
Visual Programming and
Debugging for Parallel .

Computing
James C. Browne and Syed I . Hyder

Jack Dongarra

Keith Moore and Peter Newton

University of Texas at Austin

University of Tennessee at Knoxville and Oak Ridge Nation

University of Tennessee at Knoxville

@ Annotated directed-
grapb representations
ofparallel programs
simplify pi-ogra mming
and debugging by
providing a single,
consistent fra mework
that separates a
program’s sequential
computations from its
parallel structure.

I Laboratory

arallel architectures have clearly emerged as the future environ-
ments for high-performance computation for most applications.
The barrier to their widespread use is that writing parallel pro-
grams that are both efficient and portable is quite difficult. Par-
allel programming is more difficult than sequential program-

ming because parallel programs must express not only the sequential
computations, but also the interactions (communication and synchroniza-
tion) among those computations that define the parallelism. T o achieve good
performance, programmers must understand this large-scale structure.

Most current text-based parallel-programming languages either implic-
itly define parallel structure, thus requiring advanced compilation tech-
niques, or embed communication and synchronization with sequential
computation, thus making program structure difficult to understand. Fur-
thermore, direct use of vendor-supplied procedural primitives can pre-
clude portability. We could alleviate these difficulties with a program-
ming process that separates specification of sequential computations from
specification of synchronization and communication, and expresses syn-
chronization and communication directly but abstractly.

Directed-graph program representations can separate these specifications
by permitting a two-step programming process in which programmers first
design sequential components and then compose them into a parallel struc-
ture. This provides a simplified divide-and-conquer approach to design.

Such program representations have other advantages. They directly
represent multiple threads of control. They also display and expose the
large-scale program structure that parallel programmers must understand

Spring 1995 1063-6552/95/$4.00 0 1995 IEEE 75

1: x = procl ();
2: y = prod() ;
3: z = proc3(x);
4: w = proc4(x,y,z);

Figure 1. Dataflow example: (a) a sequence of
assignment statements, (b) an equivalent dataflow
graph. Each circle represents an assignment
statement.

to achieve good performance, and a graph model can
provide the basis for a visual programming environment
in which programming, logical debugging, and perfor-
mance debugging are integrated into a single common
framework.

These are not new ideas; many optimizing compilers
already generate directed-graph representations of par-
allel programs, and performance monitoring systems
use graphical displays. The conventional wisdom is that
graphical displays of parallel structure are beneficial; our
conclusions are natural extensions of this wisdom.

In this article we'll discuss visual parallel program-
ming and how it is implemented in two integrated pro-
gramming environments-Computationally Oriented
Display Environment' (CODE) and Heterogeneous
Network Computing Environment2 (Hencefithat rep-
resent parallel programs as directed graphs.

Graph representations of
parallelism
The current generation of parallel architectures tends to
focus on the MIMD model of parallel computation.
MIMD programs are inherently nonlinear, regardless
of how they are expressed, because parallel programs
consist of multiple interacting threads of control.
Directed graphs provide a simple and natural mecha-
nism for representing these multiple threads and help-
ing users understand them.

Consider the sequence of assignment statements in
Figure la. A parallelizing compiler could analyze the
statements, determine that the procedures called cause
no dependences, and execute some of the statements in
parallel, but the textual representation does not make
clear at a glance what the resulting parallel structure will
be, The equivalent dataflow graph does (see Figure lb).
Each circle in the graph represents one of the state-
ments. A statement can execute when it has received an
input on each incoming arc.

Parallel programs expressed textually are also easier
to understand when viewed as a graph. One common
means of writing parallel programs is to insert calls to
message-passing library routines into otherwise con-
ventional sequential code. Several processes are run in
parallel, and they interact through these messages.

The parallel structure of such programs can be diffi-

cult to understand because it is determined by message-
passing calls that :an be deeply embedded in nested
control-flow constructs such as If and Whi le state-
ments. It can be hard to know precisely under which con-
ditions a given message-passing call will be executed.
This problem is commonly addressed by packages that
animate the parallel program's execution, often as a
space-time diagram with a horizontal bar for each
process, and arcs that are drawn from bar to bar to rep-
resent message sends. This diagram can be converted
into a directed graph simply by converting each bar into
a sequence of nodes, dividing the bar at points where
messages are sent or received.

