
LU Factorization of Small Matrices: Accelerating
Batched DGETRF on the GPU

Tingxing Dong∗, Azzam Haidar∗, Piotr Luszczek∗, James Austin Harris∗ Stanimire Tomov∗, and Jack Dongarra∗†‡
∗ University of Tennesse, Knoxville, TN 37996

† Oak Ridge National Laboratory, USA
‡ University of Manchester M13 9PL, UK

{tdong, haidar, luszczek, tomov, dongarra}@utk.edu

Abstract—Gaussian Elimination is commonly used to solve
dense linear systems in scientific models. In a large number of
applications, a need arises to solve many small size problems,
instead of few large linear systems. The size of each of these small
linear systems depends on the number of the ordinary differential
equations (ODEs) used in the model, and can be on the order
of hundreds of unknowns. To efficiently exploit the computing
power of modern accelerator hardware, these linear systems
are processed in batches. To improve the numerical stability,
at least partial pivoting is required, most often accomplished
with row pivoting. However, row pivoting can result in a severe
performance penalty on GPUs because it brings in thread
divergence and non-coalesced memory accesses. In this paper,
we propose a batched LU factorization for GPUs by using a
multi-level blocked right looking algorithm that preserves the
data layout but minimizes the penalty of partial pivoting. Our
batched LU achieves up to 2.5-fold speedup when compared to
the alternative CUBLAS solution on a K40c GPU.

I. INTRODUCTION

Various scientific applications use Gaussian elimination to

solve dense linear systems. An important class of problems

is when many small size systems, instead of few large ones,

must be solved. Typically, the order of the linear systems is up

to a few hundred, and their number is from a few thousand to

millions. For example, subsurface transportation simulations

have a number of reaction systems to solve. Each system

involves computing a Jacobian matrix and iteratively applying

the Gaussian elimination until an outer solver converges. The

system size is typically around 100.

The one-sided factorizations such as the Cholesky, LU, and

QR factorizations are based on block outer-product updates

of the trailing matrix. Algorithmically, this corresponds to a

sequence of two distinct phases: the panel factorization and the

trailing matrix update. Implementation of these two phases can

be expressed as a straightforward loop shown in Algorithm 1.

Algorithm 1 Two-phase implementation of a one-sided fac-

torization.

for Pi ∈ {P1, P2, . . . , Pn} do
PanelFactorize(Pi)

TrailingMatrixUpdate(C(i))

end for

The panel factorization is latency and memory-bound due

to its predominant reliance on the Level 2 BLAS operations,

MAGMA performs the panel factorization on the CPU and

only uses the GPU to update the trailing matrix. A data transfer

of the factorized panel from the CPU to the GPU is required

at each step of the loop in Algorithm 1 to perform the trailing

matrix update.

In the batched LU implementation, however, we cannot

afford such a memory transfer at any step, since the trailing

matrix is small and the amount of computation is not sufficient

to overlap it in time with the panel factorization. Many small

data transfers will take away any performance advantage

enjoyed by the GPU, especially due to the fact that the data

for transfer are not continuous in the memory but instead

are stored with a stride called a leading dimension. Another

challenge to achieving good performance is the pivoting,

which is a source of thread divergence and non-coalescent

memory accesses. This is the result of consecutive threads

accessing the matrix elements with a stride of one column

instead of one element stride when the matrix is stored in

column-major format.

II. ALGORITHMIC VARIANTS

The LU factorization (also called decomposition) is the first

step in solving a dense linear system of equations Ax = b,
where A ∈ R

m×n. The LU factorization of A with partial

pivoting has the form PA = LU , where L ∈ R
m×n is a

lower triangular with unit diagonal elements (lower trapezoidal

if m > n), U ∈ R
n×n is an upper triangular matrix (upper

trapezoidal if m < n), and P ∈ {0, 1}m×m is the row

permutation matrix.

A. The Blocked Right-Looking Algorithm

The blocked right-looking variant is shown in Algorithm 2

and its patterns of access to matrix elements is depicted in

Figure 1. The factorization of the m by n matrix A proceeds

in �n/nb� steps of size nb except for the last one. The

computation of the above steps in the LAPACK routine dgetrf,
involves four operations: dgetf2, dtrsm, dgemm, and dlaswp.

For A =

[
A11 A12

A21 A22

]
, where A11 ∈ R

nb×nb, the[
A11

A21

]
submatrix is called a panel matrix. The panels are

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8 2014

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/HPCC.2014.30

157

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8 2014

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/HPCC.2014.30

157

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8 2014

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/HPCC.2014.30

157

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8 2014

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/HPCC.2014.30

157

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8 2014

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/HPCC.2014.30

157

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8 2014

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/HPCC.2014.30

157

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8 2014

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/HPCC.2014.30

157

factorized by the dgetf2 routine:

P

[
A11

A21

]
=

[
L11

L21

]
U11. (1)

The L11 and U11 submatrices overwrite A11. The transfor-

mations in this panel factorization, along with the pivoting P
must be applied to the trailing matrix before the factorization

proceeds to the next step. Related to the pivoting, the rows of

A12 are permuted with the selected from the factorization pivot

rows (from A12 and A22). This is done by the dlaswp routine.

