Chapter 1

Introduction®

1.1 Background and Objectives

The PARKBENCH (PARallel Kernels and
BENCHmarks) committee, originally called the
Parallel Benchmark Working f:'rrl'rl_l.ll. PEW{:. was
founded at Supercomputing’@2 in Minneapaolis,
when a group of abour 50 people interested in
computer benchmarking met under the joint ini-
tative of Tony Hey (University of Southampron.
UK] and Jack Dongarrs (University of Tennessee/
Cak Ridge MNational Laboratory]. Most of the key
players were prasent. from the Universities, Labao-
ratories and industries, representing both com-
puter manufacturers and computer users from
both sides of the Atlantic. Roger Hockney (Univer-
sity of Southampion| chaired the meeting. and the
ohjectives of the group were:

1. To establish a comprehensive set of parallel
benchmarks that is generally accepted by
both users and vendors of parallel sysiems.

2. To provide a focus for parallel henchmark
activitics and avoid unnecessary duplica-
ion of effort and proliferation of bench-
marks.

3. To ser standards for benchmarking meth-
adolegy and result-reporting together with a
control database/repository for both the
benchmarks and the resalis.

4. To make the benchmarks and rezulis freely
available in the public domain,

The first vear's work was o produce a report
and an inital set of benchmarks for release al Su-
percomputing™3 in Portland, Oregon, November

S

A ssembiled]I-'!. H!.IEI'I" E[Ill.'l.l'll':h for whole commantes,

Received Movernbsr 1993

Arcepred Februnry 1994

O 19904 by John Wiley & Sans, Ine.

Seientific Programming. Yol 3, pp. TO1—140 (18904
O T058- 244,94 0207107 - 448

1993, The committee has met at the University of
Tennessee at Knoxyille on March 1-2, 1993, May
24, 1993 and August 23, 1993 to discuss the
evolving draft of this report, The document repro-
duced here iz the final result of these meetngs,
and is the first official * publication of the
PARKBENCH commitee. It was distributed ar a
public Birds of a Feather meeting a1 Supercom-
puting’93, Porland, on 17th November 1993, as
o University of Tenneasee Technical Report C35-
93-213 [1]. The bulk of this publication in Scéen-
tfic Programeing dilfers only in non-substantive
editorial wavs from the technical report. An Ap-
pendix G has been added, however, containing
selected resulis from the benchmarks, The first
relense of the PARKBENCH parallel henchmarks
i= available publicly over Internes.

The initial focus of the parallel benchmarks is
on the new generation of scalable distribuced-
memory message-passing architeetures for which
there is & notable lack of existing benchmarks. For
this reasan the inital benchmark relesse concen-
trates on Fortran 77 message-passing codes wsing
the widely available PYM [2] message passing in-
terface for porability. Future versions will un-
doubtedly adopt the proposed MPL [3] interface.
when this is fully defined and becomes generally
accepted. The commitee’s aim, however, is to
cover all parallel architectures, and this is ex-
pected 1o he achieved by producing versions of the
benchmark codes using Fortran90 and High Pee-
formance Forran (HPF). Many shared-memory
architectures provide efficient native implementa-
tions of PVM message-passing and are planning
HPF compilers. They will be covered by these
FOuEs.

1.2 Procedures
The PARKBENCH commitiee divides its work be-

twesn five subcomminecs, corresponding to the

1022 PARKREMCH COMMITTEE

five substantive chapters in the report, each with a

leader [shown in parentheses) wha is responsible

for assembling the contents of his chapter and s

benchmarks for the committes’s approval.

1. Chapter-2; Methodology (David Bailey):

2, Chapter-3: Low-level benchmarks [Roger
Hockney):

3, Chapier-4: Kemel benchmarks (Tony Hey):

4. Chapter-3: Compact applications (David
Walker):

5. Chapter-6: Compiler benchmarks (Tom
Haupt):

In order to facilitate discussion and exchange of
information, the following e-mail addresses were
sel Up.

1. pbwg-commi@es, utk. edu for the Whaole
COMILESE

2. pbwg-method@ics. utk. edu for the Meth-
odology subcomminee

3. pbwg-lowlevel@cs. utk. edu for the
Low level subcommittes

4. pbwg-kernel@cs. utk. edu for the Kerncl

subcommities

pbwg-compactapplcs. utk. edu for the

Compact applications subcommittes

il

Recent proctice, however, has been to send all
mail 10 pbwg-comm so that all members may see
it. All mail is being collected and can be retieved
by sending email to netlib@ornl. gov and in
the mail message (yping:

1. send comm.archive from pbwg

2. send index lrom phwg

3. send method.archive from pbwg

4. send lowlevel_archive from pbwg

5. send kernel.archive from pbwg

6. -send compactapp.archive from-pbwg

We have setup o mail reflector for correspon-
dence, it is called pbwg-commics. utk. edu. Mail
to that address will be sent to the mailing list and
also collected in petlib@ornl, gowv, Al
PARKBENCH correspondence and benchmarks
may be retrieved vin anonvmous fip o
netlib2, es. utk. edu. Alternatively. one can
collect PARKBENCH mail by sending email to
netlib@ornl. gov and in the mail message tvpe:

send comm. archive from phwg

The PARKBENCH committee is open without
charge to anyone interested in computer hench-
marking and operates similarly 1o the HPFF [High
Performanee Fortran Forum). Anvone interesied
in joining in the discussion or preparing bench-
marks should send e-mail wo thar effect wn:

dongarrafes. utk. edu

1.3 Vendor's Commitment

The PARKBENCH commines is anxious that its
parallel benchmarks do not put undue demands
on computer venders by way of man-power and
resources, in a wav that would prejudice the wide
acceptance and use of the benchmarks. Initally it
is felt reasonable 1o expect that most vendors
should have little difficulty in running the low-
level and kernel benchmarks, since these either
involve basic hardware and software tests [such oz
COMMS1, see secton 3.3.1)0 that vendars would
wish to perform in any case, or involve scientilic
library subroutines (such as FFT, see section
4.2.2) that they would be required to produce and
optimise, In the laner case, they would no doub
he pleased to show the superior performance of
their library routine compared with that of the
standard Fortran provided in the PARKBENCH
benchmark suite.

The case of compact applications, which are
stripped down complete application codes [see
Chapter 5), is more difficult hecause these codes
might require substantial effort to optimise, and in
some cases even to run satisfactorily. For these
ressong, it is not expected that vendors would ini-
ally run all these codes. They might, however,
choose to run a selection of them from subject
preas of interest to their current potential cus-
tomers, in order 10 demonstrate their computer’s
capability on some standard and relevant wests. In
this way, and over a period of time, it is hoped that
mast of the compact applications would be run in
a narural wav and withour extra effort.

1.4 Programming Models

Computer benchmarks are computer programs
that form standard tests of the performance of a
computer and the software through which it is
used. They are written to a pamicular program-
ming model and implemented by specific soft-
ware, which i= the final arhiter as to what the pra-

gramming mode] is. PARKBENCH has initially
scdopted two such morlels:

1. FortranT7 + PYM: This iz the classical
distributed-memory MIMD model in which
a number of separate logical processors ex-
ecute asynchronously independent For-
tran7T programs in their individual and
separate memory space. The only commu-
nication and syvnchronisation beroeen these
programs is by sending messages containing
data using the PVYM [Parallel Virtual Ma-
chine [2]) library of Fortran communication
subroutines. '

2, High Performance Foriran (HPF}: This is
an cxtension of the elassical SIMD model in
which a single instruction stream in the For-
tran®0 language [4] specifies operations
that apply, notionally simultaneously, 1o
vectors and higher-order arrave of data, In
HPF [53] data distnbution stiatements are
added by the programmer a5 comments to
the Fortran®0 program to help the compiler
gencrate eflicient code on a distributed-
MEMOTY COMPULET SYSTEm.

A benchmark is therefore testing a softwore inter-
face to a computer, and not a particular type of
computer architeciure. For example, benchmarks
using the "F77T+PVM" programming model can
be run on any computer providing this interface,
both disributed-memory message-passing com-
puters which have message-passing hardware,
and shared-memory computers which lack the
hardware but can simulate message-passing in
soltware.

1.5 Computer Terminology

Mevertheless, most of our benchmarks are written
1o the distributed-memory MIMD programming
model, with so-called acalable distributed-mem-
ory hardware in mind. The hardware of such com-
puters consists of a large number of "nodes™ con-
nected by & communication network (1ypically
with a mesh or hypercube topology), across which
messages pass berween the nodes. Each node typ-
ically containg one or more microprocessors for
performing arithmetic (perhaps some with vector
processing capabilities], communication chips
that &re used to interface with the network, and
local memory. For this reason, the computational
parts of the computer are commonly referred 10 as
either "'nodes™ or “processors’”, and the com-

FARKBEMNCH REPORT 13

puter is scaled up in size by increasing their num-
ber. Both names are acceptable, but “nodes™ is
perhaps preferable for use in descriptions of the
hardware, because we can then soy that one node
may contain several processors.

The FI7T+PVM programming model that we
are using is, however, much simpler, in that the
nowle is the smallest element of the computer that
can be programmed, and it is always used as if it
contained a single processor, because it runs a
single FT77 program. 1f the hardware actually uses
several processors to run the single program
faster, this should be beneficial to the benchmark
resule, but it is hidden from the programmer. Thus
from the programmer’s view, there is no wseful
distinetion between node and processor, and in
this document we have tried to use the 1erm Vpro-
cessor” consistently 10 mean the “logical proces-
sor’” of the FTT+PV¥M programming model,
whether or not it may be implemented by one or
several physical processors,

1.6 How to Get the PARKBENCH Report
and Benchmarks

An up-to-date copy of all the PARKBENCH ma-
terial is available from netlib. The index of mate-
rial available may be obiained in several ways:

i1] From any machine on the
Internet type:

rep anongnetlib2. es. utk. edua:
parkbench/index index

(2] Anonymous fip to
netlib2. es. utk. edu

cd parkbench
get index
quit

3] Sending email to
netlibiornl. gov
and in the meszage type:

send index from parkbench

(4) Use ¥netlib and click "li-
brary", click "parkbench",
click "parkbench/index”, click
rdosnload”, click "Get Files
Mow®. (¥netlib is an X-window
interface to the netlib

104 PARKBREMCH COMMITTEE

software based on a
client-server model. The
software can be found in
netlib,)

The required material can then be obtained with a

further “‘get™.

The latest version of this PARKBENCH repan
that is available for public elecironic distribution
can be found in the file parkbench. ps. The vari-
ous benchmarks will appear a3 compressed and
uuencoded war files as they become available. A
callection of other benchmarks are also available,
and the index adequartely cxplains their content.

Chapter 2

Methodology*

2.1 Philosophy

One might ask why anyone should care about de-
veloping a standardized, rgorous and scientifi-
cally tenable methodology for studying the perfor-
mance of high-performance computer systems.
There are several reasons why this is an imporant
undertaking:

1. To establish and maintain high standards of
honesty and integrity in our profession.

2. To improve the stas of supercomputer
performance analysis as a rigorous scientific
discipline.

3. To reduce confusion in the high-perfor-
mance computing literature,

4. Toincrease understanding of these SVELEMS,
both at a low-level hardware or software
level and at a high-level, toral system per-
formance level,

3. To assist the purchasers of high-perfor-
MAEnce computing equipment in selecting
svitems best suited to their needs

6. To reduce the amount of time and resources
vendors must expend in implementing mul-
tiple. redundant benehmarks,

I. To provide valuable feedback 10 vendors on
bottlenecks that can be allevigted in furre
produces

Itis important to note that researchers in many
scientific disciplines have found i NECESSArY 1 5
tablish and refine standards for performing exper-
iments and reporting the results, Many seientisis
have leamned the importance of standuard rermi-
noelogy and notatien. Chemisis, physicisis and hi-
ologists long ago discovered the importance of
controls in their experiments. The issue of repent-

* Azzembled Il:-' Liawiid |3||.'||':r liar mechosdals 1y subiesmmin
L,

ability proved erucial in the recent eodd fision epi-
sode. Medical researchers have found it necessary
to perform double-biind experiments in their
ficld. Psyvchologists and sociologists have devel-
oped highly refined experimental methodologies
and advanced data analysis techniques. Political
scientizts have found that subde differences in the
phrasing of a question can allect the results of &
poll. Researchers in many ficlds have found thar
environmental factors in their eXperiments can
significantly influence the measured results: thus
they must carelully report all such factors in their
papers.

If supercomputer performance analysis aned
benchmarking is ever 10 be taken seriously as a
scientific discipline, cerainly its praetitioners
should be expected 1w adhere 1o standards that
[Jrﬁw.lﬂ in other ll'ti.Si_'.ir_:lljncﬁ._ Thi= document is ded-
icated to promoting these standards in our field,

2.2 Fundamental Metrics

The conclusions drawn from o benchmark study
of eamputer performance depend not onlv on the
basic timing results obtained. but also on the way
these are interpreted and converted inte perfor-
mance figures. The choice of the performance
metric, may itself influence the conclusions. For
exumple, do we wane the computer that generates
the most megaflop per second [or has the highest
Speedup). or the compurter that solves the prob-
lem in the least time? s now well known that
high values of the first metrics do not necessarily
imply the second property. This confusion can be
avoided by choosing 8 more suitable metric thar
reflects solution time dirsetly, for example either
the Temporal. Simulation or Benchmark perfor-
mance, delined below. This issue of the sensible
choice of performance metrie is becoming increas-
ingly impontant with the advent of massively par-
allel computers which have the potential of very

104 PARKBENCH COMMITTEE

high megaflop rates, but have much more limited
potential for reducing solution time.

2.3 Time Measuremeant

Before other issues can be considersd, we must
diseuss the measurement of mn time. In recent
vears a consensus has been reached among many
scientists in the feld that the most relevant mea-
sure of run time is actal wall-clock elapsed tme.
This measure of time will be required for all
PARKBENCH resulis that are posted to the data-
hase.

Elapsed wall-clock time means the time thar
would be measured on an exiernal clock thar re-
cords the time-of-day or even Coordinated Uni-
versal Time [UTC), between the stan and finish of
the benchmark. We are not concerned with the
origin of the time measurement, since we are wk-
ing a difference, but it is important that the time
measured would be the same as that given by a
difference berween two measurements of UTC, if
it were possible to make them. I is important 1o be
clear about this, because many computer clocks
{e.g., Sun Unix function ETIME] measure elapzed
CPU dme, which is the oral tme that the process
or job which calls it has been executing in the
CPU. Such o clock does not record dme (1. it
stops ticking) when the job is swapped out of the
CPU. It does not record, therefore, any st time
which must be included if we are 10 assess cor-
rectly the performance of a parallel program. Un
some systems, scientists have found that even for
programs that perform no explicit I/0, consider-
able system tme is nonetheless involved, for ex-
ample in fetching certain library routines or other
data,

Only tmings actually measured may be cited
for PARKBENCI benchmarks (and we strongly
recommend this practice for other benchmarks as
well]. Extrapolations and projections, for instance
to & larger number of processors, may nt be em-
ployed for any reason. Also, in the interests of re-
peatability it is highly recommended that timing
runs be repeated, several times if possible.

Two low-level benchmarks are provided in the
PARKBENCH suite to test the precigion and ac-
curacy of the clock that is 1o be used in the
benchmarking. These should be run fiest, before
any benchmark measurements are made. They
are:

1. TICK1 - measures the precision of the clock
by measuring the time interval beraeen ticks

of the clock, A clock is said o tick when it
changes s value.

2. TICK2 - measures the accuracy of the clock
by comparing a given time interval mea-
sured by an external wall-clock (the bench-
marker’s wrist watch is adequare) with the
same interval measured by the computer
clock. This tests the scale factor used w
convert computer clock ticks 1w seconds,
and immediately detects if a CPU-clock is
incorrectly being used.

The fundamental measurement made in any
benchmark is the elapsed wall-clock dme to com-
plete some specified wask. All other performance
figures are derived from this basic tming mea-
surement. The benchmark dme, T{V; p), will be a
function of the problem size. V. and the number
of processors, p. Here, the problem size is repre-
sented by the vector variable. N, which stands for
a set of parameters characierising the size of the
problem: ez, the number of mesh points in each
dimension, and the number of particles in a parti-
ele-mesh simulation. Benchmark problems of dif-
ferent sizes can be created by multiplying all the
size parameters by suitable powers of a single
scale factor, thereby increasing the spatial and
particle resolution in a sensible way, and reducing
the size parameters o a single size factor (usually
colled o).

We believe that it is most important o regard
execution time and performance as a function of
at least the two variables (V: p), which define a
parameter plane. Much confusion has arisen in
the past by attempts 1o weat performance as a
functicn of a single variable, by taking & particular
path through this plune, and not stating what path
is taken, Many different paths may be taken, and
hence many different conclusions can be drawn. It
iz important, therefore, always 1o define the path
through the performance plane, or better as we do
here, to study the shape of the wo-dimensional
performance hill, In some cases there may even be
an optimum path up this hill. The following dis-
cussion of units and metrics is based on that of

Hockney [6].

2.4 Units and Symbols

A rational set of units and symbaols is essential for
any numerale science including benchmarking.
The following extension of the internationally
agreed 51 system of physical units [7] is made o

accommaddate the needs of compuier hench-
r'ni:rl:in;?r.

The value of & varable comprizes a pure num-
rer stating the number of units which equal the
value of the variable, followed by a wunit symbaol
specilving the unit in which the variable is being
measured. A new unit is required whenever a
quantiey of n new paturee arzes, such as the firse
appearance of vector operations,
sends. Generally speaking a unit symbol should
be as shon as possible, consistent with being eas-
ily recognised and not already used. The following
have been found necessary in the characierisation
of computer and benchmark performance in sci-
ence and engineering. No doubt more will have 1o
be defined as benchmarking enters new areas.

