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ABSTRACT

The purpase of this paper is to reintroducs U generalized O Felorization with or
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In addition, we demonstrate the applications of the GO factorization in sobving the
linear equality-constrained least-squares problem and the generalized linear regression
prablem, and in estimating the canditioning of these prablems,

1. INTRODUCTION

The DR factorization of an 7 % m matrixs A assumes the fonn
A= QR

where @ s an n % n orthogonal matrix, and A = Q%A i zero below it
diagonal. 11 n = m, then QTA can be written in the form

e |

where Ry is an n % o upper trisngular matrix, If s < m, then the QR
factorization of A assumes the form

QA = Ry Ry

where Hyy ks an n % n upper triangular matris, However, in practical opplica-
tiens, it is more convenient to represent Lhe Fctorization in this case as

A= [ﬁ R“]'I:,],

which is known as the R} factorization. Closely related to the QR and RO
factorizations are the QL and LQ factorizations, which are orthogonal -lewer.
trinngular and lower-triangular-orthogonal factorizations, respectively. It i
well known that the orthogonal factors of A provide information about its
column and row spaces 1.

A colummm pivating option in the QR factorization allows the user to detect
dependencies among the columns of o matrix A, If A has rank k, then there
are an orthogonal matrix (F and a permutation matrix P such that

Iﬂ_]:’: 11 |-:|
grin B Bl

3 m -k
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where I}, is k » k, upper triangular, and nonsingular [10]. Householder
transformation matrices or Givens rotation matrices provide nomerically stable
numerical methods to compute these factorizations with or withoot pivoting
[10]. The soltware For computing the QR factorization on sequential machines
is available from the public lincar-algebra library LINPACK [5]. Hedesigned
cades in block alporithen fashion that are better suited Tor today's high-perfor-
mance architectures will be available in LAPACE [1].

The terminology generalized QR factorization (GOR lactorzation), a8 used
by Hammarling [12] and Paige [20], refers to the orthogonal transformations
that simultanecusly transform an n X% m matrix A and an n ® p matrix B Lo
triangular form. This decompesition comresponds to the QR Gotorizetion of
B4 when B s square and nonsinguler, For example, if m 2 m, n 5 p, then
the GOR fuctorization of A and B assumes the form

QA = [g}, o8V =[0 s].

whers 0 i an 5 ® noorthogonn] matrix or o nonsingular well-conditionesd
matriz, ¥ isa p ® p orthogonal matrix, K is m % m and upper triangolar, and
iz p » p and upper triangular, If B is square and nonsingular, then the OR
factorization of B~ A is given by

VT(B1A) = H] = 5"[&].

ie, the uper trismgenlar paert T of the Qﬂ Factorization of B~ '4 can be
determined by solving the triangular mateis equation

5,T =R,

where 5, is the m x m top left corner block of the matriz 5. This implicit
determination of the QR fuctorization of 874 gvoids the possible numerical
difficulties in forming Bl ar B 1A,

Just as the QR factorization has proved to be a powerful tool in solving
leagt-qoquares and related linear regression problems, so0 too can the GOR
factorization be used to solve both the linesr equality-constrained least-squares
problem

min || Ax = B[,
Fix =



246 E. ANDERSON, Z. BAL AND [, DONCARRS

where A and B are s % roand p o= 5 matrices, reapectively, and the general-
ized linear regression model

min " subject to b = Ax + Bu,

Tou
where A and Bare n o m and 5 % p malrices, respectively, Throughout this
paper, | - || denotes the Enclidean vector or matrix norm. Note that in the
constrained least-seunres problem, n s the column dimension of botli A and
B, and in the generalized regression maodel, n is the row dimension of both A
anel £,

L factorization appronches have been used for solving these problems;
soe Lawson and Hanson [18, Chapters 20-22) and Bjdrck [6, Chapler 5. We
shall see that the GO factorization of A and B provides a uniform approach
to these problems. The benefit of this approach is threefold. First, it wses a
single GOR factorization concept to solve these problems divectly. Second,
from the softwaredevelopment point of view, it allows us te develap fower
subroutines that can be used for solving these problems. Third, just as the
triangular factor in the QR factorization provides important information on the
conditioning of the lincar least-sguares problem and the classical linear regEres-
sion amgadel, the triangular Factors in the GO factorization provide information
om the conditioning of these gencralized problems.

Crur maotivation for the CQR factorization is bosically the same as that of
Faige [20], However, we present o more general form of the factorization that
relaxes the requirements on the ank of some of the sobmatrlees in e
factored form. This modification is significant because it simplifies the devel-
opment of software 10 compute the fctorization bul doees not limit the dass
of application problems that can be solved. We also distinguish hetween
the GOQR lfactorization with plveding and without pivoting and inleaduce a
generalized RO} Fucterization.

