The IBM RISC System/6000 and linear algebra operations

This paper discusses the IBM RISC System/6000 workstation and a set of experiments with blocked algorithms commonly used in solving problems in numerical linear algebra. We describe the performance of these algorithms and discuss the techniques used in achieving high performance on such an architecture.

The IBM RISC System/6000 computer is a superscalar second-generation RISC architecture [1]. The RISC System/6000 implements a register-oriented instruction set, the CPU is hardwired rather than microcoded, and it features a pipelined implementation. The floating-point unit is integrated in the CPU, minimizing the overhead associated with separate floating-point coprocessors. The RISC System/6000 has the ability to dispatch multiple instructions and to overlap the execution of the fixed-point, the floating-point, and the branch functional units. The 184 instructions are divided among the functional units and are designed to minimize interaction among the functional units.

The IBM RISC System/6000 is intended to satisfy the requirements of both commercial and scientific applications. Our focus here is on the performance of the RISC System/6000 for scientific applications, which require very high floating-point performance as well as specialized peripherals, such as high-quality graphics adapters. These, in turn, require very high memory bandwidths to the central processing unit.

In what follows, we give a brief overview of the design of the CPU and memory and of some aspects of the I/O system. In particular, we discuss those architectural features most important for designing and implementing high-performance mathematical software. Note that specific details refer to the Model 530. The specification of other members of the RISC System/6000 family may be different in some aspects. For a more complete discussion of the hardware, we refer the interested reader to [1].

Central Processing Unit
The CPU architecture is based on a design that exploits modern compiler technology, and an implementation that exploits VLSI and CMOS tech-
nology, to allow as much parallel instruction execution as possible. The RISC System/6000 processor consists of three separate but integrated functional units:

1. The Instruction Cache and Branch Processing Unit feeds a stream of instructions to the fixed-point and floating-point units. The branch processor provides all the branching, interrupt, and condition code functions within the system. An important feature of the branch processing unit is the “zero-cycle branch”. A zero-cycle branch is achieved by executing branches simultaneously with fixed- or floating-point operations so that the stream of data to these units is not interrupted. In practice, this configuration means that loop boundaries do not interrupt pipelining.

2. The Fixed-Point Unit (FXU) is designed to execute the fixed-point arithmetic, the logic instructions, and the data address computations and to schedule the movement of data between the floating-point unit and the data cache. Read or write transfers between the floating-point unit and the data cache require one cycle to complete.

3. The Floating-Point Unit (FPU) supports the execution of the floating-point instructions. The FPU has a set of thirty-two 64-bit floating-point registers that access the data cache directly. It conforms to the ANSI/IEEE 745-1985 standard for binary floating-point arithmetic. The FPU is organized for double-precision computations. Thus, data held in the floating-point registers are always represented in double-precision format. Therefore, when single-precision data are loaded, they are expanded to double-precision format.

In addition, there are a number of features in the architecture which enhance performance.

- Register renaming is an important feature of the machine. This allows data for the next instruction to be loaded into a floating-point register that is currently being used by an earlier instruction.

- In addition to the usual arithmetic operations, there are compound instructions that multiply two operands and add (or subtract) the product to a third operand. These floating-point multiply-and-add (FMA) instructions take two cycles to complete. However, one FMA instruction may be issued in each clock cycle, provided that the operands are independent. Thus it is possible to complete two floating-point computations in each cycle.

- The FMA instructions actually produce only one rounding error rather than two and are therefore more accurate than required by the IEEE standard. This additional accuracy has been used, for example, in some of the intrinsic mathematical functions. However, if strict adherence to the IEEE standard is required, a compile-time option can be used to disable the generation of compound instructions.

- The floating-point divide is implemented by a Newton-Raphson approximation algorithm. A division requires 16 to 19 cycles to complete and provides correctly rounded results, but is obviously expen-
sive if computed unnecessarily inside a loop. If division by a constant is taken out of the loop and replaced by a multiplication with the reciprocal, the code is more efficient, but the results are not necessarily identical. If it is important to have exactly equivalent code, the added precision and speed of the multiply-add instruction can be used to implement a reciprocal multiplication plus correction algorithm at the cost of a multiply and two multiply-adds (5 cycles). This algorithm is cheaper than a division and still provides correctly rounded results.