MNew unit svmbols and their meEaning:

Or message

1. fop: Moating-point operation [latexdlop)
2. mst: instruction of any kind [latexhinst]
3. inwop: ineger operation [latextinop]

4. vecop: vector operation [latexivecop)

3. send: message send operation [latex'send]
@, ier: iteration of loop [latextiter|

7. mref: memory reference (read or write)

[lateximref]

8. barr: barrer operation [latex\barr]

9, b: binary digit (bit) [latex\bir]

10. B: bywte [i:ﬂ:-l.lyi of 8 bits) [latex\B)

11. sol: solution or single execution of a
benchmark [latexh=ol]

12. = computer word, .,{_5-1_.'r|||_|4_|| i lower case
(W means wart] [latex'o]

13. 1step: timestep

When required a subseript may be used 1o show
the number of bits involved in the unit. For exam-
ple: a 32-hit floating-point operation flops;, a 64-
bit word wga ., also we have b = wy, B = wg, wee =
BH.

Note that flop, mref and other multi-leer sym-
bols are inseparable four or five-lener symbols.
The character case 15 significant in all unit sym-
bols so that e.g. Flop, Mref, Wy, are incorrect, Unit
symbols should alwavs he primed in roman ovpe,
to contrast with varables nomes which are pronted
in italic. To aid in the wse of roman wpe, espe-
ciolly within LATEX s math mode, LATEX com-
mands have been defined for each unit, these
commands being a backslash followed by the unit
svmbaol (except for ‘intop’ and ‘b’ whose names
are changed in the command to avoid a clash with
already defined system commands]. Such eom-
mands will print in roman type wherever they oc-

FARKEEMNCH BEPORT 107

cur. Because *s" is the 81 unit for seconds, unit
symbals like ‘sheep’ do not take *s” in the plural,
Thus we count: one flop, two flop., ., one hun-
dred flop etc. This is especially importam when
the unit symbol is used in ordinary text as a useful
abbreviation. as often. quite sensibly, it is.

Sl provides the standard prefixes:

1. k: kilo NN 1%
2. M : mega meaning 10°
3G rigEn |:|1i.t'{|:||i:|1;:r_ 107

4. T : tera meaning 10"

This means that we cannot use M to mean 1024
(the hinary mega) as is often done in describing
computer memory capacity, e.g. 256 MB. We can
however introduce the new prefix:

1. K :meaning 1024, then use a subseript 2 to
indicate the hinarv versions
2. Mz : binary mega 10242
. Gy : binary giga 1024%
4, Tz : binary tera 1024

In most coses the difference betwesn the megn
and the bhinary mega (4% is probably unimporn-
ant, but it is important to be unambiguous, In this
way we can continue with existing practice if the
difference doesn’t master, and have an agreed
method of being more exact when necessary. For
example, the above memory capacity wns proba-
bly intended o mean 256M,1.

As n consequence of the above, an amount of
computational work involving 4.5 = 10™ floating-
point operations is comrectly written as 4.5 THop.
Mote that the unit symbol Tlop is never pluralised
with an added *s’, and it is therefore incorreet to
write the above as 4.5 Tflops which could be con-
fused with a rate per second. The most frequently
used unit of performance, millions of floating-
point operations per second is correctly written
Mflop/s, in analogy 1o km/s. The slash is neces-
sary and means ‘per’, because the *p’ is an inte-
gral part of the unit symbal “Nop” and cannom also
be used to mean “per’.

2.5 Floating-Point Operation Count

Although we discourage the use of millions of
floating-point operations per second as a perfor-
mance metric, it can be o uselul measure il the
number of floating-point operations, F{N],
needed to solve the benchmark problem is care-

fullv defined.

108 PARKBENCH COMMITTEE

For _f-i|'r'|.i'||¢': pmh]::m:: [en 2. ALK |'|'|||J1i|r|1l.': i is
sufficient to use a theoretical value for the flom-
ing-point aperation count (in this case 20 flop.
for nxn matrices) obtained by inspection ol the
code or consideration of the arthmetic in the algo-
rithm. For maore complex problems containing
data-dependent conditional siatements, an em-
pirical method may have 10 be used, The sequen-
tial version of the benchmark eode defines the
problem and the algorithm o be used w0 solve i
Counters can be inserted inte this code or a hard -
ware monitor wsed o count the number of floa-
ing-point operations. The later is the procedure
followed by the PERFECT Club (&, In either case
a decision has o be made regarding the number of
flop that are 1o be credited for different types af
floating-point operations, and we see no good rea-
son 1o deviate [rom those chosen by MeMohon [9)
when the Milop/s measure was originally defined.
Theze are:

add, subtract, multiply 1 Hop

divide, square-root 4 flop

exponental, sine cte. 8 flop
'this figure will be
adjusted)

IF[X REL, ¥) 1 Nop

Zome members of the committee el thar these
numbers, derived in the 1970s. no longer cor-
rectly reflected the situntion on current com-
puters. However, since these numbers are only
used to caleulate o nominal benchmark flop-
count, it is not so important that they be accurate,
The important thing is that they do not change,
otherwise all previous flop-counts would have w
be renormalised, In any ease, it is not possible Ffor
a single set of ratios 1w be valid for all computers
and library software, The committes agreed thar
above ratios should be kept for the time being, but
that the value for the transcendental Tunctions
was unrealistic and would be adjusted later after
research into a more realistic and higher value.

We distinguish two types of operation count.
The first is the nominal benchmark floating- point
pperation count, Fa [N, which iz found in the
above way from the defining Fortran77 sequential
code, The other is the actual number of Noating-
point operations performed by the hardware when
executing the diztnbuted muolo-processor version.
Fuy(N: p), which may be greater than the nominal
benchmark count, due o the distribured version
performing redundant arithmetic operations. Be-
cause of this, the hardware lop count may alse

4:|_|:E:u:;|1-:_1 an the number of processors on whiek the
beanchmark is run. as shown i 115 argument list,

2.6 Parformance Metrics

Given the time of execution T0V: p] and the flop-
count FUV] several dilferent perlormance mea-
sures can be defined. Each metric has its own
vz, and rives diflerent information alwoul thie
computer and algorithm used in the benchmark
It is important therelore 1o distinguish the metrics
with different names. svmbals and units, and o
understond clearly the .|_|il':|'i:'ne'r||:|1 Ferween them.
Much confusion and wasted work can arise from
optimising a benchmark with respect to an inap-
propriate metric. The principal performance mer-
rics are discussed in the following subsections,

2.6.1 Temporal Performance

Il we are imerested in comparing the performance
of different algorithms for the solution of the same
problem, then the correct performance metric o
use is the Temporal Performarce, Ry, which is
defined as the inverse of the execution time

Rr(N: p) = T-YN: p) 2.1

The units of remporal performance are, in gen-
eral, solutions per second [sol/s), or some more
pppropriate absolute unit such as tdmesteps per
second (tstepds). With this metric we can be sure
that the algorithm with the highest performance
executes in the least time, and is therefore the best
alrorithm. We note that the number of flop does
not appear in this deflinition, because the objective
of algorithm design is not o perform the most
arithmetic per second, but rather it is to solve a
given problem in the least tme, regardless of the
amount of arithmetic involved. For this reason the
temporal performance is also the metric that com-
puter users should employ 1o seleet the best algo-
rithm to solve their problems, because their objec-
tive is also to solve the problem in the least tme,
and they do not care how much arithmetic is done
o achieve this.

2.6.2 Simulation Performance

A special case of temporal performance oceurs for
simulation programs in which the benchmark
problem is defined as the simulation of a certain
period of physical tme, rather than 2 certain
number of timesteps, In this case we speak of the
Simulation Performance and use units such as

simudated dayve per day (written sim-d/d or *d"/d)
in weather forecasting, where the aposirophe is
used to indicare “simulated”: or simolated pico-
secands per second [written simps/s or “ps’is) in
electronic device simulation. It is important 1o use
simulation performance rather than timestep/s if
we are comparing different simulation algorithms
which may require differene sizes of timestep lor
the same accuracy [(for example an implicit
scheme that con use a large timesiep, compared
with an explicit scheme that requires 8 much
smaller step). In order to maintain numerical sia-
bilitv, explicit schemes also require the use of a
smaller timiestep as the spatial grid is made Gner.
For such schemes the simulation performance
falls off dramatically as the problem size is in-
creased by introducing more mesh poings in order
o refine the spatial resolution: the doubling of the
number of mesh-poims in each of three dimen-
sions can reduce the simulation performance by a
factor near 16 because the timestep muost also be
approximately halved, Even though the larger
problem will generare more Megallop per second.
in rﬁrf'r:l‘-:llug it it the simulated days per day [i.e.
the simulation performance) and not the 'ﬂElupfs_
that matter to the user.

As we see below, benchmark performance is
also measured in terms of the amount of anth-
metic performed per second or Milop/s. However
it i important o realise that i is incoreect (9 com-
pare the Mllop/s achieved by two algorithms and
to conclude thar the algorithm with the highest
Milop/s rating is the best algorithm. This is be-
cause the two algorithms may be performing quite
different amounts of arithmetic during the solu-
tion of the same problem. The temporal perfor-
mance meine, f+, defined above, has been intra-
duced o overcome this problem, and provide a
measure that can be used to compare differen
algorithms for solving the same problem, How-
ever, it should be remembered that the wemporal
performance only has the same meaning within
the eonfines of a fixed problem. and no meaning
can be antached 10 a comparison of the tem pnml
performance on one problem with the temporal
performance on another,

2.6.3 Benchmark Performaonce

In order to compare the performance of a com-
puter on one benchmark with its performance on
another, account must be token of the different
amounts of work (messured in flop) that the dif-
ferent problems require for their solution, Using

PARKBENCH REPORT 1049

the flop-count for the benchmark, Fe(/V], we can
deline the Benchmark Performance as

HellV; p) = FR(NV/ TN, p) (2.2)
The units of benchmark performance are Milop/s
[benchmark name), where we includs the name of
the benchmark in parentheses 1o emphasise thai
the performance may depend sirongly on the
problem being solved, and to emphasise that the
values are based on the nominal benchmark flop-
count. In other contexts such performance figures
would probably be quoted as examples of the so-
called sustained performance of & computer. We
feel that the use of this term is meaningless unless
the problem being solved and the degree of code
optimisation is quoted, beeause the performance
i5 80 varied across different benchmarks and dif-
ferent levels of optimisation. Hence we favour the
quotation of a selection of benchmark perfor-
manee figures, rather than a single sustained per-
formance, because the later implies thar the
quoted performance is maintained over all prot-
leerms.

Mate also that the flop-count Fg(NV) is thart for
the defining sequental version of the benchmark,
and that the same count is used to caleulate By for
the dismbuted-memory (DM) version of the pro-
gram, even though the DM version may acrually
perform a different numhber of aperations. [t is
uswal for DM programs to perform more arith-
metic than the defining sequential version, be-
canse often numbers are recomputed on each
processor in order 10 save communicating their
values from a master processor. However such
caleulations are redundan ithey hawve al_rn:ad'!.'
been performed on the master] and it would be
incorrect 1o credit them to the flop-count of the
distributed program.

Using the sequential flop-count in the caleula-
tion of the DM programs benchmark pedormance
has the additional advantage that it is possible w0
conclude thar, for a given benchmark, the imple-
mentation that has the highest benchmark perfor-
manee is the best becouse it executes in the least
tirme, This would not necessarily be the case if a
different Fa [N] were used for different implemen-
tations of the benchmark. For example, the use of
a beter algorithm which obiains the solution with
less than Fz (V) operations will show up as higher
benchmark performance. For this reason it should
cause no surprise if the benchmark performance
occasionally exceeds the maximum possible hard-
ware performance. To this extent benchmark per-
formance Milop/s must be undersiood o be nom-

J10 PARKBENCI COMMITTEE

inal values, and not necessarly exactly the
number of operations executed per second by the
hardware, which is the subject of the next meinc.
The purpose of benchmark performance is to
compare dilferent implementations and algo-
rthms on different computers for the solution of
the same problem, on the basis thar the best per-
formance means the least execution tme. For this
to be true Fa(V] must be kept the same for all
implementations and algorithms.

2.56.94 Hardware Performance

If we wich to compare the observed performance
with the theoretical capabilities of the computer
hardware, we must compute the acmual number of
floating-point operations performed, F(N: pl.
and from it the actual Hardware Performarnce

fuiN, pl = Fy(MN: p)d TIN: p) (2.3}
The hardware performance also has the unis
Mflop/s, and will have the same value as the
henchmark performance for the sequental ver-
sion of the benchmark. However, the hardware
performance may be higher than the benchmark
performance for the distributed version, because
the hardware performance gives credit for redun-
dant arithmetic operations. whercas the ben-
chmark performance does not, Because the hard-
ware performance measures the
floming-point operations performed per second.
unlike the benchmark performance. it can never
exceed the theoretical peak performance of the
COMpuUter,

Assuming o computer with multiple-CPUs each
with multiple arithmetic pipelines, delivering a
maximum of one flop per elock period, the thea-
retical peak value of hardware performance is

HIH| t:l-"l.l.

- _%L— % number.CFUs (2.4)

with units of Miop/s il the clock period is ex-
pressed in microseconds. By comparing the mea
sure hardware performance, fy(N: p). with the
theorctical peak performance, we can assess the
fraction of the available performance that is being
realised by a particular implementation of the
bemehmark.

2.6.5 Speedup, Efficiency and
Performance per Node

Paraliel speedup is a popular metric that has been
used for many vears in the study of parallel com-

puter performance. However, its de finition iz open
to ambiguity and misuse because it always begs
the question “speedup over what#”

Speedup is usually defined as

T

Is

(2.5)

where T, is the p-processor tme to perform some
benchmark, and Ty is the one-processor time.
There is no doubt about the meaning of T,—this
is the mensured tme T{N: p) o perform the
benchmark. There is often considerable dispute
over the meaning of Ti: should it be the tme for
the parallel code running on one processor, which
probably contains unnecessary parallel overhead,
or should it he the best serial code [possibly using
a different algorithm) running on one processor?
Many scientists feel the later is a more responsible
choice, but this requires research 1o determine the
best practical serial algorithm for the given appli-
cation. If at a later time a hetter algorithm is
found, current speedup figures might be consid-
ered obsolete. An additonal difficulty with this
definition is that even if a meaning for 77 is agreed
te, there may be insufficient memory on a single
processor 1o store an entire large problem. Thus in
many cases it moy be impossible 10 measure T,
using this definition.

One principal objective in the field of perfor-
mance analysis is to compare the performance of
different computers by benchmarking. It is gener-
ally agreed that the best performance corresponds
to the least wall-cloek execution time. In order 1o
adapt the speedup statistic for benchmarking, ivis
thus necessary 1o define a single reference value of
T, to be nzed for all caleulations, [t does not mat-
ter how T i delined, or what its value is, only that
the same value of Ty is used to calculate all
speedup values used in the comparison.

However, defining T as a reference time unre-
lated o the parallel computer being benchmarked
unfortunately has the consequence that many
properties that many people regard as essential o
the concept of parallel speedup are lost:

1. It is no longer necessarly true that the
speedup of the parallel code on one proces-
sor is unity, It may be. but only by chance.

2. It is no longer wrue that the maximuom
speedup using p-processors is o.

3. Because of the last item, efficiency figures
computed as speedup divided by g are no
longer a meaningful measure of processor
utilization.

There are oiher diflicelies with this formula-
tion of speedup. If we use Ty as the run time on a
VEIY fas single processor [currently, say, a Croy
COHD or a MEC 5X-3), then manufacturers of
highly parallel systems will be reluctant 10 quote
the speedup of their system in the above way. For
example, il the speedup of a 100 processor paral -
lel svstem over a single processor of the same sys-
tem is a respectable rr!-f_“llrr of 80, 10z likely that the
speedup computed from the standard Ty would
be reduced 1o 10 or less. This is because a fasi
vector proceseor is cypically at least wen tmes
faster than the RISC processors wsed in many
hixhly parallel svstems of a comparable ECnera-
tiomn.

Thue it appears that if we sharpen the defini-
tion of speedup o make it an acceprable merric
for comparing the performance of different com-
puters, we have 1o throw away the main properties
thut have made the concept of speedup useful in
the past.

Avcordingly, the PARKBENCH committee has
decided the following:

1. No speedup statistic will be kept in the
PARKBENCH darabase.

2, Bpesdup statstics boased on PARKBENCH
benchmarks must never be used as lgures
of merit when comparing the performance
of different svstems. We further recommend
that speedup figures based on other bench-
marks not be used as figures of mernt in such
COMIrisons

3. Speedup statstics mav be vsed in o stady of
the performance charscteriztics of an indi-
vidual parallel svatem. But the basis for the
determination of Ty must be clearly and ex-
plicitly srated.

4. The value of Ty should be based on an effi-
ciemt uniprocessor implementation. Code
for message passing, svnchronization. ete.
should not be present. The author should
also make a reasonable effort o insure than
the algorithm used in the uniprocessor im-
plementation i the best practical serial al-
gorithm for thiz purpose.

2, Given thot o lorge problem frequendy does
not fir on a single processor. it is permissible
1 cite speedup staostes based on the im-
ing of a smaller numher of processors, In
other words, it is permissible to compure
speedup as 7./ Ty, . for some m, 1 < m < p.
Il this i done, however, this usage must be
-:‘Ifn:arl;.' stated, and full derails of the basis of
this caloulation must be presented. As

PARKEEMCH REPORT 111

above, care must be taken o insure thar the
unit timing T, is based on an efficient im-
plementation of appropriate algorithms.

