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This paper describes programs Lo reduce a pensymmetric matny e tridiagenal form, to eompuate
the cigenvalues of the tridiagonn] matrix, to improve the accuracy of an eigenvilae, and to
campute the sorresponding sipenvector. The intended purpese of the software i3 to find a few
cigenprirs of o dense monsymmetric matrix faster and more accurately than previous methods.
The pecformancs and aoturacy of the new reatines are eompared to two EISPACK paths: RG and
HZA-INVIT. The results show thot the new routines are more accerate and alse faster if less than
H) percent of the eigenpairs are needed.
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1. INTRODUCTION AMD OBJECTIVES

A standard approach in computing the eigenvalues of a general sguare
matrix iz to reduce the matrix first to Hessenbery form by a sequence of
orthogonal transformations, and then to determine the eigenvalues of the
Hessenherg matrix through an iterative process known as the QR algorithm
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[3]. The reduction to Hessenberg form requires O(n*) operations, where a is
the order of the matrix, and the subsequent iterative phase alse requires
{Hx®) aperations. The subroutine package EISPACK [ 1] uzes this acheme o
compute all of the eigenvalues and eigenvectors of 8 general matrix.,

IT the original matrix is symmetric, then that symmetry can be preserved
in the initial reduction, so that the reduced matrix is tridiagonal. Although
the reduetion to tridiagonal form still requires {z") operations, the subse-
quent iterations preserve the tridiagonal form and, hence, are much less
expensive, o that the total cost of the iterative phase is reduced to Nr®)
operations. Again, standard soltware is available in EISPACK for implement-
ing thia two-phasge approach for the aymmelrie case.

The atbractively low operation count obtained when iterating with a tridi-
agonal matrix suggests that the tridiagenal form would be extremely henefi-
cial in the nensymmetric case as well. Such an approach presents two
difficulties, however. First, QR iteration does not preserve the structure of a
nonsymmetric tridiagonal matrix. This problem can be overcome hy using LR
iteration [8] instead, which preserves the tridiagenal form. Second, it is
difficult to reduce a nonsymmetrie matrix to tridiagonal form by similarity
transformations in a numerically stable manner, Methods to improve the
stability can be found in [4]. Here, we deseribe the software available to
reduce the matrix to tridiagenal form and to compute the eigenvalues and
ergenvectors of the resulting tridiagonal matrix,

2. INITIAL APPROXIMATION TO EIGENVALUES

2.1 Reduction to Trdiagonal Form

The algorithm used in the direct reduction to tridiagonal form is discussed in
detail in [6]. The algorithm altsrnately eliminates columna and rows of the
matrix, preserving the form shown in Figure 1. Retaining this matrix strue-
ture allows us to improve the overall stability of the algorithm by pivoting at
each step.

At the &th stage (see Figure 1), the algorithm applies the permutation that
minimizes the maximum multiplier in the tranaformation matrix NOIN
Here, N, and N, are elementary matrices such that N, AN." reduces column
feand NN AN VIN, reduces row k. This minimization can be performed
in {Hn = &) time because of the special structure of N7 'N,. Details of this
minimization slgorithm can be found in [5).

The reduction algorithm may encounter a pivot that is zero (or unaccept-
ably small) regardless of the permutation. When this occurs, the original
reduction iz said to have broken down, and the subprogram NEWSTR is
called. NEWSTR applies a random Householder similarity transformation bo
the original matrix. The original matrix must therefore be saved, but this is
already necessary in order to apply the iterative refinement method deseribed
in Section 3.2, NEWSTR is only applied once in our scheme. If the reduction of
the second matrix alse breaks down, then the algorithm returns an error
eade. This oceurrence has not yet been ehserved in practice.

The transformationa used in anndhilating each column and row are saved
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in the locations made avzilable by the eliminations at each step. These
Lransformations are needed for the caleulation of the eigenvectors during the
iterative refinement step.

2.2 BEigervalues of a Trndiagoral Matris

One of the most efficient methods of caleulating all of the sigenvalues of a
nonsymmetric tridiagonal matrix ia LR iteration. Most of the improvements
that have been incorporated into QR iteration over the vears [11], such as
implicit. double-ahift iterations, deflation, aplitting, and arbitrary shifts, can
alzo be uszed in the context of LI iteration.