This design has allowed the implementation of a CPU that executes up to four instructions per cycle: one branch instruction, one condition register instruction, one fixed-point instruction, and one floating-point multiply-add instruction. A second pipelined instruction can begin on the next cycle on an independent set of operands. This means that two independent floating-point operations per cycle can be executed.

Of particular interest is the fact that loads and independent floating-point operations can occur in parallel. The compiler takes advantage of this capability in many cases: with a well-designed algorithm, it is possible to execute two floating-point operations on separate data items and "hide" one memory reference all in the same cycle. At a clock frequency of 25 MHz, this translates into a peak performance of 50 Mflop/s.

Memory and caches
The RISC System/6000 memory banks implement a four-way interleaved design that provides two 64-bit words of data every cycle. A system can have from 16 to 256 Mbytes of total memory.

Separate instruction and data caches provide conflict-free access to data and instructions. The instruction cache is organized as an 8-Kbyte, two-way set-associative cache, which has a 64-byte (16-instruction) line size. The data cache is a four-way set-associative 64-Kbyte cache, which is divided into four identical chips of 16 Kbytes each. The cache is implemented as a store-back cache to minimize the memory bus traffic: data are written back to memory only when an updated line in cache is replaced. The cache-line size is 128 bytes. A synchronous 128-bit memory bus allows 400 Mbytes per second to be transferred to or from memory; it takes eight cycles to load a cache line (16 double-precision words) from memory to cache. A 64-bit data bus connects the floating-point unit and the data cache; it takes one cycle to transfer a double-precision word between the data cache and the floating-point registers.

Fortran techniques for performance on matrix operations
As mentioned in the preceding section, the RISC System/6000 can complete a floating-point multiply-and-add (FMA) instruction every cycle, so that a Model 530 running at 25 MHz has a theoretical peak speed of 50 Mflop/s. Many factors limit the amount of concurrency that can be effectively used, thus limiting the performance that an algorithm can achieve. Most notably, unnecessary memory references can have a severe impact on the performance attainable. Indeed, the movement of
data between memory and registers can be more costly than arithmetic operations on the data. This cost provides considerable motivation to restructure existing algorithms and to devise new algorithms that minimize data movement.

In this section we describe a model to predict the performance of simple Fortran loops and to serve as a guide to writing efficient Fortran code for the RISC System/6000. (We observe that the Fortran compiler usually takes advantage of all the parallelism of which the CPU is capable.) Our model is based on the following rules:

1. Each FMA instruction requires two cycles to complete. Two FMAs that operate on independent data will be scheduled on consecutive cycles, and therefore two floating-point operations will be executed simultaneously.
2. Loads from cache to floating-point registers require one cycle to complete. They will be overlapped with FMAs that were scheduled earlier, even if they operate on registers that the earlier FMA is still using (register renaming).
3. Stores do not overlap with FMAs.
4. Loop boundaries do not interrupt pipelining (zero-cycle branch).
5. When a cache miss occurs, the floating-point unit must wait 11 cycles before the whole cache line is available. The latency from memory to cache accounts for eight cycles. In our model we add to this an additional latency of three cycles, which fits closely the experimental data we collected. The details of the data transfer may be more complicated in reality, but this is the average effect that a Fortran programmer might expect to see.

In the following three subsections we use this model to explain the different levels of performance that can be achieved by using different levels of Basic Linear Algebra Subprograms (BLAS) kernels [2–4], and we describe some Fortran techniques to implement the BLAS efficiently. High performance was achieved by constructing the codes in such a way that the compiler can easily generate code that matches the architecture of the machine. The techniques used were blocking (or strip-mining), loop unrolling, and loop jamming – all fairly standard techniques used by compiler writers. We hope that some of these techniques will be incorporated into subsequent versions of the compiler, so that even less work will be required to exploit the machine.