2.7 Perfoermance Database

The process of gathering, archiving, and distribut-
ing computer benchmark dara is a cumbersome
task wsually performed by computer users and
vendors with little coordination. Within Xnetlib
[10] there is a mechanism o provide [nterner-ac-
cess to A performance datobase server (FDS)
which can be used o extract eurrent benchmark
data and literature, PDS [11] provides an on-line
catalog of public-domain computer henchmarks
such as the LINPACK Benchmark [12], Perfect
Benchmarks [8]. and the NAS Parallel Bench-
marks [13], PDS does not reformat or present the
benchmark data in any way that conflicts with the
original methodology of any panticular bench-
mark; it is thereby devoid of anv subjective in-
terpretations of machine performance, PDS s
providing a more manageable approach to the de-
velopment and support of a large dynamic dota-
hase of published performance merrics.

The PDS syetem was developed at the Univer-
sity of Tennessee and Oak Ridge National Labo-
ratory and is an initial atempt at performance
data management. This on-line database of com-
puter benchmarks is specifically designed to pro-
vide easy maintenance, data security, and data
integrity in the benchmark information contained
in o dynamic performance database.

PDS was designed with a simple 1abular format
that involves disploving the data in rows (machine
configuration| and columns (numbers). Graphical
representations of tnbular data, such ns the repre-
semtation by SPEC [14] with the obsolescent
SPECmarks, are $1r:’1'if_:|'||f-:’|rn‘."|rd.

2.7.1 Design of a Performance Database

Because of the complexity and volume of the dota
invalved in a performance database, it is nawral
to exploit a database management system (DBMS]
to archive and retrdeve benchmark data. A DBMS
will help not only in mansging che data, but alse in
assuring that the various benchmarks are pre-
sented in some reasonable formae for users: imble
or spreadsheet where machines are rows and
benchmarks are columns.

Of major concern is the organization of the
data. It secems logical 1o organize data in the
[MEM= z'll_:r_:u:‘:-r(!i.r:'e 1 1he benchmarks themselves: o

112 PARKBESCI COMMITTELR

LINPACK table, a Perfect table, ete, It would be
nearly imposaible wo farce these very different pre-
sentation formats to conform to a singls presenta-
tion standard just for the sake of reponing. [ndi-
vidual tables preserve the display charncteristics
of ench benchmark, bur the DBEMS should allow
users o query all tables for varous machines,
Parsing benchmark data into these 1ahles is
straightforward provided a customized parser is
available for each benchmark set. In the parsing
procesa, constructing a raw data file and building
a standard format ASCII file enses the incorpora-
tion of the data into the darabase.

The functionality required by FDS 88 not very
different from that of a standard database appli-
cation. The difference lies in the user interface.
Finanecial databhases, for example. ypically in-
volve specific queries like

EXTRACT ROW ACCT_NG = R103049

in which data points are usually discrete and the
user i very familiar with the data. The user, in this
cose, knows exactly what account number 1o ex-
tract, and the lermat of retrieved data in response
to queries. With our performance database, how-
ever, we would expect the contrary: the user does
not really know () what kind of data is available,
) how to requestSexiract the dara, and (o) wha
form 1o expect the returned data o be in. These
assumptions are based on the current lack ol eo-
ordination in (public-domain) benchmark man-
agement. The number of benchmarks in use con-
tinues o rse with no standoard Tormar for
presenting them, The number of performance-
literate users is increasing, but not at a rate sufli-
cient to expect proper queries from the perfor-
mance database. Quite often, users just wish w
see the best-performing machines for a panicular
benchmark. Hence, a simple rank-ordering of the
rows of machines secording to a specific bench-
mark colusn may be sufficient for o general user.

Finally, the features of the PDS user interface
should includs

11} the ability 10 extract specific machine and
benchmark combinations thar are of inter-
esl,

(2} the ability to search on multiple kevwords
across the entire dacaser, and

[3) the ability to view cross-referenced papers
and biblingraphic informeation about the
henchmark itsell,

We include (3) in the list above o address the
concern of proliferating numbers withour any
benchmark methodolosy information. PDS would
provide ahatracts and complete papers related o
benchmarks and thereby provide a needed educa-
tional resource withour risking improper interpre-
ration of retrieved benchimark data.

2.7.2 PD5 Features

PDE provides the following rerrieval-based func-
tinns for the wuser:

(1) a browse feawre to allow casual viewing
and point-und-click navigation through the
datakbase,

2] asearch feature o permit multiple keveord
searches with Boolean conditions,

(3} a rank-ordecing featre o sort and display
the results for the user, and

(4} a few additional feamres that nid the user
in acquiring benchmark documentation
and references.

As diseussed in :':l'J-_._ the Bank Trdering op-
ton in PDS allows the user to view a listing of
machines that have been ranked by a pamicular
performance merrie such as megallop/s or
elapsed CPU time. Boh Rank Ordering and
Papers options are menu-driven data access
paths within PD5. With the Browse facility in
PDS, the wser first selects the vendors) and
benchmark(s) of interest, then sclects the lorge
Process buton o query the performance data-
base. The PDS client then apens a socket connec-
tion to the server and, using the query language
(rdb). remotely queres the database, The Search
option in PDS permits user-specilied keyword
searches over the entire performance database.
search wilizes literal case-insensitive matching
along with a moderate amount of slinsing, Muli-
ple keyeords are permitied, and a Boolean tlag is
provided for more complicated scarches. Lsing
Search, the user has the option of entering ven-
dor names. machine aliases, benchmark names.
or specific sirings, or producing o more compli-
cated Boolean kevword search. Sinee any re-
tricved data will be displayed to the screen (by
default), the Save apion allows the user to store
any retrieved performance data w an ASCIH file.
Finally, the Bibliography option in PDS pro-
vides o list of relevant manuseripts and other in-
formation abowt the benchmarks, Future en-
hancements 1o PDE include the use of more

saphisticated two-dimensional graphical displays
for machine comparisons. Additional serial and
parallel benchmarks will be added to che database
as formal procedures for data acquisition are de-
termingd. The Browse and Search fscilines
available in the current version of PDE are illus-
rrated in Appendix B.

2.7.3 PDS Availability
To receive Xnedib with PD3 suppon for Unix-

hased machines, send the electronie mail message
send xaetlib.zhar- from xaetiib w netlib
Bornl. gov. You can unshar the file and compile
it by answering the user-prompred questions upon
installation, Use of shar will install the full func-
tionality of Xnedib along with the latest PDS client
tool. Questions concerning PDE should be sent o
utpds@es. utk. edu. The University of Tennes-
see and Oak Ridge National Loboratory will be
responsible for gathering and archiving additonal
ipublished) benchmark dota,

At presemt each benchmark measurement for a
particular problem size 8V and processor number
p. is represented by one line in the database with
variable length fields chosen by the benchmark
writer as suitable and comprehensive 1o describe
the conditions of the benchmark run, The Gelds
separated by a marker include, benchmarker’s
name and e-mail, computer location and date,
huardware specification, compiler data and oprimi-
sation level, N, p. TiN; p). Be(V; P) and other
meiries a5 deemed appropriate by the benchmark
writer. Ideallv. the line for the database would he
produced autematcally oz owrpue by the bench-
mark program itself.

2.8 Interactive Graphical Interface

The Southampton Croup has agreed 1o provide
an imeractive graphical front end 1o the
FPARKBENCH FDS database of performance
resulis, To achieve this, the basic daa held in
the Performance Data Base should be values of
TN, ol for ot least 4 values of problem size N
each for sufficient p-values (say 5 1o 10) o deter-
mine the wend of vardation of pedormance with
number of processors for constant problem size. It
is important that there he enough p-values 1o see
any saturation in performanes, if present, or any
peak in performance followed by degradation. A
gruphical interface is really essential 1w allow this
multidimensional data o be viewed in any of the
metrics delined above. as chosen imeractively by

PARKBEMCH REPORT 113

the user. The user could also be offered (by suit-
able interpolation) a display of the resulis in vari-
ous scaled metrics, in which the problem size is
expanded with the number of processors.

I order o encempass as wide o rongee of per-
formance and number of processors as possible, a
log-scale on both axes is unavoidable, and the
format and scale range should be kept fixed as
long as possible w enable easy comparison be-
tween graphs, A three-cyvele by three-cyele logd log

graph with range 1 to 1004 in both p and \r]'ﬂr.-p {5

~would cover most needs in the immediate Tuture,

Examples of such graphs are o be found in [6.
18]

A log/log graph is also desirable because the
aize and shape of the Amdahl ssuration curve is
the same wherever it is plotted on such a graph,
i.e. there is a universal Amdahl curve that is invar-
innt to its position on any log/log graph, Amdahl
saruration is a two-parameter description of any
of the performance metnes, &, as 8 function of o
for fixed V. which can be expressed by

= L (2.6)

1+ il o
where H. 15 the satrstion performance ap-
proached as p — = and pj is the number of pro-
cessors regquired o reach hall the saturstion per-
formance. The graphical interface should allow
thig universal Amdahl curve 1o be moved around
the graphical display, and be matched against the
performance curves, The changing values of the
twa parameters (.. py) should be displaved as the
Amdabl curve 12 movied,

As more expericnee is gained with performance
analvsis, that is the fining of performance data 10
parameterised formulae, it i to be expected tha
the graphical interface will allow more compli-
cated formulae o be comparsd wath the expen-
mental data, perhaps allowing 3 1o 5 parameters
in the theoretical fermuola. Bur, as vel, we do nom
know what these parameterised formula should
he.

2.9 Benchmarking Procedure and
Code Optimisation

Manufacturers will alwayvs feel thar any bench-
maork not tuned spectheally by themselves, 15 an
unfair test of their hardware and software. This is
inevitable and from their VIBWMHNL i I5 Irue.
MASA have overcome this problem by only speo-
fving ihe problems the NAS paper-and-pencil

114 PFARKBESCHD COMMITTEE

benchmarks [16]) and leaving the monefacterers
to write the code, but in many circumstances this
would require unjustifiable effort and ke wo
long. It is alse a perfectly valid questdon to ask how
a particular parallel computer will perform on ex-
isting parallel code, and that i= the viewpoint of
PARKEENCH.

The benchmarking procedure is wo run the dis-
tributed PARKBENCH suite on an as-iz basis.
making only such non-substantive changes that
are required to make the code man (eg. changing
the names of header files 1o a local varsnt], The
as-is run may use the highest level of automartic
compiler optimisation that works, bur the level
used and compiler date should be noted in the
appropriate section of the performance database
10T,

After completing the as-is run, which gives a
base-line result. any form of optimisation may be
applied to show the paricular computer o its best
advantage, up o completely rethinking the algo-
rithm, and rewriting the code, The only require-
ment on the benchmarker is o state what has
been done. However, remember that, even if the
algorithm is changed. the official flop-count,
Fyi &) thar is used in the caleulation of nominal

benchmark Milopss, Hal; gl does not. Ioothes
way a berter algorithm will show up with a higher
fa, nz we would want it o, even though the bvard -
ware Mflop/s is likely to be liole changed.
Typical steps in optimisation might be:

l. explore the effect of different compiler op-
timisations on a single processor. and
choose the beat for the as-is run.

perform the as-is run on multiple proces-

gors, using enough values of p o determine

anyv peak in performance or saturation.

3. retum o single processor and orpimise code
for vectorization, if a vector processor is be-
ing used. This means restructuring loops o
permit vectorisation,

4. continue by replacement of selected loops
with optimal assembly coded library rou-
tines (e.g. BLAS [17] where appropriate],

. replacement of whaole henchmark |!:l'_'.' a
mned library routine with the same fune-
tionality,

. replace the whole benchmark with o locally
written version with the same funcrionalire
but using possibly an entirely different algo-
rithrn that is more suited o the architecoure.

[

Chapter 3

Low-Level Benchmarks®

3.1 Introduction

The first step in the assesament of the perfor-
mance of o parallel computer system iz o measure
the performance of a single logical processor of
the multi-processor system, There exist already
many good and well-esmablished benchmarks
for this purpose, notably the LINPACK bench-
muorks and the Livermore Loops. These are not
rart ol the PARKBEMNCH suite of programs, but
PARKBENCH recommends that these be used o
measure single-processor performanece, moaddi-
tion o some specific low-level measurements of it
coent (see Section 3,20 There follows a brel de-
seription of existing benchmarks thar are recom-
mended for measuring single-processor perfor-
mance, with a discussion of their value.

3.1.1 Most Reported Benchmark:
LINPACKD (n = 100}

Thiz well-known standord benchmark 12 a Forran
program for the solution of (100 = 100] dense set
ol linear pguaiions by Gagssian elimination. [y s
distributed by Jack Dongarra of the University of
Tennessee [12]. The resulis are quoted in Milop/s
and are regularly published and available by elec-
tronic mail. The main value of this benchmark is
that resulis are known for mere computers than
any other benchmark. Most of the compute time is
contained in vectonsable DO-loops such ps the
DAXPY (scalar times vector plus veetor) and inner
product, Therefore one expects vector computers
o perform well on this henchmark. The weakness
of the benchmark is that it tests only a small num-
her of vector aperations, but it does include the
effect of memory access and it is solving a com-
plete [:_'||Ih|{:-u;__f_|‘|. .ﬂ:m“_f reeal J_Ilﬂ'l]'l]ﬂl'l'l.

* Assemnbled by Roger Hockney for Low-Lavel subeommin-
1ee,

3.1.2 Performance Range:
The Livermore Loops

These ore a set of 24 Fortran DO-loops [The
Livermore Forran Kernels, LFK) extracted from
operstional codes vzed gt the Lawrence Liver-
more Mational Laboratory [2]. They have been
used sinee the early seventies 1o assess the arith-
metic performance of computers and their com-
pilers, They are o mixioree of wecrorisahle and
non-vectorisable loops and test rather fully the
computational capabilities of the hardware, and
the skill of the software in corpiling efficient code,
and in veclorsation. The main value of the
benchmark is the range of performance that it
demonsirates, and in this respect it complements
the limited range of loops tested in the LINPACK
bhenchmark. The benchmark provides the individ-
ual performance of each loop. together with vari-
ous averages (arthmetic, geometric, harmonic)
and the quartiles of the distnbotion, However, it is
difficult 1o give a clear meaning to these averages.
and the value of the benchmark is maore in the
distribution itself. In particular, the maximum
and minimum give the range of likely perlormance
in full applications. The ratio of maximum wo min-
imum performance has been called the irestability
or the speciality (18], and is a measure of how
difficule it i to obiain good |_:-|:r!|'-:_'|n:|:|.|'|l'|-r“.-|‘-. from the
computer, and therefore how specialised it is. The
minimum or worst performance obtained on these
loops is of special value, because there is much
truth in the saying thm *“‘the best computer to
choose is that with the best worst-performance.™

3.2 Single-Processor Benchmarks

The single-processor low-level benchmarks pro-
vided by PARKBENCH, aim to measure perfor-
munce parameters that characterise the basic
architecture of the computer, and the compiler

116 PARKBENCH COMMITTEE

software through which it is used. For this reason,
such benchmarks have also been called appropri-
ately basic architectural beachmarks. Following
the methodology of Euroben [19], the aim is that
these hardware/compiler parameters will be used
in performance formulae that predict the tming
and performance of the more complex kernels (see
Chapter 4) and compact applications (see Chap-
ter 5}, They are therefore a ser of synthelic
henchmarks contrived 1o measure theoretical pa-
rurmeters that deseribe the severity of some over-
head or potentinl botdeneck, or the properties of
gome item of hardware. Thus RINF1 characterises
the basic properties of the arithmetic pipelines by
measuring the parameters (r=, my) [see section
3.2.3). and POLY1 and POLYZ2 charactense the
severily of the memory bottleneck by measuring
the parameters (=, fi] (see section 3.2.4).

The fundamental measurement in any beneh-
marking is the measurement of elapsed wall-clock
time. Because the computer clocks on each pro-
cessor of n multi-processor parallel computer are
not synchronised. all benchmark time measure-
ments must be made with a single clock on ane
processor of the svstem. The benchmarks TICK1
and TICK2 have, reapectively, been designed (o
measure the resolution and o check the absolute
value of this elock. These benchmarks should be
run with satisfactory resulis before any further
benchmark meassurements are made,

3.2.1 Timer Resalution: TICK1

TICK 1 measures the resolution of the cleck being
wsed in the benchmark measurements, which is
the dme interval between successive deks of the
clock. A succession of calls to the imer routine are
inserted in o loop and executed many tmes. The
differences berween successive values given by the
timer are then examined. If the changes in the
clock value (or ticks) oceur less frequently than the
time taken 1o encer and leave the timer routine,
then most of these differences will be zero, When a
tick takes place, however, a difference equal 1o the
tick value will be recorded. surrounded by many
zero differences, This is the case with clocks of
poor resolution; for example most UNIX clocks
that tick typically every 10 ms, Such poor UNIX
clocks can sill be used for low-level benchmark
messurements if the benchmark is repeated. say,
10,000 times, and the timer callz are made out-
side this repeat loop.

With some computers, such as the CHAY se-
ries, the clock ticks every cvele of the computer,

that is to say every ns on the Y-MP. The resolu-
ton of the CRAY clock is therelore approximately
one million tmes better than a UNIX clock, and
that is quite a difference! If TICK 1 is used on such
a computer the dilference between successive val-
ues of the timer is 8 very aecurate measure of how
long it wakes to execute the instructions ol the
timer routine, and therefore is never zero, TICKT
takes the minimuam of all such differences, and all
it is possible o say is that the clock tick is less than
or equal to this value. Typically this minimum will
be several hundreds of elock ticks. With a clock
ticking every computer cycle, we can make low-
level henchmark measurements without a repeu
loop. Buch measurements can even by made on a
busy timeshared system (where many users are
contending for memory access) by raking the min-
imum time recorded lrom a *-HI'|'||‘.'-|1 of, =ay,
10,000 single execution messurements. In this
ease, the minimum can usually be said wo apply 10
a case when there wos no memory access delay
caused by ather users.