The sutling of this paper is ws follows: In Section 2, we show how to use
the existing QR actorization and its variants to construct the GOR {or GRO)
factortzation without pivoting of two matrices A and B having the same
number of rows. In Section 3, we add a column pivoling option to the GOR
factorization. Then, in Ssetion 4, we show the applications of the COR
factorization in sobving the linear equalitv-constrained least-squares problem
and the peneralized linear model problem, and in eslimating the conditioning
of these problems.

2, GENEHALIZED QR FACTONIZATION

In this section, we first introduce the GOR factorization of an n % m
matrix A and an n % p matrix B For the sake of exposition, we assume
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w2 m, the most frequently occurring case. Then, for the case n < m, we
introduce the CRO boetorfzation of A and &

COR Factoriention,  Fef A be an n = om o matric, B oas n = P omatrix, aed
gsstime that n = . Then there are orthogonal matrices @ (n % m) and V
(p ¥ p} suck that

O'A =K, Q"BV=5, {1)

where

with Sy (o x ) wpper frinngedir, oo

= [P Sulsn ¥ ngp

[l n

where the & % n matric 8y iz apper triengular, or

Sypfn-p ;
§m [ﬂsl]u f n>p,

n

where the p o= pomatris 35 i wpper triangudar,

Proof.  The prool is sasy and constructive, By the QR fuetoriztion of A
wir have

o=z

=

Let O premultiply B then the desired factorizations follow upoen the RO
faclorization of {?TE. Wn=p,

T [0 5]

-
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atherwise, the RO} factorization of Q7B has the form

r_ S A= g
[oTB)V = ISE.]P .
el [ |

To illustrate these decompositions we givee examples for cach case:

ExamprLe.  Suppose A and B are each 4 ® 3 matrices given by

1 [, i 3 1

_ | =3 2 1 _|=a = =]
| B SR AR il R (B
i -1 2 i T

Then in the COR factorization of A and B, the computed orthogonal matrices'

o2 and V oare

[ -0.2085 -0.5792 01562 —0.3959
Q| 08255 -04l47 01465  0.6444

—0.4170  =0.2322  —0.7665  0.4206 |
| —0.6255  0.0332 | 0.6054  0.4910

0, 7858 052758 =0.3224
Vi=| —0,1647 —0.298% —0.9365 |,
| = (0.5002 .7955  —=0.1369

and K and 5 are

[ —4.7958 1.4506 01,8341 ]
e 0 -2.6210 -2.7537
Y 1] 2.5026 |
0 0 LN
[—4.2220 31170 0.5223
a8 = 4 G 1.3176 —1.7712
0 =2.0602 —0.4209
] L] J.53E872 |
“In all af these examples, the compuated resuliz are presented e foer decimal digin,

althuugh the compnitations were carried out in double precisios, IF the compuated sariable
age: an thie eriler ol machine precision, (io., 2. 28045-016) we round 1o zevn.

f
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To illustrate the case n < p, let B be given by

182 3 4 5
-3 & =2 | 2
A= 5
R 4 - -1
I3 —2 ] 1

then in the GOR factorization of A and B, the arthogonal matrz Vs

03375 —-00Ma1 —0.2689 —0LB363 0.6345

05026 02044  =01635 02771 —0.2407

Vi=| 00534 ~-0.5118 =0.5794 -0.2833 —10.565
01583 0. 1280 O.GOAT  — 06280 — 0,440

— 0. 2474 08208 =0.4414  — 02001 — 01628

and the matrix 5 is

0 =3.4311 25692 —1.8585 0.1380
e 0 7020 2_195%7  0.1571
f] il 0 —5.93R68  1.077H
] L] ] 0 3.0630

Cecasionally, one wishes to compute the QR [actorization of B7'A, for
cxomple, to solve the weighted least-squares problem

|r|:|| ] R"{Ar - .[a]ll.

T wvasicd Forming B Vand B~ YA, we nole that the COR factorization (1) of A
and B implicitly gives the QR fuctorization of 87 14:

riwn-[5]-+(%]

i.e., the upper triangular part T of the QR Factorization of 87'A can be
determined by solving the trinngolar system

SuT = Ay,
for T, where 5, is the m » m top left comer block of the matrix 5. Hence,

the possible numerical difficulties in uging, explicitly or implicitly, the QR
factorization of B~'A are confined to the conditioning of 5, .
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Moreover, if we partition ¥V = [V, V], where V; has m columns, then
B~ A= v.(s,‘,’n,, .

This shews that if A is of rank m, the columns of ¥, form an orthonormal

basis for the space spanned by the columns of B~ 'A. The matrix V,¥," is the

orthogonal projection onte #(B~'A), where #(-) denotes the range ar
column space,

Another straightforward application of the GQR Factorization is to find a

maximal set of BET-orthonormal vecters orthogonal to #A). That is, we
want to find a mateix ¥ soch that

ZTa =10, ETHETE = .

