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I Laboratory 

arallel architectures have clearly emerged as the future environ- 
ments for high-performance computation for most applications. 
The barrier to their widespread use is that writing parallel pro- 
grams that are both efficient and portable is quite difficult. Par- 
allel programming is more difficult than sequential program- 

ming because parallel programs must express not only the sequential 
computations, but also the interactions (communication and synchroniza- 
tion) among those computations that define the parallelism. T o  achieve good 
performance, programmers must understand this large-scale structure. 

Most current text-based parallel-programming languages either implic- 
itly define parallel structure, thus requiring advanced compilation tech- 
niques, or embed communication and synchronization with sequential 
computation, thus making program structure difficult to understand. Fur- 
thermore, direct use of vendor-supplied procedural primitives can pre- 
clude portability. We could alleviate these difficulties with a program- 
ming process that separates specification of sequential computations from 
specification of synchronization and communication, and expresses syn- 
chronization and communication directly but abstractly. 

Directed-graph program representations can separate these specifications 
by permitting a two-step programming process in which programmers first 
design sequential components and then compose them into a parallel struc- 
ture. This provides a simplified divide-and-conquer approach to design. 

Such program representations have other advantages. They directly 
represent multiple threads of control. They also display and expose the 
large-scale program structure that parallel programmers must understand 
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1: x = procl (); 
2: y = prod( ) ;  
3: z = proc3(x); 
4: w = proc4(x,y,z); 

Figure 1. Dataflow example: (a) a sequence of 
assignment statements, (b) an equivalent dataflow 
graph. Each circle represents an assignment 
statement. 

to achieve good performance, and a graph model can 
provide the basis for a visual programming environment 
in which programming, logical debugging, and perfor- 
mance debugging are integrated into a single common 
framework. 

These are not new ideas; many optimizing compilers 
already generate directed-graph representations of par- 
allel programs, and performance monitoring systems 
use graphical displays. The conventional wisdom is that 
graphical displays of parallel structure are beneficial; our 
conclusions are natural extensions of this wisdom. 

In this article we'll discuss visual parallel program- 
ming and how it is implemented in two integrated pro- 
gramming environments-Computationally Oriented 
Display Environment' (CODE) and Heterogeneous 
Network Computing Environment2 (Hencefithat rep- 
resent parallel programs as directed graphs. 

Graph representations of 
parallelism 
The current generation of parallel architectures tends to 
focus on the MIMD model of parallel computation. 
MIMD programs are inherently nonlinear, regardless 
of how they are expressed, because parallel programs 
consist of multiple interacting threads of control. 
Directed graphs provide a simple and natural mecha- 
nism for representing these multiple threads and help- 
ing users understand them. 

Consider the sequence of assignment statements in 
Figure la. A parallelizing compiler could analyze the 
statements, determine that the procedures called cause 
no dependences, and execute some of the statements in 
parallel, but the textual representation does not make 
clear at a glance what the resulting parallel structure will 
be, The equivalent dataflow graph does (see Figure lb). 
Each circle in the graph represents one of the state- 
ments. A statement can execute when it has received an 
input on each incoming arc. 

Parallel programs expressed textually are also easier 
to understand when viewed as a graph. One common 
means of writing parallel programs is to insert calls to 
message-passing library routines into otherwise con- 
ventional sequential code. Several processes are run in 
parallel, and they interact through these messages. 

The parallel structure of such programs can be diffi- 

cult to understand because it is determined by message- 
passing calls that :an be deeply embedded in nested 
control-flow constructs such as If and Whi le  state- 
ments. It can be hard to know precisely under which con- 
ditions a given message-passing call will be executed. 
This problem is commonly addressed by packages that 
animate the parallel program's execution, often as a 
space-time diagram with a horizontal bar for each 
process, and arcs that are drawn from bar to bar to rep- 
resent message sends. This diagram can be converted 
into a directed graph simply by converting each bar into 
a sequence of nodes, dividing the bar at points where 
messages are sent or received. 

Such animations are useful and popular, but the pro- 
grammer still must relate the space-time diagram back 
to the program's original textual representation. Bridg- 
ing this gap between program representation and behav- 
ior can be nonmvial. 

