
SvPablo is a graphical source code browser and perfor-
mance visualizer that has been developed as part of the
University of Illinois’s Pablo project (DeRose and Reed,
1999; DeRose, Zhang, and Reed, 1998). SvPablo supports
automatic instrumentation of HPF codes with Portland
Group’s HPF compiler and interactive instrumentation of
C and Fortran programs. During execution of an instru-
mented code, the SvPablo library maintains statistics on
the execution of each instrumented event on each proces-
sor and maps these statistics to constructs in the original
source code. The current version of SvPablo includes sup-
port for the MIPS R10000 hardware performance coun-
ters. The next version of SvPablo, being developed at the
IBM Advanced Computing Technology Center, has inte-
grated support for PAPI. Screenshots of SvPablo displays
of PAPI metrics are shown in Figures 6 and 7.

DEEP, from Pacific-Sierra Research, stands for devel-
opment environment for parallel programs. DEEP pro-
vides an integrated interactive GUI interface that binds
performance, analysis, and debugging tools back to the
original parallel source code. DEEP supports Fortran
77/90/95, C, and mixed Fortran and C in Unix and Win-
dows 95/98/NT environments. DEEP supports both
shared-memory (automatic parallelization, OpenMP) and
distributed-memory (MPI, HPF, Data Parallel C) parallel
program development. A special version of DEEP, called
DEEP/MPI, is aimed at support of MPI programs. DEEP
provides a graphical user interface for program structure
browsing, profiling analysis, and relating profiling results
to source code. DEEP developers are incorporating sup-

PORTABLE PROGRAMMING INTERFACE 199

Fig. 4 Profometer display L1 data cache misses

Fig. 5 vprof displaying profil and PAPI_TOT_CYC data

“During execution of an
instrumented code, the SvPablo
library maintains statistics on the
execution of each instrumented event
on each processor and maps these
statistics to constructs in the original
source code.”

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 



port for PAPI so that statistics for the standard PAPI met-
rics can be viewed and analyzed from the DEEP interface.
A screenshot of the DEEP/MPI interface displaying PAPI
data for L2 cache misses is shown in Figure 8.

200 COMPUTING APPLICATIONS

Fig. 6 SvPablo source code browser displaying PAPI metrics

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


6 Related Work

6.1 PERFORMANCE COUNTER LIBRARY

The Performance Counter Library (PCL) is a common in-
terface for accessing performance counters built into mod-

PORTABLE PROGRAMMING INTERFACE 201

Fig. 7 SvPablo statistics displays showing PAPI data

Fig. 8 DEEP/MPI displaying PAPI data for L2 cache misses

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


Cycle and instruction counts
PAPI_TOT_CYC Total cycles
PAPI_TOT_IIS Total instructions issued
PAPI_TOT_INS Total instruction completed
PAPI_INT_INS Integer instructions completed
PAPI_FP_INS Floating-point instructions completed
PAPI_LD_INS Load instructions completed
PAPI_SR_INS Store instructions completed
PAPI_LST_INS Total load/store instructions

completed
PAPI_FMA_INS Floating-point multiply add (FMA)

instructions completed
PAPI_VEC_INS Vector/SIMD instructions completed
PAPI_BR_UCN Unconditional branch instructions

completed
PAPI_BR_CN Conditional branch instructions

completed
PAPI_BR_TKN Conditional branch instructions taken
PAPI_BR_NTK Conditional branch instructions not

taken
PAPI_BR_MSP Conditional branch instructions

mispredicted
PAPI_BR_PRC Conditional branch instructions

correctly predicted
PAPI_BR_INS Total branch instructions completed
PAPI_CSR_FAL Failed store conditional instructions
PAPI_CSR_SUC Successful store conditional

instructions
PAPI_CSR_TOT Total store conditional instructions
PAPI_SYC_INS Synchronization instructions

completed
PAPI_FLOPS Floating-point instructions completed

per second
PAPI_IPS Instructions completed per second

Functional unit and pipeline status events
PAPI_BRU_IDL Cycles branch units are idle
PAPI_FXU_IDL Cycles integer units are idle
PAPI_FPU_IDL Cycles floating-point units are idle
PAPI_LSU_IDL Cycles load/store units are idle
PAPI_MEM_SCY Cycles stalled waiting for memory

access
PAPI_MEM_RCY Cycles stalled waiting for memory

read
PAPI_MEM_WCY Cycles stalled waiting for memory

write
PAPI_STL_CYC Cycles with no instruction issue

PAPI_FUL_ICY Cycles with maximum instruction
issue

PAPI_STL_CCY Cycles with no instruction completion
PAPI_FUL_CCY Cycles with maximum instruction

completion

ACKNOWLEDGMENTS

The authors would like to thank John Levesque and Luiz
DeRose at the IBM Advanced Computing Technology
Center for assistance with the IBM reference implemen-
tation and integration of PAPI with SvPablo, Curtis
Janssen at Sandia National Laboratory for integration
with vprof and comments on PAPI profiling, Alex Poulos
and Uros Prestor at SGI/Cray for assistance with the
MIPS R10K/R12K implementation, and Monika ten
Bruggencate at SGI/Cray for assistance with the Cray
T3E implementation. The authors would also like to
thank the Parallel Tools Consortium (Ptools) (http://
www.ptools.org/) for sponsoring PAPI as a Ptools project.
This work was partially supported by NASA Ames Re-
search Center, ERDC MSRC under prime contract
#DAHC94-96-C-0002; by ARL MSRC under prime con-
tract #DAHC94-96-C-0010; by ASC MSRC under prime
contract #DAHC94-96-C-0005; and by NSF PACI under
Cooperative Agreement #ACI-9619019.

