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SUMMARY 
We propose a new software package which would be very useful for implementing dense linear 
algebra algorithms on block-partitioned matrices. The routines are referred to as block basic 
linear algebra subprograms (BLAS), and their use is restricted to computations in which one 
or more of the matrices involved consists of a single row or column of blocks, and in which no 
more than one of the matrices consists of an unrestricted two-dimensional array of blocks. The 
functionality of the block BLAS routines can also be provided by Level 2 and 3 BLAS routines. 
However, for nun-uniform memory access machines the use of the block BLAS permits certain 
optimizations in memory access to be taken advantage of. This is particularly true for distributed 
memory machines, for which the block BLAS are referred to as the parallel block basic linear 
algebra subprograms (PB-BLAS). The PB-BLAS are the main focus of this paper, and for a 
block-cyclic data distribution, a single row or column of blocks lies in a single row or column 
of the processor template. 

The PB-BLAS consist of calls to the sequential BLAS for local computations, and calls 
to the BLACS for communication. The PB-BLAS are the building blocks for implementing 
ScaLAPACK, the distributed-memory version of LAPACK, and provide the same ease-of-use 
and portability for ScaLAPACK that the BLAS provide for LAPACK. 

The PB-BLAS consist of all Level 2 and 3 BLAS routines for dense matrix computations (not 
for banded matrix) and four auxiliary routines for transposing and copying of a vector and/or 
a block vector. The PB-BLAS are currently available for all numeric data types, i.e., single and 
double precision, real and complex. 

1. INTRODUCTION 

In 1973, Hanson, Krogh and Lawson[ 11 described the advantages of adopting a set of basic 
routines for problems in linear algebra. The first set of basic linear algebra subprograms 
(Level 1 BLAS)[2] defines operations on one or two vectors. LINPACK[3] and EISPACK 
[4] are built on top of the Level 1 BLAS. An extended set of BLAS (Level 2 BLAS) [5] 
was proposed to support the development of software that would be portable and efficient, 
particularly on vector-processing machines. These routines perfom computations on a 
matrix and one or two vectors, such as a matrix-vector product. 

Current advanced architecture computers possess hierarchical memories in which ac- 
cesses to data in the upper levels of the memory hierarchy (registers, cache, and/or local 
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(a) LAPACK with BLAS (b) ScaLAPACK with BLAS and BLACS (c) ScaLAPACK with PB-BLAS 

Figure 1. Building structure of LAPACK and ScaLAPACK. In the Figure, C represents BLACS 
communication. PB-BLASsimplijies the implementation of the ScaLA PACK byproviding large blocks, 

which are combined with two small blocks of B U S  and BLACS 

memory) are faster than those in lower levels (shared or off-processor memory). One tech- 
nique to more efficiently exploit the power of such machines is to develop algorithms that 
maximize reuse of data held in the upper levels. This can be done by partitioning the matrix 
or matrices into blocks and by performing the computation with matrix-matrix operations 
on the blocks. Another extended set of BLAS (Level 3 BLAS) [6]  were proposed for that 
purpose. The Level 3 BLAS have been successfully used as the building blocks of a num- 
ber of applications, including LAPACK [7], a software library that uses block-partitioned 
algorithms for performing dense and banded linear algebra computations on vector and 
shared memory computers. ScaLAPACK, the distributed version of the LAPACK library, 
also makes use of block-partitioned algorithms. 

Higher performance can be attained on distributed memory computers when parallel 
dense matrix algorithms utilize a data distribution that views the computational nodes 
as a logical two-dimensional processor template [ 8,9]. In distributing matrix data over 
processors, we therefore assume a block cyclic (or scattered) distribution [ 10,9]. The block 
cyclic distribution can reproduce the most common data distributions used in dense linear 
algebra, as described briefly in the next Section. 

There has been much interest recently in developing parallel versions of the BLAS 
for distributed memory concurrent computers [ 11-14]. Some of this research proposed 
parallelizing the BLAS, and some implemented a few important BLAS routines, such as 
matrix-matrix multiplication. There is no complete, general, parallel version of the BLAS 
currently available that can be used as the building blocks for implementing dense linear 
algebra computations on distributed-memory multiprocessors. 

The basic linear algebra communication subprograms (BLACS) [ 151 comprise a package 
that provides the same ease-of-use and portability for message-passing in parallel linear 
algebra programs as the BLAS provide for computation. The BLACS efficiently support not 
only point-to-point operations between processors on a logical two-dimensional processor 
template, but also collective communications on such templates, or within just a template 
row or column. 

We propose a new set of linear algebra routines for implementing ScaLAPACK on top 
of the sequential BLAS and the BLACS. The functionality of these routines, called the 
parallel block basic linear algebra subprograms (PB-BLAS), could be provided by parallel 
versions of the Level 2 and Level 3 BLAS; however, the PB-BLAS can only be used in 
operations on a restricted class of matrices having a block cyclic data distribution. These 
restrictions permit certain memory access and communication optimizations to be made 
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1 ScaLAPACK 

bomm Primitives(e.g., MPI, PVM) - 

Figure 2. Hierarchical view of ScaLAPACK. The PB-BLASplays a major role in implementing the 
S c a m  PACK 

that would not be possible (or would be difficult) if general-purpose Level 2 and Level 3 
BLAS were used. Consider the following types of matrix distributed block cyclically over 
a two-dimensional array of processors: 

I .  a matrix of h f b  x Nb blocks, distributed over the whole 2-D processor template 
2. a vector of Lg blocks, distributed over either a row or a column of the processor 

template. Clearly, this is a special case of a matrix of blocks, with either Mb = 1 or 
Nb = 1 

3. a single block lying in a single processor in the processor template. 