Such animations are useful and popular, but the pro-
grammer still must relate the space-time diagram back
to the program's original textual representation. Bridg-
ing this gap between program representation and behav-
ior can be nonmvial.

Visual parallel programming
If directed graphs are a natural mechanism for display-
ing the behavior of parallel programs, then why not use
them as a basis for a programming language, to reduce
the distance between representation and behavior?
There are many ways to do this, but we'll discuss a
method where the directed graph represents a program's
overall parallel structure, and graph nodes with specific
icons represent sequential computations.

TWO-STEP PROGRAMMING
One immediate advantage of this view is that we can
divide the process of creating a parallel program into two
steps: creation of components, and composition of these
components into a graph. The primitive components can
be sequential computations, but other cases are allowed.
For example, a component could be a call to another
graph that specifies a parallel subcomputation. In any case,
components can be either created from scratch or
obtained from libraries. The key is that each component
maps some inputs to some outputs with a clean and clearly
defined interface. These components can then be com-
posed into a graph that shows which components can run
in parallel with which other components.

Component creation and component composition
are distinct operations. Programmers need not think
about the details of one while performing the other
(except to ensue that the sequential routines are defined
with clean interfaces and well-specified WO semantics).
In particular, programmers can specify the parallel struc-

76 IEEE Parallel 81 Distributed Technology

ture without concern about the inner worhngs of the
components. Furthermore, they can use the best tools
available for the different programming tasks.

Sequential components
Both Hence and CODE emphasize the use of sequential
subroutines in C or Fortran as primitive components; in
fact, Hence requires it. This facilitates implementation
because we build on the existing tool base of tested and
accepted sequential languages and compilers. Also, sub-
routines from existing sequential pro-
grams can be incorporated into new
parallel programs; leveraging existing
code is often vital to the acceptance of
new tools. The learning curve for
users is less steep because they are not
asked to relearn sequential program-
ming when adopting a parallel-
programming environment.

Parallel composition into
directed graphs
When designing parallel programs,
programmers commonly draw infor-
mal diagrams that show large-scale
parallel structure. These diagrams
abstract away the details of the com-
ponents being designed and concen-

that is vital to understanding the performance of any
parallel program. Issues such as poor load balance or
inadequate degrees of parallelism are apparent from the
shape of the graph and the execution times of the nodes,
interpreted relative to communication overheads.

A graphical representation can also promote locality
in designs to the extent to which components are in dif-
ferent name spaces in the language. In CODE, state is
retained from one execution of a node to another, and
communications must be explicitly defined as part of the

Late on theirinteractions. A graph-based visual parallel
programmingJanguage can help formalize this process.

Understanding the large-scale structure of parallel
programs tends to be more important than for sequen-
tial programs, because large-scale structure can dramat-
ically affect the execution performance of parallel pro-
grams. For programmers to understand and achieve
good performance, they must understand the structure
of their program's computation graph-regardless of
how their program is represented. For example, if the
execution time of sequential segments between com-
munications is too short, performance will suffer because
it will be dominated by message-passing overhead.

A direct graphical representation of parallel programs
renders such concerns explicit. The programmer knows
exactly what the sequential components are because they
are separate components. Especially if they are subpro-
grams that perform some cleanly defined function, the
programmer will also have a good feel for their execu-
tion time. So, the programmer will be aware of the com-
putation's granularity.

The graph can also directly display other information

interface to a sequential computation
node. This encourages programmers
to package a node's data with the
node. Locality is easy to express, but
remote access requires more effort.
So, beginning parallel programmers
are guided toward designs that exploit
good data locality.

CODE and Hence
One of the challenges in visual pro-
gramming research is evaluating new
ideas. We have found that it is neces-
sary to actually implement systems
and use them in programming pro-
jects and university Programming
classes to thoroughly understand

their merits and limits. Even then, results are often sub-
jective and context-dependent. We implemented
CODE 2 .O and Hence 2 .O, which are based on the ideas
described previously. They are similar in purpose and
philosophy but are significantly different in detail.