Level 1 BLAS
The two Level 1 BLAS operations that occur most frequently in linear algebra are the DOT:

```
DO 10 I = 1, N
    TEMP = TEMP + X(I) * Y(I)
10    CONTINUE
```

and the AXPY:
DO 10 I = 1, N
 Y(I) = Y(I) + ALPHA*X(I)
10 CONTINUE

We begin by examining the performance of these operations when using data stored in cache.

For the DOT operation, each FMA instruction requires two loads, one for X(I) and for Y(I). Loading the data requires two cycles, and performing the FMA also requires two cycles. There is no possibility of re-using data, so the best we can expect is that the loading of the next two operands is overlapped with an FMA. This corresponds to a theoretical speed of 25 Mflop/s; in practice, we measured 24.5 Mflop/s (see Figure 1).

<table>
<thead>
<tr>
<th>Type of memory access</th>
<th>DOT Predicted</th>
<th>DOT Measured</th>
<th>AXPY Predicted</th>
<th>AXPY Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>all data in cache</td>
<td>25.</td>
<td>24.5</td>
<td>16.67</td>
<td>16.4</td>
</tr>
<tr>
<td>all data from memory:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x and y with unit stride</td>
<td>14.81</td>
<td>14.6</td>
<td>11.43</td>
<td>11.3</td>
</tr>
<tr>
<td>x with stride 16</td>
<td>3.65</td>
<td>3.2</td>
<td>3.40</td>
<td>3.2</td>
</tr>
<tr>
<td>x and y with stride 16</td>
<td>2.08</td>
<td>1.8</td>
<td>2.</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Figure 1. Speed in Mflop/s of Level 1 BLAS.

For the AXPY operation, each FMA instruction requires two loads and one store. Again, there is no possibility of reusing data, so the best we can hope for in this case is one FMA instruction every three cycles. This corresponds to 16.67 Mflop/s; in practice, we measured 16.4 Mflop/s (see Figure 1).

For data that must be accessed from memory, we must account of the time taken for data to arrive in the registers. Each time a cache miss occurs (every 16 elements for stride-one access), the processing is interrupted, and the CPU must wait for the cache line to become available. In our model, the CPU must wait for 11 machine cycles. Thus, the cost of moving contiguous data from memory to registers is, on the average, 1.69 cycles per element (i.e., 11 cycles to move a cache line from memory to cache plus 1 cycle to transfer each of the 16 elements from cache to register (11+16)/16 cycles per element). In a DOT operation, on the average 2 floating-point operations (1 FMA) are scheduled every 3.38 machine cycles, giving 14.81 Mflop/s in theory and 14.6 Mflop/s in practice. If the vectors are accessed with stride 16 (the length of a cache line), each element will be available after a delay of 12 cycles (= 11 + 1), giving 25/12 = 2.08 Mflop/s in theory and 1.8 Mflop/s in practice. Figure 1 shows the measured performance and the prediction using the model for some other memory access patterns.

Level 2 BLAS
Here we consider the Level 2 BLAS DGEMV operations
\[y = y + A x \quad \text{and} \quad y = y + A^T x. \]

The basic operation in Fortran is given in Figure 2, where \(A(I, J) \) must be replaced by \(A(J, I) \) for the operation with \(A^T \). Depending on the ordering of the DO-loops, the inner loop is either a DOT or an AXPY. We have seen from the discussion of the two Level 1 BLAS operations that, because the RISC System/6000 system can perform an FMA instruction with all its operands in registers, it is better suited to DOT operations than to AXPY operations. (Note that this contrasts with the situation on vector machines such as the Cray Y-MP, where the two vector loads and one vector store required match the architecture well. Also, by unrolling, it is possible to keep the vector \(Y(I) \) in a vector register for longer, thus increasing the ratio of floating-point operations to memory references.) We have also seen from Figure 1 that when accessing data from memory, it is very important to access the data with stride one, so that all the elements in a cache line are used when that line is loaded. For these two reasons, we consider the operation

\[y = y + A^T x, \]

which can be expressed as a DOT operation with \(A \) accessed with unit stride.

