
CONCURRENCY: PRACTICE AND EXPERIENCE, VOL. 9(10), 915–926 (OCTOBER 1997)

Message-passing performance of various
computers
JACK J. DONGARRA1∗AND TOM DUNIGAN2

1University of Tennessee, Department of Computer Science, Ayres Hall, Room 104, Knoxville,
Tennessee 37996-1301, USA

2Oak Ridge National Laboratory, USA

SUMMARY
This report compares the performance of different computer systems for basic message passing.
Latency and bandwidth are measured on Convex, Cray, IBM, Intel, KSR, Meiko, nCUBE,
NEC, SGI and TMC multiprocessors. Communication performance is contrasted with the
computational power of each system. The comparison includes both shared and distributed
memory computers as well as networked workstation clusters. 1997 by John Wiley & Sons,
Ltd.

1. INTRODUCTION AND MOTIVATION

1.1. The rise of the microprocessor

The past decade has been one of the most exciting periods in computer development that the
world has ever experienced. Performance improvements, in particular, have been dramatic,
and that trend promises to continue for the next several years.

In particular, microprocessor technology has changed rapidly. Microprocessors have
become smaller, denser and more powerful. Indeed, microprocessors have made such
progress that, if cars had made equal progress since the day they were invented, we would
now be able to buy a car for a few dollars, drive it across the country in a few minutes,
and not worry about parking because the car would fit into one’s pocket. The result is that
microprocessor-based supercomputing is rapidly becoming the technology of preference
in attacking some of the most important problems of science and engineering.

These processors are now the mainstay of the workstation market.
The vendors of high-performance computing have turned to RISC microprocessors for

performance. Collections of these processors are interconnected by hardware and software
to attack various applications. The physical interconnection of these processors may be
contained in one or more cabinets as part of a multiprocessor, or the processors may be
standalone workstations dispersed across a building or campus interconnected by a local
area network. The effectiveness of using a collection of processors to solve a particular
application is constrained by the amount of parallelism in the application, compiler tech-
nology, message-passing software, amount of memory, and by the speed of the processors
and of the interconnecting network.

1.2. Communications and parallel processing systems

This report compares the results of a set of benchmarks for measuring communication time
on a number of non-uniform memory access (NUMA) computers ranging from a collection

∗Also with Oak Ridge National Laboratory.

CCC 1040–3108/97/100915–12 $17.50 Received 11 August 1995
1997 by John Wiley & Sons, Ltd. Revised 29 May 1996

916 J. J. DONGARRA AND T. DUNIGAN

of workstations using PVM[1] to machines like the IBM SP-2 and the Cray T3D using their
native communication library, MPI[2], or PVM. We are interested in the communication
performance for a number of reasons. Firstly, our main interest is to obtain fundamental
parameters on a given hardware platform to help in building models of execution. Secondly,
it is to compare machines and help in evaluating new machines and architectures as they
become available.

The following Section describes the critical parameters in evaluating message-passing
systems. The techniques to measure these parameters are described. In Section 3, the
message-passing performances of several multiprocessors and networks are presented.
Communication and computational performance are contrasted. Section 4 provides details
for obtaining the test software.

2. MESSAGE PASSING

2.1. Programming model

Processes of a parallel application distributed over a collection of processors must communi-
cate problem parameters and results. In distributed memory multiprocessors or workstations
on a network, the information is typically communicated with explicit message-passing
subroutine calls. To send data to another process, a subroutine is usually provided that
requires a destination address, message and message length. The receiving process usually
provides a buffer, a maximum length and the sender’s address. The programming model
is often extended to include both synchronous and asynchronous communication, group
communication (broadcast and multicast) and aggregate operations (e.g., global sum).