In both languages, users create a parallel program by
drawing and then annotating a directed graph that shows
the parallel prograx's structure. Both languages offer
several different node types, each with its own icon and
purpose. In both cases, the fundamental node type is the
sequential computation node, which is represented by a
circle icon. The annotations include sequential subrou-
tines that define the computation that the computation
nodes will perform, and include the specification of what
data the computations will act upon.

The CODE environment runs on Sun 4 workstations
and can produce parallel programs for either the
Sequent Symmetry or networks of workstations using
the PVM portable message-passing library.3 Hence runs
under X Windows on a variety of Unix workstations.
Programs that it produces run under PVM on a network
of Unix machines of various types and capabilities.

Spring 1995 77

Integrate a function in
parallel by spl i t t ing Spkt Interval
the interval and

Figure 2. CODE integration program.

CODE
Figure 2 shows an extremely simple CODE program.
It numerically integrates a function in parallel over a
definite interval [U$] by computing the midpoint m
between a and b and then having one sequential com-
putation node integrate the interval [u,m] while the
other does [m,b] at the same time. The results are
summed to form the final result.

The nodes that do the integration are both named
In t e g Ha 1 f ; the graph shows that they can run in par-
allel because there is no path from one to the other. The
arcs represent dataflow from one node to another on
FIFO queues. The graph is read from top to bottom,
following the arrows on arcs. The graph shows that the
Split Interval node creates some data that are
passed to the two Int e g Ha 1 f nodes. The data con-
sist of a structure defining the integration that the
receiving node will perform.

To create this parallel program, the programmer uses
a mouse to dmw a graph just like in Figure 2, and then
enters textual annotations into different pop-up windows
associated with such objects as nodes an# arcs. This infor-
mation includes such familiar items as type definitions
and sequential function prototypes (for type-checking
calls). We will ignore these and focus on the annotations
of computation nodes. When annotation is complete,
the user picks “translate” from a menu, and a parallel
program is created, complete with a makefile, ready to be
built and run on the selected parallel machine.

Annotations
The annotation for a computation node consists mostly
of a sequence of stanzas, some ofwhich are optional. For
example, the annotation for either I nt e g Ha 1 f node is

input-ports (IntegInfo I: I
output-ports 1 real S ; 1
vars [IntegInfo i: real Val: 1
firingrules 1 1 - > i => 1
comp (val = simp(i.a, i . b , i.n): I
routing-rules 1 TRUE => S < - Val; i

(Both nodes are identical. A single
dynamically replicated node could be
used instead.)

The first two stanzas provide names
for “ports,” which are queues of data
that enter and leave the node. Each
node uses its own local names for these
ports so that nodes can be reused in
new contexts. This node will read data
of type IntegInfo (the structure

that defines the work to be done) from port I , and write
real data onto port S.

Each arc annotation (see Figure 2) binds an output
port name to an input port name. The graph clearly
shows that the S p 1 it Inter va 1 node places data
onto output ports I1 and 12. Port I1 is bound to input
port Iof the left Integ Half node. So, the data that
S p 1 it Inter va 1 places onto I1 is sent to the left
Integ Half node, and the data placed onto12 is sent
to the other.

The var s stanza of the annotation of Int e g Half
defines variables that are local to the node and that its
computation can read and modify.

The firing-rules stanza is very important. It
defines conditions under which the node can execute.
It also describes which local variables will have data
placed in them that have been removed from designated
ports. CODE’S notation for firing rules is quite flexible,
but is sometimes complicated relative to the language’s
other features. The rule “I-> i =>” is the simplest case.
It signifies that the node can fire when there is data
waiting on port I, and that when the node fires, the data
value is removed from I and placed in local variable i.
Thus, the Integ H a l f nodes simply wait for an
incoming value. When one appears, they fire and pro-
duce an output.