Let us rewrite the decomposition (1) as

';"T Ry, '-?I 0 5 Sy
lﬂ}]ﬁniul' [t}.{lw_lu 0 Sul

where ) is partitioned conformally with R,
Q=@ s ] '
awnd 55, 535 are upper triangular. Then the desired matrix Z is given by
Z= Q55"
When Aisan r % m matrix with o < m, althowgh it still can be presented

in lerns similar to that of the GOQR factorization of A and B, it is sometimes
more useful in applications to represent the fuctorization as the following:

CRQ factorization.  Let A be an n % om matrix, B on n % P maiviz, and
agswane that no < m, Then theve are orthogonel matrices Q0 (n % n) and U
{m X m) suck et

QAP =R, (OTR=§ (2}

e

e [0 fia]n

w — I I
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with B, upper friangdar, and

g = [511 "?'-IE]"

1 JJ—H

if ngp

or

5 ]
5:[11]5_11 if n>p,

where the n 3 noor p ¥ p mateix 5, is upper Iriangelar,

Proof. The prool is similar to that of the GOQR factorization. Bricfly, one
first dhoes the QR factorization of B (B = Q8), then follows it by the RO
factorization of QTA. [ ]

From the GBQ Fwtorization of A and B, we see that il B is sepunre and

nonsingular, then the RQ factorization of B~'A is given by

(B-'aju=[o v]=5"0 &,].
3. GENERALIZED QR FACTORIZATION WITH PIVOTING

The previous section introduced the generalized QR factorization. As in
the R foctorization of & matrix, we can also incorporate pivoting into the
GOR factorization to deal with ill-conditioned er rank-deficient matrices.

GOR Betorization with column pivoting.,  Lef A be an 0 = m matric and
B be an n % p matriz. Then there ere orthogonal matrices F (n = n) and V
[p = ) and a permetation matrix P sech thal

QAP =R, (Q'BV=35, {3)
whiere
Ry, Ry E
o B L
R o= il g [n—g-k

g m=-g
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fhar oy 2 o matrix B i wpper trigngdar and nonsingular, and either

0 Sy S|4

[ . Y I 4 :
o o oln-q-k ¥ oose

p=n g n=-gq.

S -

where the g x g matriz Syy & wpper trienguler and S,., if i exists, is a
Jull-rong-rank wpper trapezoidal matris, or

11 Syo |
o 0 s | K ;
5w . b —" if n>=p

p=n4+g n—g

where By, i it exists, i trapescidal with mp& in the strictly lmoer loft triangle,
and the k % (n = g) matrix 8,y iv full-row-rank spper tropezoidal. ifp < n - g,
then the first Bock eolumn of § is not present,

Proof. The proof is alio constructive. By the QR factorization with
pivoting of A, we have

&y, Fipg o
olar=| o o |v—4
g m—=g

where g = rank{ A). If n < p, et

0 1) §|2 ]
(O[B)Vi= |0 o 5,9

pP—n § n—-q

be the KO factorization of 7B, Then by the QR factorization with pivoting on

the submatriz 5,5, we have
- l "-"-M:I k
ﬂ!523P3= 0 |r=g-k.

n—aq

{
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Then the result for this case follows by setting O = 0, diag{[l, (&) and
¥V = V, diag{l, F3).
[Fmn=pand pgr— g, et {}T premultiply B, amad cdenote the resull as

Sule
OiBm |5 n—a

p

then by the QR factorization with pivoting of 5, we have

2 Sar | R
IS._“ Fae=| g |n=-—g-k
n

where k = rank{%;,). The desired factorization forms are obtained by setting
Q= @, diag{I, 3y) and ¥ = F,. Note that in this case, the first block column
af & in [3) is nob present.

Otherwise, if o= pand p > 1 — g, then by the B factorization of {78
we have

St n=p
(ors)v= |5, |7
P

where 5, is p % p upper trangular. The conclusion for this case follows
by appl:,-'jng the DR fuctorization with pividing b the (& — g) ® (n — g}
submatrix By, |

T illustrate these decompositions, we give an example for each cose.