Message-passing performance is usually measured in units of time or bandwidth (bytes
per second). In this report we choose time as the measure of performance for sending a small
message. The time for a small, or zero length, message is usually bounded by the speed of
the signal through the media (latency) and any software overhead in sending/receiving the
message. Small message times are important in synchronization and determining optimal
granularity of parallelism. For large messages, bandwidth is the bounded metric, usually
approaching the maximum bandwidth of the media. Choosing two numbers to represent
the performance of a network can be misleading, so the reader is encouraged to plot
communication time as a function of message length to compare and understand the
behavior of message-passing systems.

Message-passing time is usually a linear function of message size for two processors
that are directly connected. For more complicated networks, a per-hop delay may increase
the message-passing time. Message-passing time, tn, can be modeled as

tn = α+ βn+ (h− 1)γ

with a start-up time, α, a per-byte cost, β, and a per-hop delay, γ, where n is the number
of bytes per message and h the number of hops a message must travel. On most current
message-passing multiprocessors the per-hop delay is negligible due to ‘worm-hole’ routing
techniques and the small diameter of the communication network[3]. The results reported
here reflect nearest-neighbor communication. A linear least-squares fit can be used to
calculate α and β from experimental data of message-passing times versus message length.
The start-up time, α, may be slightly different from the zero-length time, and 1/β should
be asymptotic bandwidth. The message length at which half the maximum bandwidth is

MESSAGE-PASSING PERFORMANCE 917

achieved, n1/2, is another metric of interest and is equal to (α + (h− 1)γ)/β[4]. As with
any metric that is a ratio, any notion of ‘goodness’ or ‘optimality’ of n1/2 should only be
considered in the context of the underlying metrics α, β, γ and h. For a more complete
discussion of these parameters see [5,6].

There are a number of factors that can affect message-passing performance. The number
of times the message has to be copied or touched (e.g., checksums) is probably most
influential and obviously a function of message size. The vendor may provide hints as to
how to reduce message copies, for example, posting the receive before the send. Second-
order effects of message size may also affect performance. Message lengths that are powers
of two or cache-line size may provide better performance than shorter lengths. Buffer
alignment on word, cache-line or page may also affect performance. For small messages,
context-switch times may contribute to delays. Touching all the pages of the buffers can
reduce virtual memory effects. For shared media, contention may also affect performance.
There also may be some first-time effects that can be identified or eliminated by performing
some ‘warm up’ tests before collecting performance data. These ‘warm up’ tests can be
simply running the test a number of times before gathering the timing data.

There are, of course, other parameters of a message-passing system that may affect
performance for given applications. The aggregate bandwidth of the network, and the
amount of concurrency, reliability, scalability and congestion management may be issues.

2.2. Measurement methodology

To measure latency and bandwidth we use a simple echo test between two adjacent nodes.
A receiving node simply echoes back whatever it is sent, and the sending node measures
round-trip time. Times are collected for some number of repetitions (100 to 1000) over
various messages sizes (0 to 1,000,000 bytes). Times can be collected outside the repetition
loop as illustrated in Figure 1. If the system has high resolution timers then a more detailed
analysis can be made by timing each send–receive pair. The time for each send–receive is
saved in a vector and printed at the end of the test. A plot of this vector of times reveals
minima and maxima. For small message sizes, clock resolution may not be adequate, and

Figure 1. Echo test pseudo-code

918 J. J. DONGARRA AND T. DUNIGAN

Table 1. Multiprocessor latency and bandwidth

Machine OS Latency Bandwidth n1/2 Theoretical
n = 0 n = 106 bytes bandwidth
(µs) (MB/s) (MB/s)