The c omp stanza defines what sequential computa-
tion will be performed when the node fires. The text
is expressed in a language that is a subset of sequential
C functions and that includes calls to externally defined
sequential functions and procedures (such as simp,
which does the integration in this example). I t is
expected, but not required, that all significant sequen-
tial computations will be encapsulated in such exter-
nal functions.

Finally, the rout ing-rules stanza determines
what values will be placed onto output ports. As with
firing rules, the notation is flexible and potentially com-
plex, but this example is simple. The value of real vari-
able V a l is placed onto queue S.

78 IEEE Parallel & Distributed Technology

Other CODE icons
Figure 3 shows the icons that appear
in CODE graphs. Three of them
define the interface to a graph. CODE
graphs can call other CODE graphs
through the Call icon. Arcs incident
upon Call nodes are the actual para-
meters of the call. These arcs are
bound to interface nodes in the called

General nodes

Sequential computation d)
.--$-.- Shared-variable declaration

Call from one graph to another

gure 3. Node icons in CODE.

graph via a name binding that is an attribute of the arcs.
This is similar to arcs binding port names between two
nodes, as we described before. Interface nodes must have
names that are unique within the graph.

Creation parameters are also bound to an incoming arc.
They exmct exactly one value from this arc when the called
graph is instantiated at runtime. All nodes in the called
graph can use the creation parameter name as a constant.

The shared-variable icon declares variables that will
be shared among a set of nodes. Each node must declare
whether it requires read-only or read-write access to the
variable.

HENCE
The Hence program in Figure 4 looks exactly the same
as its equivalent CODE program in Figure 2, except that

0 Hence graphs are read from bottom to top.
0 Hence computation nodes are always named by the

(exactly) one sequential procedure they are required
to call. ,

0 Hence arcs take no annotation.

Graoh interface definition

P Incoming parameter

Outgoing parameter

Creation (read-only)
parameter

Figure 4 shows all the node annotations; in the actual
Hence system, the annotations are in pop-up windows.

Although the Hence graph looks like the CODE graph,
its meaning is very different. Except for some features that
have not been discussed, arcs in CODE represent
dataflow. Arcs in Hence represent two dfferent concepts
at the same time: control flow and variable name scope.

A Hence node can execute whenever all of its predeces-
sors have executed. This is the only rule that defines when
a node can run, and there is no implication that predeces-
sor nodes have sent any data. There are no explicit node-
firing rules as in CODE. Hence has special control-flow
nodes that can alter the succession of node executions.

Annotations
Hence node computations access variables in a global
name space. Each node must Contain declarations that
specify which variables will be accessed and whether
changes to them will be propagated to successor nodes
in the graph. This will require an explanation and some
background. Computation node annotations have three
parts, two of which are optional:

< double sl;
< double s2

< double a; < double b;
< double mid; < double mid;
< int n;
sl = simp(a, mid, n); s2 = simp(mid, b, n) ;
> double sl; > double s2;

< double b;
< double mid;
< int n;

-___ -

Figure 4. Hence in tegra t ion program.

Spring 1995 79

0 Sequential computation.

f7 Loop begin and end. The enclosed subgraph is
iterated over an index range such as i = 0 to N.

A Conditional begin and end. The enclosed subgraph is ? executed only if an expression evaluates to TRUE.

Parallel replication (fan) begin and end. The enclosed * subgraph is replicated such that all copies execute in v parallel. Copies are indexed as in i= 0 to N.

n Pipeline begin and end. The enclosed subgraph is
U replicated to form a pipeline with indexed stages.

-~

Figure 5. Node icons in Hence.

1. Declaration ofinput and input/mtput variables (option-
al). The values of input and input-output variables are
read from the nearest predecessor node that outputs
those variables. The values of the variables can be
changed. New values of input-output variables can
be seen by successor nodes; new values of input vari-
ables cannot. Input declarations contain a “2’ token,
and input-output declarations contain a “<>” token.

2 . Call to a sequentialprocedure (required). The proce-
dure may be written in either C or Fortran. The
call’s actual parameters may be expressions. Vari-
ables that appear in the expressions are inputs,
input-outputs, or outputs from the node.