<table>
<thead>
<tr>
<th>(A(I, J))</th>
<th>(\text{W}(I))</th>
<th>(\text{X}(J))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y(I))</td>
<td>(y(I))</td>
<td>(A(I, J))</td>
</tr>
<tr>
<td>(\text{X}(J))</td>
<td>(A^T \times)</td>
<td>(\text{W}(I))</td>
</tr>
<tr>
<td>(\text{CONTINUE})</td>
<td>(\text{CONTINUE})</td>
<td>(\text{CONTINUE})</td>
</tr>
</tbody>
</table>

Figure 2. Generic matrix-vector multiply code.

For this operation, the peak speed is again 25 Mflop/s – exactly the same as for the DOT. However, in this case we can unroll the dot product to re-use each \(X(J) \) a number of times. As the depth of unrolling increases, the ratio of operations to loads increases from one and tends towards two. For example, for unrolling to depths 2, 3, and 4, the ratio of operations to loads is 4/3, 6/4, and 8/5, with a theoretical peak speed of 33.3, 37.5, and 40 Mflop/s, respectively. The code for this operation unrolled to depth 4 is shown in Figure 3.

In practice, there is little benefit in unrolling to very large depths, as there are only a finite number of floating-point registers, and the performance reaches a plateau. The code in Figure 3 performs at 36.3 Mflop/s, and a speed of 40.3 Mflop/s has been measured for unrolling to depth 8.

Figure 4 lists the speed of the various DGE MV operations and also includes speeds for data accessed from memory. This Figure shows that for data
DO 20 I = 1, M, 4
TEMP1 = ZERO
TEMP2 = ZERO
TEMP3 = ZERO
TEMP4 = ZERO
DO 10 J = 1, N
TEMP1 = TEMP1 + A(J, I) * X(J)
TEMP2 = TEMP2 + A(J, I+1) * X(J)
TEMP3 = TEMP3 + A(J, I+2) * X(J)
TEMP4 = TEMP4 + A(J, I+3) * X(J)
10 CONTINUE
Y(I) = Y(I) + TEMP1
Y(I+1) = Y(I+1) + TEMP2
Y(I+2) = Y(I+2) + TEMP3
Y(I+3) = Y(I+3) + TEMP4
20 CONTINUE

Figure 3. Model code for $y \leftarrow y + A^T x$.

accessed from cache, the speed of the operation $y \leftarrow y + A x$ based on
DOT is the same as that for the operation with A^T - there is no penalty
for accessing with stride from cache.

<table>
<thead>
<tr>
<th>Data in cache</th>
<th>Data in memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \leftarrow y + A x$</td>
<td>$y \leftarrow y + A^T x$</td>
</tr>
<tr>
<td>Depth</td>
<td>DOT</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>22.7</td>
</tr>
<tr>
<td>2</td>
<td>30.4</td>
</tr>
<tr>
<td>3</td>
<td>34.1</td>
</tr>
<tr>
<td>4</td>
<td>36.3</td>
</tr>
</tbody>
</table>

Figure 4. Speed in
Mflop/s of Level 2
BLAS.

First, we notice that for data accessed from memory, for the $y \leftarrow y + A x$ operation it is slightly better to use the AXPY operation, which accesses the matrix with unit stride, rather than the DOT version, which accesses the matrix with stride equal to its leading dimension. Second, we see that although the speed of the $y \leftarrow y + A x$ operation based on AXPY (9.0 Mflop/s) and the $y \leftarrow y + A^T x$ operation based on DOT (11.0 Mflop/s) are slower than the corresponding Level 1 BLAS speeds based on unit stride (11.3 Mflop/s and 14.6 Mflop/s, respectively – see Figure 1), the speeds for accessing the matrix across a row are much faster for the Level 2 BLAS than for the corresponding Level 1 BLAS. This is because when elements of a row of a matrix are accessed, all the elements in the corresponding cache line are loaded into cache, and some will be immediately available when the next row is accessed.
Level 3 BLAS