Convex SPP1000 (PVM) SPP-UX 3.0.4.1 76 11 1000 250
Convex SPP1000 (sm 1-n) SPP-UX 3.0.4.1 2.5 82 1000 250
Convex SPP1000 (sm m-n) SPP-UX 3.0.4.1 12 59 1000 250
Convex SPP1200 (PVM) SPP-UX 3.0.4.1 63 15 1000 250
Convex SPP1200 (sm 1-n) SPP-UX 3.0.4.1 2.2 92 1000 250
Convex SPP1200 (sm m-n) SPP-UX 3.0.4.1 11 71 1000 250
Cray T3D (sm) MAX 1.2.0.2 3 128 363 300
Cray T3D (PVM) MAX 1.2.0.2 21 27 1502 300
Intel Paragon OSF 1.0.4 29 154 7236 175
Intel Paragon SUNMOS 1.6.2 25 171 5856 175
Intel Delta NX 3.3.10 77 8 900 22
Intel iPSC/860 NX 3.3.2 65 3 340 3
Intel iPSC/2 NX 3.3.2 370 2.8 1742 3
IBM SP-1 MPL 270 7 1904 40
IBM SP-2 MPI 35 35 3263 40
KSR-1 OSF R1.2.2 73 8 635 32
Meiko CS2 (sm) Solaris 2.3 11 40 285 50
Meiko CS2 Solaris 2.3 83 43 3559 50
nCUBE 2 Vertex 2.0 154 1.7 333 2.5
nCUBE 1 Vertex 2.3 384 0.4 148 1
NEC Cenju-3 Env. Rel 1.5d 40 13 900 40
NEC Cenju-3 (sm) Env. Rel 1.5d 34 25 400 40
SGI IRIX 6.1 10 64 799 1200
TMC CM-5 CMMD 2.0 95 9 962 10

Ethernet TCP/IP 500 0.9 450 1.2
FDDI TCP/IP 900 9.7 8730 12
ATM-100 TCP/IP 900 3.5 3150 12

you will probably observe clock jitter from time-sharing interrupts in the underlying OS.
The minimum send–receive time (divided by two) for zero-length messages is what we
report for latency. Data rate, or bandwidth, is calculated from the number of bytes sent
divided by half the round-trip time. A number of other similar tests have been reported in
[7,8].

2.3. Latency and bandwidth

We measured latency and bandwidth on a number of different multiprocessors. Each ar-
chitecture is briefly summarized in Appendix A. Table 1 shows the measured latency,
bandwidth and n1/2 for nearest neighbor communication. The Table also includes the peak
bandwidth as stated by the vendor. For comparison, typical data rates and latencies are
reported for several local area network technologies.

Figure 2 details the message-passing times of various multiprocessors over a range of
message sizes. For small messages, the fixed overhead and latency dominate transfer time.
For large messages, the transfer time rises linearly with message size. Figure 3 illustrates
the asymptotic behavior of bandwidth for large message sizes. It is possible to reduce
latency on the shared-memory architectures by using shared-memory copy operations.
These operations usually involve only one processor and assume that the message is
ready to be retrieved on the other processor. Figure 4 compares the message transfer

MESSAGE-PASSING PERFORMANCE 919

Figure 2. Message-passing transfer time in microseconds for various multiprocessors and messages
sizes

times for shared-memory gets and explicit message passing for the Cray T3D, Meiko
and NEC. Current research in ‘active messages’ is seeking ways to reduce message-
passing overhead by eliminating context switches and message copying. Finally, Figure 5
summarizes graphically the communication performance of the various multiprocessors
in a two-dimensional message-passing metric space. The upper-left region is the high
performance area; lower performance and LAN networks occupy the lower performance
region in the lower right.

Since clusters of workstations on a network are often used as a virtual parallel machine,
it is interesting to compare latency and bandwidths for various local area networks. Most
communications over local area networks are done with the TCP/IP protocols, though
proprietary APIs may exist. We measured latency for small messages using a UDP echo
test. TCP bandwidth was measured at the receiver with the ttcp program using 50,000
byte messages and 50,000 byte window sizes. Some newer operating systems support even
larger window sizes, which could provide higher bandwidths. Most high-end workstations
can transmit network data at or near media data rates (e.g., 12 MB/s for FDDI). Data rates
of 73 MB/s for UDP have been reported between Crays on HiPPI (and even over a wide
area using seven OC3s)[9]. Latency and bandwidth will depend as much on the efficiency
of the TCP/IP implementation as on the network interface hardware and media. As with
multiprocessors, the number of times the message is touched is a critical parameter, as is
context-switch time. Latencies for local area networks (Ethernet, FDDI, ATM, HiPPI) are
typically in the order of 500 µs. For wide-area networks, latency is usually dominated by
distance (speed of light) and is in the order of tens of milliseconds.