TICK1 exists and forms par of the Genesis
benchmarks [20].

3.2.2 Timer Value: TICK2

TICK2 confirms that the absolue values returned
by the computer clock are correct, by comparing
its measurement of a given time interval with tha
of an external wall-clock (actually the bench-
marker's wnstwaich). Parallel benchmark perfor-
manee can only be measured using the elapsed
wall-clock time, hecauwse the objective of parallel
execution is 1o reduce this time. Measuremenis
made with a CPLU-timer (which only records time
when its job is exccuting in the CPL) are clearly
ineorrect, because the clock does not record wait-
ing time when the job is out of the CPL. TICKZ
will immediately detect the incomrect use ol a
CPU-time-for-this-job-enly clock. An example of
a timer that claims to measure elapsed tme but is
actually a CPU-timer, is the returned value of the
popular Sun UNIX timer ETIME. TICKZ2 also
checks that the correct muliiplier is being used in
[J'IP ﬂ'rl'l'LE_l:ljl_l:j' "_-'u'_l,:-'-[-l_"[[l_ '\-'I"IE‘I'I'I.'UF'_' I CoRnert l:]r:lf\'l!:
ticks to true ﬁ{'l:lbl"lt']:'l.

TICK2 exists and [orms part of release 2.2 and
lnier of the Genesis benchmarks (21,

3.2.3 Basic Arithmetic Operations: RINF1

This benchmark wkes o se1 of common Fortran
DO -lonps and analyses their time of exeoution in
terms of the two parameters (rom) [22, 23, 24,

25, 26, 27]. rx is the asympiotic performance rate
in Milop/s which iz approached as the loop [or
veetor) length, e, becomes longer. ny (the hall-per-
formanece length) expresses how rapidly, in terms
increasing vector length, the acmal performance,
r, approaches r.. Itis defined as the vector length
required 1o achieve a performanes of one hall of
F=. This means that the time, ¢, for a DO-loop
corresponding 1o g vector operations [i.e. with g
llosating-point operations per element per itera-
tion) is approximated by

t=q#*(n+ o). 2.1
Then the performance rate is given by
o WA L (9 o
r= = - —— 3.2)
¢ 1+ myfre) e

We can see from Eqn, [3.1) that ny is a way of
measuring the imporance of vector stariup overs
head (=mpfr) in 1erms of quantities knowm w
the prograommer doop or vector lengih), In the
benchmark program, the two parameters are de-
termined by o least-squares fit of the data o the
straight line defimed by Eqn. (3.1). A useful guide
to the significance of a3 is 10 note from Eqn. (3.2)
that 80 percent of the asvmprotic performance is
achieved for vectors of length 4 % . Generally
speaking, ny values of up o aboon 30 are tolera-
ble, whereas the performance of computers with
larger values of ny is severely constrained by the
need to keep vector lengths significantdy longer
than ryy. This requirement makes computers diffi-
cult to progeam efliciently. and often leads o dis-
appointing performance, compared 1o the asvmp-
totie rate advertised by the manufacturer.

RINF1 has been used extensively for ahou
ten years as part of the Hockney and EuroBen
benchmarks (module MODTAC) [28]. It is also
included in the Genesis benchmarks [15].

3.2.4 Memory-Bottleneck Benchmarks:
POLYT and POLYZ2

Even if the vector lengths are long encugh 1o over-
come the vector starmup overhead, the peak rate of
the arithmetie pipelines mav not be realised be-
cause of the deluvs sesociated with phiaining data
from the cache or main memory of the computer.
The POLY1 and POLY2 benchmarks quaniify
1I‘.H‘ |’.‘|‘."F:".'\'f:l|.Ji’h FRile! rhl- {'1'I|:|ii'l|||l_"[' |".‘||:'|"E|l,'§||‘|'|'||1j||'.-|" $afd
IMEMOry aecess bottdenecks, The 11’.uZ|E|J|uI:|I||r||::|
imensity. £ ol a D0O-loop is defined a2 the number

PARKBENCH REFPORT 117

of floating-point operations performed per mem-
ory reference w an element of a vector vanohble
[27]. The asymptotic perfformance, r., of a com-
puter is observed 1o increase s the computational
intensity increases, because as this becomes
larger, the effects of memory access delays be-
come negligible compared wo the time spent on
arithmetic. This effect is characierised by the two
parameters (Fz, fj), where Feis the peak hardware
performance of the arithmede pipeline, and ff is
the computational intensity required 1o achieve
half this rate. That is to say the asymptotic perfor-
mance is given by:

Fu
{1+ A

If memory aceess and arthmetic are not over-
lapped, then f; can be shown o be the ratio of
arithmetic speed (in Milop/s) 1o memory aceess
speed (in Mw/s) [27]. The parameter §, like ny,
measures an unwanted overhaad and should be
as small as possible. In order to vary [and allow
the peak performance w be approached, we
choose a kemel loop that can be computed with
maximum efficiency on any hardware, This is the
evaluation of a polynomial by Horner's rule, in
which case the computational intensity is the or-
der of the polynomial, and both the muliply and
add pipelines can be used in parallel. To measure
Sy the order of the polynomial is increased from
one 1o ten, and the measured performance for
long vectors is fitted 10 Eqn. (3.3),

The POLY1 benchmark repeats the polynomial
evaluation for each order typically 1000 times for
vector lengths up to 10,000, which would neor-
mally fit into the cache of a cache-bosed proces-
sor, Except for the first evaluation, the data will
therelore be found in the cache. POLY 1 is there-
fore an in-coche 1est of the memory botleneck
between the arthmetic registers of the processor
and itz cache.

FOLY2, on the other hand, Mushes the cache
prior to each dilferent order and then performs
only one polvnomial evaluation, for vector lengths
from 10,000 up o 100,000, which would nor-
mally exceed the cache size. Data will have 1o be
brought from off-chip memory, and POLYZ2 is an
ouel-af-cache test of the memory botleneck
between off-chip memory and the arithretic
registers.

The POLY1 benchmark exisis as MOD1G of
the EuroBen benchmarks (28], POLY2 exists as
part of the Hockney henchmarks.

(3.3)

Fu

118 PARKBESCH COMMITTEE

3.3 Multi-Processor Benchmarks
The PARKBENCH suite of benchmark programs

provides low-level benchmarks to charncterize
the basic communication properties of a parallel
computer by measuring the parameters [rz,) Tor
communication {COMMS1, COMMSE2, COMMS3).
The ratio of arithmetic speed to communication
speed [the hardware + compiler parameter fi for
communication] is measured by the POLY3
benchmark, The ability to syncheonise all the pro-
cessors in a parallel computer in an aceeptable
time, is 8 key requirement of such computers. The
SYMNCH1 benchmark assceses this by measuring
the number of barrier synchronisation statements
that can be executed per second as a function of
the number of processors aking part in the bar-
rer.

3.3.1 Communication Benchmarks:
COMMS 1 and COMMS2

The purpose of the COMMS1, or Pingpong,
benchmark [18, 29] is to measure the basic com-
munication properties of a message-passing
computer. A message of variable length, n. is
sent from a master processor 1o a slave processor.
The slave receives the message into a Fortran data
array, and immediately retums it o the master.
Half the time for this message pingpong 5 re-
corded as the time, ¢, 10 send a message of length,
re. Im the COMMS2 benchmark thers is a meszage
exchange in which two processors simultaneously
send messages to cach other and retuen them. In
this case advantage can be aken of bidirectional
links, and a greater bandwidth can be obtained
than is possible with COMMS1. In both bench-
marks, the time as a function of message length is
fitted by least squares using the parameters [re, i)
[24, 27] o the following linear timing model:

£= [n o+ o) rs [3.4]
when the communication rate is given by

Ma

r= m = repipeela s) [3.3)
: : 1 i«
where pipelz) = T+ 1/ (3.6
anid the stamup tme is
= ayire 13.7)

In the above cquations, ra is the asyvmptotic band-
width of communicatien which is approsched a:
the message length tends o infinity (hence the
subscript), and ry is the message length required
o achieve half this asympeotic rate. Heaee ay is
called the fiedfi-performance message length.

The importance of the parameter fy is that it
provides a vardstick with which to measure mes-
sage-length, and thereby enables one to distin-
guish the two regimes of short and long messages.
For long messages (n =), the denominator in
equation (3.5) s approximately unity and the
communication rate s approximately constant ot
i15 asvimplellc rae, f.

e [3.8)
For short messages (7 < m). the communication

rate iz best expressed in the algebraically equiva-
lent form

it A
S — 3.0
11+ rim)
whers my = 15! = rfm (&0

For short messages, the denominator in Lo
3.9 is approximately unity, so that

r&= man = aliy [I
In sharp contrast w the approximately constant
rate in the long-message limit, the communication
rate in the short message limit is seen o be ap-
proximately propertional w the message length.
The constant of proportionality, g, is known as
the speciic performance, and can be expressed
conveniently in units of kilobyte per second per
bvte (kB/s)/B or ‘k/s’. Unformunately since an 51
prefix, such as k., cannot stand alone withour a
unit svmbol, this unit must be written either as
10%/& or as kHz, where He is a special unit name
for per gecond (s71).

Thus, in general, we may say that re charace-
terises the long-message performance and @y
the short-message performance. The COMMS1
benchmark compurtes all four of the above param-
eters, [fw. fy, to, and 7y}, because each empha-
gisps a different aspect of performance. However
only two of them are independent. In the case that
there are different modes of transmission for mes-
sages shorter or longer than a certain length, the
henchmark can read in this breakpoint and pee-
form & separate least-squares fit for the two re-

gions, An example is the Intel iPSC/B860 which

has a different message prowcol for messages
shorter than and longer than T byie.

Because of the finite (and often large) value of
tn. the above i= a fwo-parameter deseription of
communicarion performance. It is therefore incor-
rect, and sometmes positively misleading. w
quote only one of the parameters (e.g. just re, as is
olten doene) 1o descnbe the E’JE:’f-:’.ll’l:‘l‘ta‘u'l.l.’tl.’“. The
most useful pairs of parameters are (r=, m), (7o,
rey) andd (#y, r2). depending on whether one is con-
cened with long vectors, short vectors or a direct
comparison with hardware times. Note also that,
although ny is defined as the message length re-
quired 1o obrain hall the asymptotic rate re, the
two parameters (=,) are suflicient o caleolare
the communication rate for any message length
via egquation 3.5, or equivalently using m, instead
of r. via 3.9.

The COMMS1 and COMMS2 henchmarks exist
as part of the Genesis benchmarks [30].

3.3.2 Total Saturation Bandwidth:
COMMS3

To complement the above communication bench-
marks, there 5 a need for a benchmark o mea-
sure the total saturation bandwiddh of the com-
plete communication system. and to see how this
scales with the number of processors. A natural
generalisation of the COMMS2 benchmark is
made as follows, and called the COMMES bench-
mark: Each processor of a p-processor syatem
sends a message of length re 1o the other (p = 1)
processors, Each processor then waits 1o receive
the (p — 1) messages directedd at it The timing of
this generalised pergpeng ends when all messages

PARKRESCH EEFORT 119

have been suecessfully received by all processors,
although the process will be repeated many tmes
to obtoin an aceurate measureament, and the over-
all ime will be divided by the number of repeats.
The time for the generalised pingpoing is the time
to send p(p — 1) messages of length n and can be
analysed in the same way as COMMS1 and
COMMEZ into wvalucs of [re.y). The value
obtained for r is the required total samration
bandwidth, and we are interested in how this
scales up as the number of processors p increases
and with it the number of available links in the
SYatem.

COMMSES 15 a new benchmark written specifi-
cally for PARKBENCEH.

3.3.3 Communication Botleneck: POLY3

POLY3 assesses the severity of the communica-
tion bottleneck, It is the same as the POLY1
henchmark except thar the data for the polyno-
mial evaluation is stored on o neighbouring pro-
cesaor. The value of fj obtained therefore mea-
suree the ratio of anthmetic o communication
performance. Equation [3.3) shows that the com-
putational intensity of the caleulation must be sig-
nificanmly greater than fj (say 4 times greater) if
communication is not to be a botleneck, In this
case the computational intensity is the ratio of
arithmetic performed on # processor 1w words
tranaferred toffrom it over communication links,
In the common case that the amount of arithmetic
is proportional to the volume of a region, and the
data communicated is proportional w the surface
of the region, the compurational imtensity is in-
ereased as the size of the region (or granularity of

Table 3.1: Curreni Low-Level benchmarks and the Parnmeicrs
they measure, Mote we abbrevinie perfformance (perl.], arithmetic
(nrith.), communication (comms,), operations {ops.]}.

Benchmark Mensures Parameicrs
SIMGLE-PROCESSOR

TICKN Timer rezsolution tick interval
TICKZ Timer vielue wall-clock check
RIMNF1 Basic Arth, ops. [ra i3]
FOLY1 Cnehe-bottleneck [Fa S]]
POLY2 Memory-bonleneck [P S}
MULTI-FPROCESSOR

COsMET Bazic Message perd. P
COMMEZ Message exch, perf. [Fim 14
CORMSS Saruraton Bandwidih [P, 1]
MOLYS Cormms. Bottleneck P o)
SYNOHT Hormer time and rate barrs s

120 PARKBENCH COMMITTEE

the decomposition) is increased. Then the fj ob-
tained from this benchmark is directly related w
the granularity that is required o make communi-
cation time unimportant.

POLYS is a new benchmark written specilically

for PARKBENCH.

3.3.4 Synchronisation Benchmarks:
SYNCHIT

SYNCH1 measures the time to execute a barrier
synchronisation statement as a funciion of the
number of processors taking part in the barmer.
The practicability of massively parallel computa-

tion with thousands or tens of thousands of [rrov
eessors depends on this barrier tme not increas-
ing too fast with the number of processors. The
results are quoted both as a barrier time, and as
the number of barmer stalements executed per
second [barr/s),

The SYNCH1 benchmark exists as part of Gen-

esis v2.1.1 [20].

3.4 Summary of Benchmarks

Table 3.1 summarises the current low-level
Lenchmarks, and the architectural properties and
parameters that they measure.

Chapter 4

Kernel Benchmarks™

4.1 Introduction and Rationale

The low-level benchmark codes are designed 1o
measure the basic architeciural feares of paral-
lel machines. Full application codes obwiously
measure the pedormance of a parallel svstem on
the full problem and this is wlimarely what the
user wanta. However, in many instances. the full
application codes are complex. contain many
100s of thousands of lines of Forrran., and are not
available in a suitable parallel version. In order 1o
obtain a guide 1o the performance of any given
paralle] sverem on & particular application some-
thing less complex than the full application is use-
ful. A profile of the sequential version of the appli-
cation enables the compurte intensive portions of
the program to be identified. It is these compure-
intensive sections of an application than we wish 1o
model with the inmoduction of parallel kernel
benclhmarks.

The popular kernel benchmarks that hove been
used for tracinonal vector supercomputers, such
as the Livermore Loops [%], the LINPACK
benchmark [12] and the onginal NAS kernels
[31], are clearly inappropriate for the perfor-
mance evaluation of parallel machines. The oun-
ing restrictions of these benchmarks rule oul many
widely uzed parallel extensions. More imponanily,
the computstion and memory requirements of
these programs do not do justice 1o the vastly in-
ceeased capabilities of the new parallel machines,
particularly those thar will be avaluble by the mid
1990°5. For these reasons we believe that a new,
widely accepred set of kernel henchmarks is desir-
able as a step on the way to more sensible and
scientific performance reporting of parallel svs-
1£ms.

The kernel codes are 1:.'El:il::z|.|.|:.' e b i few thies -
sand lines of Fortran and are sufficiemly simple
that the performance of a given parallel machine

® Asaembiled El:l T JELY ||-c':.' [Boerieel -\.|||:-:1'||||r||'i|:|_l.l

on this program may be related 10 the underlying
architectural parameters. It must be ackoowl-
edged, however, that the performance on kernels
alone is insufficient wo assess completely the per-
formance potential of a parallel machine on full
scientific applications. The chief difficuly is that o
certain data structure may be very efficient on a
certain svstem for one of the isolated kermels, and
ver this data structure would he inappropriate if
incorporated into a larger application. For exam-
ple, the performance of a real CFD application on
a parallel system is critcally dependent on data
motion between differant computational kernels.
[n addition, full applications typically have initial-
ization phases, /0 and s0 on, so complete repro-
duction of these features can be of eritical impor-
tanee for a realistic guide 10 performance.

For these reasons the PARKBENCH suite in-
troduces a level of complexity above kemel codes
which is called compact applications. These are
full but perhaps simplified application codes that
contain all the necessary features of the full prob-
lem bur are sufficiently simple to run and analyse,
These are described in Chaprer 5.

4.2 The Kernel Benchmarks

The kermels attempt 1o span a reasonably wide
range of application areas by including the most
frequently encountered computationally intensive
tvpes of problems. We have tentatively grouped
them into lour sections, Some of the benchmark
codes are taken from existing parallel benchmark
auites (NAS [32], Genesis [15], ete). In order 1o
avoid duplication and redundancy. we have ai-
tempted 1o list some of the anributes of the paral-
le] svetem tested by each kernel henchmark.