The restrictions that the PB-BLAS impose are as follows. No more than one of the matrices 
involved may be a full block matrix; the other matrices involved must be block vectors 
or single blocks. Computations that do not conform to these restrictions must be handled 
differently, for example, by using the PUMMA package [ 161 that has been developed for 
general matrix-matrix multiplication. 

The PB-BLAS consist of calls to the sequential BLAS for local computations and calls 
to the BLACS for communication. The PB-BLAS are used as the building blocks for 
implementing the ScaLAPACK library, and provide the same ease-of-use and portability 
for ScaLAPACK that the BLAS provide for LAPACK. Figure 1 shows schematically how 
the PB-BLAS simplify the implementation of ScaLAPACK by combining small blocks of 
BLAS and BLACS and providing larger building blocks. Figure 2 shows a hierarchical 
view of ScaLAPACK. Main ScaLAPACK routines usually call only the PB-BLAS, but the 
auxiliary ScaLAPACK routines may need to call the BLAS directly for local computations 
and the BLACS for communication among processors. 

The PB-BLAS consist of all nine Level 3 BLAS routines, four Level 2 BLAS rou- 
tines (PB-GEMV, PB-HEMV, PB-SYMV, and PB-TRMV), and two auxiliary routines to 
transpose between a row vector of blocks and a column vector of blocks (PB-TRAN and 
PB-TRNV). Here we use the LAPACK naming convention in which ‘‘-” is replaced with “S” 
(single precision), “ D  (double precision), “C” (single precision complex), or “Z” (double 
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Figure 3. A matrix with 12 x 12 blocks is distributed over a 2 x 3 processor template: ( a )  the 
shaded and unshaded areas represent different templates. The numberedsquares reprrsent blocks of 
elements, and the number indicates at which location in the processor template the block is stored 
- all blocks labeled with the same number are stored in the same processor The slanted numbers, 
on the left and on the top of the matrix, represent indices of row of blocks and column of blocks, 
respectively; (b) the matrix has 2 x 2 LCM blocks. Blocks helong to the sameprocessor$rhe relative 
locations of blocks are the sume in each square LCM block. The dejhition of the LCM block is dcjined 
in the te.xt: (c )  it is easier to see the distributiortfrom processorpoint-ofview in order to implement 

algorithms. Each processor has 6 x 4 blocks 

precision complex). The PB-BLAS routines have similar argument lists to the sequential 
BLAS routines, but contain additional parameters to specify positions of matrices in thc 
processor template, to select destinations of broadcasting matrices, and to control com- 
munication schemes. Software developers and application programmers, who are familiar 
with the BLAS routines, should have no difficulty in using the PB-BLAS. 

In Section 4., we will consider a simple numerical linear algebra example, Chnlesky 
factorization, to compare a LAPACK routine with the corresponding ScaLAPACK routine, 
and to demonstrate the effectiveness of the PB-BLAS. In the text, specifications and an 
explanation of the routines are also given for the double precision real data type (and double 
precision complex if there is no real case). 
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2. DESIGN ISSUES 

The way in which a matrix is distributed over the processors of a concurrent computer has 
a major impact on the load balance and communication characteristics of the concurrent 
algorithm, and hence largely determines its performance and scalability. The block cyclic 
distribution provides a simple, yet general-purpose way of distributing a block-partitioned 
matrix on distributed memory cencurrent computers. In the block cyclic distribution, de- 
scribed in detail in [8,9], an M x N matrix is partitioned into blocks of size F x c, and 
blocks separated by a fixed stride in the column and row directions are assigned to the same 
processor. If the stride in the column and row directions is P and Q blocks respectively, 
then we require that P - Q equal the number of processors, Np. Thus, i t  is useful to imagine 
the processors arranged as a P x Q mesh or template. The processor at position ( p , q )  
(0 5 p < P ,  0 5 q < &) in the template is assigned the blocks indexed by 

(P + 2 .  p,  4 + j .  Q ) ,  (1)  

where i=O ,..., L ( M b - p - I ) / P J , j  = o  , . . . ,  [ ( N b  - 4 -  I)/Q],andMb x Nhisthe 
size in blocks of the matrix (Mb = [ M / F ~ ,  Nb = [ N / s ] ) .  

Blocks are scattered in this way so that good load balance can be maintained in parallel 
algorithms, such as LU factorization [ 10,9]. The non-scattered decomposition (or pure 
block distribution) is just a special case of the cyclic distribution in which the block size 
is given by T- = [ M / P ]  and c = [ N / Q 1 .  A purely scattered decomposition (or two- 
dimensional wrapped distribution) is another special case in which the block size is given 
by r = c = 1. 

We assume that a matrix is distributed over a two-dimensional processor mesh, or 
template, so that in general each processor has several blocks of the matrix as shown in 
Figure 3 (a), where amatrix with 12x 12 blocks is distributed over a 2 x 3  template. Denoting 
the least common multiple of P and Q by L C M ,  we refer to a square of LCM x LCM 
blocks as an LCM block. Thus, the matrix may be viewed as a 2 x 2 array of LCM blocks, 
as shown in Figure 3 (b). Each processor has 6 x 4 blocks as in  Figure 3 (c). 