920 J. J. DONGARRA AND T. DUNIGAN

Figure 3. Bandwidth in megabytes/second for various multiprocessors and messages sizes

3. COMPUTATION AND COMMUNICATION

3.1. Performance

The performance of a computer is a complicated issue, a function of many interrelated
quantities. These quantities include the application, the algorithm, the size of the problem,
the high-level language, the implementation, the human level of effort used to optimize the
program, the compiler’s ability to optimize, the age of the compiler, the operating system,
the architecture of the computer, and the hardware characteristics. The results presented for
benchmark suites should not be extolled as measures of total system performance (unless
enough analysis has been performed to indicate a reliable correlation of the benchmarks to
the workload of interest) but rather as reference points for further evaluations.

Performance is often measured in terms of MFLOPS(millions of floating point operations
per second). We usually include both additions and multiplications in the count of MFLOPS,
and the reference to an operation is assumed to be on 64-bit operands.

The manufacturer usually refers to peak performance when describing a system. This
peak performance is arrived at by counting the number of floating-point additions and
multiplications that can be performed in a period of time, usually the cycle time of the
machine. As an example, the IBM SP-1 processor has a cycle time of 62.5 MHz. During a
cycle the results of the multiply/add instruction can be completed, giving

2 operations/1 cycle× 1 cycle/16 ns = 125 MFLOPS

MESSAGE-PASSING PERFORMANCE 921

Figure 4. Transfer time in microseconds for both shared-memory operations and explicit message
passing

By peak theoretical performance we mean only that the manufacturer guarantees that
programs will not exceed these rates – a sort of a ‘speed of light’ for a given computer.
At one time, a programmer had to go out of his way to code a matrix routine that would
not run at nearly top efficiency on any system with an optimizing compiler. Owing to the
proliferation of exotic computer architectures, this situation is no longer true.

The LINPACK benchmark[10] illustrates this point quite well. In practice, as Table 2
shows, there may be a significant difference between peak theoretical and actual perfor-
mance.

3.2. The LINPACK benchmark

The LINPACK benchmark features solving a system of linear equations, Ax = b. The
benchmark results examined here are for two distinct benchmark problems. The first prob-
lem uses Fortran software from the LINPACK software package to solve a matrix problem
of order 100. That is, the matrix A has 100 rows and columns and is said to be of size
100 × 100. The software used in this experiment is based on two routines from the LIN-
PACK collection: DGEFA and DGESL. DGEFA performs the decomposition with partial
pivoting, and DGESL uses that decomposition to solve the given system of linear equa-
tions. Most of the time – O(n3) floating-point operations – is spent in DGEFA. Once the
matrix has been decomposed, DGESL is used to find the solution; this requires O(n2)
floating-point operations.

922 J. J. DONGARRA AND T. DUNIGAN

Figure 5. Latency/bandwidth space for 0-byte message (latency) and 1 MB message (bandwidth):
block points represent shared-memory copy performance

DGEFA and DGESL in turn call three BLAS routines: DAXPY, IDAMAX and DSCAL.
For the size 100 benchmark, the BLAS used are written in Fortran. By far the major portion
of time – over 90% at order 100 – is spent in subroutine DAXPY. DAXPY is used to
multiply a scalar, α, times a vector, x, and add the results to another vector, y. It is called
approximately n2/2 times by DGEFA and 2n times by DGESL with vectors of varying
length. The statement yi ← yi +αxi, which forms an element of the DAXPY operation, is
executed approximatelyn3/3 +n2 times, which gives rise to roughly 2/3n3 floating-point
operations in the solution. Thus, the benchmark requires roughly 2/3 million floating-point
operations.