3 . Declaratam ofoutput v a d k s (optional). The node can
set output variables, whose values are available to suc-
cessor nodes. Output declarations contain a ‘5” token.

Consider the annotation of the S e t I n p u t s node in
Figure4. ItcallsaCroutinenamed SetInputs,which
provides values for variables a, b, mid, and n. The vari-
ables are made available to successor nodes because they
appear in output declarations.

The two simp nodes are very similar, but one uses
input declarations to read a, mid, and n from its nearest
predecessor (s e t Input s) and the other reads mid, b, and
n. The left simp node makes $1 available to its succes-
sors in the graph, and the right makes s2 available. These
variables hold the results of the integration. Subroutine
simp, a C procedure, actually performs the integration.

The P r in tAns node reads sl and s2. It calls the C
procedure P r in tAns , which sums them and prints
their value, which appears in the Hence console win-
dow when the program is run.

Other Hence icons
Like CODE, the Hence language also supports icons
other than the circle that represents a sequential com-
putation. These other node types represent control
structures. Hence has no facility for hierarchical imple-
mentation, although its model could support it. Hence

graphs cannot call other graphs, so there is no need for
interface nodes. F j p r e 5 shows all of Hence’s icons.

Hence’s control-flow icons work in pairs; one iCon
begns a construct and another ends it. The subgraph
that appears between the icons is acted upon. For exam-
ple, the subgraph between a loop-begin and a loop-end
node is executed repeatedly, much like the body of a C
f o r loop. The loop-begin is annotated with a statement
that assigns its index variable an initial value, with a ter-
mination condition expression, and with a statement that
gives the index variable its next value. The loop-end node
(and all other end nodes) requires no annotation.

Conditional node pairs define an “if-then” structure.
The conditional-begin node annotation contains an
expression. If the expression evaluates to TRUE (mean-
ing nonzero, following the C language convention), the
subgraph between the pairs is executed. Otherwise, it is
not. Hence does not contain an “if-then-else” structure.

Fan node pairs create parallel structures. They
dynamically replicate the subgraph between them and
evaluate the replications in parallel. The fan-begin
node’s annotation consists of an index statement:

IndexVar = S t a r t v a l u e TO Endvalue :

IndexVa r takes a different value in each replicated sub-
graph, so each replication has a unique index.

CODE AND HENCE COMPARED
Node-firing conditions are explicit and general in
CODE. Programmers must explicitly define the exact
circumstances under which a computation node can exe-
cute. The specification language is quite flexible and
general, and firing conditions can depend on the node’s
internal state. For example, it is easy to define a node
that nondeterministically merges data from two streams.
Such a computation is impossible to state in Hence.

It is tempting to say that Hence’s firing rules are fixed.
Nodes can fire when all predecessor nodes have fired,
but this is an oversimplification. Execution of a Hence
node is dictated also by the control-flow constructs in
which it is embedded. So, Hence firing conditions are
somewhat less explicit.

CODE can express more dynamic graph topologies.
Because of its powerful firing rules and its method of
instantiating nodes, CODE can express communica-
tions patterns that Hence cannot. For example, CODE
can accept an adjacency graph as input data and create
a graph with the specified topology.

CODE graphs explicitly show dataflow; Hence
graphs show control flow. Control flow, in the tradi-

80 IEEE Parallel & Distributed Technology

tional sense that applies to Hence, is expressed declar-
atively in CODE firing rules.

CODE’s basic unit of component reuse is the sequen-
tial computation node. The CODE model supports
libraries of computation nodes. Thus, CODE compu-
tation nodes must be completely encapsulated. They
must have well-defined interfaces, and they must be
completely defined in isolation from other graph ele-
ments. This is why CODE ports exist; they are a node’s
formal parameters.

Hence nodes are not a natural unit
of reuse because of the way they use
variable names. A programmer who
copies a node from one Hence pro-
gram to another will likely have to
edit the node when it is placed in its
new context. For example, the new
program may name some array A,
whereas the old program called it B.
However, the subroutines called from
a node can be reused. These contain
the bulk of the program text.