4.2.1 Malrix Benchmarks

For the past 15 vears or so. there has been a grean
deal of activity in the ares of algorithms and safi-

122 PARKBENCH COMMITTER

ware [or solving linear algebra problems, The lin-
ecar alrebes community has tl:a-l‘::,?. r-:cn:_:nizvr.i ihue
need for help in developing algorthms ino anf-
ware libraries, and several years ago, as a commu-
nity effort, put wgether a de foctor standared for
identilving hasic operations required in linear al-
gebra alporithms and software. The hope was thar
the routines making up thiz standard, known cal-
lectively as the Basic Linear Algebra Subprograms
(BLAS), would be efficiemly implemented on ad-
vanced-architceture compuers by many manu-
facturers, making it possible 1o reap the ponabiliny
benefits of having them efficientdy implemented
on A wide rmnge of machines. This goal has been
largely realized.

The kev insight of this approach o designing
linear algebra algorithms for wlvanced architec-
ture computers is that the frequency with which
data are moved berween dilferent levels of the
memaory hiernchy must he minimized in order 1o
attain high performance. Thus, our main al-
gorithmic approach for exploiting both veetoriza-
tion and parallelism in our implementations is the
use of block-partitioned algorithms, particalarly
in coenjunction with highlyv-tuned kemels for per-
forming matrix-vector and matriz-matrix opera-
tions [the Level 2 and 3 BLAS). In general, the use
of block-panitioned algonthms requires dara 1o
be moved as blocks, rather than as vectors or
sealars, so that although the wial amount of data
mowved ig unchanged, the latency (or starmup cost |
associated with the movement is greatly reduced
becouse fewer messages are necded to move the
data.

A second key idea is that the performance of an
algorithm can be tuned by a user by varving the
parameters that specify the data layout. On
shared memory machines, this is controlled by the
black size, while on disributed memory machines
it is controlled by the block size and the configura-
tion of the logical process mesh.

The wayv in which an algorithm’s data are dis-
tributed over the processors of a parallel computer
has a major impact on the load balance and com-
munication charmcteristics of the parallel algo-
rithm, and henee largely determines s perfor-
mance and scalability. The block scaered (or
block eyelic) decomposition provides a simple, vet
general-purpose, way of distributing a block-par-
ttioned matrix on dismributed memory parallel
computers, In the block scatered decomposition,
descrbed in detail in [33], n matnx is paritioned
inta blocks of size r ¥ 2, and blocks separated by a
fixed siride in the column and row directions are
assigned to the same processor. Il the siride in the

column and row directions s 8 ool O Blocks re-
spectively. then we regquire than £ 50 0 equals the
number of processors. NV,. Thus, it is useful o
imagine the processors arranged as a P %) mesh,
or iemplate. Then the processor ar position | . o)
(0=p<P 0=g=<(inthe iemplate is assigned
the blocks indexed by,

(p +iP g +jQ) 4.1)
where i = 0, ... [(My —p — 1/F],
=0, . (Vs - g = 140,

and My ® Ny, is the size of the maax in blocks,

Blocks are seamered in this way so that good
load balance can be maintained in algorithms,
such as LU factorization [34. 35, in which rows
andfor eolumns of blecks of a marrix beeome
eliminated as the algorithm progresses, However,
for some of the distributed Level 3 BLAS rourines
a seantered decompaosition does not improve load
balance, and mav result in higher concurrent
overhead. The general marrix-matrix muliplica-
tion routine xGEMM is an example of such a rou-
tine for which a pure block (i.e.. nonscarntered) de-
composition is optimal when considering the
routine in isolanoen. However, xGEMM muay be
uzed in an application for which, overall, a scat-
tered decomposition s best

The underlying concepr of the implementations
we have chosen for dense matrix computatons is
the use of block-partitdoned algorithms o mini-
mize data movement hetween different levels in
hierarchical memory. The ideas discussed here for
dense linear algebra computations are applicalble
to any computer with a hierarchical memary that
(1) imposes a sufficiently large starmup cost on the
meovement of data berween different levels in the
hierarchy, and for which (2] the cost of a context
switch is too great to make fine grain size
multithreading worthwhile. These ideas have been
exploited by the software pockages LAPACK [17]
and SeaLapack [36]. The PARKBEMNCH suite in-

cludes Ave matrix bernels.

1. Dense matrix multiply. Communication in-
volves broadeast of dma along rows of
mesh, and periodic shift along column di-
rection [or vice versa),

2. Transpose. Matix ranspose is an impor-
tant benchmark because it exercises the
communications of a computer heavily on a
realistic problem where pairs of processors
communicae with each other simulto-
neously. It is a useful test of the wial com-
munications capacity of the nerwork.

3. Dense LU fsctonzacnon wath partal pover-
ing. Searching for a pivor is basically a re-
duction operstion within one column of the
processor mesh. Exchange of pivor rows is a
point-to-point commuomeation, Lpdae
phasze requires data 1w be broadeast along
rows and columns of the processor mesh,

4. QR Decomposition. [n this benchmark par-

allelization is achieved by distdbaion of

rows on a logical grid of processors using
bal ik i|11r1r|.|-e:_|'.'i|'|g.

Mamix tridiagonalization, for eigenvalue

computations of symmetric matrices.

4}

There have been many implementations of ma-
trix multiplication algorithms on distributed mem-
orv parallel computers [37, 38, 39]. Many of them
are limited in their uze sinee they are implemented
with & pure hlock (non-seanered) distribution. or
specific (not general-purpose] data distribuation,
and/or on square processor configurations with a
gpecific number of processors (column and/for
row numbers of processors are powers of 2). The
software contained in this benchmark climinates
all of these constraings.

Our marrix multiplication algorithm is & block
geattered vardant of tha of Fox, Hev, and Ono
'37]. that deals with arbitrary rectangular proces-
sor temploles.

Suppose the martrix A has Mj, block rows and Ly,
block columns, and the mainx B has Ly block
rows and N block columns. Block (f, J) of C i=
then given by

L~
CliL.V= & ALK BULS (4.2)
K=i}

where F =0, 1, My — 1. F=0,1,._, My — 1.
In Equation 4.2 the order of summation is arbi-
trary.

Fox et al. initally considered only the case of
SCJLACE IALrIees in which each PrOCessor coniaing
a single row or a single column of blocks. Thar is.
the blocks that stam the summation lie along the
diagonal. The summation is stared at & different
point for each block row of C so that in the phase
of the parallel algorithm corresponding 1o summa-
tion index K, A, K and 8K, 7] can be muluplied
in the processor 1o which CI. f) is assigned.

This requires ench processor containing a block
of B to be multiplied in step £ w broadeast thar
block along the column of the processor templane
at the start of the step. Also A must be rolled lefi-
wards o the end of the step so thet each column =

PARKBENCH REFORT 123

DOK=0,L,=1
[Columneast one block of B (B MODJF + K,
Mol =00 Ly} along esch column seross
templane]
PARDOD F =0, My, — 1
KPo= MODIK + 1, Ly)
PARDO J = O, N, — 1
Clf, J) = ClL J) + Alf, KP) - BIKR, §)
END PARDO
EXD PARDO
[Foll A leftwards]
END D0

FIGURE 4.1 A diztributed block scorered mancrix
multplication alporithm. The PARDO : indicate over
which indices the data are decomposed. All indices re-
fer o blocks of clements, Communication phases are
udicated i square brackets,

overwrilten by the one 1o the rght, with the first
column wrapping round to overwrite the lost
column. the psendocode for this algorithm is
shown in Figure 4.1. Another variant of this alga-
rithm involves hroadeasting bloeks of A over rows,
and rolling B upwards.

In Figure 4.1 a columacast is a communication
phase in which one data item {typically a block, or
set of blocks) iz waken from each block solumea of
the matrix and is broadeast wo all the other proces-
sors i the same columnn of the [EEESSOE TEm-
plate. A rowcast is similar, but broadcasts a data
item for each block row of the matrix 10 all proces-
sors in the same row of the template.

The kernels for LU, QR and the reduction of a
symmetric marrix to tridiagonal form in prepara-
tion for eigenvalue computations all use block-
partitioned algorithms. They rely on the BLAS for
mast of the computstional performanee and the
BLACS for communication.

4.2.2 Fourier Transforms

The computation of the fast Fourier wransform
(FFT) is the cornerstone of many supercomputer
applications. These include not only the predicta-
ble digital signal processing, speech recognition,
image processing, and petroleum seismic analysis,
but also other less obvious applications, such as in
computational fluid dvnamics. medical technaol-
oy, multiple precision anthmetic and computa-
tional number theory. Computations worthy of &
parallel computer generally fall into four catego-
res: (11 one or o few ve ry |-|'J:|:|g 1-DFFTs: (2] MANY
small or moderate-sized 1-I) FFTz: (3) one or o

124 PARKBENCH COMMITTEL

few large 2-D FFTs: or (4) one or a few large 3-1)
FET: The PARKBENCH suite includes oo FFT
test kernels. one for a large 1-D FFT. and one for

a larme 3-D FFT.

1. 1-D FFT. In this kernel. owo sequences of
integers ay; and y; are penerated, with length
= 2% and values in the range 0 = x,. ¥ <
M. The standard value of M is 1024, These
sequences are generated using the same
uniform pseudo-rondom number generator
as is used in the 3-0 FFT kernel and the
embarrassingly parallel kermel, Then the
linear convolution of these two sequences is
computed using o complex-number FFT.
i.e. by padding r and ¥ with zeroes w length
2n, then performing a forward FFT on x
and y. muliplying the rwo resuliing se-
gquences of complex numbers, and fioally
performing an inverse FET on the result.
The result sequence should have exclusively
integer values, which permits a straightfor-
ward validity check.

Mo restriction is placed on thé FFT tech-
nique used o perform this convoluton. ex-
cepl that it be bosed on o complex-number
FI'T rather than. for example. a number-
theorete FET, It is expected, however, thae
efficient implementations will emplov tech-
nigques, such as Edson’s algorithm and real-
wo-complex FFTs, thar ke advanmage of
the purely real nature of the input and out-
put data 1o reduce the computational eost.
The usage of vendor-supplied library FFT
routines is permitted. The seral implemen-
tation program includes a reasonably effi-
cient 1-I0 FET auitable for compuration on
a workstation or single processor vector sys-
tem.

2, 3-DFFT. The PARKBENCH 3-D FFT ker-
nel is the 3-fF FFT POE benchmark from
the NAS Parallel Benchmark suite [32]. It
performs the essence of many spectral
codes and 15 o ngorous et of long-distance
communication performance. A briel de-
SCTIPHI ol this benehmark is as follows,

Consider the pamial differential equation

(FDE]

dulx, 8

= aVulx, t)
a avVeulr,]

where 05 o position n three-dimenzionsl
space. When a Fourier transform is applied
o epmeh side, this equation becomes

;'\
— = —doarzelz, £

where oz, ¢} is the Fourer transform of
iz, t). Thiz has the zolution

Ty P
darl "fl"‘__.' D.:

uz, 1) =e¢
In this benchmark a 3-I} complex arrav L, which
represents o 05 first Alled odih psewdo-rondom
data generated by the same scheme as used in the
embuarrassingly poralle]l kernel (see subsection
4.2.4]. Then we compute F, the result of a forward
S3-DFFT of U, For each of several iterations, F is
multiplicd by the appropriate exponential factors
and then an inverse 3-00 FFT produces the result,
Any complex FFT algorithm may be used for
the computation of the 3-D FFTs mentioned
above, and vendor-supplied library routines may
be emploved.

4.2.3 PDE Kernels

[n these PDE kernels eommunication is basically
exchange with neighbors and the convergence
check is a reduction. A varery of methods and
update stencils may be used, The following o
PDE solvers have been included in the paralicl
benchmark suite:

1. Suceessive Dver-Reloxaoon (20R]) kernel.
The PARKBEXCH 20R kernel is hazed on
the PROET bBenchmaork from the GENESIS
distributed memory benchmark suie [207.
Thiz benchmark solves the Poisson e
tion on & 3-dimensional grid by parallel red-
black relaxaton with Chebvshey accelers-
tion. In this method the mesh poinis are
divided o tao groups according o
whether the sum of indices is odd ["red”
even Cblack™), The method E:Imr'r't'tls in]luH'
irerations. -:iurm-" each of which onlv half
the pommiz are :ll.l;uﬂw.l ._ulh:nmuwlj.' the
‘red’ and ‘black’ set of points). Thus all the
red” points con be adjusted in parollel dur-
ing one half iteration. and similarly all the
Talack” povinizs in parallel during the nexi
half iteration. The problem is discredzed
using the ordinary 7-point diflference stencil
in a regular cubic grid. The value of the re-

laxation factor (w) changes at each half iter-
ation according to:

w =1
w3 = 1/(1 — §p?)
mnwz

1/(1 = }p%et),
t=4,1,8. . .,9 (45

L

where p ia the convergence factor of the cor-
responding Jacobi iteration and the super-
seript § designates the ftermion number, For
large numbers of iteratons, w tends o the
constant relaxation factor that is wsed
throughout the traditdonal SOR procedure.
The asymptotc convergence factor is there-
fore the same for both algonthms,

In arder to map the problem ontoe o parallel
computer the 3-dimensional grid is divided
into cuboidal subgerids, Each subgrid is as-
signed o a processor in such a way thar
neighbouring subgrids are mapped on
neighbouring processors. The grid variables
m each subpnd are exclusively compured
by its associated processor. At the inner
boundaries of the subgrid the processors
need values ar points which are conrained in
the neighbouring subgrid, Rather than
transferring these values exacty at the time
when I]'I-I"'.'_I.' are neaded—ihis would JHrENEEE
vector processing within the processor—
[|'|.F!}' are stored in se-called overlap areas,
Afrer each iteration the values in the overlap
areas are r*..'-:l‘.l'l.l'u:if_:e-r| and updated via the
messare-passng communication mecha-
mism. The introduciion ol 1|1.'¢;'|'|.'|i| ArEns
needs strict synehronization following cach
iteration atep in order 10 enaure the correct
execution of the benchmark.

Since the Chebyshev S0OR method requires
ne extra arthmetic over the mditional S0OR
algorithm ver has more favourable initial er-
ror decay properies, s one of the mos)
efficient PDE kemels. Mowe, however, thar
in this benchmark only nearest neighbour
interactions are required and the number of
Hoating point operations per geid poinn is
very small when compared 1o more complex

PDEs.

."n!ul:jgrid kernel. The PARKBENCH muli-
rrid kernel is the mulugnd benchmark from

PARKBEMCH HEPORT 125

the NAS Parallel Benchmarks [32]. It re-
guires highly structured long distance com-
munication and tests both short and long
distance data exchange.

This kemel performs a V-cyele multgrid
algorithm to abiain an approximate solution
u to the discrete Poisson problem

on a 256 X 256 x 256 grid with periodic
boundary eonditions.

The caleulstion starts out with the array
v = 0, except at a few randomly placed
points where ¢ = £1, The iterative solution
begins with u = 0. Each iteration eonsists of
the following wo steps, where & = & =
loge256:

r=p— Au lepafuate residual)
w=u+ MWr (apply correction)

Here M* denoes a F-cyele multigrid operator,
and A denotes a wrilinear finite element discretiza-
tion of the Laplacian V2,

4.2.9 Other

1. Embarrassingly Parallel. The PARK-
BENCH embarrassingly paraliel kemel is
taken from the NAS Parallel Benchmarks
[32]. It provides an estimate of the upper
achievable limits for floating point perfor-
mance, i.c. the performance without signili-
CANL INErPrOCessor COmmunicatien.

In this benchmark, we first generate the
psendo-random floating point values r; in
the interval (0, 1) for 1 = { = 2r using the
linear congruential generator

£ = az; (mod 2%
el = 27105,
Then for 1 == nweseta; = 2ry = 1 and
¥ = 2ry — 1. Thus x; and y; are uniformly
distributed on the interval (=1, 1), Next, for
each pair [z, ¥), we test w0 see if § = If +

¥i = 1. If not, this pair is rejected. IF this

inequality holds, then we set &y = x
Vi=2 log)/ and ¥ = V(-2 log L)/
Then X; and ¥, are independent Caussian
devistes with mean zero and varance one.

126

PARKBENCH COMMITTEE

The benchmark counts the number of these
Goussinn deviawes thar lie in various square
annuli around the origin.

Conjugate gradient kermel, The PARK-
BENCH conjugare gradient benchmark
i5 token feom the NAS Parallel Benchoacks
[32]. In this kernel. the inverse power
method is used w find an estimate of the
largest eigenvalue of a symmetric positive
definite sparse matrix with 2 random pat-
tern of nonzeros. The code i= tvpical of un-
structured geid computaiions in that ir 1250
irregular long distance communication, em-
ploving unsiruciured matrx vecor |'|'||J|Ii|.‘:-|i-
cation. The irregular communication re-
quirerment of this benchmark is evidently a
challenge for all kinds of parallel com-
puters

The code generates che mainx as the
weighted sum of N ouwter produces of ran-
idenry SPMATEe VECLOrs

w
= ¥ aarT,

where N is the number of rows and
columns: the weights w, are a geometric se-
quence with @, = 1 and ratio chosen so thar
ay = 0.1, The vectors r are chosen o have
a few randomly placed nonzeros, each of
which is a sample from the uniform distri-
bution on (0, 1. Furthermore, the & ale-
ment of r; is set to 1/2 w insure that A can-
not he srructerally singular. Finallv, 0.1 is
added to the diagonal of A. This resulis in a

matrix whose condition nuember (the sano ol

its largest eigenvalue to s smallest)

m::gh[y 11,

Large Integer Sort. Although soring has
Eradumnatlv been thought of as of impor-
enee primarily in non-seientific computing,
this operation is increasingly impomant in
advanced scientific applications, The perti-
cfe method fluid simulations. for example.
gorting i the dominant cost,

The PAREBENCH integer sort benchmark
is taken from the NAS Parallel Benchmarks
[32]. The kernel tests both integer compua-
tation speed and communication perfor-
mance. In this benchmark, o vector of inte-
gper data if genersted using the same
psendo-random number generator that is

used o the embarccazzingly parcallel kernel.
Thus data s miually mapped sceording ooa
partcular scheme, The benchmark soris
thiz data by the most elficicnt scheme for a
particular architecture. Vendor-supplied
sort routines may be used o perform the
S0 |||‘:-|-'_.r.|l:i-:u|.