The LCM block concept was introduced in [ 16,211, and is very useful for implementing 
algorithms that use a block cyclic data distribution. Blocks belong to the same processor 
if their relative locations are the same in each square LCM block. All LCM blocks have 
the same structure and the same data distribution as the first LCM block. That is, when an 
operation is executed on a block of the first LCM block, the same operation can be done 
simultaneously on other blocks, which have the same relative location in each LCM block. 

The LCM block concept is extended further in this paper to deal efficiently with sym- 
metric and Hermitian matrices. Assume that a lower (or upper) triangular matrix A is 
distributed on a two dimensional processor template with the block cyclic decomposition, 
The locally stored matrix in each processor is not a lower (or upper) triangular matrix. The 
block layout of the first LCM block is the same as that of the other diagonal LCM blocks. 
Processors compute their own block layout of the first LCM block from their relative posi- 
tion on the processor template, then they can determine their own physical data distribution 
of the matrix A. This concept is used for updating the upper or lower triangular part of a 
symmetric or Hermitian matrix (PBDSYRK, PBDSYR2K, PBZHERK, and PBZHER2K), 
and for multiplying with it (PBDTRMM, PBDTRMV, PBZHEMM, and PBZHEMV). For 
details of the implementation, see Section 3.4. 

To illustrate the use of the PB-BLAS consider the matrix multiplication routine, DGEMM, 
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(a) General case of matrix multiplication 

- .. __ .- 
(b) C is a full block matrix 

(c) A is a full block matrix 

(d) B is a full block matrix 

Figure 4. DGEMM: matrix multiplication when A and B are not transposed. Each case should be 
computed differently on distributed memory environments: (a) general case; (b) C is a full block 
matrix and A and B are a column and a row of blocks, respectively; (c) A is a full block matrix, (d) 

B is a full block matrix 

for the non-transposed case: CM N + a 7 A M  K . BK N + ,!3 * CM N. The PB-BLAS 
version handles three distinct cases depending on the sizes of the matrices involved in the 
computation, i.e., on whether A, B or C is a full block matrix rather than a vector of 
blocks. These three cases are shown in Figure 4. If K corresponds to just one block then 
A is a column of blocks, B is a row of blocks and C is a full block matrix as shown in 
Figure 4 (b). If N corresponds to just a single block then B and C are columns of blocks 
and A is a full block matrix (Figure 4 (c)). Finally, Figure 4 (d) shows the case in which 
M corresponds to a single block, so that A and C are rows of blocks and B is a full block 
matrix. If there is no limitation as shown in Figure 4 (a), the problem is beyond the scope 
of the PB-BLAS and such a problem needs to be handled with different software, such as 
the PUMMA package [ 161. 

As a second example, consider the solution of triangular systems (DTRSM in the Level 
3 BLAS) when the triangular matrix A is located on the left of B, as shown in Figure 5. 
If M corresponds to a single block, then A consists of one block, which is located on 
one processor, and B is a row of blocks, located on a row of the processor template. If 
N corresponds to a single block, then A is a full triangular matrix, distributed over all 
processors, and B is a column of blocks, located on a column of the processor template. 
The two cases are implemented separately. 

In designing the PB-BLAS the following principles were followed: 



PB-BLAS: A SET OF PARALLEL BLOCK BASIC LINEAR ALGEBRA SUBPROGRAMS 523 

(a) General case 

(b) M is limited to its block size, A is a single block 

N 

(c) N is limited to its block size, A is a full block matrix 

Figure 5. DTRSM: solution of triangular systems when the triangular matrix A is located on the left 
of B: (a) general case; (b) when M is limited to its block size, A is a single block and it is located in a 
single processor; (c) when N is limited to its block size, A is a full block matrix and it is distributed 

over 2-D processors 

1. maximize the size of submatrices multiplied (or computed) in each processor 
2. maximize the size of submatrices communicated among processors, thereby reducing 

3. minimize the size of working space required during computation. 

The PB-BLAS are efficiently implemented by maximizing the size of submatrices for 
local computation and communication, and are implemented with minimum working space. 
The performance of a parallel program implemented by a novice using the PB-BLAS will 
generally be commensurate with that hand-coded by an experienced programmer, and in 
this sense the PB-BLAS attain near maximum performance. 

In addition to the fundamental restrictions on matrix size stated above, the implementation 
of the PB-BLAS is simplified by making the following assumptions about matrix alignment: 

the frequency of communication 

1 .  

2. 

The basic unit of storage in the PB-BLAS is a block of elements, thus matrices are 
assumed to start at the beginning of their first blocks of matrices. However, blocks 
in the last row or column of blocks in a matrix do not have to be full, i.e., the size of 
the matrix in elements does not have to be exactly divisible by the block size. 
The PB-BLAS also makes assumptions about the alignment of matrices on the 
processor template. If a full block matrix begins at location (po ,m)  in the template, 
then any column vectors of blocks must also begin in row po, and any row vectors 
of blocks must begin in column a if no transposition of the vector is involved in 
the computation. Each PB-BLAS routine is passed arguments that specify the start 
position of each matrix in the processor template. 