The statement yi ← yi+αxi, besides the floating-point addition and floating-point mul-
tiplication, involves a few one-dimensional index operations and storage references. While
the LINPACK routines DGEFA and DGESL involve two-dimensional arrays references,
the BLAS refer to one-dimensional arrays. The LINPACK routines in general have been or-
ganized to access two-dimensional arrays by column. In DGEFA, the call to DAXPY passes
an address into the two-dimensional array A, which is then treated as a one-dimensional
reference within DAXPY. Since the indexing is down a column of the two-dimensional
array, the references to the one-dimensional array are sequential with unit stride. This is a
performance enhancement over, say, addressing across the column of a two-dimensional
array. Since Fortran dictates that two-dimensional arrays be stored by column in memory,
accesses to consecutive elements of a column lead to simple index calculations. References
to consecutive elements differ by one word instead of by the leading dimension of the
two-dimensional array.

If we examine the algorithm used in LINPACK and look at how the data are referenced,
we see that at each step of the factorization process there are operations that modify a

MESSAGE-PASSING PERFORMANCE 923

Table 2. Computation performance

Machine / OS Clock cycle Linpack 100 Linpack 1000 Latency
MHz (ns) MFLOPS (FLOP/cl) MFLOPS (FLOP/cl) µs (cl)

Convex SPP1000 (PVM) / SPP-UX 3.0.4.1 100 (10) 48 (0.48) 123 (1.23) 76 (7600)
Convex SPP1000 (sm 1-n) 2.6 (260)
Convex SPP1000 (sm m-n) 11 (1080)
Convex SPP1200 (PVM) / SPP-UX 3.0.4.1 100 (8.33) 65 (0.54) 123 (1.02) 63 (7560)
Convex SPP1200 (sm 1-n) 2.2 (264)
Convex SPP1200 (sm m-n) 11 (1260)
Cray T3D (sm) / MAX 1.2.0.2 150 (6.67) 38 (0.25) 94 (0.62) 3 (450)
Cray T3D (PVM) 21 (3150)
Intel Paragon / OSF 1.0.4 50 (20) 10 (0.20) 34 (0.68) 29 (1450)
Intel Paragon / SUNMOS 1.6.2 25 (1250)
Intel Delta / NX 3.3.10 40 (25) 9.8 (0.25) 34 (0.85) 77 (3080)
Intel iPSC/860 / NX 3.3.2 40 (25) 9.8 (0.25) 34 (0.85) 65 (2600)
Intel iPSC/2 / NX 3.3.2 16 (63) 0.37 (0.01) – (–) 370 (5920)
IBM SP-1 / MPL 62.5 (16) 38 (0.61) 104 (1.66) 270 (16875)
IBM SP-2 / MPI 66 (15.15) 130 (1.97) 236 (3.58) 35 (2310)
KSR-1 / OSF R1.2.2 40 (25) 15 (0.38) 31 (0.78) 73 (2920)
Meiko CS2 (MPI) / Solaris 2.3 90 (11.11) 24 (0.27) 97 (1.08) 83 (7470)
Meiko CS2 (sm) 11 (990)
nCUBE 2 / Vertex 2.0 20 (50) 0.78 (0.04) 2 (0.10) 154 (3080)
nCUBE 1 / Vertex 2.3 8 (125) 0.10 (0.01) – (–) 384 (3072)
NEC Cenju-3 / Env Rev 1.5d 75 (13.3) 23 (0.31) 39 (0.52) 40 (3000)
NEC Cenju-3(sm) / Env Rev 1.5d 75 (13.3) 23 (0.31) 39 (0.52) 34 (2550)
SGI Power Challenge / IRIX 6.1 90 (11.11) 126 (1.4) 308 (3.42) 10 (900)
TMC CM-5 / CMMD 2.0 32 (31.25) – (–) – (–) 95 (3040)