Visual parallel programming 
If directed graphs are a natural mechanism for display- 
ing the behavior of parallel programs, then why not use 
them as a basis for a programming language, to reduce 
the distance between representation and behavior? 
There are many ways to do this, but we'll discuss a 
method where the directed graph represents a program's 
overall parallel structure, and graph nodes with specific 
icons represent sequential computations. 

TWO-STEP PROGRAMMING 
One immediate advantage of this view is that we can 
divide the process of creating a parallel program into two 
steps: creation of components, and composition of these 
components into a graph. The primitive components can 
be sequential computations, but other cases are allowed. 
For example, a component could be a call to another 
graph that specifies a parallel subcomputation. In any case, 
components can be either created from scratch or 
obtained from libraries. The key is that each component 
maps some inputs to some outputs with a clean and clearly 
defined interface. These components can then be com- 
posed into a graph that shows which components can run 
in parallel with which other components. 

Component creation and component composition 
are distinct operations. Programmers need not think 
about the details of one while performing the other 
(except to ensue that the sequential routines are defined 
with clean interfaces and well-specified WO semantics). 
In particular, programmers can specify the parallel struc- 
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ture without concern about the inner worhngs of the 
components. Furthermore, they can use the best tools 
available for the different programming tasks. 

Sequential components 
Both Hence and CODE emphasize the use of sequential 
subroutines in C or Fortran as primitive components; in 
fact, Hence requires it. This facilitates implementation 
because we build on the existing tool base of tested and 
accepted sequential languages and compilers. Also, sub- 
routines from existing sequential pro- 
grams can be incorporated into new 
parallel programs; leveraging existing 
code is often vital to the acceptance of 
new tools. The learning curve for 
users is less steep because they are not 
asked to relearn sequential program- 
ming when adopting a parallel- 
programming environment. 

Parallel composition into 
directed graphs 
When designing parallel programs, 
programmers commonly draw infor- 
mal diagrams that show large-scale 
parallel structure. These diagrams 
abstract away the details of the com- 
ponents being designed and concen- 

that is vital to understanding the performance of any 
parallel program. Issues such as poor load balance or 
inadequate degrees of parallelism are apparent from the 
shape of the graph and the execution times of the nodes, 
interpreted relative to communication overheads. 

A graphical representation can also promote locality 
in designs to the extent to which components are in dif- 
ferent name spaces in the language. In CODE, state is 
retained from one execution of a node to another, and 
communications must be explicitly defined as part of the 

Late on theirinteractions. A graph-based visual parallel 
programmingJanguage can help formalize this process. 

Understanding the large-scale structure of parallel 
programs tends to be more important than for sequen- 
tial programs, because large-scale structure can dramat- 
ically affect the execution performance of parallel pro- 
grams. For programmers to understand and achieve 
good performance, they must understand the structure 
of their program's computation graph-regardless of 
how their program is represented. For example, if the 
execution time of sequential segments between com- 
munications is too short, performance will suffer because 
it will be dominated by message-passing overhead. 

A direct graphical representation of parallel programs 
renders such concerns explicit. The programmer knows 
exactly what the sequential components are because they 
are separate components. Especially if they are subpro- 
grams that perform some cleanly defined function, the 
programmer will also have a good feel for their execu- 
tion time. So, the programmer will be aware of the com- 
putation's granularity. 

The graph can also directly display other information 

interface to a sequential computation 
node. This encourages programmers 
to package a node's data with the 
node. Locality is easy to express, but 
remote access requires more effort. 
So, beginning parallel programmers 
are guided toward designs that exploit 
good data locality. 

CODE and Hence 
One of the challenges in visual pro- 
gramming research is evaluating new 
ideas. We have found that it is neces- 
sary to actually implement systems 
and use them in programming pro- 
jects and university Programming 
classes to thoroughly understand 

their merits and limits. Even then, results are often sub- 
jective and context-dependent. We implemented 
CODE 2 .O and Hence 2 .O, which are based on the ideas 
described previously. They are similar in purpose and 
philosophy but are significantly different in detail. 