ScaLAPACK makes use of block-partitioned algorithms, so it is natural to use the PB- 
BLAS as ‘building blocks’ for ScaLAPACK, and to assume that the first element of a matrix 
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Figure 6. PBDTRAN routine: a routine for transposing a column or row of blocks (IAROW = 
IACOL = ICROW = ICCOL = 0)  

is aligned with block boundaries. The only exceptions to this alignment constraint in the 
PB-BLAS are lower-level analogs of the Level 2 BLAS routines, PBDGEMV, PBDSYMV, 
PBDTRMV, and PBZHEMV, in which the first elements of vectors and the corresponding 
matrix can be located in the middle of blocks. 

In Figure 4 (b), the first block of the column of blocks A and the row of blocks of B 
should be located at the same row and column processor as the first block of the matrix C, 
respectively. In Figure 4 (c), the column of blocks B needs to be transposed to multiply 
with the matrix A .  The first block of B can be located in any processor, but the first block 
of the column of blocks C should be located in the same processor row as the first block 
of A. 

3. IMPLEMENTATION OF THE PB-BLAS 

The PB-BLAS routines need more arguments than the corresponding BLAS routine to 
specify the block sizes, positions of matrix, destinations of broadcasting matrices, com- 
munication schemes, and working space. In general, the arguments to PB-BLAS routines 
follow the same conventions as the BLAS and the BLACS. We now illustrate these con- 
ventions, as applied to the PB-BLAS, with a few examples. 

3.1. PBDTRAN 

PBDTRAN transposes a column (row) of blocks to a row (column) of blocks, so that a 
vector of blocks that was formerly in one column (row) of the processor template becomes 
redistributed to lie along one row (column) of the template. 

SUBROUTINE PBDTRAN( A D I S T ,  TRFMT, M,  N ,  NB, A ,  LDA, C ,  LDC, 

CHARACTER* 1 A D I S T ,  TRFMT 
INTEGER M, N ,  NB, LDA, LDC 

$ IAROW, IACOL, ICROW, ICCOL, WORK ) 
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INTEGER IAROW, IACOL, ICROW, ICCOL 
DOUBLE PRECISION A( LDA, * ) , C( LDC, * ) , WORK( * ) 

ADIST gives for the distribution of A: ‘C’ (columnwise) or ‘R’ (rowwise), and TRFMT 
gives the transpose format for complex data type: ‘T’ (transpose) or ‘C’ (conjugate trans- 
pose). For real data types it is ignored. M and N are number of elements in rows and columns 
of A ,  respectively. If A is distributedcolumnwise (ADIST = ‘C’), an M xN column of blocks 
A is located on one column of processors, IACOL, beginning from IAROW, with a row 
block size NB. If IACOL = -1 it is assumed that all columns of processors have their own 
copies of A .  The resultant NxM row of blocks C will be located on a row of processors, 
ICROW, beginning from ICCOL, with a column block size NB. If ICROW = -1, all rows of 
processors will have their own copies of C. 

Figure 6 shows an example that transposes a column of blocks A to a row of blocks A 
over a 2 x 3 processor template. Assuming that the first blocks of A and C are located in 
processor PO (IAROW = IACOL = ICROW = ICCOL = 0), then processors PO and P3 have 
a column of blocks A,  and PO, PI and P2 will have a row of blocks C after transposing A .  
At first, PO sends A ( 0 )  and A(6)  to itself. At the same time, P3 sends A( 1) and A ( 7 )  to PI. 
Next, Po sends A ( 2 )  and A ( 8 )  to P2, P3 sends A ( 3 )  and A ( 9 )  to Po, and so on. The sending 
processors pack the data in order to minimize the frequency of communications, and the 
receiving processors unpack the data as soon as they receive them in order to minimize 
working space. The LCM concept is used for packing and unpacking the data. The row 
block distance of A is 3 (= LCMIP) for packing on PO and P3, and the column block 
distance of C is 2 (= LCMIQ) for unpacking on Po, PI and Pz. 

If each column of processors has its own copies of A (IACOL = -l), they operate 
independently to transpose A .  Each column of processors sends its blocks to its own 
diagonal processors. In the Figure, PO, P4 and P2 are diagonal processors. A diagonal 
processor of the first column, PO, collects A ( 0 )  and A(6)  from itself, and A ( 3 )  and A(9) 
from P3. If all row of processors are to have their own copies of C (ICROW = -l), the 
resultant C is broadcast column-wise from the diagonal blocks. 

3.2. PBDGEMM 

PBDGEMM is a matrix-matrix multiplication routine: 

SUBROUTINE PBDGEMM( MTXPOS, TRANSA, TRANSB, M, N, K, MB, NB, KB, 
$ ALPHA, A, LDA, B, LDB, BETA, C, LDC, IAROW, 
$ IACOL, IBROW, IBCOL, ICROW, ICCOL, BRlST, 
$ ACOMM, SENDZA, BCOMM, SENDZB, WORK ) 
CHARACTER* 1 MTXPOS, TRANSA, TRANSB, BRlST 
CHARACTER* 1 ACOMM, SENDZA, BCOMM, SEND2B 
INTEGER M, N, K, MB, NB, KB, LDA, LDB, LDC 
INTEGER IAROW, IACOL, IBROW, IBCOL, ICROW, ICCOL 
DOUBLE PRECISION ALPHA, BETA 
DOUBLE PRECISION A( LDA, * ) ,  B( LDB, * ) ,  C( LDC, * ) 
DOUBLE PRECISION WORK( * ) 

MTXPOS indicates which matrix is the full block matrix: ‘A’, ‘B’ or ‘C’. M, N and K give 
the sizes of matrices in elements, and MB, NB and KB are the corresponding block sizes. 