The pivoting information is stored in a vector generated by

dgetf2.

After the permutation, A12 is updated by a lower-triangular

solve A′12 ← L−1
11 A12 (dtrsm), and A22 is updated by the so

called Schur complement: A′22 = A22 − A′21A
′
12 (dgemm)

The trailing matrix A′22 is now considered as the new matrix

to be factored in the next iteration of the loop. This algorithm

keeps updating the right hand side – the trailing matrix – and

hence it is called right-looking.

The dtrsm and the dgemm routines are known as Level

3 BLAS – they allow for cache-friendly implementations

that scale well with computational load without overly taxing

the main memory bus. Due to the use of Level 3 BLAS,

the blocked implementations perform very well and reach

high flops-per-second, and in particular much higher than a

non-blocking implementation that relies on memory-bound

operations such as the Level 2 BLAS [1].

Algorithm 2 The blocked right looking LU factorization.

for i ∈ {1, 2, 3, . . . , n/nb} do
Panel Factorize Aii = LiiUii

Compute Aij = L−1
ii Aij

Permutation P

Trailing Matrix Update Ajj = Ajj − AjiAij where Aij =

a(i× nb : n, j × nb : n)

end for

Fig. 1. Access patterns to matrix regions for the blocked right-looking LU
factorization algorithm.

B. Multi-level blocked algorithm

The multi-level blocked algorithm is a variant of the blocked

algorithm. The main difference is in the update of the trailing

matrix. The right-looking variant operates on a current panel

and updates all the way to the right. The multi-level blocked

variant only applies the update to the next panel, but postpones

the update of the rest of the trailing matrix after the “k-levels”

of panels are factorized.

III. BATCHED IMPLEMENTATION

We target matrices of size less than or equal to 512, since

most application candidates for batched execution are of this

size [2], [3].

A. Batched routines implementation
In a batched problem, each matrix is a separate problem

that is solved independently. All of the routines discussed

are batched and denoted by the corresponding LAPACK

routine name. We have implemented the routines in the four

standard precision arithmetics. For convenience, we use double

precision routine name throughout the paper.
1) dgetf2: dgetf2 is used to factorize a panel of size m×nb

at each step of the LU factorization. It consists of three Level 1

BLAS calls (idamax, dswap and dscal) and one Level 2

BLAS call (dger). Note that a natural way of implementing

dgetf2 could be to load the panel to the GPU’s shared memory

and then do the entire computation before writing the result

back to the main memory. However, this direction cannot be

easily implemented and cannot provide good performance for

two main reason. First, the size of the shared memory is

limited currently to only 48KB per streaming multiprocessor

(SMX), which limits the panels that can fit at once in it.

Second, saturating the shared memory per SMX can decrease

performance, since only one thread-block will be mapped to

a SMX at a time. Indeed, the number of threads used in

the thread block will be limited, resulting in low occupancy,

and subsequently poor core utilization. In our implementation

of dgetf2 , to perform the Gaussian elimination for the ith

column of the panel, we load only the column i to the shared

memory. We found that such an implementation allows many

thread-blocks to be executed by the same SMX in parallel,

and thus taking a better advantage of its resources.
2) dlaswp: To improve the numerical stability, pivoting is

required. However, pivoting can be a performance killer for

matrices stored in column major format. Indeed, a factorization

directly in column-major format can be two times slower (de-

pending on hardware and problem sizes) than implementations

that transpose the matrix in order to internally use a row-major

storage format [4]. Yet, experiments show that this conversion

is too expensive for batched problems. In the LAPACK’s

dlaswp, the row swapping operations are serial, that is row

by row. This limits the parallelism and is one of the factors

for slow dlaswp for matrices in the column-major format.

To minimize this penalty, we proposed a parallel swapping,

detailed in Section IV-A.
3) dtrsm: After the panel factorization (1) and the row

swapping, we compute the inverse of L11, L−1
11 , with the dtrtri

routine. Then, the A′12 update is accomplished by a dgemm,

A′12 = L−1
11 A12. Generally, computing the inverse of a matrix

may suffer from numerical stability, but since A11 results from

the numerically stable LU with partial pivoting and its size is

just nb × nb, or in our case 32 × 32, we do not have this

problem [5].