CODE allows name binding on
arcs, thus bridging the name spaces of
any two nodes. The downside is that
programmers must specify name
bindings on every arc. The CODE
computation node is somewhat anal-

access via arcs. This more completely shows the com-
munication patterns of programs, but dataflow graphs
are often complex. Programs with complex dataflow can
become a rat’s nest of arcs. This can be hard to under-
stand and is also cumbersome because programmers
must individually annotate all arcs.

Hence programs are related to flow charts of struc-
tured programs. They are concise and orderly even when
graphs become large. Dataflow is implicit, so less struc-
tural information is presented to the programmer; but

~ __ ~

With vhrual
parallel
prolgrbmmlng
languwes,
performance and
Iogkrl debuwmg
can be carried out
Wrth th@ same
rep”nta&ion
used for
programming.

ogous to a simple statement in a conventional pro-
gramming language like Fortran. It is cumbersome to
have to specify name binding between “statements.”

LESSONS LEARNED
It is not surprising that there is a trade-off between ease
of use and expressive power. CODE’s firing rules are
explicit and general, but can be complicated and wordy.
Hence’s firing rules are simple and concise, but are not
always adequate to express algorithms. They do appear
to be adequate for many interesting numerical algo-
rithms, however. Languages should be designed with
simple mechanisms to cover 90% of the needs but should
also include more expressive mechanisms. The challenge
is to define both so that they compose naturally.

Parallel structure is often not fully determined until
runtime. CODE and Hence address this by using
dynamic replications, but this reduces the degree to
which the program’s structure is visually apparent. The
static display of programs whose structure is determined
at runtime remains a significant goal.

CODE shows all dataflow or common-shared-variable

computational elements are still clear
and well encapsulated, and parallel
structure is displayed. However,
because dataflow is implicit, pro-
grammers might make errors in which
the “wrong” node is another node’s
nearest predecessor for some variable.

Debugging in the
visual environment
Both performance and logical debug-
ging are important aspects of parallel
programming. Performance debug-
ging involves understanding and
improving a program’s speed, and
logical debugging involves correcting
errors in a program’s logic. With

visual parallel programming languages, performance
and logical debugging can be carried out with the same
representation used for programming. This article
focuses on logical debugging.

DEBUGGING E”ES
Debuggmg establishes the relationship between the pro-
gram (typically some small segment of a large program)
and its execution. The entities involved in debugging
include the program, P; a specification of the program’s
(or program segment’s) expected execution behavior,
which we call M for model of behavior; and some repre-
sentation of the program’s actual execution behavior, E.

Debuggers for programs written in pure text forms
typically use different representations for P, M, and E,
and this imposes much additional work on the program-
mer. Ideally, these entities would be expressed in the same
representation, so that the programmer will not have to
understand and manipulate several different notations.

Visual directed-graph programming supports the for-
mulation of parallel-program debuggers in which a sin-
gle notation can express all the entities. This simplifies

Spring 1995 81

debugging not only because it lets programmers think
in terms of the program, which is what they understand,
but also because it allows the ready automation of the
often tedious task of comparing expected and actual
behaviors. It also facilitates identification of the pro-
gram’s logic faults. We are implementing such a debug-
ger for the CODE system.4

DEBUGGING THE GRAPH
An action is a node’s atomic execution. It maps an input
state into an output state according to
a known I/O relation. The execution
of a program is the traversal of the
graph, starting with an assignment of
an initial state, and ending with the
execution of a final state. The traver-
sal causes events, which are the execu-
tion of the actions a t the nodes, and
generates a partially ordered set of
events. This set defines a directed
acyclic graph of events that corre-
sponds to instantiations of the actions
defined at the nodes.

Debugging identifies the actions
responsible for the program’s failure
to meet its final state specification.
Debugging comprises these steps:

4. Map E to M to detemzine where the actual and expected
eventsjmt divergz. This can be done automatically
because E and M are specified in the same repie-
senta tion. The mapping identifies event sequences
in E that do not correspond to the allowed set
defined in M.