In both languages, users create a parallel program by 
drawing and then annotating a directed graph that shows 
the parallel prograx's structure. Both languages offer 
several different node types, each with its own icon and 
purpose. In both cases, the fundamental node type is the 
sequential computation node, which is represented by a 
circle icon. The annotations include sequential subrou- 
tines that define the computation that the computation 
nodes will perform, and include the specification of what 
data the computations will act upon. 

The CODE environment runs on Sun 4 workstations 
and can produce parallel programs for either the 
Sequent Symmetry or networks of workstations using 
the PVM portable message-passing library.3 Hence runs 
under X Windows on a variety of Unix workstations. 
Programs that it produces run under PVM on a network 
of Unix machines of various types and capabilities. 
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Integrate a function in  
parallel by spl i t t ing Spkt  Interval 
the interval and 

Figure 2. CODE integration program. 

CODE 
Figure 2 shows an extremely simple CODE program. 
It numerically integrates a function in parallel over a 
definite interval [U$] by computing the midpoint m 
between a and b and then having one sequential com- 
putation node integrate the interval [u,m] while the 
other does [m,b] at the same time. The results are 
summed to form the final result. 

The nodes that do the integration are both named 
In t e g Ha 1 f ; the graph shows that they can run in par- 
allel because there is no path from one to the other. The 
arcs represent dataflow from one node to another on 
FIFO queues. The graph is read from top to bottom, 
following the arrows on arcs. The graph shows that the 
Split Interval node creates some data that are 
passed to the two Int e g Ha 1 f nodes. The data con- 
sist of a structure defining the integration that the 
receiving node will perform. 

To create this parallel program, the programmer uses 
a mouse to dmw a graph just like in Figure 2, and then 
enters textual annotations into different pop-up windows 
associated with such objects as nodes an# arcs. This infor- 
mation includes such familiar items as type definitions 
and sequential function prototypes (for type-checking 
calls). We will ignore these and focus on the annotations 
of computation nodes. When annotation is complete, 
the user picks “translate” from a menu, and a parallel 
program is created, complete with a makefile, ready to be 
built and run on the selected parallel machine. 

Annotations 
The annotation for a computation node consists mostly 
of a sequence of stanzas, some ofwhich are optional. For 
example, the annotation for either I nt e g Ha 1 f node is 

input-ports ( IntegInfo I: I 
output-ports 1 real S ;  1 
vars [ IntegInfo i: real Val: 1 
firingrules 1 1 - >  i => 1 
comp ( val = simp(i.a, i . b ,  i.n): I 
routing-rules 1 TRUE => S < -  Val; i 

(Both nodes are identical. A single 
dynamically replicated node could be 
used instead.) 

The first two stanzas provide names 
for “ports,” which are queues of data 
that enter and leave the node. Each 
node uses its own local names for these 
ports so that nodes can be reused in 
new contexts. This node will read data 
of type IntegInfo (the structure 

that defines the work to be done) from port I ,  and write 
real data onto port S. 

Each arc annotation (see Figure 2) binds an output 
port name to an input port name. The graph clearly 
shows that the S p 1 it Inter va 1 node places data 
onto output ports I1 and 12. Port I1 is bound to input 
port Iof  the left Integ Half node. So, the data that 
S p 1 it Inter va 1 places onto I1 is sent to the left 
Integ Half node, and the data placed onto12 is sent 
to the other. 

The var s stanza of the annotation of Int e g Half 
defines variables that are local to the node and that its 
computation can read and modify. 

The firing-rules stanza is very important. It 
defines conditions under which the node can execute. 
It also describes which local variables will have data 
placed in them that have been removed from designated 
ports. CODE’S notation for firing rules is quite flexible, 
but is sometimes complicated relative to the language’s 
other features. The rule “I-> i =>” is the simplest case. 
It signifies that the node can fire when there is data 
waiting on port I, and that when the node fires, the data 
value is removed from I and placed in local variable i. 
Thus, the Integ H a l f  nodes simply wait for an 
incoming value. When one appears, they fire and pro- 
duce an output. 