An implementation of LE iteration that is apecifically tailoved for tridiagoe-
nal matrices, called TLR, has been developed. The user supplies the tridiago-
nal matrix as three vectors, In the first step, the matrix is scaled a0 that its
superdiagonal elements are equal to one. This reduces the operation count,
singe LE iteration preserves the form of such a tridiagonal mateix, Moreover,
the superdiagonal vector iz now free for use as a working array. Implicit
double-zhift iterationz and splitting are implemented just az they are in
EISPACE for HQR. Splitting due to either neglizible subdiagonal elements
or b0 two consecutive small subdiagonal clements are implemented, The
criteria we use for negligible and small entries are the zame a= in HQR.

Implicit arbitrary shiflz are inveked in two different contexts in TLR, Fiest,
if an eigenvalue haz not converged in 20 iterations, then the iteration is
azsumed to be stuck in a cvele, and one arbitrary (random) double-ahift is
applied. Second, if the LE iteration encounters a zers- (small) diagonal
clement, then the iteration breaks down, and one arbitrarvy zhift is applisd to
change the values of the diagonal elements. {Another obvious methed [or
avoiding a zere diagenal i3 to pivel inzide LE, but thiz has the major
drawback of destroving the tridiagonal structure of the matrix) Up to 10
congecptive arbitrary shifte are tried if the breakdown condition peraista,
after which the algorithm aborts with an error condition. However, a single
arbitrary shift proved aufficient during all of our tests.

Because of the potential for breakdown and the need to restart an iteralion
with a different shift, a copy of the matriz iz made hefore the start of each
iberation. This requires at most 2n storage, One s vector must be supplied by
the user for this purpese. The second »n vector initially holds the superdiago-
nal, but thiz space 15 reclaimed after the matnx 1= sealed.

3. IMPROVING THE ACCURACY OF THE EIGENVALUE AMD COMPUTIMG
THE EIGEMVECTOR

Approximations to the sigenvalues of A are obtained by reducing the matrx
Lo tridiagonal form T (with ATOTRI and then by calculating the eigenvalues
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of T (with TLR). In many cases, particularly for small matrices, thesa
computed sigenvalues closely approxamate the eigenvalues of A, However, for
larger matrices, or for matrices whose cigenvalues are ill-conditioned, the
rounding errors introduced during the reduction of A to tridiagonal form,
coupled with the errors introduced by LR iteration, can induce significant
errors in the computed eigenvalues. Hence, we regard the reduction to
tridiagonal form T° and the subsequent caleulation of the eigenvalues of T as
vielding approximations to the eigenvalues of A, which are then improved in
a subseguent phase of the computation.

3.1 Inverse lteration with Rayleigh Quotients

Crne standard technique for improving the aceuracy of an eigenvalue and, at
the same time, computing the associated eigenvector is to apply inverse
iteration coupled with caleulating the Rayleigh quotient. If only a few eigen-
pairs are desired, then inverse iteralion s fairly sttractive, aince it is
accurate and reasonably rapid. The EISPACK routine INVIT performs inverse
iteration (without Kavleigh quotients) to a Hessenberg matrixz. Each iteration
requires (M n°} operations, since solving a linear system with a new right-hand
side iz reguired for each teration. If the complete eigenaystem of 2 dense
matrix is required, then the EISPACK routine RG is recommended because it
ia robust, is highly aecourate, and requires only (M n?) operations for the full
elgensystem.

Another alternative is to apply inverse iteration with Ravyleigh quotients to
the tridiagonal matrix T obtained from A by ATOTRI Again, the solution of
a different linear system for each iteration is required, but the linear aystems
now have a tridiagonal coefficient matrix and, therelore, can be solved in only
(¥ n) steps. Thus, inverse iteration with Ravleigh quotients applied to the
matrix T i3 a very fast means of oblaining accurate approximations to the
eigensyvstem of T. Unfortunately, to obtain the eigenvectors of the original
matrix A, one must apply the inverse of the transformations that reduced A
Lo trdiagenal orm to the computed eigenvectors of T, and the eigenvectors of
A will suffer from any resulting roundofl ervor, Morcover, the eigenvalues of
T may dilfer [rom those of A for the same reason. The results given in
Section 4 indicate the degree of inaccuracy stemming from these roundoff
CITOrs.