1. Input/Ouwput. We propose a paper and
pencil aivle henchmark—ner ted o any
particular paralle]l platform or application
but just measuring some kev fundamental
I/0 parameters of the system. A standuornd
Fortran-77 version complements the de-
tailed descripuion given in the individual
ReadMe file. The [/ 0 performanee is tesued
by writing and then reading dilferent sized
data sets w and from disk. The read and
write buffer sizes are varied so that esti-
mates of disk [/0 star-up time. bandwidth
and data tronsference tmes maoav be made.

4.3 Benchmark Implementation
The PARBKEENCH kernel benchmuarks are written

as far as possible in gtandard Forrean 77 using
t-hit floating point arithmeric (DOUBLE PRECI -
SION on most systems), unless otherwise stated.
Both PYM/MPI [2. 3] and subset HPF versions
exist for most of the codes in addition e the stan-
dard Forran-77 versions. A dezcripuon of each
benchmark and instructions on how o mn i are
given in individual ReadMe files. They also con-
tain & specification of the three problem sizes
agreed upon for each code: (1) test problem (2]
moderate zize and (3) reand challenge size. A [ier-
mula zhould be given in the ReadMe files o pro-
duce flop counts for the kemel benchmarks along
with precaleulated figures for each standard prob-
lem size. Make-files are suppbed wath each
benchmark to handle compilatdon and linking in a
Unix environment.

4.4 Concluding Remarks

The contents of the PARKBENCH kernel beneh-
mark suite should map reasonably well onto any
parallel library supplied by the vendors. This will
allow comparative performance measurerments
across dilferent platforms using the PARKBENCH
kerncls bur also performance comparisons 1o the
functionally similar and highly-optimized library
routines on every particular parallel system. An-
ather advaniage ‘of the use of kernel benchmarks
is that they should not invalve an unreasonakble
amount of labowur on che part of vendors.,

Chapter 5

Compact Applications™

5.1 Intraduction

While kernel applications. such as those de-
seribed in Chapter 3. provide a fairly straighe-for-
ward way of assessing the performance of parallel
systems they are not representative of scientilic
applications in general since they do not reflect
certain types of system behavior. In particular,
many scientific applications involve data move-
ment berween phases of an application, and may
also require significont amounts of /0. These
types of behavior are difficult 10 gauge using ker-
nel ppplications,

One factor that has hindered the use of full ap-
plication codes for benchmarking parallel com-
puters in the post is that such codes are difficult 1o
parallelize and o port berween tanget architec-
tures. In addition, full application codes that have
been suceessfully parallelized are often proprie-
tary, andfor subject o distribution restricticns.
To minimize the negative impact of these factors
we propose to moke use of compact applications
in our benchmarking effor.

Compact applications are typical of those
found in research environmems [as opposed to
privluction or engineering environments), anid
usually consist of up to a few thousand lines of
source code, Compact applications are distinet
from kernel applications since they are capable of
producing scientifically useful resulis. In many
cases, compact applications are made up of sev-
erpl kemnels, imerspersed with dma movements
and 170 operations berween the kemels,

In this chapter the criteria for selecting compact
applications for the PARKBENCIT suite will be
discussed. In addition, the general research areas
that will be represented in the suite are outlined.

¢ gesombled by David Walker for Compast Applications
sufeoammmiries,

5.2 Criteria for Selection

The three main criteria for inclusion of o parallel
codle in the Compact Applications suite are,

1. The code must be a complete application
andl be capable of producing results of re-
search interest. These two points distin-
wuish a compact application from a kernel.
For cxample, a code that only solves a ron-
domly-generated, dense. linear system by
LU factorization should be considered o
kernel. Even though the code is complete, it
does not produce resulis of research inter-
est. However, if the LU factorization is em-
bedded in an application that uses the
boundary element method o solve, for ex-
ample, a rwo-dimensional elastodynamics
problem, then such an application could le-
gitimately be considered a compact appli-
cation. Compact applications and full pro-
duction codes are distinguished by their
software complexity, which is difficult o
quantify. Software complexity gives an indi-
cation of how hard it is to write, port and
maintain an application, and may be
gauged very roughly by the length of the
source code. However, there is no hard up-
per limit on the length of a code in the Com-
pact Applications suite. It is expected that
the source code [excluding comments and
repeated common blocks) for most compact
applications will be berween 2000 and
10000 lines, but some may he longer.

2. The code must be of high gquality. This
means it must have been extensively tested
and validated, preferably on a wide selec-
tion of different porallel architectures. The
problem size and number of processors
used must not be hard -coded into the appli-
eation, and should be specified at runume

128 PARKBENCH COMMUTTEE

s input to the program. ldeally, the parallel
code should not impose restrictions on the
problem size that are not applicable for
the corresponding .‘\I_'.I,il.lll“r'lliul'li ol Thus,
the parallel code should not require thar the
problem size be exactly diviaible |'|=_.-' ke
number of processors, or that the number of
processors be o power of two. In some cases
this latter requirement may have w be re-
laxed, For example, most parallel Tas
Fourier rransform routines require the num-
ber af processors o e o power ol two. It is
preferable thar the code be wrinten =o thae it
wirks correctly for an arbitrary one-io-one
mapping berween the logical process wpal-
ogy of the application and the hardware to-
pology of the parallel computer. This is de-
sirnble so thot the assignment of a locaton
in the logical process wpology to a physical
provessor can be easily ."Il.'JjIJ.-'lll‘!d when pori-
ing the application berween platforms. For
example a Gray code assignment mayv be
best for o hypercube, and o noiuesl ordenng
for a mesh architecture.

3. The application must be well documented.
The source code itselfl should contain an
adegquate number of comments, and cach
module should begin with a comment sec-
tion that describes what the routine does,
and the arguments passed o ic In additon.
there should be o Users” Gride 1o the appli-
cation that describes the inpur and ourpor.
the parameterization of the problem size
and processor lavour. and derails of whar
the application does. The Users’ Guide
should also contain a bibliography of re-
lated papers.

In addition. tw the three criteria diseussed
abve, there are @ number of other desirable lea-
tures thar a PARKBENCH Compact Application
should bave, These are diseussed in the I:'-:'.-|.|.|rwi|::|g
subsections.

5.2.1 Self Checking Applications

The :!J'rpl.il‘::'l.[:i-.’:-rl should e :-,4_=|f-r_'l:|{=|:ki||__g. That 1=,
at the end of the compuration the application
showeld]'Iﬂ'l.‘tll:'.lmfl a check o vahidote the resalis of
the run. The application may also ourpur a sum-

mary of performance resuliz for the run, such as
the Mflop rate. and other pentinent information.

5.2.2 Programming Languages

The code should be written in Fortran 77, Forran
90, High Performance Fortran, or C. Data should
be passed herween processors by explicit message
passing. PARKBENCH doe: not specify which
message passing svitem should be wsed, but one
that is available on & number of paralle]l platforme:
is E’u'eFF_.r.'_ll_ﬂe.. Eventually i s |-..~:|_:-F-.|:[-.°H|. that MPI
will become the message passing svstem of choice,
bt in the meantime poriable svarems auch as
PVM, PICL. Express. PARMACS. and P+ are ac-
ceprable alternatives, The codes in the ':.a.l:'.ll:ltE'I.:'I.l'l
Applications suite should not contain any assem-
bly coded portions, although assembly code may
b used o opumized versions of the code,

5.3 Proposed Compact Application
Benchmarks

At the time of writing (Qceober 1993) the
PARKBEMNCH preanieation % in the process of so-
liciting submission of applications for inclusion in
the Compoet Applications suite. Thus, the appli-
cations that comprize the suite cannot ver be listed
here, However, in this secton the man applico-
tion arcas thar are expected 10 be in the suite are
outlined. The intention iz that these areas should
be representative of the fields in whiclr parallel
computers are aciuslly wsed. The codes showld
exercise a number of different algorithms. and
possess dilferent communication ancd 150 charae-
teristics. Initally the Compact Applications suite
will consist of oo more than ten codez, This re-
striction is imposed so that the resources needed
o manage and distribute the suite can be as-
segsed. The suite may be enlarged in the fuire if
this seems manageable. Below is a list of the appli-
cation areas that are cxpected o be represenced in
the suite. This is not meant o he an exclusive s
submmiszions from other applicotion areas will be
considered for inclusion in the suie.

* Climate and meteorolosienl modeling
* Computational fluid dynamies (CFI)
* Finance, e.p., portfolio optimization
* Molecular dvnamics

* Plasma phvaics

* Duanium chemisory

* Cuanmm chromodynamics (1)

* Heservoir miodeling

5.4 Submitting to the Compact
Application Suite

The procedure for submitting codes w0 the
PARKBENCH Compact Applications suite is as
Frlloswes:

[

Complete the submission form in Appendix
A, and email it to David Walker ar
-.vnll-:r_'r':'gitm-:r.rpj:u:u.n-rr:i.g:_n-_ The dawm on
this form will be reviewed b:.' the
FPARKBEMCEH i.-:rrl'r'lprlr_zi .-‘..pplicmi-rm.-x Hukb-
committee, and the subminer will be not-
fied i the application is to be considered
further for inclusion in the PARKBENCH
S1LE,

I’ PARKBENCH Compact Applications
Subcommittes decides o consider the ap-
plication funther the submiter will be asked
to submit the source code and input and
output files, wgether with any documenta-
tion and papers about the application,
Source code and input and ourpur files
should be submined by email. or fip. wnless
the files are very large, in which case a tar

PARKBENCH REPORT 129

file on & 1/4 inch cassetue wpe. Wherever
possible, email submission is preferred for
all documents in man page, Latex and/or
Postseript format, These files, documents
and papers together constitute the applica-
tion package. The applicaton package
should be sent to the following address, and
the subcommitees will then moke a Anal de-
cision on whether to include the application

in the PARKBENCH suite.

David W. Walker i

Oak Ridge National Laboratary
Bldg. 6012/M5-6367

P. 0. Box 2008

Cak Ridge., TN 37831-6367

(615) 574-7401/0680 (phone/fax)
walker@msr.epm_orml, gov

3. If the application is approved for inclusion

it the PARKBENCI suite, an auvthorized
person from the submitting organizetion will
be asked to complete and sign a form giving
PARKBENCH authority wo distribute, and
maodify (if necessary), the application pack-
age.

Chapter 6

HPF Compiler Benchmarks®

6.1 Objectives

For maost users, the perfformance of codes gener-
ated by a compiler i what acrually marters, This
can be inferred from running HPF version of
PARKBENCH codes described in chapters 4 and
5. For HPF compiler developers and implementa-
tors, however, an additional benchmark suite
may he very useful: the benchmark suite that can
evaluate specific HPF compilation phases and the
compiler runtime support. For that purpose. the
relevant metric i the ratio of execution times of
compiler generated o hand coded programs as a
function of the problem size and number of pro-
ceszors engaged in the computation.

The compilation process can be logically di-
vided into several phases, and each of them influ-
ence the efficiency of the resuliing code. The ini-
tinl stage is parsing of a source code which resulis
in an intermnal representation of the code. It is fol-
lowed by compiler ransformations, like daa dis-
tribution. loop translormations, computation
distribution, communicatgon delection, se-
quentialization, insertion of calls o a runtime
support, and others. This we will call a HPF-spe-
cific phase of compilation. The compilation is
concluded by code generation phase. For portable
c.:rmpﬂcm. that cutput Fortean 77 + messoge pass-
ing code, the node compilation is factorized out
and the efficiency of the node compiler can be
evaluated separately.

This benchmark suite addresses the HPF-spe-
cific phase only. Thus, it is well suited for perfor-
mance evaluation of both translators (THPF to For-
tronn 77 + message passing) and genuine HFPF
compilers, The parsing phase is an element of the
conventional compiler technology and it is not of
interest in this context. The code generation phase

* hgsembled by Tom Haupe lor Compiler Benchmarks sub-
carmmitiee,

involves optimization techniques developed for
sequential compilers (in particular, Forran 90
compilers) as well as micro-grain parallelism or
vectorization. The object codes for specific plat-
forms may be strongly architecture dependent
[e.g., may be very differemt for processors with
vector capabilities than for those without it). Eval-
uation of performance of these aspects requires
different techniques than these proposed here.

It is worth noting, that the HPF-phase strongly
alfects the possibility of eptimization of the node
coddies, For example. insertions of calls 1o the com-
munication library may prohibit the node com-
piler from performing manv standard optimiza-
tions without expensive interprocedural analvsis,
Therefore, its capability o exploit opportunities
for optimizations at HPF level and 1o generate the
output code in such a way that it can be further
optimized by the node compiler is an important
element of evaluaton of HPF compilers. Never-
theless, evaluation of the HPF-phase separmely is
very valuahle since the hand coded programs face
the same problems. We will address these issues
in future releases of the benchmark suite.

Compilers for massively parallel and distrib-
uted svstems are sill the object of research and
laboratory testing rather than commercial prod-
ucts. The parallel compiler technology as well as
methods of evaluating it are not marure yet. Nev-

" ertheless, the advent of the HPF standard gives

opporunity to develop sysiematic benchmarking
pechnigues,

The current definition of HPF [3] cannot be
recognized as an ulimate solution for parallel
computing. Its limitations are well known, and
many researchers are working on extensions (o
HPF ro address a broader class of real life, com-
mercinl and sciemtific applicadons, We expect
new language features to be added o the HPF
definition in luure versions of HPF, and we will
extend the benchmark suite accordingly. On the

other hand. new parallel languages based on lan-
guages other than Fortran, notably C++, are be-
coming more and more popular, Since the paral-
lelism is inherent in a problem and not s
representation, we anticipate many commonali-
ties in the parallel languages and corresponding
compiler technologies, notably sharng the run-
time support. Therefore. we decided o address
thiz Benchmark sune o these aspecis ol the eom-
pilation process that are inherent o parallel pro-
cesang in general. rather than esing svotactc

details of HPF.

6.2 Low-Level HPF Compiler
Benchmarks

6.2, 1T Overview

The benchmark suite comprises several simple.
svnthetic applications which test several aspecis
of HPF compilation. The current version of the
suite addresses the basic featres of HPF, and i is
designed to measure performance of early imple-
mentations of the compiler. They concentrate on
testing parallel implementadon of explicitly paral-
lel starements. i.e., array assignments. FORALL
statemnents, INDEPENDENT DO loops. and in-
trinsic funetions with different mapping directives.
In addition, the low-level compiler benchmarks
address problem of passing distributed arravs as
arguments to subprogrames.

The |:':U'|g||ﬁgvP leatures not included in the HPF
subset are not addressed in this release of the
suite. The next releases will contain maore kernels
that will address all features of HPF, and also they
will he sensitive to advanced compiler transforma-
tions,

The codes included in this suite are either
adopted from existing benchmark suites, NAS
suite [31], Livermore Loops [9], and the Purdue
Set [40], or are developed at Syracuse University,

$.2.2 FORALL Statemment—Kernel FL

FORALL statement provides a convenient syniax
for simultaneous assignments o large groups of
array elements. Such assignmenis lie o the hean
of the data parallel compurations thar HPF is de-
aign-:d I EXpresa. The ides behind iniresclueng
FORALL in HPF 32 to generalize Fortran 90 array
assignments to make expressing parallelism eas-
ier. Kemel FL provides several examples of
FORALL statements that are difhicel or incon-
venient o wote using Fortran 90 syniax,

FARKBENCH REPORT 131

4.2.3 Explicit Template—Kernel TL

Parallel implementation of the array assignments,
including FORALL statements, is a central issue
far an eardy HPF compiler. Given a data distribu-
tion. the compiler distributes computation over
available processors. An efficient compiler
achicves an optimal load balance with minimum
INIEFPrOCESSOr COMmunication.

Sometimes, the programmers may help the
compiler 1o minimize inerprocessor communica-
tion by suitable dawn mapping, in particular by
defining a relative alignment of different data ob-
jects. This may be achieved by aligning the data
ohjects with an explicitly declared remplate. Ker-
nel TL provides an example of chis kind,

&.2.4 Communication Detection in Array
Assignments—Kernels AA, 5H, 5T,
and IR

Onece the data and fteration space is dismributed.
the next step that strongly influences efficiency of
the resulting eodes (s communication detection
and code generation to execute data movement,
In general, the off-processor data elements must
be gathered before execution of an arroy assign-
rment, and the resulis are 1w be scanered o desti-
nation processors after the assignment is com-
pleted. In other words, some of the array
AsEiTNMEeNts May require a preprocessing phase to
determine which off-processor data elements are
needed and execute the gather operation. Simi-
lary, they mav require posiprocessing (scarter).
Many different techniques mav be used o opr-
mize these operations. To achieve high efficiency,
it may be very imponant that the compiler is able
i recopnize structured communication patlerns,
like shift, multicast, ctc. Kemnels AA, SH, and ST
introduce differant structured communication
patterns, and kernel [is an example of an array
assignment that requires unstructured commuoni-
cation [because of indirections).

6.2.5 INDEPENDENT Assertion—
Kernel EP

In addition to array assignments and FORALL
statements, parallelism may be expressed by us-
ing INDEPENDENT assertions. The EP kernel
tests the performance of INDEFENDENT DO
construct with NEW vanables.