Fxamirre.,  Let A ke the 4 % 3 matrix

1 i -3
#* 1 -8
A=
=1 1 4
1 -3 -3
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where rank{ A) = 2. To illustrate the case o £ p, let B be the 4 ¢ 3 matrix

11 1.1 1
=] 3 & 3 =
B =
2 2 3 4 3
LS S ] 2] 1

Then in the COR decomposition with column piveting of A and B, we have

[ — 0.a7R0 0,6412 . 1290 [1.63535

0= — 7550 01603 —0.a616  —0,5217
0.3780 0.2565 —0.4785 01400 |

OATED —0 7053 —0,.2844 0.525]

00830 —0.7638 - (L2663 0.1663 —0.3535
= 0. 5906 00188 - 08119 —0.5007 (283
Vim 07674 L2360 —0.3642 —0.4453 - 01,1562
=0.0419  —(0LLES0 06002 —0. T8 —0.04%7
| = 02278 (.495] 01918 —0000%  -0.816]

P=[e e e,

where e is the ith column of an identity matrix 1. The matrices & and 5 are

[7.9373 -0.3780 -—2.6458
A= il 4 4561 il
f 0 0l
| i i} 0.
[ 00000  0,9277  1.2449 28375 —2.3806
5= 0 0 0 . —1.9158 —1.007%
i ] 4] G250 46708 |
i 0 i M 0 -3.5563

To illustrate the case o > p and pan=gqlet Bhethe d x 2 matrix

z 3

e li=es
B'za
1

Then the CQR decomposition with column pivoting of A and B gives

= 0374840 0612 01290 05553

Om —0. 7559 1603 —0.3618 —0.5217
0. 378D 02565  —0.BTE5 (14100
=0.ATE  —0.7033  —0.2844 0.5251

Ve [ez £],
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the malrces B and P oare the sime as above, and

-2 8458 -2 2678
24685  0.7053

-3.8600 -3,1752 |
0 0.5272

Tor illusdrete the case = pand p = — g, let B be the 4 % 5 matriz

oS e L
I B = B3
B e

Then the COR decomposition with columm pivoting of A and B gives

= 03750 T B —(h.4]ldn 1. 5214
—0.7350 0. 1 HKE . 1622 — {1, 6117

01,3780 0.25685 —0.6767 —0.5775 |
| —0.3780 =0.7053 = 0.3563 0. 1264
04380 —0.RTH4 0,354

W 03037 0.7286  =0.4641 |,
| — 07446 —0.0938 - 0L6609

|"':}_

the matrices I and P are also the same as above, and the matris 5 iz

1.2913 34804 —0.8051

g | —0-8TE3 - 10819  —0.4605

‘ 0 5.EDAT 0LERLS |
0 0 1.0103

In Paige’s work [20], the submatriz 3, in the definition of GOR wilh
celummn pivoting is sl fo be of foll column rank, Enforcing this assumption
would make the factorization difficult lo compate: in gensral, it wonld reguire
pivating in the st r columns of & bot such piveting could destrov the
structure of A, Our computational procedure, as outlined in the prood, simply
uses the comventional OFR Gotorization to reduce the two input matrices
witheust requiring that 5, have foll colomn rank, This makes our Tormulation
more general and also easier to implement. As shown in Lhe above examples,
the lilock ."'f“ i #he matrix § may not b of Fall column rank,

Finally, we note that if B is square and nensingular, the QR factorization
with column pivoting of B7'A s given by

VI{B )P =S l[’L" ’:;*]_
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4. AFPLICATIONS

In this section, we shall show that the GOR lactorfzation not only provides
a simpler and more efficient way to solve the linear equality-constrained
least-squares problem and the generalized linear regression prablem, bat alse
provides an efficient way Lo assess the conditioning of these problems. Henee
the COR Fetorization for solving these generalized problems is just as power.
ful as the QR factorization is for solving leastsgquares and linear TEEres-
sion problems. In the next section, we shall Lriefly mention some other
applications of the GOR lactorization,

4.1, Linear Equality-Constrained Least Squares

The linear equality-constrained least-squares (LSE) problem arises in
constrained surface fitting, construined optimization, geodetic least-sguares
adjustment, signal processing, and other applications. The problem s
stated as follows: fnd an reevector 1 that solbees

miln || Ax = Bj, (4}

Hzml

where A s an m % 0 matrix, m 2 n, & 40 p 0 matrisx, P n, boisoan
nevector, and o is a0 poector, Clearly, the LSE problem has a solution if and
only if the equation Bx = 4 s consistent. For simplicity, we shall assume that

nmk[ﬁ:l = p, (5
i.e.. B has linearly independent rows, so that Br = o is consistent for any

right-hand side: o, Moreosver, we assume that the null spaces 47 A) and A(8)
of A and B intersect only trivially:

A A) A B) = {0}, 16

Then the LEE problem has a unigue solution, which we denote by x,. We
note that (6] 15 equivalent o the rank condition

Tunk{[‘g” = (7)

Several methods for solving the LSE problem are discussed in the books 1w
Lawson and Hanson [16, Chapters 20-22] amd Bjbrek [6, Chapter 3, For a
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discussion of the large sparse matrix case, see Bjorck [6], Van Loan [23],
Barlow et al. [3), and Barlow [4). The null-space approach via a two-step QR
decompesition is one of the most general metheds for dense matrices. MNow
thiz approach can be presented more easily in terms of the GOR [aetorization
of A and B,