The c omp stanza defines what sequential computa- 
tion will be performed when the node fires. The text 
is expressed in a language that is a subset of sequential 
C functions and that includes calls to externally defined 
sequential functions and procedures (such as simp, 
which does the integration in this example). I t  is 
expected, but not required, that all significant sequen- 
tial computations will be encapsulated in such exter- 
nal functions. 

Finally, the rout ing-rules stanza determines 
what values will be placed onto output ports. As with 
firing rules, the notation is flexible and potentially com- 
plex, but this example is simple. The value of real vari- 
able V a l  is placed onto queue S. 
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Other CODE icons 
Figure 3 shows the icons that appear 
in CODE graphs. Three of them 
define the interface to a graph. CODE 
graphs can call other CODE graphs 
through the Call icon. Arcs incident 
upon Call nodes are the actual para- 
meters of the call. These arcs are 
bound to interface nodes in the called 

General nodes 

Sequential computation d) 
.--$-.- Shared-variable declaration 

Call from one graph to another 

gure  3. Node icons in CODE. 

graph via a name binding that is an attribute of the arcs. 
This is similar to arcs binding port names between two 
nodes, as we described before. Interface nodes must have 
names that are unique within the graph. 

Creation parameters are also bound to an incoming arc. 
They exmct exactly one value from this arc when the called 
graph is instantiated at runtime. All nodes in the called 
graph can use the creation parameter name as a constant. 

The shared-variable icon declares variables that will 
be shared among a set of nodes. Each node must declare 
whether it requires read-only or read-write access to the 
variable. 

HENCE 
The Hence program in Figure 4 looks exactly the same 
as its equivalent CODE program in Figure 2, except that 

0 Hence graphs are read from bottom to top. 
0 Hence computation nodes are always named by the 

(exactly) one sequential procedure they are required 
to call. , 

0 Hence arcs take no annotation. 

Graoh interface definition 

P Incoming parameter 

Outgoing parameter 

Creation (read-only) 
parameter 

Figure 4 shows all the node annotations; in the actual 
Hence system, the annotations are in pop-up windows. 

Although the Hence graph looks like the CODE graph, 
its meaning is very different. Except for some features that 
have not been discussed, arcs in CODE represent 
dataflow. Arcs in Hence represent two dfferent concepts 
at the same time: control flow and variable name scope. 

A Hence node can execute whenever all of its predeces- 
sors have executed. This is the only rule that defines when 
a node can run, and there is no implication that predeces- 
sor nodes have sent any data. There are no explicit node- 
firing rules as in CODE. Hence has special control-flow 
nodes that can alter the succession of node executions. 

Annotations 
Hence node computations access variables in a global 
name space. Each node must Contain declarations that 
specify which variables will be accessed and whether 
changes to them will be propagated to successor nodes 
in the graph. This will require an explanation and some 
background. Computation node annotations have three 
parts, two of which are optional: 

< double sl; 
< double s2 

< double a; < double b; 
< double mid; < double mid; 
< int n; 
sl = simp(a, mid, n); s2 = simp(mid, b, n) ; 
> double sl; > double s2; 

< double b; 
< double mid; 
< int n; 

-___ - 

Figure 4. Hence in tegra t ion  program. 
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0 Sequential computation. 

f7 Loop begin and end. The enclosed subgraph is 
iterated over an index range such as i =  0 to N. 

A Conditional begin and end. The enclosed subgraph is ? executed only if an expression evaluates to TRUE. 

Parallel replication (fan) begin and end. The enclosed * subgraph is replicated such that all copies execute in v parallel. Copies are indexed as in i= 0 to N. 

n Pipeline begin and end. The enclosed subgraph is 
U replicated to form a pipeline with indexed stages. 

-~ 

Figure 5. Node icons in Hence. 

1. Declaration ofinput and input/mtput variables (option- 
al). The values of input and input-output variables are 
read from the nearest predecessor node that outputs 
those variables. The values of the variables can be 
changed. New values of input-output variables can 
be seen by successor nodes; new values of input vari- 
ables cannot. Input declarations contain a “2’ token, 
and input-output declarations contain a “<>” token. 