132 PARKBENCH COMMIUTTEE

&.2.6 Non-Elemental Intrinsic
Functions—Kernel RD

Fortran 90 intringica and HPF functions ofler ver
ancther way to express parallelism. Kernel RD
tests implementaton of several reduction fune-
Hions.

&.2.7 Passing Distributed Arrays as
Subprogram Arguments—Kernels AS, IT,
IM, and EI

The last group of kernels, demonstrate passing
distributed array: as subprogram arguments.
They represent three typical cases:

1. a known mapping of the actual argument is
to be preserved by the dummy argument
(AS).

2. mapping of the dummy argument iz to be
inherited from the actual argument, thus no
remapping is necessary. The mapping is
known at compile time [IT).

3. mapping of the dummy argument is o be
identical 1o that of the actual argument, but

the mapping i pot known al compile me
[13).

6.3 Summary

The synthetic compiler benchmark suite de-
seribed here is an addition 1o the henchmark ker-
nels and applications deseribed in Chapters 4 and
5. It is not meant as o ool 1w evaluare the overall
performance of the compiler generated codes. It
has heen introduced as an aid for compiler dewvel-
opers und implementators o address some se-
lected aspect of the HPF compilation process, In
the current version, the suite does not comprise &
comprehensive sample of HPF codes. Actually, it
addresses only the HPF subset. Hopelully, this
way, we will contribute 10 the establishment of a
systematic compiler benchmarking methodology.
We intend o continue our effort o develop o com-
plete, fully representadve HPF benchmark suite.

CONCLUSIONST

The PARKBENCH benchmark zumiie comprises
codes that vary from low-level benchmarks mea-
suring hasic machine parameters. through impor-
tant application kernels, 1o compact research ap-
plicationa. This hierarchical soructure allows
informaton denved from the simpler codes 10 be
used in explaining the performance characteris-

-

T hssembled by Roger Hockney lor whole commanee

tics of the more complicated codes. Thus the
benchmark suite can be used w evalunte perfor-
mance on a range of levels from simple machine
parameters to full applications where effects due
to non-parallelisable sections of code, and mem-
ory, commurnication or LD bottlenecks may be-
COIE IMporiant.

BIBLIOGRAPHY

[1] PARKBENCH Commimes, **Public international

(8]

(9]

[10]

(1]

I M. Mewall and I

] Quantiies, Unis and Spmbals. London:

benchmarks for porallel computers,™ Compuster
Science Depr., Universite of Tennesses, Knox-
ville, T, Tech. Rep. C5-93-213, MNow, 1993,
[Bedeniffic Programming, vol. 3. pp. 101-146,
1994.]

[2]). Dtrj]Fﬂffﬂ_ A, Geist, B Manchek. and V. Sun-

deram, “Integrated pym framew -::'F]- supports het-
EIOEETLeTE network conmpULing. Campulers in
Phygics, vol. 7, pp. 168=175, 1993,

| Meszame _I-’Jl.t_.r,m!: [ntezface Forum, " Document for

w standard meszage-passing interface,”” Com-
puter Science Dept.. University of Tennesser,
Knoxville, TN, Tech, Rep. C5-93-214. Now,
10,

Meid, Fortrae-90 Erplaied.
Oixford and New York: Oxford Scienee Publica-
trona OLE, 1595,

High Performance Forran Forum, “High perfor-
mance fortran langunge specification.” Scéentific
Programming, vol. 2. pp. 1=170, o3,

R. W. Hockney, A fromework for benchmark
performance analysis,”” Supercompeter, vol.
48(1X-2), pp- 922, 1992,

The
Boval Soviety, 1975,

M. Beery, 1Y, Chen, P Eoss, I Kuek, 5. Lo, YL
Poang, L. Panter, H. Roloff, A. Sameh, E. Cle-
ment, =, Chin, [Schneider, G, Fox, P Messina,
[. Walker, C. Hsiung, J. Schwarzmeier, K. Lue,
£, Orszag, F. Seidl, 0. Johnzon, B, Coondrem, and
1. Martin, " The PERFECT club benchmarks: EI-
fretive performance evaluation of compurers,”’
Il 1. Bupercomputer Appls., val. 3, pp. 5-40,
105G,

F. H. McMahon, “The Livermore Forran Kernels
teest of the nurmerical performinees range” in Per-
formance Evaleation of Supercomputers, [. L.
Martin, Ed., vol. 4, Special Topies i1 Supercom-
puting, G_ Rodrgue, 5. Fembach, & G. Michael.

Eds. Amsterdam: Elsevier Scence B, Y., MNomrh-
Holland, 1988, pp. 143=185.
I. Dengarra, T, Rowan, and B. Wade, ““Software

distribution wsing XNETLID darabase server,”
Computer Science Depe., University of Teanes-
sen, Knozville, TN, Tech, Rep. C3-93-191,
March 1993,

B. H. LaRose, “The development and implemen-

(14

16!

[17] E

1

[19]

[20]

(21

tation of a pedformance database sepver,” Com-
puter Scienee Dept.. University of Tennesses,
Knoxville, TN, Tech. Rep. CE-05- 195, Aug.
1943,

1. J. Dongarra, “Performance of various com-
puters using standard linear equations software in
a Forran Computer Scienee
Dept., University of Tennessee, Knoxville, TN,
Tech, Rep. C5-89-83, March 1990.

environment,”

| D. Bailey, I. Barron, T. Lasinski. and H. Simon

[Eds.). “*The NAS paralle]l henchemarks.™ NASA
Ames Research Center, Moffeon Field, CA. Tech.
Fep., 103863, July 1o,

I. Uniejewski, “SPEC Benchmark Suite: De-
signed for weday's advanced systems. SPEC
Newesletter, val. 1, Fall 149849,

. Addison, J. Allwrighe, N. Binsted. M. Bishop. B.
Carpenter, P Dalloz, D. Gee, V. Getov, AL Hey,
R. Hocknev, M. Lemke.]. Merlin, M, Pinches, C.
Scott, and [Wolton, ' The Genesis disuribured-
memory benchmarks, Part 1: Merthodalogy and
general relapvicy bLn{'hI'DIlI'L with resuliz for the
SUPHEMNLM eampUiLr. T Concwrrency: Praclice
and Experience, vol. 5, pp. 1-22, 1993,

D. Bailey, E. Barseer, 1. Barton, [Browning, B,
Carter, L. Dagum, B, Faweohi, P. Frederickson.
T. Lasinski, B. Schreiber, FL Simon, V. Venkata-
krishnan, and 5. Weeratunga, *The NAS parallel
benchmarks," fne. L. of Supercompeter Applica-
Je'r.lrl.v, vol. 3, pp. B3=T2, 1991,

E. Anderson, 7. Bai, C. Bischof, J. Demmel, J.
r}nng.m-a I. Dy Crozx. A, Greenbaum, 5. Ham-
maring, A. MeKenney, 3. Ostrouchev, and D,
Sarenaen, LAPACK Diers” Guide. Philude |'|-'|:I-I-.1
Fa: S1aM, 1992,

E. W. Hockney, “FPedormance parameters amrd
benchmarking of supercomputers,” Parallel
Computing, vol. 17, pp. 1111=1130, 1991.

A, Friedli, W. Gentzzch, B. Hockney, and A, van
der Sreen, A Furopean supercompuier bench-
mark effort,”” Supercompuater, vol. 33(V1-0}, pp.
14-17, 1989,

ALl G. Hev, *The Genesis distributed-memory
benchmarks,” Paraltel Computing, vol. 17, pp.
12751283, 1991,

V. 5. Getov, A, 1. G, Hey, R. W. Hockney, and
[. ©. Wolton, “The Cenesiz benchmark suste:
Current state and results,” in Proe. of Workshop

[22]

28]

[29]

[30]

[31]

132

7] R. W.

ovt Performanee Eveluation af Parallel Systems—
FPEPS'SE, pp. 182=120, 1993,

R, W. Hockney, “Super-computer architeciurs ™
in fafotech State of the An Conforence: Fuluee
Hwatems, vol, 2, F. Sumner, Ed. Maidenhead,
LU.E.: Infotech, 1977, pp. 277-3205.

| R, W. Hockney and C. K. Jesshopse. Paraliel

Computers: Architeclure, Progromming and Al-
govithmes. Bastol: Adam Hilger, 1081,

| K. W. Hockney, “Charncrerization of parnllel

computers and algorithms,” Competer Phyaics
Commurications, vol. 26, pp. 285-291, 1982,

| R W. Hockney, “Charasterizing computers and

optimizing the FACREJ]| Poisson-solver on parallel
unicompiters,” JEEE Trans, Comp., wol. £G32,
pp. 933-041, 1933,

| K. W. Hocknev, “Paramerrization of computer

performance,” Paralle! Competing, vol. 5, pp.
a7-103, 1987.

Hockney and . K. Jesshope, Paraliel
Competers 20 Architeetire, Progromendeg aod Al-
gorithms, Briztol and Philadelphia: Adam Hilger!
[OF Publishing. 2nd ed., 1988, (Distobuted i
the USA by IOF Publ, Inc., Public Ledger Bldg.,
S 1035, [ndependence Square, Philadelphia,
PA 10106,

Al van der Sween and PP M. de Rijk, “Guide-
lines for use of the FuraBen benchmark.” Eoro-
Ben, The Evwrobien Growp, Uirechr, The Mether-
lnmds, Tech. Rep. TR3, Feb., 1993,

L. W, Hockney, "Svnchronization and communi=
cation overfieads on the LCAP muluple FP5-164
computer svstem,’ Parallel Computing, val. 9,
pp. 270290, 1985,

C. AL Addison, V. 5, Gerow, A, 1, G, Hey, K. W,
Hockney, and L . Wolton, “The Genesiz dis-
mibuted-memory benchmarks,” in Adeances in
Parallel Compeating, vol. 8, Computer Bench-
markz, 1. Dongarrs and W, Genczsch, Eds. Am-
sterdarm: Elsevier Scaence B V., Momh-Helland,
1993, pp. 257=271

0. Balley and]J. Barmon, “The NAS kernel
benchmark program,” NASA Ames Technical
Memorandum, CA, Tech. Hep. #6711, 19485,
[, Bi:ih-:}'._ 1. Bartan., T. Lasinzki. and H. Sirmon
[Edz.], “The MAE parallel benchmarks,”™ MAZA

53]

[34]

[35]

[36]

[38]

[39]

[40]

A1)

[42]

PARKBENCH REPORT 135

Ames Resenrch Coneer, Moffent Field, CA, Tech.
Rep. BMB-91-02, Jan, 1991,

I. Chai, 1. I Dongarra, and D0 W, Walker, “The
design of scalable sofrware libravics for distrib-
wred memory concurrent computers,” in Proe of
Environnent and Tools for Parallel Scientific
Computing Workzhop, 1992,

I. Chad, J. 1. Dongarrs, B, Pozo, and D W,
Walker, “ScalLAPACK: A scalable linear algebra
libbrary for disimbated memeory concoment come-
puters.”” in Prac. of Fourth Svmposivm on the
Frontiers of Massively Parallel Competalion,
19492,

1. 1 Dangarra, B van de Geyn, and 1. Walker,
“A-look-at scalable linewr algebra librodes," in
Proc. of the 1992 Scalable High Performance
Compuling Confererice, 1992, p. 372,

1. Chai, I. Dongorra, B, Pozo, and D, Walker,
“EealAPACK: A scalable linear alpebra librar
for diseributed memory coneurrent computers,™
in Proc, of Fowrth Svmposium on e Frontiers of
Megzively Parallel Compratertion, 1992, p. 120,

7] GG, Fox, 8, W, Ome, and A, L G, Hey, " Matnz

afganthmis on a hypercabe I: Motz multiplica-
tin,"" Parallel Competing, vol. 4, pp. 17=31,
1987,

S, Huss-Lederman. E. M. Jacabson. A, Tsaa, and
o Zhang, “Mamix muldplicaton on the Incel
Touchstone Delia,” Supercompating Research
Center, Tech, Rep., 1993, (In prepararion. |

C. Lin and L. Boyder, “A mainx product algo-
rithm and its comparative performance on hyper-
cubes,” in Proc, of the TR02 Sealable High Per-
Jormanee Competing Corference, 1992, p, 190,
I Bice, ""Problems o rest parallel and vecror lan-
guages,"” Purdue Universice, West Lofayens, TN,
Tech. Rep, CEDTR 516, Oer, 195,

R. W. Hockney and E. A, Carmona, “Compari-
zon of communications on the Inwel (PSCS360
and Touchstone Delia,” Parallel Competing, vol.
18, pp. 10&87=1072, 1993,

D). Bailey, R. Barszez, L. Dagum, and H. Simon,
“MAS parallel benchmark resules,”” MASA Ames
Rezearch Center, Moffert Field, CA, Tech. Rep.
RMNR-93-014, Ocr, 19493,

Appendix A

Compact Applications Submission Form

This appendix gives the form o be completed
when submiting a compaet application for inclu-
sion in the PARKBENCH suite. For an electronic
version of this form =zend email 1o walker@ msr.
epm.oml.gov or oblain a copy from netlib under
phws (see Chapter 1), The completed form should
be emailed to the same address.

Mame of Program

Subsmitter’s Mome
Submitter’s Organization
Subminer’s Address

Submitter’s Phone MNumber
Sulbimiter’s Fax Mumber
Submiter’s Fax Emal

Cognizant Expert(s)
CE's Organization
CE's Address

CE"s Phone Mumber
CE"s Fax Number
CE's Fax Email

Fxtent and timeliness with which CE is prepared
to respond o questions and bug repons Irom

FARKBENCH:

Mujor Application Field
Minor Application Field

Application “pedigree’” origin, history, major

ports and modifications:

May this code be freely distrbuted [if not specify
CEELFICLIONS |

Give length in bytes of integers and loating-point
numbers that should be used in this application:
[ntegers: brvies
Floats: byres

Documentation deseribing the implementation of
the application (at module level, or lower):

Hesearch papers deseribing sequential code and/
or algoritkims:

Research papers describing parallel code and/or
algorithms:

(iher relevant research papers:

Application available in the following languages
{give message passing system used, il applicable.
and machines application mns onj:

Toral number of lines in source code
Mumber of lines excluding comments
Size in hvies of source code

List input files (filename, number of lines, size in
bvtes, and if formatied):

List output files (flename, number of lines, size in
bvies, and il formatred):

Eriel. high-level description of what application
dloes:

Main algorithma used:

PARKBEMCH REFORT 137

Give parameters of the data distribution (if appro-
priste]:

Give purameters that determine the problem size:

Cive memory as function of problem size:

Give number of floating-point operations as func-
tion of problem size:

Cive communicaton overhead as lunetion of
problem size and data disirbutboen:

Skeleton sketch of application:

Brief description of 150 behavior:

Briel description of load balance behavior:

Describe the daa distibwion (if appropriace):

Give three problem sizes, small, medium, and
large for which the benchmark should be run (give
parameters for problem size, sizes of /0 files,
memory required, and number of floating point
Operaions|:

How did vou determine the number of Noating-
peint operations (hardware monitor, count by
hand. ewc.):

Other relevant informarion:

Appendix B

Sample Xnetlib/PDS Screens®

With the Browse [ocility in PDS (see Figure B.1),
the wser brst selects the vendor(s) and hench-
mark(s] of interest, then seleets the large Process
button to querv the performance dawabase. The
PDS client then opens o socket connection to the
server and. using the query language (rdb), re-
motely quenes the dotabase, The format of the
returned result is shown in Figure B.2. Notice thar
the column headings which will vary with cach
benchmark. The returned dara is displaved as an
ASCIH widget with serollbars when needed.

The Search option in PDS is illustrated in Fig-
ures B.3 and B.4. This feature permits user-speci-
fied keyvwaord searches over the entire performance
database. Scarch utilizes litcral case-insensitve
matching along with a moderate amount of alias-
ing. Multiple kevwords are permitted, and a Baool-
A ﬂ:—'l.g_ ia pmrider_l for mmore complicated

* Assembled by Jnck Dongarra for the Methedology sub-
COMEn e,

searches. Notice the selection of the Boolean And
option in Figure B.3. Using Search. the user has
the OpLion of entering vendor names, machine ali-
ases, benchmark names. or specific swrings. or
producing a more complicated Boolean kevword
search, The benchmarks retumed fram the Bool-
ean And search

rios 350 linpack Perfect

are shown in Figure B.4. The alias terms rios 550
are associated with the IBM B5/6000 Model 550
series of workstations. The specification of fin-
PI‘.I:Ek andl .l""ﬁ.'_'ll':h:‘:." wrill limmng the search o the LIMNs-
PACK and Perfect benchmarks onlv. Since any
retrieved dara will be displaved 1o the screen (by
default], the Save option allows the user to store
any retrieval I]trf{‘:nmtnﬂe data in an ASCIH hle.

PARKBEMCH REPORT 139

- rerasy [wises Server £
Gz Uy [0 Tedes] [LBrasy] (elassificansmm] [orech] :E ey p— Iip-_L‘.J
[E Tinaly Sruaage | [EoaFermmes| [Ferfarmems| [Swoe in tre wirso] [Coamsnus beta)
[rine] [Gic]
pﬂ“b‘i

llnh. l:‘rhrlg ||_ Irees || Search |EI| s € """"“"“'“E!ﬂ

L] Fleur dnlecl vraeriol aod Berchaark|o) aed rwn 1P\.-g|:|-p|.t 6wy,

Fracece she furrend VIE0d msd sellurn rraulis I

FIGURE B.1 The hrowse faciliny provided by PDS.