Figure 7 (a) shows a simple example of matrix-matrix multiplication, where A is a 
column of blocks, B is a row of blocks and C is a full block matrix. For local computation, 
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(a) C is a matrix (MTXPOS = "C") 

i 
(b) A is a matrix (MTXPOS = "A") 

Figure 7. Matrix multiplication examples when A and B are multiplied in non-transposed form: (a) 
C is a full block matrix; (b) A is a full block matrix 

A and B need to be broadcast row-wise and column-wise, respectively. The following 
issues need to be decided before broadcasting A and B: 

1. Which one is ready to be broadcast first, A or B ? 
2. -How do you send A and/or B ? That is, what communication schemes will be used 

to broadcast them ? 
3. Where will A (or B) be sent to in other processors ? If the same layout of memory is 

assumed in each processor, then A (or B) could either be broadcast to same memory 
locations as in the root of the broadcast so A (or B) is overwritten, or it can be 
broadcast to working space. 

These issues are addressed by extra arguments of the PB-BLAS routines. BRlST de- 
termines the column (or row) block to be broadcast first when MTXPOS = '(2'. ACOMM 
(or BCOMM) controls the communication scheme of A (or B), which follows the topology 
definition of the BLACS [ 151, as discussed in Appendix A. SEND2A (or SEND2B) specifies 
the location of the blocks that are broadcast (either A or B, or working space). To better 
understand the need to specify whether the working space is to be used in the broadcasting 
of A or B, consider the case in which A is a column of blocks that is a submatrix of some 
other matrix. Clearly, if A is broadcast to the same memory location in other processors, 
data in the parent matrix will be incorrectly overwritten. In this case we should broadcast 
to the working space (SEND2A = 'No'). On the other hand, if A is not a submatrix, or if A 
lies entirely within the working space, then it can be broadcast to the same location in each 
processor, and extra memory and a memory-to-memory copy can be avoided (SEND2A = 
'Yes'). 

The position in the processor template of a column (or row) block must be aligned with 
the position of the full block matrix. Figure 7 (a) shows that the first blocks of A and B 
are located at the same row and column of the processor template as the first block of 
C, respectively, If one of the blocks is misaligned, it should be moved to the appropriate 
position before the routine is called. 



PB-BLAS: A SET OF PARALLEL BLOCK BASIC LINEAR ALGEBRA SUBPROGRAMS 527 

In Figure 7 (b), A is a full block matrix, and B and C are columns of blocks. The 
computation proceeds as follows. First, B is transposed, so that the first block of BT is 
located at the same column position as the first block of A. The transposed row of blocks 
BT is broadcast column-wise, and it is multiplied with the local portion of A in each 
processor. Then the local products are added along template rows to produce C. The first 
block of B may be located at any position, since the transposition of B is involved in the 
computation. However, the first block of C must be located at the same row position as the 
first block of A. 

3.3. PBDTRSM 
SUBROUTINE PBDTRSM( 

$ 
$ 
CHARACTER* 1 
CHARACTER* 1 
INTEGER 
DOUBLE PRECISION 
DOUBLE PRECISION 

MTXBLK, SIDE, UPLO, TRANSA, DIAG, M, N, NB, 
ALPHA, A, LDA, B, LDB, IAROW, IACOL, IBPOS, 
COMMA, SEND2A, WORK ) 
SIDE, UPLO, TRANSA, DIAG 
MTXBLK, COMMA, SEND2A 
M, N, NB, LDA, LDB, IAROW, IACOL, IBPOS 
ALPHA 
A( LDA, * 1 ,  B( LDB, * ) ,  WORK( * ) 

PBDTRSM solves a triangular system. If SIDE = ‘Left’ and M is limited by its block size 
NB (M I NB), the triangular matrix A is just a single block (MTXBLK = ‘Block’), which is 
located on just one processor (IAROW, IACOL) as in Figure 5 (b). The M x N row of blocks 
B is located on a row of processors, IAROW, starting at IBPOS, 

The routine is executed on one row of processors, IAROW. The triangular block A is 
broadcast row-wise with one of the BLACS communication topologies (COMMA), and the 
copies are stored either in A (SEND2A = ‘Yes’) or working space (SEND2A = ‘No’). The 
row of processors compute their local portion of B by calling the Level 3 BLAS routine, 
DTRSM. 

If SIDE = ‘Left’, and N is limited by its block size NB (N 5 NB), the triangular matrix A 
is a full triangular matrix distributed over the whole two-dimensional processor template 
(MTXBLK = ‘Matrix’), and its first block is located at (IAROW, IACOL),. The M x N column 
of blocks B is located on a column of processors, IBPOS, starting at IAROW, as shown in 
Figure 5 (c). 