2 .  Call to a sequentialprocedure (required). The proce- 
dure may be written in either C or Fortran. The 
call’s actual parameters may be expressions. Vari- 
ables that appear in the expressions are inputs, 
input-outputs, or outputs from the node. 

3 .  Declaratam ofoutput v a d k s  (optional). The node can 
set output variables, whose values are available to suc- 
cessor nodes. Output declarations contain a ‘5” token. 

Consider the annotation of the S e t  I n p u t s  node in 
Figure4. ItcallsaCroutinenamed SetInputs,which 
provides values for variables a, b, mid, and n. The vari- 
ables are made available to successor nodes because they 
appear in output declarations. 

The two simp nodes are very similar, but one uses 
input declarations to read a, mid, and n from its nearest 
predecessor ( s e t  Input  s) and the other reads mid, b, and 
n. The left simp node makes $1 available to its succes- 
sors in the graph, and the right makes s2 available. These 
variables hold the results of the integration. Subroutine 
simp, a C procedure, actually performs the integration. 

The P r in tAns  node reads sl and s2. It calls the C 
procedure P r in tAns ,  which sums them and prints 
their value, which appears in the Hence console win- 
dow when the program is run. 

Other Hence icons 
Like CODE, the Hence language also supports icons 
other than the circle that represents a sequential com- 
putation. These other node types represent control 
structures. Hence has no facility for hierarchical imple- 
mentation, although its model could support it. Hence 

graphs cannot call other graphs, so there is no need for 
interface nodes. F j p r e  5 shows all of Hence’s icons. 

Hence’s control-flow icons work in pairs; one iCon 
begns a construct and another ends it. The subgraph 
that appears between the icons is acted upon. For exam- 
ple, the subgraph between a loop-begin and a loop-end 
node is executed repeatedly, much like the body of a C 
f o r  loop. The loop-begin is annotated with a statement 
that assigns its index variable an initial value, with a ter- 
mination condition expression, and with a statement that 
gives the index variable its next value. The loop-end node 
(and all other end nodes) requires no annotation. 

Conditional node pairs define an “if-then” structure. 
The conditional-begin node annotation contains an 
expression. If the expression evaluates to TRUE (mean- 
ing nonzero, following the C language convention), the 
subgraph between the pairs is executed. Otherwise, it is 
not. Hence does not contain an “if-then-else” structure. 

Fan node pairs create parallel structures. They 
dynamically replicate the subgraph between them and 
evaluate the replications in parallel. The fan-begin 
node’s annotation consists of an index statement: 

IndexVar = S t a r t v a l u e  TO Endvalue :  

IndexVa r takes a different value in each replicated sub- 
graph, so each replication has a unique index. 

CODE AND HENCE COMPARED 
Node-firing conditions are explicit and general in 
CODE. Programmers must explicitly define the exact 
circumstances under which a computation node can exe- 
cute. The specification language is quite flexible and 
general, and firing conditions can depend on the node’s 
internal state. For example, it is easy to define a node 
that nondeterministically merges data from two streams. 
Such a computation is impossible to state in Hence. 

It is tempting to say that Hence’s firing rules are fixed. 
Nodes can fire when all predecessor nodes have fired, 
but this is an oversimplification. Execution of a Hence 
node is dictated also by the control-flow constructs in 
which it is embedded. So, Hence firing conditions are 
somewhat less explicit. 

CODE can express more dynamic graph topologies. 
Because of its powerful firing rules and its method of 
instantiating nodes, CODE can express communica- 
tions patterns that Hence cannot. For example, CODE 
can accept an adjacency graph as input data and create 
a graph with the specified topology. 

CODE graphs explicitly show dataflow; Hence 
graphs show control flow. Control flow, in the tradi- 
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tional sense that applies to Hence, is expressed declar- 
atively in CODE firing rules. 

CODE’s basic unit of component reuse is the sequen- 
tial computation node. The CODE model supports 
libraries of computation nodes. Thus, CODE compu- 
tation nodes must be completely encapsulated. They 
must have well-defined interfaces, and they must be 
completely defined in isolation from other graph ele- 
ments. This is why CODE ports exist; they are a node’s 
formal parameters. 