:l:-n-) |9 Irdea | | Ltarery| IW_‘G_P_I-?M_‘!EE:]M.:I.] EI [P |k|5'|,p|
(@ '“--r'llr'ml [Cealeremn | | Favfarsmes | | Shae In bee wiadke| |cmvicateal 'r-|.|:i|-,|| ﬂl
[reiet] [oait]

B i1k 3.8

[arerinn || ot | Srarch |[Saer] [Fapers & veces] EiETiearmin]

el 15 ren VAOFS. Brchact maten: = ; Plopa pealic Goasts b beai
L}y
Alfrrd &, Aburte sbarmabrear. wf |
“ﬂ1¢“\hﬂﬁiﬂﬂﬂlhﬁhw

T CHATRY [AE_NFLEML S
WEAE L, 1E LR 2
WAL M, WSO LD

|
S H
gﬁﬁﬂﬂl
EEESEE

EEEEEEREE
oy
258

[E-]
| | eEeE
| |oim o
| e
Dt B Cood
(L R
[EN BSATD00
[Ea Einien
|IEN ESTIO0
| Tin ELdoen
]
TEA ERRLEd
ELmn

Fr g e gy
e .

B
L
4

ERECEEREIRERRRRDES

P - 1 1

AEE:
s
E'HE

i%
b3

&
L

LS HERERAES S,
ERE

4
RERAR
i

EEEEEEER

A SHE e e

I 3
E2g
BEowpar. .

FIGURE B.2 Sample do returned by the PDE Browse facilicy,

140 PARKBENCH COMMITTEE

||I ||:1lllIII|.1I!'\-I1|. I l:h|_| SL TP I“ll'l iy
||::.-|r|mu [Farfarmesn [She in wee viskes| [Ccaresond erig] [Seio]

et | [t
it

l.u-rl‘ll 1.4

| '"’"'ﬂ || || neardh || hplrl W eien| IIIII nﬁr
Ecelpan seerch Typed Em f.lunnd "BE: -_'1|_I-lr_d|l|.|:|_g¢":l.-llr amarch fieid |
weirih STeied; [rins 550 Viepack Recferr | ErESE FEDam,..

Ferfarmres datsbaar search

Fa wearch E& Eha pariprmesid delsbase plaate HLer 3

bey ar daeing af keswarde wred Boalesn sperch Bvor. Sk SPEOAMD
ka egin Ehe wearch,

clear displap = ¢ledrs thé campat windew wed preasmes (L fer @
e nEprch sl

chear aqwrch Flald - resels the Seargh 30vlog o mill.

Searth indaraarion %
traly ® Erral srecck genr @10 Chd dica. iy wrbeceing

FECaMA meUicE anre 0L records malching SLL |llrr.¢ |l- sklering
‘gr” Uk sifera mswlns aik ARY rRoands Babching WY key.

Flease &L The zearch Faciliz :Il-n-l. wEry to FLLLD wp dpatvy fiwlne
D8 T “.Tr; Ea thw abier dceeea Wl Hee arw Shes.
Te clhear chie erarch rowal by aeliect ‘clear Ssalan”

.

FIGURE B.3 Specilying a kevword search using the PDS Search Tacilivy.

Pl i namelh :I:l_.‘:.l::_!_ SRrEr —
[wyi| [E vt [Librery] [Ehessi Figasions] [Senrch] [Ba] [mmnies @
L:.rlu— v Sanange] [Coaleren: cns | [Perfaram i | [Shae In e Wirde| [2oen '|Hll"'][]
[Frine] [Guii]

dwtlik 1.8

Fard: rdaring || Breeer || tea ||_| Fapars & bones | B0uTingeigiey |
-—m-m - mn—w—mrm‘l

\-r:h Jfriad! Ir'|n 59 !1r-4-el Feifeir PEERE FRGAMm, .

5 SpnTAOE-SRILIGE w2l

Faunls [rom Perlpll Bendbaari o b mpefie ik Bagears
pei,
By el
acher|dicard, ul ki
enud vl B nedn
Te review |||.Ilur|p|'\.-|| ik Faparn -

= resch Perfarmads St
Ersaliv froe Linpik Eostisrark “ r i et -
- Lty by ol Irr-d-l.'h"l []
|5:l|l|.: e - S50 I-htlh:!l N =

FIGURE B.4 Hesuls of n keyword search uzsing the PD3S Search facility.

Appendix C

Selected Results®

C.1 Low-Level Benchmarks

C.1.7 Arithmetic Benchmark Results

As an indication of the tvpe of resulis given by the
low-level arithmetic benchmarks, Table C.1 gives
measurements made on a number af worksto-
tions, and microprocessor chips that are used as
processing nodes in disributed memory parallel
computers. The measurements shown Teprescnt
the state of affairs on the date of the messore-
ments, and both hardware and software improve-
ments since that time should have significantly
improved the results. They are presented here
only o illustrate the tvpe of resulis 10 be expected
from the low-level benchmarks. They should not
be waken as representing the current state of com-

petitive performanee in the very rapidly changing
workstation and chip marker. Such a comparison
will only be possible if these benchmarks are rou-
tinelv run on new hardware and software and the
results stored in the PARKBENCH interactive
pl:“ﬂt:lm'.lﬂt‘.l-:‘.-r.“ database. which would then coniain
on up-to-date comparison of competitive hard-
ware and software. Nomwithstanding these cave-
ats, we feel it is helpful to give these examples of
lowr-level benchmark measurements that happen
i be available, even though some are a few vears
old and therefore probably seriously oumdated. In
this small table we have not room to give the full
specification of the conditions for each measure-
ment (full and exact desenption u[hardware, and
compiler and options used. ew). bur this infor-

mation would be an essential and required com-
ponent of an entry into the PARKBENCH data-
base of benchmark resulis.

* Assembled by Viedimir Gerov for the whale commines.

C.1.2 Example Results for the
COMMS1 Benchmark

We report below results for the COMMS1 bench-
mark on the SUPRENUM, Intel iPSC/860 [18].
Touchstone Delta [417, Intel Paragon XP/S and
Meiko C5-2 message-passing parallel computers.

Table ©2.1. Examples of low-level benchmark
meiEurements on some common workstatons
and microprocessor chips used in distributed
memory paralle]l computers. Measuremenis were
made with the highest level of optimisation that
ran, and are in MAop/s for 64-bii precision, The
units of iy are vecior length, ond f are Hop/mref,
Resuliz are for the best generally available
compiler on the date shown. The BINEL
benchmark gives volues of the (r., 0y parameters
for the kernel A = B * C (veclor = vector X vector)
for contigususly stered \TEHJI‘E

Intel [|3"-1 H&s DEC
TRV B G053 o

Renchmark S0 M Ea 25 MHe 133 MH:
dimiv Id-"'JUf‘i'J 144090 13515935
Linpackd 147 R 0.7
n = 100
Livermare 288 B 46515
Maxinmum
Liverrnore 2RI 1.34 dq.47
Minimium
BIMNF
Fe NGT 24
(rg) (2.58) (5.6)
FPOLY1
Fe 13.50 RS 3.9
LA ET ¥ 0.34) (71]
BOLYZ
Foe 13.48 25.65
1A (1.12) R

142 PARKREMCH COMMITTEE

Table 0.2, Values of (re. ny, g, ™) for ithe single message pingpong
befween two nodes of (e same cluster on the SUPRESNUM and
neighbouring nodes on dhe Intel iPSC/E60, Touchstone Delia, Intel
Poragon omd Meiko C5-2 computers, The Delin messurements were
made af Caltech on 17 Jan, 1992, ihe Paragon measurcments at ORNL
2528 May, 1993, and the C5-2 measuremenis al Souihampion
University on @ July, 1993, Subsequent hardware ond softwore changes

may have improved the resulis.

H:Lll:'l._?:‘ P g iy i
Sprcification il MBS s [} s kHx
SUPRENLIM
sp SEND A1:M) 067 2041 3.03 0328
dp SENDF ACL:M) +.082 127410 264 0,378
[NTEL iFsC 860
CSEND [,A.N..) o= 100 2.36 179 007 13.5
M= 100 2 80 S0 (p, 2000 BN
IMNTIEL Delea
CSEND [JA.N..) =51 g4 213 061 16,3
=512 6.7 o2 (132 T o
INTEL Paragon XFP/E
CSEND [A.N..] R T L 23.5 -IEH i 0172 F.80
Metko C5-2
FARMALCS e 000 44,10 3747 0087 11.5
* [- by

These results are given numencally in Table-C.2,
and graphically in Figures C.1 and Figures (.2,
The latter are typical of the representation to be
expected from the proposed graphical front end o
the PARKBENCH damabase.

Tahle C.2 gives the values obtained for the
eommunication parameters, in the version of the
benchmark usging the natve SUPRENUM exten-
sions o the Forrran®0 language, These include a
SEND and RECEIVE language statement with a
syniax similar to that of the Foriran READ and
WRITE statement. The asymptotic stream rate, or
bandwidch, (re] shows considerable variaton on
the SUPRENUM. depending on how the data 1o
be transferred is specilied in the 170 list of the
SEND statement. A variable lengih array in For-
tran%0) svotax in single precision achieves 0,67
MB/s, whereas the same sutement specilied in
double precision achieves 4.8 ME/s. This double-
precision rate is about tedce that observed on the
PR/ 360 wdth their CSENXD Fonran subroutine,
which sends an array whose lengih is specified in
bwtes, The principal difference between the mwo
computers is the magnitude of the stariup dme. & .
which is T4ps on the iPSC/860 compared with
about 3ms on the SUPRENUM. Since the stamup

time, via . determines the transfer rate for short
messages (say < 100B), we see that the 5U-
PRENUM is 45 times slower than the iPSC/860
for short messages. On the other hand the 5U-
PRENUM has almost twice the stream rate for
long messages (a5 seen I_':.:,- the value of . prio-
vided the most favourable format (i double pre-
cision or G4-hit] is used in the [0 list. One may
compute from these numbers that the iPSC/B60
is fnster ot ransfering messages for all message
lengths less than 16,481 Byte, The longer starmup
time on SUPRENUM resulis in larger values of ny.
showing that longer messages are needed 1o
nrhuﬂp any given fraction of the ASVMpPLOLC rate,

The results for the Touchsione Delta show that
this computer has the fastest short and long mes-
Hge peerformmanee, judged r|*.-||-e"4'li'p'iﬂ.t'_|.']'I:-' the val-
ues of my and re. However the improvement of
shor message performance over the iPSC/860 is
only marginal. and the long message performance
i3 only about one quarter of the advertised band-
width of 23MB/s. However hardwars and soli-
ware improvements made since the measurements
were made should have improved the resulis.

If we compare the new generation of production
computers, the Intel Paragon XP/S and the Meiko

PARKHENCH : COMMS1

GO0 '

500 /w

iPSC/860
400 =

400 Delta

Transfer time / us
&1
=3
=
o
e
k3

Faragon

o 200 400 600 BOO 1000

Message Length / Byte

FIGURE C.1 Time to send n message of different lengths for messages up to 1000
Byte. Circles are for the Intel iPSC/860, delta-miangles are for the Touchstone Delia,
squares are for the Paragon, and dismonds for the Maiko 03-1. The =olid lines are
srraight-line least-square fits given in the text. Measurements made with sofreare avail-
able at the following places and dates: iPSC/860 [USAF Phillips Lab, 13 Jan 1992),
Delea (Caltech 17 Jan 1992), Paragon (ORNL 25-28 May 1993, C5-2 [Bouthampron
L. 9 July 1993 Subsequent soltwars updates may have improved che resulis,

FAEKHENCH : COMMS1
100 —~ : ! .

1 E
| [B=2 i
__,-a--""_':'_' 41
__c:.‘_'_ﬂ_n-u 24
_Paragan |

Transfer Rate / (MB/s)

{I.D{l] I | I Seciod aa il 04 s
1 10 100 1000 10000 L)
Message Length / Byte

FIGURE €2 The sheemved messnge- pazsing handwidih o Megabayte per second as o
Tunerion of |I:II'-|l-|:i!ﬂ' rl'll:_'lll. ug» Lo S0 Uk H:- 14, The |_|.e||.e| ;,1|||| '\1:h.'||II‘HiI_-€ ke ||||e' H 1o g LR
thoess slown in Fig, €21,

144 PARKBLENCH COMMITTEF

10

Foblem size Eﬁﬁaxizﬂ
C=490
Y-MF
T3D
SP=1
iIPSC/A60
2 Paragon |
« CM-5
r CM-2

& o o -

o

Performance, Ry/(Gflop/s)

0.1

Z

1 10

Number of Processors, p
The henchmark pecformance for the 3-0 FFT-kernel on different paral-

FIGUKE .3
lel computers.

C8-2. we find, on the dates stated, the C5-2 o
have a higher communication performance than
the Paragon for both shor [mg) and long messages
(rul. and therefore for all message lengths. How-
ever hoth computers are at an early siate of the
hardware and software development. and both
have considerable development potential. The
COMMS1 benchmark will continue 10 be used 1o
rrack this competition in communicatien perfor-
manee, and the success of both manufacrers o
achieve a high performance for both short and
long messages.

C.2 Kernels

This section repons selected kernels” resulis ob-
tained to date [42] an the following parallel com-
puters: YMP, C90, and T3D by Cray Research
Inc. (CRI); Paragon and iPSCAE60 by Intel: 3P-1
by International Business Machines (IBM); KSR1
by Kendall Square Hesearc b, CM-2, CM-200,
and CM-5 by Thinking Machines Corp. [TMO).
The pcrﬁ_l-r_rrlur'lr_.l: resulia in Gilopds use 1|11: flop
counts of corresponding PARKBENCH kernels as
determined by the hardware performance monitor

on a Cray Y-MP.

1an 1000

10000

On the 3-D FFT PDE benchmark (see Figure
2.3}, the T3D is showing the hest performance.
For this henchmark, a 64 node T3D is roughly
equivalent to twoe U900 processors, whereas 63
node SP-1, Paragon, and CM-5 sysiems all
achieve only the performance of roughlv one C90
processor. The CM-5 is showing poor scalability
beyond 64 nodes. There is oo obvious reason for
this result. One would expeet bener scalabiliny
from the 3-I} FFT PDE henchmark sinee iv is
iranspose-hased with a significantly larger grad
and correspondingly greater parallelism.

Results for the embarrassingly parallel kernel
are shown in Figure C.5. Mot all sysiems exhibie
high rates on this problem. This appears 1w stem
from the foct tho this benchmark requires refer-
ences o several mathematical intrinsie functions.
such ss the Fortran routines AINT. SORT. and
LOG, and evidentdy these funetions are not highly
pptimized on some svaems.

The irregular communication requirement of
the CG-kernel is obwiously a challenge for all the
parallel svstems. Resulis are shown in Figure C.6.
In addition, newly reporied and much improvesd
CO0 resules further diminish the relatve perfor-
mance of the parallel systems, None of the distib-
uted memory parallel computers wested showed

PARKBENCH REPORT

=

. W
Problem |size 256

C—80
T—MFP
T3D

; .
| =
1 L]
/ | s Paragor
i | + CM=35
/ = CM-Z00
i)

LR

——

-

&

Performance, Rﬁf{ﬁflﬂ-pfs}

U.'l :—_J S — ’ll" l
1 1 100 1000 10000

Mumber of Processars, p
FIGURE C.4 The benchmark performance for the MG-kernel on different parallel

L":H:II.'.I1I.|.L' .

I . C—90
b Y-MP
10 | : —

= TAD
/ o SP-1

v iPSC/BE0

/ « Paragon
fff ff# s KSRl

: 2/l /]
+ CM-=5

: o CM-200 1

‘ / . CM-2 1

s o] el T S

1 10 100 1000 10000

Numhber of Processors, p

Performance, Ry/(Gflop/s)

FIGURE .5 The benchmark perfformance for the EP-kernel on different parallel
COMPFUREES,

146 PARKBEMCH COMMIUTTIER

= =90

o Y=MP

= TaD

o Faragono
» CM-5
* CM-2

-]
Froblem dize 2x10

Performance, RH,-"I:Gflcrp,-—‘rs}

1 10

100

1000 10000

Number of Processors, p

FIGURE .6 The benchmark |'u=|'|'-::-r.|!|.'|n-e:|=. for the Ch-kemel on dillerent parallel

COTputers,

better performance than a single processor 90
for the Conjugate Gradient benchmark, Parallel
algorithms for Conjugate Gradient are sill evolv-
g, and implementatons of the newer algonithms
have appeared only on the iPSC/860. For this
reason, an 128 pode 1PSCS 200 1 outperforming u
eomparably sized Paragon by almost a factor of 2
on the Conjugate Grodient kemel.

Except for the Embarrassingly Farallel bench-
mark, the 16 processor Croy C-90 parallel com-
puter is siill the highest performing svetem wested.
It also remoins che highest prced svalem tesied,
The distributed memory parallel computers of
comparable price do exizt, however, the prolilem
sizes used so far do nor offer sufficient parallelism
to do justice to such systems. With the possible
exception of the Cray T30, message ransfer tme

o eurrent svetems is such that bevond 128 nodes
the henchmark performance heginsg w severely
degrade. Larger problem sizes, however, should
offer parallelism up 10 512 nodes and even higher
on current paralle] compurers.

Of the distributed memory parallel computers,
the TAD is consistently nchieving the greatest per-
formance. The excellent resulis demonstrated by
the T2D proves that distributed memory architec-
tures are quite suitable for general purpose scien-
tific computing and not destined just to fill a niche
in the field. The above kernel results reflece the
gituation in 1993 described in the report [42].
Please note that subsequent hardware and sofi-
ware changes bave significantly improved some
resulia.