BIOGRAPHIES

Shirley Browne received her Ph.D. in computer sciences
from Purdue University in 1990. She is currently associate di-
rector of research at the Innovative Computing Laboratory at the
University of Tennessee–Knoxville. She participates in research
and development for the Department of Defense High Perfor-
mance Computing Modernization Program and the Department
of Energy Accelerated Strategic Computing Initiative program.
Her research interests are in debugging and performance analy-
sis tools, performance optimization, and parallel and distributed
file access. She serves on the Parallel Tools Consortium and Na-
tional Computer Science Technical Reports steering commit-
tees.

Jack Dongarra holds an appointment as University Distin-
guished Professor in the Computer Science Department at the
University of Tennessee and is an adjunct research and develop-
ment participant in the Computer Science and Mathematics Di-
vision at Oak Ridge National Laboratory (ORNL). He special-
izes in numerical algorithms in linear algebra, parallel
computing, use of advanced-computer architectures, program-
ming methodology, and tools for parallel computers. Other cur-
rent research involves the development, testing, and documenta-
tion of high-quality mathematical software. He was involved in
the design and implementation of the software packages

PORTABLE PROGRAMMING INTERFACE 203

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


EISPACK, LINPACK, the BLAS, LAPACK, ScaLAPACK,
Netlib, PVM, MPI, the National High-Performance Software
Exchange, NetSolve, and ATLAS, and he is currently involved
in the design of algorithms and techniques for high performance
computer architectures.

Nathan Garner received a B.S. degree in computer science in
1997 from the University of Tennessee–Chattanooga and an
M.S. degree in computer science in 1999 from the University of
Tennessee–Knoxville. He is currently a research associate at the
Innovative Computing Laboratory at the University of Tennes-
see–Knoxville working on the PAPI project. His research inter-
ests include performance analysis, graphical tool design, and
high performance computing.

George Ho received his B.S. degree in biology and his M.S.
degree in computer science from the University of Tennessee,
Knoxville. After graduation, he worked as a research consultant
for the Innovative Computing Laboratory at the university. Cur-
rently, he a performance tools developer for Sandpiper Net-
works, Inc., Thousand Oaks, California.

Philip Mucci earned a B.A. in computer science from the
Johns Hopkins University in 1993. During that period, he
worked as a part-time software engineer for the MIT Laboratory
for Computer Science and Thinking Machines Corporation in
Cambridge, Massachusetts. The year following his B.A., he
worked for Gradient Technologies, where he designed a
multithreaded software licensing system. He then went to get his
master’s degree in computer science under the tutelage of Dr.
Jack Dongarra, widely recognized as one of the leaders in Scien-
tific Parallel Computing. During that time, he designed a high
performance communication layer for PVM as a member of a
development team, authored the LLCBench benchmark pack-
age, and served as a performance consultant to the Department
of Defense Major Shared Resource Centers and Los Alamos Na-
tional Laboratory. In 1998, he conceived PAPI and has been the
chief technical architect ever since. Currently, he is a part-time
research consultant for the University of Tennessee and a perfor-
mance consultant for the Advanced Computation and Technol-
ogy Center, a division of IBM Research in Yorktown, New York.
He can be reached at mucci@cs.utk.edu.

REFERENCES

Andersson, S., Bell, R., Hague, J., Holthoff, H., Mayes, P.,
Nakano, J., Shieh, D., and Tuccillo, J. 1998. POWER3 Intro-
duction and Tuning Guide. IBM, October 1998 [Online].
Available: http://www.redbooks.ibm.com

Berrendorf, R., and Ziegler, H. PCL—the Performance Counter
Library: A Common Interface to Access Hardware Perfor-
mance Counters on Microprocessors, Version 1.3 [Online].
Available: http://www.fz-juelich.de/ zam/PCL/

Brehob, M., Doom, T., Enbody, R., Moore, W. H., Moore, S. Q.,
Sass, R., and Severance, C. 1996. Beyond RISC: The
post-RISC architecture. Technical Report CPS-96-11,
Michigan State University, Department of Computer
Science.

Cortesi, D. 1998. Origin 2000 and Onyx2 Performance Tuning
and Optimization Guide. Document No. 007-3430-002, Sili-
con Graphics, Inc. [Online]. Available: http://techpubs.sgi.
com/

DeRose, L., and Reed, D. A. 1999. SvPablo: A multi-language
performance analysis system. In Proceedings of the 1999 In-
ternational Conference on Parallel Processing, pp. 311-318.

DeRose, L., Zhang, Y., and Reed, D. A. 1998. SvPablo: A
multi-language performance analysis system. Paper pre-
sented at the 10th International Conference on Computer
Performance Evaluation: Modeling Techniques and Tools—
Performance Tools’98, September, Palma de Mallorca,
Spain.

Hennessy, J. L., and Patterson, D. A. 1996. Computer Architec-
ture: A Quantitative Approach. 2nd ed. San Francisco: Mor-
gan Kaufmann.

Janssen, C. L. 1999. The Visual Profiler, Version 0.4 [Online].
Available: http://aros.ca.sandia.gov/~cljanss/perf/vprof/
doc/README.html

Smolders, L. 1999. System and Kernel Thread Performance
Monitor API Reference Guide, Version 0.5. IBM RS/6000
Division, May 1999.

204 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/