Hence nodes are not a natural unit 
of reuse because of the way they use 
variable names. A programmer who 
copies a node from one Hence pro- 
gram to another will likely have to 
edit the node when it is placed in its 
new context. For example, the new 
program may name some array A, 
whereas the old program called it B. 
However, the subroutines called from 
a node can be reused. These contain 
the bulk of the program text. 

CODE allows name binding on 
arcs, thus bridging the name spaces of 
any two nodes. The downside is that 
programmers must specify name 
bindings on every arc. The CODE 
computation node is somewhat anal- 

access via arcs. This more completely shows the com- 
munication patterns of programs, but dataflow graphs 
are often complex. Programs with complex dataflow can 
become a rat’s nest of arcs. This can be hard to under- 
stand and is also cumbersome because programmers 
must individually annotate all arcs. 

Hence programs are related to flow charts of struc- 
tured programs. They are concise and orderly even when 
graphs become large. Dataflow is implicit, so less struc- 
tural information is presented to the programmer; but 

~ __ ~ 

With vhrual 
parallel 
prolgrbmmlng 
languwes, 
performance and 
Iogkrl debuwmg 
can be carried out 
Wrth th@ same 
rep”nta&ion 
used for 
programming. 

ogous to a simple statement in a conventional pro- 
gramming language like Fortran. It is cumbersome to 
have to specify name binding between “statements.” 

LESSONS LEARNED 
It is not surprising that there is a trade-off between ease 
of use and expressive power. CODE’s firing rules are 
explicit and general, but can be complicated and wordy. 
Hence’s firing rules are simple and concise, but are not 
always adequate to express algorithms. They do appear 
to be adequate for many interesting numerical algo- 
rithms, however. Languages should be designed with 
simple mechanisms to cover 90% of the needs but should 
also include more expressive mechanisms. The challenge 
is to define both so that they compose naturally. 

Parallel structure is often not fully determined until 
runtime. CODE and Hence address this by using 
dynamic replications, but this reduces the degree to 
which the program’s structure is visually apparent. The 
static display of programs whose structure is determined 
at runtime remains a significant goal. 

CODE shows all dataflow or common-shared-variable 

computational elements are still clear 
and well encapsulated, and parallel 
structure is displayed. However, 
because dataflow is implicit, pro- 
grammers might make errors in which 
the “wrong” node is another node’s 
nearest predecessor for some variable. 

Debugging in the 
visual environment 
Both performance and logical debug- 
ging are important aspects of parallel 
programming. Performance debug- 
ging involves understanding and 
improving a program’s speed, and 
logical debugging involves correcting 
errors in a program’s logic. With 

visual parallel programming languages, performance 
and logical debugging can be carried out with the same 
representation used for programming. This article 
focuses on logical debugging. 

DEBUGGING E”ES 
Debuggmg establishes the relationship between the pro- 
gram (typically some small segment of a large program) 
and its execution. The entities involved in debugging 
include the program, P; a specification of the program’s 
(or program segment’s) expected execution behavior, 
which we call M for model of behavior; and some repre- 
sentation of the program’s actual execution behavior, E. 

Debuggers for programs written in pure text forms 
typically use different representations for P, M,  and E, 
and this imposes much additional work on the program- 
mer. Ideally, these entities would be expressed in the same 
representation, so that the programmer will not have to 
understand and manipulate several different notations. 

Visual directed-graph programming supports the for- 
mulation of parallel-program debuggers in which a sin- 
gle notation can express all the entities. This simplifies 
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debugging not only because it lets programmers think 
in terms of the program, which is what they understand, 
but also because it allows the ready automation of the 
often tedious task of comparing expected and actual 
behaviors. It also facilitates identification of the pro- 
gram’s logic faults. We are implementing such a debug- 
ger for the CODE system.4 

DEBUGGING THE GRAPH 
An action is a node’s atomic execution. It maps an input 
state into an output state according to 
a known I/O relation. The execution 
of a program is the traversal of the 
graph, starting with an assignment of 
an initial state, and ending with the 
execution of a final state. The traver- 
sal causes events, which are the execu- 
tion of the actions a t  the nodes, and 
generates a partially ordered set of 
events. This set defines a directed 
acyclic graph of events that corre- 
sponds to instantiations of the actions 
defined at the nodes. 