In summary, inverse iteration on T ean give a uzelul rapid mnitial approxa-
miatien to the elzensystem of A, But there may be inaccuracies introduced by
rounding ervor either in caleulating the eigenvalues or in obtaining the
cigenvectors of A from the eigenvectors of T

3.2 Merative Refinement

It has leng been known that Newton's method for the solution of nonlinear
systeme can be applied to the problem of caleulating the eigensystem of a
matrix [8]. Moreover, in [2], Dongarra et al. describe an algorithm for
improving the accuracy of an eigenpair based on Newton's methed, The main
drawhback of their approach 15 that it is too costly, in general. In this section
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wi describe a less costly variant of the algorithm given in [2] that takes
advantage of the iridizgonalization of A while =till obtaining a gh desree of
BLCUTALY.

Agzume that (4, x) iz an approximate eigenpair of the matrix A and that
A+ 64 and x + 8x are a neighboring eigenpair such that the relationship

Alx+ dx) =[A + X[ x + 6x)

iz exact, Thus, 54 and dx represent the srrors associated with the computed
values A and x, respectively.
Rearranging the equation, we have

(A —Al)Ex — BAx = Ax — Ax + 8A8x,

where the last term on the right will be of zecond order in the errors in A
and x,

If wae lot 7 = Aix — Ax and assume that the second-order term &idx 1=
negligible, we can rewrile the equation in the form

(gx\ _ (r)
|. 3 | = Lﬂ }

where ¢/ §x = () is 2 normalization applied to x such that the = component of
x equals one, implying &x, = 0 (see [2] for details),

When the original zpproximate eigenvalue 1z found by using the reduction
to tridiagonal ferm, this yields a matriz & z2uch that

A - A —x
el 0

£

A=N'TN.
Uzing the transformations from the reduction to tridiagonal form, we have
|' M | | A Al ¥ | | -1 :I | N | |I, o
i LTI oIl 1 1)1 &a

-(* 1))
| 1 /40
which ean be rewrittan as

T =il =Mx) fﬁ'll i
[P;_'ﬂ'l I 0 I|_-I5.l'|._| = |'.'I:IJI|,
where 7 = Nr and §x= Ndx. The solution to the resulting linear syvstem
produces approximations to the errors 84 and dx, yielding new approxima-
tions Lo Lhe eigenpair. The linear svsiem iz eazily zolved by transforming it
into a tridiagonal system of equations by a rank-one medification. The
software we have implemented applies the Sherman-Morrizon formula (7] to
golve the svatem of equations.

Given the original matrix A, the tridiagonal matox T, the transformations
N that reduced A to T {A = N 'TW), and the approximate eigenvalue A,
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the refinement algorithm can be deseribed as follows:

v 1% an initial guess for the sigenvectar;
perform one step of inverse iteration, (T — Apdlay = 4
Ty = Mg,
fori=-0,12,...
r=Ax - Axg
gl = (eTh, —1)7;

I.T = ':l'l'jl _Jv:-' I r}'l | IJ"Il-n" |
adplvie - H M |—. |I 1 |I
i 31 D Fant l l:l L)
w; = Ny
Tio = X; + 6
'!"l'l o ":I': 1 .r'l'l:
- -':L.".-'---'._':l'lll':l:l-lII
check if eonverged, =1;
100 Alle
end.

Note that the eigenpair is refined relative to the original matrix: that is, the
residual is computed with the original data A, and the improvement iz being
made Lo the sigenvector of A, The tridiaponal mairix T and the transforma-
tions N are used solely to simplify solving the syatem of equations, Hence,
the convergence will be to the eigensystem of the original matrix 4, not the
tridiagonal matrix T

Because of the relationship with Newton's methed, convergence is guaran-
toed when Bnw < z, where

I[A a l]__l!' —x X .
e o)
=z, —xl,and x = 2{x is a bound on the second derivative). As can he
seen, the convergence rate and error bound depend on the condition of the
matrix (zee [1] for additional information),

The approach deseribed here will not only improve the aceuracy of the
approximate eigenvalue A but will also compute the eigenvector, The conver-
gence theorem for this iterative procedure can be found in [2].