By the GOR lactorization of BT and AT, we know that there are ortho-
gonal matrices £ and U such that

¢ Ry Byelp Snle
OQIATV=f= |0 0 Ru|P—P QB as=|p|r—PF,
M= g =g i

and [rom Lhe assumplions 4y and (7], we koow 5, and Rgo are upper
trigngular and nonsingular, If we partition

g=[an ). U=[y ©w u],

where (3} has p columns, U has m - a columns, and & has p columns, and
s

[ —_
4,r=I:I|"':.'=i£r'];nl , e¢=UTh= f-:. i; ﬂ.
Mg |Ho= g o |n—p

where y, = I:P;rr. i=1,2 and £ = I_fl.T_F_n, i = 1,23, then the LSE problem is
transformed to

f[[o o : £
min| | B; 0 [ y;] - | e
R, RL €3

subject o

(st ol -

Henoe we can compube &, from the equality constraint by solving the
trimmgular gystem

STJ gy = o
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Then the LSE problem is truncated tothe ordinary linear least-sguares
prohlem

“:I"” " Rz yp — {ﬂﬁ e H;:H:”-

: .

Since K3, is nonsingular and lower triangular, ¥z is given by
Yo = Hz'aTif:s s {{.lrt'.-'n]~

which only invelves solving a trisngular system. The solution of the LSE
problem is then given by

.= 0w=0u + T

or in a mare straightforward form,

x, = Q. Ry 1D & '::-"[ = SﬁTrl.

{
Ra'RT,
and the residual sum of squares p? = Il r'e||ﬂ = | Ax, = b||® is given b

— 2 T 2
pt = |lel* + I By w = eell®

Examrie.  Let the LSE problem be specified with

— L)

1
e e 1 e - = 1 [
B'{: 1 1] b= al d [4]
4

The exact solution to this problem is x, = L[46, — 2, 12]". By the GOR
Factorization of BT and AT, we have

— e
I
e et

L LS L 0 0 1.1547
0 0 0 —2.0000

0 =183 (.

0 :1.3583 3.1867 1.533:}]
g
0 I

[— 1.7321 =0.5774
and the computed solution of the LSE problem is

3.T5H)
E.o= | —0.2500 (.

LS00

————

g
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The relative ervor of the computed solution is

£, = &

= 42502 » 10710
[

and the norm of the vesidoal || Az, — b = 92466,

The Sensitivity of the LSE Problem, The condition numbers of A and B
were introduced by Eldén [9] to asess the perturbed behavior of the LSE
problem, Specifically, let E be an error matrix of A, F he an ecror matrix of
B, and & and § be errors of b and d, respectively. We assume that 8 + F also
has Mull row rank and A A + E) N A8 + F) = {0}, i.e., the perturbed LSE
problem also has a unigue solution. Let 2, be the solution of the same
problem with A, B, &, and d replaced by A+ E, B+ F b+ e and d + [,
respectively. Eldén introduced the condition numbers

; ot :
ol A) = 1Al[(AG)".  xa{B) = I BI 1B
to measure the sensitivity of the LSE problem, where
G=1-88 B =[I- [ac)'a] B

and AT denotes the Moore-Penrose psevdoinverse of a matrix A,
Under mild conditions, Eldén’s asymptotic perturbation bound, modified
slightly here, can be presented as follows:

LSE-Problem Perturbation Boand,

Ix, — fl_|, El f H'II
=l “lﬂ](q Al ) “{B”l I8l )
|| :
HEI{.&}I\"lﬂll -‘-'[ :I||||;"] r+ﬂ|:f :l
where
el LU o ) =1l r, = dx, = b,

Ty D
FIREA CIREAD Fal =

and O{¢*) denotes the higher-order term in the perturbation matrices E, F.
te.
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The interpretation of this result is that the sensitivity of T_ is measured by
gl A) and & o By if the resiconl r, is zero or relatively small, and otherwise by
il Afw B} + 1],

We note that if the matrix B is zero (hence F = 0, then the LSE problem
is just the ordinary linear least-squares problem. The perturhation bound for
the LEE problem is then redoced to

e [ E 1|
Iz 5l _ o[ 1EL el
Il = AL Al EA

1EL - nd
?
A AT TAT T

+ 0(c*),

where s gl A)l = k[ A) = [ Al || Al I This is just the perturbation bound of the
linear least-squares problem obtained by Golub and Wilkinson [10].