The implementation of the linear triangular system solver is a two-dimensional block 
version of Li and Coleman’s method [21]. Since A and B are distributed block cyclically, 
all computations in [21] are changed to block computations using the routines DTRSM and 
DGEMM. If SIDE = ‘Left’, (Q - 1 )  blocks of B are rotated column-wise (approximately 
[( Q - 1)/P1 blocks in each row of processors). The two arguments COMMA and SEND~A 
are ignored when MTXBLK = ‘Matrix’. 

3.4. PBDSYRK 
SUBROUTINE PBDSYRK( UPLO, TRANS, N, K, NB, ALPHA, A, LDA, BETA, 

$ C, LDC, IAPOS, ICROW, ICCOL, ACOMM, SEND2A, 
$ MULLEN, PRESV, WORK ) 
CHARACTER* 1 UPLO, TRANS, ACOMM, SENDZA, PRESV 
INTEGER N, K, NB, LDA, LDC 
INTEGER IAPOS, ICROW, ICCOL, MULLEN 
DOUBLE PRECISION ALPHA, BETA 
DOUBLE PRECISION A( LDA, * ) , C( LDC, * ) , WORK( * 1 
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(a) A is not transposed (TRANS = ’N’) 

m i  

~l 

I 1  
I 1  

= &’ x 1 -- --A -1 + 

(b) A is transposed (TRANS = ’T’) 

c 
Figure 8. Overview of PBDSYRK routine: (a)  A is not transposed; (b)  A is transposed 

PBDSYRK performs a rank-k update on an N x N symmetric matrix C with an N x K 
column of blocks A (TRANS = ‘No’), or with a K x N row of blocks A (TRANS = ‘Trans’). 
That is, 

T cNxN = C Y . A ~ ~ ~ . A $ ~ ~ + P . C ~ ~ ~ ,  or cNxN = ~ . A ~ ~ ~ . A ~ ~ ~ + P . c ~ ~ ~  

An overview of the routines is shown in Figure 8.  
ICROW and I C c O L  specify the row and column position of the first block of the matrix 

C ,  respectively. I A P O S  specifies the column position of the column of blocks A i f  TRANS 
= ‘No’. The row position of the first block of A is assumed to be ICROW. If TRANS = 
‘Trans’, IAPoS specifies the row position of the row of blocks A,  and the column position 
of the first block of A is assumed to be ICCOL. 

Figure 9 (a) shows an example of PBDSYRK when TRANS = ‘No’ and UPLO = ‘Lower’. 
It is assumed that 24 x 24 blocks of C are distributed over a 2 x 3 processor template, and 
C has 4 x 4 LCM blocks. 

The computing procedure of PBDSYRK is as follows. First, the column of blocks A is 
broadcast row-wise from IAPOS,  so that each column of processors then has its own copy 
of A .  Each column of processors transposes A independently, and the transposed blocks in 
diagonal processors are broadcast column-wise. Each processor updates its own portion of 
C with its own portion of A and A T .  

It is often necessary to update the lower triangular matrix C without modifying data 
in its upper triangular part (PRESV = ‘Yes’). The simplest way to do this is repeatedly 
to update one column of blocks of C ,  but if the block size (NB) is small, this updating 
process will not be efficient. However, it is possible to modify several columns of blocks 
of C. Figure 9 (b) shows this example from the point of view of the processor at PO, where 
2 (= LCMIQ) columns of blocks are updated at the same time. First, A(O) ,  A ( 2 ) ,  and 
A(4) are multiplied with A T ( 0 )  and A T ( 3 ) ,  and only the lower triangular part of 3 x 2 
(= LCMIP x LCMIQ) blocks are added to L11. L ,  is updated by multiplyingtherest of 
A with AT(0)  and A T ( 3 ) .  Then LZJ and L2 are updated in thesame way. Theabove scheme 
can be extended further. Figure 9 (c) shows the same example, where 4 (= 2 . L C M / Q )  



PB-BLAS: A SET OF PARALLEL BLOCK BASIC LINEAR ALGEBRA SUBPROGRAMS 529 

(a) matrix point-of-view 

(b) processor point-of-view I at P(0) (c) processor point-of-view I1 at P(0) 
Figure 9. PBDSYRK routine: a routine f o r  rank-k updating 

columns of blocks are updated simultaneously. 
It is desirable to update a multiple of LCM/Q blocks at a time from the LCM block 

concept. In the argument list of the PBDSYRK routine, MULLEN specifies an approxi- 
mate length of multiplication to update C efficiently. The multiple factor is computed by 
k = [ M U L L E N / ( ( L C M / Q ) .  N B ) ] ,  and k . ( L C M / Q )  columns of blocks are updated 
simultaneously inside the routine. The optimum number is determined by processor char- 
acteristics as well as the numbor of processors (P and &), the size of the matrix and the 
block size. The optimum number was found to be about 40 on the Intel i860 and Delta 
computers. 

However, if it is permissible to change the data in the upper triangular part of C (PRESV = 
‘No’), LI 1 and L1 can be updated with one multiplicationstep. This combined computation 
is faster. 
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4. APPLICATIONS OF THE PB-BLAS 

In this Section we illustrate how the PB-BLAS routines can be used to implement a simple 
numerical linear algebra algorithm, Cholesky factorization. This is the same example as 
that used to demonstrate the effectiveness of the Level 3 BLAS in [6]. However, we use 
the right-looking version of the algorithm, since it minimizes data communication and 
distributes the computation across all processors [22]. 

