—Knoxville. He is currently a research associate at the
Innovative Computing Laboratory at the University of Tennes-
see—Knoxville working on the PAPI project. His research inter-
ests include performance analysis, graphical tool design, and
high performance computing.

George Ho received his B.S. degree in biology and his M.S.
degree in computer science from the University of Tennessee,
Knoxville. After graduation, he worked as a research consultant
for the Innovative Computing Laboratory at the university. Cur-
rently, he a performance tools developer for Sandpiper Net-
works, Inc., Thousand Oaks, California.

Philip Mucci earned a B.A. in computer science from the
Johns Hopkins University in 1993. During that period, he
worked as a part-time software engineer for the MIT Laboratory
for Computer Science and Thinking Machines Corporation in
Cambridge, Massachusetts. The year following his B.A., he
worked for Gradient Technologies, where he designed a
multithreaded software licensing system. He then went to get his
master’s degree in computer science under the tutelage of Dr.
Jack Dongarra, widely recognized as one of the leaders in Scien-
tific Parallel Computing. During that time, he designed a high
performance communication layer for PVM as a member of a
development team, authored the LLCBench benchmark pack-
age, and served as a performance consultant to the Department
of Defense Major Shared Resource Centers and Los Alamos Na-
tional Laboratory. In 1998, he conceived PAPI and has been the
chief technical architect ever since. Currently, he is a part-time
research consultant for the University of Tennessee and a perfor-
mance consultant for the Advanced Computation and Technol-
ogy Center, a division of IBM Research in Yorktown, New York.
He can be reached at mucci@cs.utk.edu.

REFERENCES

Andersson, S., Bell, R., Hague, J., Holthoff, H., Mayes, P.,
Nakano, J., Shieh, D., and Tuccillo, J. 1998. POWER3 Intro-
duction and Tuning Guide. IBM, October 1998 [Online].
Available: http://www.redbooks.ibm.com

Berrendorf, R., and Ziegler, H. PCL—the Performance Counter
Library: A Common Interface to Access Hardware Perfor-
mance Counters on Microprocessors, Version 1.3 [Online].
Available: http://www.fz-juelich.de/ zam/PCL/

Brehob, M., Doom, T., Enbody, R., Moore, W. H., Moore, S. Q.,
Sass, R., and Severance, C. 1996. Beyond RISC: The
post-RISC architecture. Technical Report CPS-96-11,
Michigan State University, Department of Computer
Science.

Cortesi, D. 1998. Origin 2000 and Onyx2 Performance Tuning
and Optimization Guide. Document No. 007-3430-002, Sili-
con Graphics, Inc. [Online]. Available: http://techpubs.sgi.
com/

DeRose, L., and Reed, D. A. 1999. SvPablo: A multi-language
performance analysis system. In Proceedings of the 1999 In-
ternational Conference on Parallel Processing, pp. 311-318.

DeRose, L., Zhang, Y., and Reed, D. A. 1998. SvPablo: A
multi-language performance analysis system. Paper pre-
sented at the 10th International Conference on Computer
Performance Evaluation: Modeling Techniques and Tools—
Performance Tools’98, September, Palma de Mallorca,
Spain.

Hennessy, J. L., and Patterson, D. A. 1996. Computer Architec-
ture: A Quantitative Approach. 2nd ed. San Francisco: Mor-
gan Kaufmann.

Janssen, C. L. 1999. The Visual Profiler, Version 0.4 [Online].
Available: http://aros.ca.sandia.gov/~cljanss/pert/vprot/
doc/README .html

Smolders, L. 1999. System and Kernel Thread Performance
Monitor API Reference Guide, Version 0.5. IBM RS/6000
Division, May 1999.

Downloaded from hpc.sagepub.com at UNIV OF TENNESSEE on June 16, 2011

http://hpc.sagepub.com/