Extimation of the Condition Numbers.  The condition numbers « g A) and
i 4 B) of the LSE problem involves 8%, BTE, [ ACG). ete., and computing these
matrices can be expensive. Fortunately, it is possible fo compuate inexpensive
estimates of « g A) and & 4 B) without forming &', 88, or { AG)", This can be
done wsing o method of Hager [11] and Higham [L4] that computes w lower
bound for | B||.. where 8 is & matrix, given a means for evaluating malris-
vector products Bu and BTu. Typically, four or five products wee required, and
the lower bound is almost always within a factor 3 of | B, To estimaie
gl A)and &, B), we need to estimate vector norms | Kz ], where K = [AG)
or K= B}, and z 2 0 is a vector that is readily computed. Given the GQR
factorization of A and B, after tedious computations, we have

()= = g ""-Ez.r”rl-r-\'--
H.l'a = {-':I[ nl'i-IHT :|5|_]Tz'

where we do not need to form R or 857, but rather solve the triangular
sysbem and o mitrix-vector operations,

Roughly speaking, the conditioning of the LSE problem aunly depends on
the conditioning of the matrices Rgy and 3, In the last cxample, although the
matriz & is ill conditioned {actually, it is singular), we have

—1.7321 -5.7T
tam -] a5, <[ 17 2]

s il burns out fo ke well-eonditioned problem.
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4.2, Generalized Linear Regression Model
The generalized linear regression model (CLM) problem ean be written as

b= Ar + w, (&)

where w is & randem error with mean © and a symmetric nonnegative definite
variance-covariance matric o W, The problem is that of estimating the
wnknown parameless 1 on the basis of the ohseration b IF W has rank p,
then W has a factorization

W= BE"

where the n ® pomadrix B has linearly independent columns (for example, the
Chelesky factorization of W eould be carried out to get B). In some practical
prablems, the matrix B might be available directly. For numerical computa-
tion reasons it is preferable to use B rather than W, singe W could be il
eonditioned, but the condition of B may be much better. Thus we replace (8)
by

b= dAx ok B, {EI]

where A iz an n ¥ m omatriz, B is an g % p matrix, and o is g random emror
with meim 0 and covardance 620 Then the estimator of = in (9] is the solutien
ta the following algebraic penerlized linear least-squares problem:

min u subject to b = Ay + Bu, |:|.|:|_:I
X, u

Motice that this problem is defined even if A and B are rank-deficienl. For
convenience, we assume that no2 m, n = p, the most frequently occurring
casc. When B =1, (10} is just an ordinary lincar regression problem. We
assume that the matrices A and B in (10} are general dense matrices, If we
know A or B has a special structure, eg. if B is triangular, then we might
need to take a different approach in order to save the work without destroying
the struciure {see, for example, [L3]).
The LM problem can be formulated as the LSE problem:

|'|'||i|:|!|[|'_|- I]li]” subject to [_.1._ H][;:]-E:-.

Hence, it is cosy to see that the GLM problem has a solution if the linear
awslem

[+ B]|%] =t



262 E. ANDERSN, £ BAL AMD | DONGARRL

is consistent. Because of high overhead and possible numerical difficultios if
the matrices A and B are scaled diffzrently, it is not advisable to solve the
GLM problem directly by the method of the LSE problem. Paige [15] and
Hammarling [12] proposed a two-step QR decomposition approach to the
GLM problem to treat A and B separately. Now, we show that this appraech
can be simplified with GQR-factorization terminology.

By the GOR factorization with pivoting:of A and B, we have orthagonl
matrices {3 (n % n}and V {p % p}and 2 permutation matrix P such that

By Ryl LI S |
TaP=| ¢ 0 |a=v OTBV= )] Seg |R— g
L] o=y g—n+g n-q

where the 4 % g matrix Ry, & upper triangular and nonsingular. We
also assume that the {n — q) % (n — ij) matrix Sy is wpper trinngular and
nemsingular for simplicity of exposition. I we partition

o=l& @] v-[v, %] raje &)

where () has g columns, V, has = — g columns, and P, has g eolumns, and
set

c=@"]‘:=[2]m u:‘r“ﬁ:{:;]. U—PTA-[:J].

i, o= OTh, y, = VT, w; = PVx, i = 1,2 then the constrained acquunkiomn of
the GLM problem (10) is transformed to

FI R Gy | A e [ B

Hence vy can be determined from the “bottom" equation of (11} by solving o
tringrular system

Jgalty = &y,
Tl'll'_!ﬂ Fl'll}l:l'l lui “I:r_lp" !!Eil]ill‘il'll'l .:.r' |:'1 |_:|I e I'l:.l'-"l"

oy = H]lyl 4 'HI'.[ o + ﬁ;:llill -+ ﬂ|2!-'2|
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It is obwvions that to get the minimum-2.norm solutions, the remaining COMI-
nents of the solutions ean bi chosen as

v =1, iy = 0, = HI_JI':'?L T Sm'-'-.:}-
Then the solutions of the eriginal prablem are
ro= PRGOT - S2855'08 )b, = VSS'0Fh.