5. NIap the elaborated graph of M back to P to dejne cor-
rectiveaction. Because the elaborated graph ofM con-
tains instances of the nodes of P, the mapping is auto-
matic and guides us toward the offending action in P.

Identifj, and select the portions of LC program whose
behavior will be monitored. This is a set of “suspect”
nodes or subgraphs. It is typically impossible to
monitor the entire execution behavior of large, com-
plex parallel programs. The visual graph represen-
tation of P simplifies selection of suspect portions.
Specijj the expected execution behavior of the set ofnodes
that will be munitwed. A graphical program’s execution
behavior is naturally represented as the partially
ordered set of events expected to be generated at the
nodes of the suspect subgraphs. This is M, the model
of expected behavior. We can either construct this
set of events directly, or construct a graph of the
actions whose execution will generate the desired set.
Capture the execution behavior of the selected portions
of the pyogram. The execution behavior is the par-
tially ordered sequence of events that actually
occurred during execution. This set is E. The pro-
grammer obtains E by selecting a set of program
nodes with the mouse and then running the pro-
gram. The system then automatically records all the
necessary events and orderings.

A programmer will often cycle
through these steps a number of
times before identifying the bug. In
each cycle, the programmer will
progressively come closer to the
offending piece of code.

Using actions, instead of events,
in the representation of M greatly
helps the debugger filter out irrele-
vant information. This restricts the
execution history displays of E to
only the events that interest the user.
This filtering greatly simplifies the
checking of M , which can be done
either visually by the programmer
with the help of the debugger’s exe-
cution displays, or automatically by

LLLe debugger’s model-checking facility. The debug-
ger provides an animation facility that visualizes the
mapping of E to M. The elaborated graph acts as an
underlying structure that greatly helps the animation.

So, a visual programming environment provides a con-
sistent graphical representation for all the entities used
in debugging and simplifies the design of a concurrent
debugger that coherently relates the steps of debugging.
It also provides a unified framework for supporting dif-
ferent concurrent debugging facilities, like execution his-
tory displays, animation, and model-checking facilities.

C ODE and Hence have demonstrated many
advantages of visual programming for par-
allel computing. A visual program repre-
sentation that directly shows program
structure allows programming, debugging,

and performance analysis in a single consistent frame-
work. It also allows the programming process to be sep-
arated into two phases: the creation of sequential com-
ponents, and their composition into a parallel program.

82 IEEE Parallel & Distributed Technology

Only by actually implementing the programming
environments have we been able to evaluate these ben-
efits and discover even more effective visual parallel-
programming abstractions. Much work remains to be
done. Even with visual techniques, it is difficult to express
statically those program structures that are largely deter-
mined at runtime. Also, compilation techniques could
be improved because CODE and Hence lend themselves
to automatic dataflow and scheduling analysis.

There are also alternative methods for defining the
primitive compute-node computations. The University
of Tennessee is developing a visual programming envi-
ronment called which features compute nodes in
which users place explicit message-passing calls. This
can simplify the computation-graph structure of many
programs.

FURTHER INFORMATION
Hence and the PVM package it targets are available in source and
binary form via xnetlib or by anonymous frp to frp.netlib.org. E-mail
questions on Hence to hence@cs.utk.edu. For more information on
Code, contact browne@a.utexas.edu or newton@cs.utk.edu. A
World Wide Web site for information on PVM1Hence is at
http://www.epm.ornl.gov/pvm/pvm~home. html.

REFERENCES
1. P. Newton, “A Graphical Retargetable Parallel Programming

Environment and Its Efficient Implementation,” Tech. Report
TR93-28, Dept. of Computer Sciences, Univ. of Texas, Austin,
Tex., 1993.

2. A. Beguelin et al., “Visualization and Debugging in a Heteroge-
neous Environment,” Gumputer, Vol. 26, No. 6, June 1993, pp. 88-95.

3 . G.A. Geist et al., “PVM 3 User’s Guide and Reference Manu-
al,” Tech. Report ORNLJTM-12 187, Oak Ridge Nat’l Labora-
tory, Oak Ridge, Tenn., 1993.