Cholesky factorization factors a symmetric, positive definite matrix A into the product 
of a lower triangular matrix L and its transpose, i.e., A = LLT.  It is assumed that the lower 
trianglular portion of A is stored in the lower triangle of a two-dimensional array, and the 
computed elements of L overwrite the given elements of A. We partition the n x n matrices 
A,  L and L T ,  and write the system A = LLT as 

L21 L 2 2  

where the block A1 1 is an r x r matrix, where T is the block size. 
The block-partitioned form of Cholesky factorization may be inferred inductively as 

follows. If we assume that L11, the lower triangular Cholesky factor of Al l ,  is known we 
can rearrange the block equations 

LLI + A 2 i ( G ) - ’  
4 2  t= A ~ ~ - L ~ I L & = L ~ ~ L &  

The factorization can be done by recursively applying the steps outlined above to the 
( n  - r )  x (n - T )  matrix Ak2. 

The computation procedures of the above steps in the LAPACK routine, involve the 
following operations: 

1. DPOTFZ: compute Cholesky factorization of the diagonal block, 

2. DTRSM: compute the subdiagonal block of L, 

3. DSYRK: update the rest of the matrix, 

Aii * L I I G  

L z l  += A21(L3- ’  

4 2  + A22 - Lzl L; = L 2 2  L,T, 

For the parallel implementation of the block-partitioned Cholesky factorization, assume 
that the lower triangular matrix A is distributed over a P x Q processor template with a 
block cyclic distribution and a block size T x r .  In the corresponding ScaLAPACK routine, 
PDPOTRF, the computation procedures outlined above are as follows: 

1. PDPOTF2: aprocessor P,,whichhastherxrdiagonalblock A11,performsCholesky 
factorization of A1 I .  (The computation of PDPOTFZ is the same as that of DPOTFZ. 
In PDPOTFZ, P, checks the positive definiteness of Al l ,  and broadcasts the result 
to the other processors so that the computation can be stopped if All is non-positive 
definite.) 
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2. PBDTRSM: L11 is broadcast along the column of the processors, and they compute 
the column of blocks of b1. 

3. PBDSYRK: the column of blocks L21 is broadcast row-wise and then transposed. 
Now, processors have their own portions of L21 and L;. They update their local 
portions of the matrix A22. 

The Fortran code of the right-looking block Cholesky factorization, which is a variation 
of the LAPACK routine, DPOTRF, is given in Appendix B. The corresponding parallelized 
code, PDPOTRF, is included in Appendix C. PDPOTRF includes declarations to compute 
local indices, but overall it is very similar to the sequential version. 

5. CONCLUSIONS 

We have presented the PB-BLAS, a new set of block-oriented basic linear algebra subpro- 
grams for implementing ScaLAPACK on distributed memory concurrent computers. The 
PB-BLAS consist of calls to the sequential BLAS for local computations and calls to the 
BLACS for communication. 

The PB-BLAS are a very useful tool for developing a parallel linear algebra code 
relying on the block cyclic data distribution, and provide ease-of-use and portability for 
ScaLAPACK. The PB-BLAS are the building blocks for implementing ScaLAPACK. A set 
of ScaLAPACK routines for performing LU, QR and Cholesky factorizations [ 191 and for 
reducing matrices to Hessenberg, tridiagonal and bidiagonal form have been implemented 
with the PB-BLAS [20]. 

The PB-BLAS are currently available for all arithmetic data types, i.e. single and double 
precision, real and complex. The PB-BLAS routines are available through netlib under 
the scalapack directory. To obtain them, send the message ‘send index f r o m  
scalapack’ to netlib@ornl . gov. 

6. FUTUREWORK 

We are developing a new version of the parallel BLAS routines, called the Parallel BLAS 
(or PBLAS), on top of the PB-BLAS. These consist of C-wrappers for the PB-BLAS 
that simplify the calling sequence of the PB-BLAS. Since the PBLAS use the C language’s 
ability to dynamically allocate memory, a programmer does not need to worry about passing 
the working space of the routines. The PBLAS will hide the PB-BLAS parameters for 
specifying the matrix layout by using globally declared parameters. The calling sequences 
of the PBLAS will be very similar to those of the BLAS. Using the PBLAS instead of 
the PB-BLAS may sacrifice some flexibility, but it will provide greater ease-of-use to the 
programmer. A programmer, even one not very familiar with parallel programming, should 
he able to parallelize a sequential linear algebra quite easily using the PBLAS. 
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APPENDIX A: BLACS COMMUNICATION TOPOLOGIES 

Topologies allow the user to optimize communication patterns for particular operations. In 
the BLAS, the TOPOLOGY parameter controls the communication pattern of the operations. 
It is used to optimize the way that the BLACS performs a given broadcast or global 
operation to fit a user's requirements. Different topologies spread the work involved in a 
given operation over the nodes in different ways. 