158158158158158158158

4) dgemm: The goal of our batched LU is to reach the per-

formance of the batched dgemm. Because of its importance,

a lot of previous efforts have been focused on optimizing

the dgemm routine. In particular for our case, dgemm is

not only used in the trailing matrix updates but also in the

implementation of the triangular matrix solvers (dtrsm). Since

NVIDIA CUBLAS dgemm is written in assembly language

and highly optimized on Kepler architecture, we call CUBLAS

routines.

IV. VARIOUS FACTOR IMPACTS ON THE PERFORMANCE

A. Parallel swapping

We analyzed and evaluated the implementation as described

above to find that more than 60% of the factorization time is

spent in the swapping routine. Figure 2 shows the execution

trace of 2,000 batched LU factorization of matrices of size

512. We can observe on the top trace that the classical dlaswp
kernel is the most time consuming part of the algorithm.

The swapping consists of nb successive interchanges of two

rows of the matrices. The main reason that this kernel is the

most time consuming is because the nb row interchanges are

performed in a sequential order, and that the data of a row

is not coalescent, thus the thread warps do not read/write

it in parallel. CPUs for example alleviate the effect of the

long latency operations and bandwidth limitations by using

hierarchical caches. Accelerators on the other hand, in addition

to hierarchical memories, uses thread level parallelism (TLP)

where threads are grouped into warps (e.g., of 32 threads) and

multiple warps assigned for execution on the same SMX unit.

In order to overcome the bottleneck of swapping, we proposed

to modify the kernel in order to apply all nb row swaps in

parallel. This modification will also allow the coalescent write

of the first nb rows of the matrix. So we changed the algorithm

to generate two pivot vectors, where the first vector gives the

final destination row indices for the first nb rows of the panel,

and the second gives the row indices of the nb rows that

must become the first nb rows of the panel. Figure 2 depicts

the execution trace (bottom) when using our parallel dlaswp
kernel. The experiment shows that this reduces the time spent

in the kernel from 60% to around 10%. As a result, the gain

obtained in terms of performance is around 50%, as shown in

Figure 5.

swap kernel�

gemm kernel�

gemm kernel�

swap kernel�

Fig. 2. Execution trace of the batched LU factorization using either classical
swap (top) or our new parallel swap (bottom).

B. Nested blocking

The panel factorization as described in III-A1 goes over the

nb columns and factorizes them one after another, similarly

to the LAPACK algorithm. At each of the nb steps, a rank-

1 update is required to update the vectors at the right hand

side of the factorized column i (this operation is done by

the dger kernel). Since we cannot load the entire panel into

the shared memory of the GPU, the right hand side vectors

are loaded back and forth from the main memory at every

step. Thus, one can expect that the rank-1 operation is the

most time consuming of the panel factorization. A detailed

analysis using the profiler reveals that the dger kernel consists

of more than 80% of the panel factorization time, and around

40% of the total LU factorization time. Similarly to the

swapping kernel described above the main bottleneck here

is the memory access. For that, we propose to improve the

efficiency of this kernel and to reduce the memory access by

using a recursive level of blocking techniques. In principle,

the panel can be blocked recursively until a single element.

Yet, in practice, 2-3 blocked levels are sufficient to achieve

high performance. The above routines must be optimized for

each blocked level, which complicates the implementation.

The boost in performance obtained by this optimization is

around 25%, as demonstrated in Figure 5.

panel: classical getf2�p g

panel: blocked getf2�p

Fig. 3. Execution trace of the batched LU factorization using either classical
getf2 (top) or our recursive getf2 (bottom).

C. Streamed dgemm

Our main goal is to achieve higher performance and to

accomplish this we performed deep analysis of every kernel of

the algorithm. We found that 70% of the time is spent in the

batched dgemm kernel. An evaluation of the performance of

the dgemm kernel using either batched or streamed dgemm
is illustrated in Figure 4. The curves let us conclude that the

streamed dgemm was performing better than the batched one

for some cases, e.g., for k = 32 when the matrix size is of

order of m > 200 and n > 200. We note that the performance

of the batched dgemm is stable and does not dependent on k,

in the sense that the difference in performance between k = 32
and k = 128 is minor. However it is bound by 300 Gflop/s.

For that we proposed to use the streamed dgemm whenever

it is faster, and to roll back to the batched one otherwise. The

use of the streamed dgemm (when the size allows it) can

speed up the factorization by about 20% and this is confirmed

by the performance curve plotted in Figure 5.

159159159159159159159

0 32 64 128 160 192 256 384 448 512
0

100

200

300

400

500

600

700

800

900

matrix m=n

G
fl

o
p

s/
s

streamed dgemm K=128
batched dgemm K=128
streamed dgemm K= 64
batched dgemm K= 64
streamed dgemm K= 32
batched dgemm K= 32

Fig. 4. Performance comparison between the streamed and the batched
dgemm kernel for different value of K and different matrix sizes where
m = n.