full submatrix of data. This update causes a block of data to be read, updated and written
back to central memory. The number of floating-point operations is 2/3n3, and the number
of data references, both loads and stores, is 2/3n3. Thus, for every add/multiply pair
we must perform a load and store of the elements, unfortunately obtaining no reuse of
data. Even though the operations are fully vectorized, there is a significant bottleneck in
data movement, resulting in poor performance. To achieve high-performance rates, this
operation-to-memory-reference rate or computational intensity must be higher.

The bottleneck is in moving data, and the rates of execution are limited by these quantities.
We can see this by examining the rate of data transfers and the peak performance.

3.3. Restructuring algorithms

Advanced-architecture processors are usually based on memory hierarchies. By restructur-
ing algorithms to exploit this hierarchical organization, one can gain high performance.

A hierarchical memory structure involves a sequence of computer memories ranging
from a small, but very fast, memory at the bottom to a large, but slow, memory at the top.
Since a particular memory in the hierarchy (call it M) is not as big as the memory at the
next level (M ′), only part of the information inM ′ will be contained inM . If a reference is
made to information that is in M , then it is retrieved as usual. However, if the information
is not in M , then it must be retrieved from M ′, with a loss of time. To avoid repeated
retrieval, information is transferred from M ′ to M in blocks, the supposition being that if
a program references an item in a particular block, the next reference is likely to be in the
same block. Programs having this property are said to have locality of reference. Typically,
there is a certain startup time associated with getting the first memory reference in a block.
This startup is amortized over the block move.

Processors such as the IBM RS/6000, DEC Alpha, Intel 860, etc., all have an additional
level of memory between the main memory and the registers of the processor. This memory
is referred to as cache. To come close to gaining peak performance, one must optimize

924 J. J. DONGARRA AND T. DUNIGAN

the use of this level of memory (i.e., retain information as long as possible before the next
access to main memory), obtaining as much reuse as possible.

In the second benchmark, the problem size is larger (matrix of order 1000), and modifying
or replacing the algorithm and software is permitted to achieve as high an execution rate
as possible. The algorithm used for the n = 1000 problem makes better use of the memory
hierarchy by utilizing the data in cache. Thus, the hardware had more opportunity for
reaching near-asymptotic rates. An important constraint, however, is that all optimized
programs maintain the same relative accuracy as standard techniques, such as Gaussian
elimination used in LINPACK.

We have converted the floating-point execution rates observed for each problem to
operations per cycle and also calculated the number of cycles consumed, as overhead
(latency), during communication.

For the LINPACK 100 test, many processors achieve one floating-point operation every
four cycles, even though the processor has the ability to deliver much more than this. The
primary reason for this lack of performance relates to the poor compiler generated code
and the algorithm’s ineffective use of the memory hierarchy. There are a few exceptions,
most notably the IBM SP-2’s processor. The RS/6000-590 processor is able to achieve two
floating-point operations per cycle for the LINPACK 100 test. The compiler and the cache
structure work together on the RS/6000-590 and are able to achieve this rate.

There are also examples of poor performance on some of the first generation parallel
machines, such as the nCUBE 1 and 2 and the Intel iPSC/2. These processors are able to
achieve only 0.01 to 0.04 floating-point operations per cycle.

For the larger test case, LINPACK 1000, most of the processors achieve 70–80% of their
peak.

4. CONCLUSION

This report compares a number of parallel computers for latency and bandwidth figures.
From the data collected it can be seen that over time systems are capable of higher band-
widths and lower latencies. However, message-passing latency is still a major concern
when looked at in terms of the number of floating-point operations that could be performed
in the time it takes to start a message.