TOPOLOGY = 'I' : Increasing ring 
= 'D' : decreasing ring 
- - ' S '  : split ring 
= 'H' : hypercube 
= 'F' : fully connected 
= '1' : tree broadcast with NBRANCHES = 1 
- - ' 2 '  : tree broadcast with NBRANCHES = 2 
= '3' : tree broadcast with NBRANCHES = 3 
= ' 4 '  : tree broadcast with NBRANCHES = 4 
= ' 5 '  : tree broadcast with NBRANCHES = 5 
= ' 6 '  : tree broadcast with NBRANCHES = 6 
= ' 7 '  : tree broadcast with NBRANCHES = 7 
= ' 8 '  : tree broadcast with NBRANCHES = 8 
= ' 9 '  : tree broadcast with NBRANCHES = 9 

For global operations, ring topologies, such as 'I', 'D' and IS', are not available. For 
details, see the BLACS User's Guide [23]. 

APPENDIX B: LAPACK CHOLESKY FACTORIZATION 

* 
* 
* 
* 

* 

* 
* 
* 

* 

* 
* 
* 

* 
* 
* 
* 

SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO ) 

A variant of LAPACK of L*L**T factorization. 
This is a right-looking Level-3 BLAS version of the algorithm. 

CHARACTER UPLO 
INTEGER INFO, LDA, N 
DOUBLE PRECISION A( LDA, * ) 

INTEGER NB 
PARAMETER ( NB = 64 ) 

Use blocked code. 

LOWER = LSAME( UPLO, 'L' ) 

IF( LOWER ) THEN 

Compute the Cholesky factorization A = L*L' 

DO 10 J = 1, N, NB 

Factorize the current diagonal block 
and test for non-positive-definiteness. 

JB = MIN( NB, N-J+1 ) 
CALL DPOTF2( 'Lower', JB, A( J, J ) ,  LDA, INFO ) 
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* 
* 
* 

IF( INFO.NE.0 ) GO TO 2 0  
* 

IF( J+JB.LE.N ) THEN * 
* Form the column panel of L using the triangular solver 
* 

CALL DTRSM( 'Right', 'Lower', 'Transpose', "on-unit', 
$ N-J-JB+l, JB, l.GDO, A( J, J ) ,  LDA, 
$ A( J+JB, J ) ,  LDA ) 

Update the trailing matrix, A = A - L*L' 

CALL DSYRK( 'Lower', 'No transpose', N-J-JB+1, JB, 
$ -1.OD0, A( J+JB, J ) ,  LDA, 1.0D0, 
$ A( J+JB, J+JB ) ,  LDA ) 

END IF 
10 CONTINUE 

END IF 
GO TO 30 

20 CONTINUE 
* 

INFO = INFO + J - 1 * 
30 CONTINUE 

RETURN 
END 

APPENDIX C: ScaLAPACK CHOLESKY FACTORIZATION 
SUBROUTINE PDPOTRF( UPLO, N, NB, A ,  LDA, INFO, WORK ) 

* 
* ScaLAPACK version of L*L**T factorization. 
* This is a right-looking PB-BLAS version of the algorithm. 
* 

CHARACTER* 1 UPLO 
INTEGER N, NB, LDA, INFO 
DOUBLE PRECISION A (  LDA, * ) , WORK( * ) 

INTEGER MULLEN 
PARAMETER ( MULLEN = 40  ) 

CALL GRIDINFO( NPROW, NPCOL, MYROW, MYCOL ) 
LOWER = LSAME( UPLO, 'L' ) 

I1 = 1 
JJ = 1 
IN = 1 
J N = 1  
ICURROW = 0 
ICURCOL = 0 

IF( LOWER ) THEN 

* 

* 

* 

* 

* 
* Compute the Cholesky factorization A = L*L' 
* 

DO 10 J = 1, N, NB * 
JB = MIN( NB, N-J+1 ) 
NXTROW = MOD( ICURROW+l, NPROW ) 
NXTCOL = MOD( ICURCOL+l, NPCOL ) 
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* 
* 
* 
* 

* 

* 
* 
* 

* 
* 
* 

* 

* 

* 

* 

IF( MYROW .EQ. ICURROW ) IN = I1 + JB 
IF( MYCOL .EQ. ICURCOL ) JN = JJ + JB 

Factorize the current diagonal block 
and test for non-positive-definiteness. 

CALL PDPOTF2 ( ’Lower’, JB, A(I1, JJ) , LDA, ICURROW, ICURCOL, 
$ INFO ) 

IF( INFO.NE.0 ) GO TO 20 

IF( J+JB.LE.N ) THEN 

Form the column panel of L using the triangular solver 

CALL PBDTRSM( ’Block’, ‘Right‘, ‘Lower‘, ‘Transpose’, 
$ “on-Unit‘, N-J-JB+1, JB, NB, 1.OD0, 
$ A(I1,JJ) , LDA, A(IN, JJ) , LDA, ICURROW, 
$ ICURCOL, NXTROW, ‘1-Tree’, ‘No’, WORK ) 

Update the trailing matrix, A = A - L*L‘ 

CALL PBDSYRK( ‘Lower’, ‘No Transpose’, N-J-JB+1, JB, NB, 
$ -1.OD0, A(IN, JJ) , LDA, 1.OD0, A(IN,JN) , 
$ LDA, ICURCOL, NXTROW, NXTCOL, IS-Ring‘, 
$ ‘No‘, MULLEN, ’Yes‘, WORK ) 

ICURROW = NXTROW 
ICURCOL = NXTCOL 
I1 = IN 
JJ = JN 

END IF 

10 CONTINUE 
END IF 
GO TO 30 

20 CONTINUE 
INFO = INFO + J - 1 

30 CONTINUE 
RETURN 
END 
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