During the improvement phase, the subprogram named REFINE iz called
with the original data matrix A, the reduced tridiszgonal matrix T, the
transformation N, and an approximate eigenvalue (WR, WD) as parameters. A
single inverse iteration step is performed with the tridiagonal matrix T (using
GTINIT) L obtain an initial approximation to the eigenvector assotiated with
the gmiven eigenvalue. On return from REFIME, the improved eigenvalue is
stored in (WR.WI), and the improved sigenvector in (XR, X1}

4. EXAMPLES AMND PERFORMAMCE

We present two lest suites to illustrate the speed and accuracy of the
new algerithms. Routines from Release 3 of EISPACK, which is currently
available, were used in our comparisons. All experiments were execuled
on an IBM RS /8000 medel 530, using the FORTRAN compiler xIf with
optimization,
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Table I Camparizan of Accuracy of New Routines o EISPACK Routine RG: Residaal [s
max|Ax — Axil, aod e, Iz max|s, — A, is the sigenvalue obtnined from R4,

and &, is the computed eigenvalush

Acceracy af routines of derse rerdom matnces

R INVIT i
Prablem ~ ATOTRITLR  (EISPACK)  (EISPACK) RINE
sian £, residual reakdial 2 Featdual
(11} 2.7E-14 1.8E-14 20E-14 dAAE-15 2TE-16
100 T.2E-A% 5.2E-12 29E-12 2TE-13 R
500 1.2E-02 2.5E-0 A0E- 10 1.3E8-12 2.3E-12
Table 1T, Comparisen of Execution Times in Seconds of New Eoutines to EISPACK
Rautime RG: Time for INVIT and REFINE Are per Eigenpair
Performance of reatines gn dense randam neatrices
Profnlem R ATOTRI ELMHES TNVIT REFINE
EIRE] all {4, x3 TLR IR {por &, 20 (per A, x)
11} 0,024 0,00 0,06 .00 LOLEE
10k L7110 0,283 (), 7o 0.6053 QL0ER2
a0 To. G605 A4.50) 1,14 {4342
459,000 e 1] 20200 1357

GIUH

054911

Tahles 1 and II show the results for random matrices with the entries
uniformly distributed in [ - 1.0, 1.0]. Table I shows the maximum difference
hetween the eigenvalues computed by ATOTRI-TLR and those caloulated by
AG. The maximum difference of the improved eigenvalues iz alse given.
Finally, the residual is given for the results from inverse iteration, iterative
refinement, and RG. The inverse iteration results are obtained by calling the
EISPACK routines ELMHES and HQR, followed by INVIT for every eigenpair,
The maximum residual over all of the eigenpairs is reported in the table.
Similarly, REFINE was called for every eigenpair, and the maximum residual
is reported, In every case the smallest maximum residual was generated with
the new iterative refinement routines.

Table 11 compares the execution times of three methods of caleulating
pigenpairs for a nonsymmetric matrix, For reference, the time required for
BG to calenlate all of the eigenpairs is given. RG dees not allow the user Lo
caleulate selected eigenpairs. If selected eigenpairs are desired, then the user
can call the EISPACK path ELMHES, HQR, INVIT, ELMBAK, The table shows
the time to reduce the matrix to Hessenberg form and to caleulate all of ita
eigenvalues. [n & separate column, the average time Lo calculate an eigenpair
iz given. (The time for ELMBAK iz divided among the n eigenpairs caleulated )
The table also shows the time to reduce the matrix to tridiagonal form and to
caleulate its eigenvalues, This operation is amazingly fast on a cache-baszed
machine like the RS /6000, The average time per eigenpair for improving the
eigenvalue and for caleulating the corresponding eigenvector with iterative
refinement is about four times meore than using INVIT. But because the

AW Tranescsona on Mothematiol Salbware, Val, 18, oo 4, December 1560



Algornithm P10 Computing Eiggervalues and Eigenvectars - ek |

Table [11.  Moximum Residunl for Three Methods of Calenlating Eigenvalue /Eigenvoetor
Iwirs for Donze Matrtoss