Debugging identifies the actions 
responsible for the program’s failure 
to meet its final state specification. 
Debugging comprises these steps: 

4. Map E to M to detemzine where the actual and expected 
eventsjmt divergz. This can be done automatically 
because E and M are specified in the same repie- 
senta tion. The mapping identifies event sequences 
in E that do not correspond to the allowed set 
defined in M. 

5. NIap the elaborated graph of M back to P to dejne cor- 
rectiveaction. Because the elaborated graph ofM con- 
tains instances of the nodes of P, the mapping is auto- 
matic and guides us toward the offending action in P. 

Identifj, and select the portions of LC program whose 
behavior will be monitored. This is a set of “suspect” 
nodes or subgraphs. It is typically impossible to 
monitor the entire execution behavior of large, com- 
plex parallel programs. The visual graph represen- 
tation of P simplifies selection of suspect portions. 
Specijj the expected execution behavior of the set ofnodes 
that will be munitwed. A graphical program’s execution 
behavior is naturally represented as the partially 
ordered set of events expected to be generated at the 
nodes of the suspect subgraphs. This is M, the model 
of expected behavior. We can either construct this 
set of events directly, or construct a graph of the 
actions whose execution will generate the desired set. 
Capture the execution behavior of the selected portions 
of the pyogram. The execution behavior is the par- 
tially ordered sequence of events that actually 
occurred during execution. This set is E. The pro- 
grammer obtains E by selecting a set of program 
nodes with the mouse and then running the pro- 
gram. The system then automatically records all the 
necessary events and orderings. 

A programmer will often cycle 
through these steps a number of 
times before identifying the bug. In 
each cycle, the programmer will 
progressively come closer to the 
offending piece of code. 

Using actions, instead of events, 
in the representation of M greatly 
helps the debugger filter out irrele- 
vant information. This restricts the 
execution history displays of E to 
only the events that interest the user. 
This filtering greatly simplifies the 
checking of M ,  which can be done 
either visually by the programmer 
with the help of the debugger’s exe- 
cution displays, or automatically by 

LLLe debugger’s model-checking facility. The debug- 
ger provides an animation facility that visualizes the 
mapping of E to M. The elaborated graph acts as an 
underlying structure that greatly helps the animation. 

So, a visual programming environment provides a con- 
sistent graphical representation for all the entities used 
in debugging and simplifies the design of a concurrent 
debugger that coherently relates the steps of debugging. 
It also provides a unified framework for supporting dif- 
ferent concurrent debugging facilities, like execution his- 
tory displays, animation, and model-checking facilities. 

C ODE and Hence have demonstrated many 
advantages of visual programming for par- 
allel computing. A visual program repre- 
sentation that directly shows program 
structure allows programming, debugging, 

and performance analysis in a single consistent frame- 
work. It also allows the programming process to be sep- 
arated into two phases: the creation of sequential com- 
ponents, and their composition into a parallel program. 
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Only by actually implementing the programming 
environments have we been able to evaluate these ben- 
efits and discover even more effective visual parallel- 
programming abstractions. Much work remains to be 
done. Even with visual techniques, it is difficult to express 
statically those program structures that are largely deter- 
mined at runtime. Also, compilation techniques could 
be improved because CODE and Hence lend themselves 
to automatic dataflow and scheduling analysis. 

There are also alternative methods for defining the 
primitive compute-node computations. The University 
of Tennessee is developing a visual programming envi- 
ronment called which features compute nodes in 
which users place explicit message-passing calls. This 
can simplify the computation-graph structure of many 
programs. 

FURTHER INFORMATION 
Hence and the PVM package it targets are available in source and 
binary form via xnetlib or by anonymous frp to frp.netlib.org. E-mail 
questions on Hence to hence@cs.utk.edu. For more information on 
Code, contact browne@a.utexas.edu or newton@cs.utk.edu. A 
World Wide Web site for information on PVM1Hence is at 
http://www.epm.ornl.gov/pvm/pvm~home. html. 
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