ExavrLe.  Let the matrices A, B and the vector B oin the GLAM problem
[

| 2 L 4 1 & @ 1

l | 1 1 —1 1 2 1

A=| -1 -2 =1 11. = 3 1 fi b=
-1 2 -1 -1 | 4 1

I 1 1 1 1 =1 & 1

where rank{ A) = 1, rank{ B} = 2. The exuct solutions of the GLM problem are
1, = £[0,8,10, = 16]" and w, = £[14, 70, 28]7.

By the COR Fctorization wilh eshamn pividting of the matrces A and B,
wer D

[ —4.4721 —1.3416 -1.3416 —1.3416

0 —3.4925 —G.9956  — 82086

= y 0 167453 1.6743

i ] ] ]

| ] (4] 1] ]
Kl 1.66TE 30853
0 —0.4724  =1.73%0
S=|0 f.7913 L6763
] -G 116T — ), 03ah
K ] 0.6015

Then the computed solutions are

Il
0.3111
i, = g?ﬁ: e 1.54;5:—1}.
' 0. 622

—1.7778
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The relative errors of the compoted solutions are

xazil -
I - &lle | 7.9752 x 10718,

= §,6762 x 10710,
Irﬁllﬂ i *“rtﬂ

The square minimal length of the vector ﬁ, is L, = 2,9037, and the residul
is b — AL, = B || = 44464 = 10712

The Sensitivity of the GLM Problem. Regarding the sensitivity of the
problem to perturbations, we shall consider the effects of the perturbations in

the vector b and in the matrices A and 8. Let the perturbed GLM problem
be defined as

min & i subject to !.r+{:={ﬁ+E]_f-|- [E+F:|ﬁ_
T

The solutions are densted by I, and &, Then under the assumptions
rank{ A) = rank{ A + E) = m
and
rank{ A, B} = rank{ A + E, B + F} = n,

we have the following bounds on the relative error in %, and i, due to the
pertuchatioons of B, A, and

Gl M-Proflem Perburiadion Bouwnds,

Iz, — =l 1E| Il
—_— % s A —+ =
[EX ol 4) NAE ALl

UEL AN 1B ol S
3 ”{‘*:' Ay |a||*] TIE A
and
18 —uld (4 ]uru IBJ | pl
BN TR e
k(B ;.( 1el [EX]
(BT (1P * gy * 1A ibll)
Il &l .
Ifllﬁ + Ofe™). (13)
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where

xp(4) = 1Al DAL xa(B) = | B B{GB)'I.

G=1-AdA) Al = Al[1 - BCB)Y], and p = [GB{GEY'|", F, = FBT + BFT.
Here (%) represents the higher-order term in the perturbation matrices E,
I, ete,

The prool s long and appears in the appendix,

If e note that

IBE*] pl = «5(B)1&|.

then the bounds (12) and [13) can be simplified, We see that the sensitivities
of T, and @, basically depend on & 5 A) and « ,( B). For this reason, « g, A)
and & B) are defined as the condition numbers of the GLM problem, They
can be vsed to predict the cffects of errors in the regression variables on
regression coefficients.

As a special case, we note that if B = I, then the CLM problem is reduced
bt the elossical linear regression problem. Then u, ts just the residual vector,
U, = F, = b= Ar u,=r, =+ — (A + Er, F=10 md

r:ﬂ.i}:x[.".]:[ﬂ.”ﬂﬂr]. -E__,_[I.i:l=]..

Henee we lipve

17, — = [ =] [l 1E[.  l=ll
— x| + - +at A — — & O ef)
e T T e e

and

IF, = =l EN el l=.F el
— T g A) e — F |E[ b o O eF
& { }IIM Il & I=l 113 S (R (<)

These are the well-known periurbation results for the solution and residual of
the ordinary linear regression problem [22, 10],

Estimation of Condition Numberz, To estimate the condition numbers
wptA) and g BY of the GLM problem, we again can use the Hager-Higham
method without the expense of forming AT or (GEY'. By this technique, the
required veclor norms || Kx],, can be computed from the GOR fctorization
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of Aand B, where K = (CB)' or K = A} and z 2 0 s a vector that is readily
computed. Alter tedious computations, we have

(GB)'z = V;85' 0l
Az = P,H,']'{QT: = 5"|£5f_~_3|'?f_1~5}-

Hence, we can just use a triangular system solver and matriz-vector operations
to give the estimation of condition numbers of the GLM problem.

Roughly speaking, we see that the eonditioning of the GLM problem
depends on the conditioning of the triangular matrices R ip snd 5o,

4.3 Other Applications

In this section, we briefly mention some other applications of the GOR
factorizations.