D. Multi-level blocking of the update

The performance of the streamed dgemm kernel as shown

in Figure 4 is highly dependent on the size of the matrices.

In particular, this affects the trailing matrix updates in the

LU factorization which consist of rank-k operations. The

performance of the streamed dgemm kernel is around twice

higher for k = 128 than for k = 32. Since our panel size is

limited to 32, the performance of the trailing matrix update

is limited by the performance of the dgemm for k = 32.

However, in order to achieve higher performance, we use

multi-level of blocking of the trailing matrix update. The idea

here is to use multi-level of blocking during the trailing matrix

update. This means that at step i we only update the next panel

and delay the subsequent portion of the update till step i + l
where we reach a value of k that is acceptable to perform the

whole update of the delayed portion and then start over again.

We can observe that for this range of small matrices,

increasing the value of acceptable “k” for example to 128
gives us the advantage of performing dgemm at higher speed

but it reduce the number of such dgemm operations The

performance observed is similar for both k = 64 and k = 128
for matrices of size 512 while k = 64 is always outperforming

k = 128 for smaller sizes. As a result a trade-off value

of k need to be chosen depending on the matrix size. The

improvement obtained by this technique is around 15%, as

shown in Figure 5.

V. PERFORMANCE RESULTS

We conducted our experiments on a NVIDIA K40c card

with 11.6 GB of GDDR memory per card running at 825
MHz. The cards were connected to the host via two PCIe I/O

hubs with 6 GB/s bandwidth.

CUBLAS version 5.5 features a dgetrfBatched routine. By

comparison, our batched LU is up to 2.5× faster than the

CUBLAS routine as shown in Figure 5. The slowest code in

the figure has performance below 60 Gflop/s and is marked as

“classic” – it corresponds to the performance of the MAGMA

library, which was optimized for large matrices. The clas-
sic implementation is improved upon by CUBLAS’ dgetrf-
Batched version (marked as “CUBLAS” in Figure 5) and the

performance exceeds 70 Gflop/s. To go beyond 100 Gflop/s,

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

matrix size

G
F

lo
p

s

batched dgetrf 2000

Magma v5: 2levels blocking update
Magma v4: streamed/batched gemm
Magma v3: recursive blocking getf2
Magma v2: parallel swap
Magma v1: classic
CuBLAS

Fig. 5. Performance in Gflops/s of our different version of the batched LU
factorization compared to the CUBLAS implementation.

we used the code that optimizes pivoting with parallel swap.

Next step in performance improvement is the use of variable

blocking (also called recursive blocking getf2), which enables

performance levels that go slightly above 130 Gflop/s. The

final two improvements are streamed/batched gemm, which

moves the performance level beyond 160 Gflop/s, and finally,

2-levels blocking update completes the set of optimizations and

takes the performance beyond the 180 Gflop/s mark. Each of

these optimizations is described in detail in Section III.

VI. CONCLUSIONS

The need to solve large number of small linear systems

often arises in scientific computing applications. In contrast to

large linear system which can expose data parallelism and can

be efficiently implemented on either GPUs or CPUs, solving

small linear systems is memory bound. This is due to the fact

that the ratio of the computation to the data needed is very

small compared to the one for large matrices. We demonstrated

that GPU architectures can be used efficiently for solving many

small size problems. In particular, we developed different

algorithm variants and optimization techniques for the batched

LU factorization on GPUs and analyzed their impacts on

performance. These techniques can be used by other high level

linear algebra solvers, for example, QR, Cholesky, as well. Our

performance exceeded the CUBLAS dgetrfBatched by up to

2.5×.

REFERENCES

[1] K. Gallivan, W. Jalby, and U. Meier, “The use of BLAS3 in linear algebra
on a parallel processor with a hierarchical memory,” SIAM J. Sci. Stat.
Comp., vol. 8, 1987, 10791084.

[2] O. Messer, J. Harris, S. Parete-Koon, and M. Chertkow, “Multicore and
accelerator development for a leadership-class stellar astrophysics code,”
in Proceedings of ”PARA 2012: State-of-the-Art in Scientific and Parallel
Computing.”, 2012.

[3] V. Oreste, N. A. Gawande, and A. Tumeo, “Accelerating subsurface
transport simulation on heterogeneous clusters,” in IEEE International
Conference on Cluster Computing (CLUSTER 2013), Indianapolis, Indi-
ana, September, 23-27 2013.

[4] V. Volkov and J. W. Demmel, “LU, QR and Cholesky factorizations using
vector capabilities of GPUs,” Tech. Rep. LAPACK Working Note 202.

[5] D. Croz, J. J. Dongarra, and N. J. Higham, “Stability of methods for
matrix inversion,” IMA J. Numer. Anal., vol. 12, no. 119, 1992.

160160160160160160160