ACKNOWLEDGEMENTS

This work was supported in part by the Applied Mathematical Sciences subprogram of
the Office of Energy Research, U.S Department. of Energy, under Contract DE-AC05-
84OR21400. Special thanks go to Majed Sidani of Cray for running our communication
tests on the Cray T3D using PVM. Special thanks go to Jim Cownie of Meiko for running
our communication tests on the CS2.

APPENDIX A: RULES FOR RUNNING THE TESTS

The software has been kept simple intentionally, so that it will be easy for an experienced
programmer to adapt the program, or parts of it, to a specific architecture with only a modest
effort. In running the tests the user is allowed to change the message-passing calls to the
appropriate call on the specific system the program is to be run on. We have provided both
PVM and MPI[2] implementations in netlib.

MESSAGE-PASSING PERFORMANCE 925

APPENDIX B: OBTAINING THE SOFTWARE

The software used to generate the data for this report can be obtained by sending electronic
mail to netlib@www.netlib.org.

To receive the single-precision software for this benchmark, in the mail message to
netlib@www.netlib.org type send comm.shar from benchmark.

To receive the double-precision software for this benchmark, type send comm.shar from
benchmark.

A web browser can be used as well. With the url http://www.netlib.org/benchmark
/index.html click on ‘benchmark/comm.shar’.

APPENDIX C: MACHINE CONFIGURATIONS FOR ECHO TESTS

A summary of the various architectures and configurations used when these performance
figures were measured follows. Unless otherwise noted, the test programs were compiled
with cc -O.

The Convex SPP1000 and SPP1200 consist of SCI-ring connected nodes (160 MB/s).
Each SPP1000 node consists of eight 100 MHz HP PA RISC 7100 processors (120 MHz
for the SPP1200) with a cross-bar memory interconnect (250 MB/s). The tests were run
under SPP-UX 3.0.4.1 and ConvexPVM 3.3.7.1.

The Cray T3D is 3-D-torus multiprocessor using the 150 MHz DEC Alpha processor.
Communication channels have a peak rate of 300 MB/s. Tests were performed using MAX
1.2.0.2. The PVM communication was with pvm psend and pvm precv.

The Intel iPSC/860 is Intel’s third generation hypercube. Each node has a 40 MHz i860
with 8 KB cache and at least 8 MB of memory. Communication channels have a peak
rate of 2.8 MB/s. Tests were performed using NX 3.3.2. The Intel iPSC/2 uses the same
communication hardware as the iPSC/860 but uses 16 MHz 80386/7 for computation.

The Intel Delta is a 512-node mesh designed as a prototype for the Intel Paragon family.
Each node has a 40 MHz i860 with 8 KB cache and 16 MB of memory. Communication
channels have a peak rate of 22 MB/s. Tests were performed using NX 3.3.10.

The Intel Paragon is a mesh-based multiprocessor. Each node has at least two 50 MHz
i860XP processors with 16 KB cache and at least 16 MB of memory. One processor
is usually dedicated to communications. Communication channels have a peak rate of
175 MB/s. Tests were run under OSF 1.0.4 Server 1.3/WW48-02 and SUNMOS 1.6.2
(using NX message passing).

The IBM SP1 is an omega-switch-based multiprocessor using 62.5 MHz RS6000 pro-
cessors. Communication channels have a peak rate of 40 MB/s. Tests were run using
MPL.

The IBM SP2 is an omega-switch-based multiprocessor using 66 MHz RS6000 proces-
sors with L2 cache. Communication channels have a peak rate of 40 MB/s. Tests were run
using MPI. The MPI communication was with mpi send and mpi recv.

The Kendall Square architecture is a shared-memory system based on a hierarchy
of rings using a custom 20 MHz processor. Shared-memory latency is about 7 µs, and
bandwidth is about 32 MB/s. The message-passing performance was measured using Pacific
Northwest Laboratory’s tcgmsg library on one ring of a KSR1 running OSF R1.2.2.