The GOR factorization has been used as o preprocessing step for comput-
ing the generalized singularaalue decomposition in the Jacobi-Koghetliantz
approach; see Paige [19] and Bai [2].

The COR factorization can also be used in solving strectural equations:

F=AT, e=BB"y, e=-ad,

where f is given, and we wish to find . This kind of problem regulurly arises
in the analysis of structures made up of elements joined in the siyle of a
framework or networl; see Heath et al. [13) and Paige [20].

3o BUMMARY AMND FUTURE WORK

In this paper, we have defined the generalized QR factorization with or
without partial pivoting of two matrices A and B, each having the same
number of rows, and shown its applications in solving the linear equality-
constrained least-squares problem and generalized linear model problems, and
in assessing the conditioning of these problems. A similar development couold
be done for matrices A and B having the same number of columns, instead of
the same number of rows, Then the COQR factorization of A and B would be
equivalent to the QR factorization of AB~ ' These discussions have served a
the guideline for our future development of GOHR factorization software for the
LAPACK library [1].
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APPENDIX

In this appendix. we prove the perturbation bounds (12} and {13) for the
solutions x and u of the GLM problem presented in Section 4.2,
The Lagrangian of the GLM problem is

:‘.{:, i, P:I =ty + EJ‘JT{I:' — Ar — Ru:l._

where p is a vector of Lagrange multipliers. Taking derivatives with respect 1o
%, uw, and poond cquating the results to zero gives the first-order R sy
conditions for the minimum:

0 0 AYrx iy
0 -1 gHY ["]=[u]. (14)

A p e LR

(The theory may be found in most textbooks dealing with constrained opti-
mizalion; see for example [17).) Since this is a linear equalitv-constrained
problem and the Hessian of the shjective function is 21, which always is
positive definite, any solution of {14) alse solves the GLM problem, so that [14]
i5 necessary and sufficient for the CLM problem. Here we can eliminate
u=E"p togive

s B 5

Similarly, the perturbed GLM problem can be reformulated as

1 AT 4 ET [ x4+ Ay
A+E —(B+F)B+F)"|[-(p+ap)

-’bie]' (18)

The (peeudolinverse of the cocfficicnt matrix is in the Following lemma,
which iz due to Eldén [9]; we have modified it slightly to fit our case.

Lesmin. Lot
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and
[A‘BE}[A‘EH]' Al
(Ab) c"[jce)ce)] e |
uwhere .

G=1-a4" AL =a[1-B(cE)].
I rank{| A, B]} = n, thm ¥ = OV Furiher, if A has full column rank, then
¥l

Sublracting the malriz equation (15} feom {16), we have

[j;] — =i Eﬂ]"é}[ ;l + [C + L';,]"JIE], (17)
where

: g ET T .
E = . F, = FR BET.
-c [.\I_'- 2 Fl ] ] +

If |7 'E | = 1. then we ean make the expansion
(C+E) '=Cc ' -CTlEC 4 -0,

and then {17) becomes

H‘;] - -r:-'r_;[;,] + ﬂ"[ﬂ + Of=8).

where (e 2]- means the higher-order terms in the perturbation factors F, and
&, which we omit in the formulas that follow. By the lemma, we have

Ax= — [ﬂ&ﬂ]iﬂ}S]II.ETP - "'I.Iu{ Ex+ Fip - r.'}.
After tuking: norms, it becomes

laxl < NEN*NARIENEN Nl + NAGNNEN <l + NEN ol + Hel).

i
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Using the condition mambsers
! t
wplA) = Al I &Rl =u(B) = B0 0{CB) |l

we ret the desired relative perturbation bound (12) on the solution x.
For the perturbation bound on the solution e, fram (1T}, we first have

ap= - {a4) E% + ¢7[(cB)(cB)"] Gl Ex + Eyp + o).

Since 4 = BTp and u + Aw = (B + F){p + Ap), we have, subtracting them
and vsing A' = .."I.T{..".AT:I.,

Au=HB"Ap + Fp
= BT A} Ep + BTG (GB)(CB)"] G(Ex + Fyp + )
= B[ 4%} ETp + (GB)'G[Ex + Fip + &),

where the higher-order terms of the perlurbation factors of E, F, and ¢ again
wre: mk presented. By daking norms, and sobstitoting in the condition nembers
& glA) and & (B, we et the desired perturbation bound (13 on the selution ...

Vhe euthers are very grateful to Jim Demmel, Soen Hommarling, and feremy
Du Croz for their valuable eomments. The authors would also like to express
specinl thenks to the rgfereey, whose comments lod to improvenends in the
ﬂr-fmfﬂ“ﬂl"l.
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