EFSPACK test suwite of roal gp.rh?rcﬂ e

maxfh — Rl Aeal max] Az = Azl
Prablom ATOTRI [nwarae lterntive EISPACE
number TLE iterntion relinement [RGY
1 1E-13 2.5E-12 2HE-15 1. 2E-1%
2 1E-11 CE-07 Z1E.07 £ 3E-D8E
i AR HOE-13 1.3E-14 4.8E-08
4 5E-15 LAE-14 27E-14 1LOE-13
5 1E:15 LTE-07 QAR A AE-0T
g 1E-13 L3E-[7 1.2E-0¢ 24508
7 SE-10 A.8E-08 ZAE-10) 85609
] GE-00 0010 LaE-00 0.0E 0
] 206 S9E-15 1.7E-13 5.3E-09
10 GE-15 1.ZE-10 9.5E-11 LEE-Q8
11 TE-1E 1.TE-14 1.3E-14 LYE-1%
12 AE-[y Z8E-15 1L.TE-15 T 4E-14
1% TE-15 1.7E-13 5 EE-16 1.7E-14
14 JE-15 JAE-12 1GE-16 2A4AE-14
15 TE-18 n2E-14 4 HE-16 1L6E-14
16 OE-0 T.5E-15 (OB 1.1E-49
17 OE-a0 44E:15 {LOE-x] 1.2E-31)
14 QE.00 f,3E-15 QLOEAM 0L.0E-
19 SE-07 Q.0E-15 f8E0 2 TE08
m 1E-16 1.4E-14 1.OE-15 9. TE-15
21 1E-16 Baik-15 22E-16 B.OE-15
22 k-4 1OE-13 T.1E-16 TIE-14
23 GE-14 ZAbE- 10 FIE-1T ZHkE-14
24 1E-10 2 AE-DG B2E-0% L=
25 1E-16 S9E-07 IOE-15 H#OE-14
2 1E-15 4.3E-13 A6E-14 2.2E:=15
=7 BE + 07 AEE-01 G0E- L] LEE-s
8 1E-15 4.8E-14 1.2E-14 S.7E-14
b 1E-16 24E-14 2.8E-14 4. 0E-12
a0 1E-13 5.2E-14 23E-13 +.2E-13
11 2E-12 3.7E:14 1.5E-15 5.6E-14
32 1E-0d 1.4E-14 LAE-05 4 AET
A 1E-14 SAE.0L 1.BE-4 I.1E-08
24 1E-18 4 4E-i2 G1E-14 1.5E-08

35 1E41 1. HE-12 LEE-Of 2.7E-13

routines ATOTRI and TLR are ao fast (TLR is n®) as compared to (r?) for
HQR [5]}, the total time for caleulating up to 20 percent of the eigenpairs is
smaller (and the results more accurate) using the new routines.

The results of running the EISPACK general matrix test suite [10] are
shown in Table III. This test auite consists of 35 small matrices (none
exceeding 20 x 20) that are designed to be patheological with respect to their
eigenvalues and eigenvectora. Most of the matrices are ill-conditioned, some
are defective, some are deregatory, and some are all three, The accuracy and
robustness of the new algorithms are displayed by this test, where we
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compare the residual from AG to GTINIT and REFINE. GTINIT applies inverse
iteration with Havleigh quotients to the tridiagonal matrix 77 wntil conver-
gence to the desired eigenpair iz achieved. The eigenvectors of A are then
oblained by applyving the inverse of the transformation matrix N, For refor-
ence, the maximum error (with respeet to BG) of the initial elgenvalue
eslimate from TLR 12 given for each malox,

5. SUMMARY

It i elear [rom our tests that iF all of the eigenpairs are required, then the
EISPACK routine RG is the recommended approach. However, the new
roulines presented in thas paper are superor in bolh speed and ascuracy to
existing methods {i.e., EISPACK) when only a faw (up to 20 percent) of the
eigenpairs of a dense nonsvmmetric matrix are required. The demand for
routines to aolve such problems is growing rapidly in many areas of computa-
tional selence, including quantum chemistry and materials sclence.
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