The Meiko CS2 uses SPARC processors with 200 MFLOPS vector coprocessors. The
communication topology is a fat tree with peak bandwidth of 50 MB/s. The MPSC message-

926 J. J. DONGARRA AND T. DUNIGAN

passing library was used for the echo tests. Meiko notes that using point-to-point bidirec-
tional channels in the echo test reduces latency from 82 µs to 14 µs.

The Ncube hypercube processors are custom processors with hypercube communication
integrated into the chip. The first generation chip ran at 8 MHz and the second generation
chip ran at 20 MHz.

The NEC Cenju-3 results are from a 75 MHz VR4400SC MIPS processor with 32 Kbytes
of primary cache and 1 Mbyte of secondary cache using MPI under the Cenju Environment
Release 1.5d. Communication channels have a peak rate of 40 MB/s through a multistage
interconnection network.

The SGI results are from a 90 MHz PowerChallenge using MPI under IRIX 6.1. The
SGI is a shared-memory multiprocessor using a 1.2 GB/s bus.

The TMC CM5 is a hypertree multiprocessor using 32 MHz SPARC processors with
four vector units and 16 MB of memory per node. Communication channels have a peak
rate of 20 MB/s. Tests were run using the message-passing library CMMD 2.0.

REFERENCES

1. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM: A Users’
Guide and Tutorial for Networked Parallel Computing, MIT Press, 1994; also available elec-
tronically, http://www.netlib.org/pvm3/book/pvm-book.html.

2. Message Passing Interface Forum, ‘MPI: A message-passing interface standard’, Int. J. Super-
comput. Appl. High Perform. Comput., 8, (3/4), (1994). Special issue on MPI; also available
electronically, ftp://www.netlib.org/mpi/mpi-report.ps.

3. T. H. Dunigan, ‘Early experiences and performance of the Intel Paragon’, Technical Report
ORNL / TM-12194, Oak Ridge National Laboratory, 1993.

4. R. Hockney, ‘The communication challenge for MPP’, Parallel Comput., 20, 389–398 (1994).
5. R. Hockney, ‘Performance parameters and benchmarking of supercomputers’, Parallel Comput.,

17, 1111–1130 (1991).
6. R. Hockney and C. Jessup, Parallel Computers 2: Architecture, Programming and Algorithms,

Adam Hilger/IOP Publishing, Bristol, 1988.
7. A. Hey, R. Hockney, V. Getoc, I. Wolton, J. Merlin and J. Allwright, ‘The genesis distributed-

memory benchmarks. Part 2: Comms1, trans1, fft1 and qcd benchmarks on the suprenum and
ipsc/860 computers’, Concurrency: Pract. Exp., 7, (6), 543–570 (1995).

8. R. Hockney and M. Berry, ‘Public international benchmarks for parallel computers, parkbench
committee report’, Sci. Program., 3, (2), 101–146 (1994).

9. HPCwire No. 4912 12/2/94, 1994. Email exchange.
10. J. Dongarra, ‘Performance of various computers using standard linear equations in a Fortran

environment’, Technical Report CS-89-85, University of Tennessee, 1995.

	1. INTRODUCTION AND MOTIVATION
	1.1. The rise of the microprocessor
	1.2. Communications and parallel processing systems

	2. MESSAGE PASSING
	2.1. Programming model
	2.2. Measurement methodology
	2.3. Latency and bandwidth

	3. COMPUTATION AND COMMUNICATION
	3.1. Performance
	3.2. The LINPACK benchmark
	3.3. Restructuring algorithms

	4. CONCLUSION
	ACKNOWLEDGEMENTS
	APPENDIX A: RULES FOR RUNNING THE TESTS
	APPENDIX B: OBTAINING THE SOFTWARE
	APPENDIX C: MACHINE CONFIGURATIONS FOR ECHO TESTS
	REFERENCES