4. S.I. Hyder, J.F. Werth, and J.C. Browne, “A Unified Model for
Concurrent Debugging,” Proc. Int’l Con5 Parallel Processing, Vol.
2: Software, IEEE Computer Society Press, Los Alamitos, Calif.,
1993, pp. 58-67.

5. P. Newton and J. Dongarra, “Overview ofVPE: AVisual Envi-
ronment for Message-Passing Parallel Programming,” Tech.
Report UT-CS-94-261, Computer Science Dept., liniv. of Ten-
nessee, Knoxville, Tenn., 1994.

James C. Browne holds a Regents Chair in Computer Sciences at
the University of Texas at Austin. Parallel programming is his most
active and current research interest. His previous research areas
include operating systems, and quantum mechanical calculations of
small molecules. He received his PhD in physical chemistry from the
University of Texas at Austin in 1960, and his BA from Hendrix Col-
lege, Conway, Arkansas, in 1956. He can be contacted at the Dept. of
Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712-
1 188; Internet: browne@cs.utexas.edu.

Syed Irfan Hyder earned his PhD and MS, both in electrical and
computer engineering, from the University of Texas at Austin in 1994
and 1989. He earned his MBA in 1987 from the Institute of Business
Administration a t Karachi University, Pakistan. He received his BE
in electrical engineering from the NED University of Engineering
and Technology, Karachi, in 1985. He can be contacted a t 20110
Block 2, PECHS, Karachi 75400, Pakistan.

Jack Dongarra holds a joint appointment as Distinguished Professor
of Computer Science in the Computer Science Department at the
University of Tennessee and as Distinguished Scientist in the Math-
ematical Sciences Section at Oak Ridge National Laboratory under the
UT10RNL Science Alliance Program. He specializes in numerical
algorithms in linear algebra, parallel computing, use of advanced-
computer architectures, programming methodology, and tools for
parallel computers such as PVM/Hence and MPI. Other current
research involves the development, testing, and documentation of
high-quality mathematical software. Dongarra received his PhD in
applied mathematics from the University of New Mexico in 1980, his
MS in computer science from the Illinois Institute of Technology in
1973, and his BS in mathematics from Chicago State University in
1972. He is a member of the IEEE, the SIAM, and the ACM. He can
be contacted a t the Dept. of Computer Science, 107 Ayres Hall,
Knoxville, T N 37996-1301; Internet: dongarra@cs.utk.edu.

Keith Moore is a research associate at the Computer Science Depart-
ment of the University ofTennessee, Knoxville. He is involved in the
development of protocols for very-large-scale, fault-tolerant, net-
worked information retrieval on the Internet. In addition to his work
on Hence, he contributed to the design of PVM version 3 , and to the
MIME standard for multimedia electronic mail. He is a candidate for
an M S in computer science at the University of Tennessee, and he
received his BS in electrical engineering from Tennessee Techno-
logcal University in 1984. He is a member of Computer Profession-
als for Social Responsibility. He can be contacted at the Dept. of Com-
puter Science, Univ. of Tennessee, 107 Ayres Hall, Knoxville, TN
37996-1301; Internet: moore@cs.utk.edu.

Peter Newton holds a post-doctoral research position at the Com-
puter Science Depamnent of the University of Tennessee, Knoxville.
His interests center on performance analysis and programming envi-
ronments and languages for parallel computing. He received his PhD
and MS in computer science in 1993 and 1988, from the University
of Texas at Austin. He earned his BS in mathematics and computer sci-
ence from the University of Michigan in 1982. He is a member of the
IEEE Computer Society and the ACM. He can he contacted at the
Dept. of Computer Science, Univ. of Tennessee, 107 Ayres Hall,
Knoxville, T N 37996-1301; Internet: newton@cs.utk.edu.

Spring 1995 83

http://frp.netlib.org
mailto:hence@cs.utk.edu
mailto:browne@a.utexas.edu
mailto:newton@cs.utk.edu
mailto:browne@cs.utexas.edu
mailto:dongarra@cs.utk.edu
mailto:moore@cs.utk.edu
mailto:newton@cs.utk.edu