In performing the matrix-matrix multiply operation

\[C \leftarrow C + AB, \]

where we assume that all three arrays are in cache, it is possible to increase the ratio of operations to loads to 2:1 by unrolling the DO-loops in two directions and thereby re-using each loaded element twice. Note that this ratio is optimal, in the sense that it is precisely what the hardware supports. The code fragment in Figure 5 illustrates this technique.

```
DO 30 J = 1, N, 2
DO 20 I = 1, M, 2
T11 = ZERO
T21 = ZERO
T12 = ZERO
T22 = ZERO
DO 10 K = 1, L
    T11 = T11 + A(I, K)*B(K, J )
    T21 = T21 + A(I+1,K)*B(K, J )
    T12 = T12 + A(I, K)*B(K, J+1)
    T22 = T22 + A(I+1,K)*B(K, J+1)
10 CONTINUE
    C(I, J ) = C(I, J ) + T11
    C(I+1, J ) = C(I+1, J ) + T21
    C(I, J+1) = C(I, J+1) + T12
    C(I+1, J+1) = C(I+1, J+1) + T22
20 CONTINUE
30 CONTINUE
```

Figure 5. Code fragment for near-optimal performance of \(C \leftarrow C + AB\).

In theory, this approach would result in a speed close to the theoretical maximum of 50 Mflop/s on a 25 MHz machine. In practice, we have measured 47.5 Mflop/s – see Figure 6. Note that a production version would be complicated by the need to include code for the cases when M and N are not a multiple of two.

In general, the arrays \(A\), \(B\) and \(C\) will be too large to fit into cache together; in any case, they need to be loaded from memory initially. It is still possible to arrange for the operations to be performed with data largely in cache by dividing the matrix into blocks, as shown in Figure 7. We may then fix the block \(\hat{A}\) of the matrix \(A\) and perform every operation involving this block before moving on to another block of \(A\). In other words, we compute the products \(C_1 = C_1 + \hat{A}B_1, C_2 = \ldots\)
Conditions before operation	Speed in Mflop/s
All arrays initially in cache | 47.5
A or B initially in cache | 45.4
C initially in cache | 42.5
No arrays initially in cache | 41.5

Figure 6. Speed of $C = C + AB$ on the RISC System/6000-530. $C_2 + \bar{A}B_2, \ldots, C_6 = C_6 + \bar{A}B_6$. In this way the block \bar{A} can be kept in cache and the data reused many times.

In addition, if we assume that the leading dimension of B is such that all elements of block B_i can be contained in cache, the overhead of loading B_i from memory is not too great. Moreover, each column of B_i is accessed a number of times. Thus, we may perform the matrix-matrix product of these blocks at close to the peak speed of the machine.

Partitioning of large matrix-matrix product

Matrix-matrix product of individual blocks
(Block \bar{A} remains in cache)

Doubly unrolled dot products for "optimal" performance on sub-blocks

To illustrate the overhead of cache loading, we show in Figure 6 the speed of the operation.
where C is 24 by 24, and A is 24 by 128, and where different arrays are forced to be accessed either from cache or from memory. These dimensions were chosen so that all three arrays can comfortably fit into cache together, and the length of the dot products is sufficiently long so that they reach their asymptotic speed.

One other important detail of the blocking strategy merits discussion. Suppose that the matrix A is declared with a very unfavorable leading dimension. Then it is possible that only a few columns of the matrix A will fit into cache before new columns begin to flush the old columns. For example, if the leading dimension of A is 512, and A is 32 by 32, it turns out that only 16 columns of A will fit in cache. To overcome this problem, we copy the block A into a work array and then perform all the operations with the work array, rather than addressing a part of the array A. This approach requires us to access A with a bad leading dimension only once, rather than 16 times, for the matrix dimensions mentioned above.

A Fortran version of the Level 3 BLAS routine DGEMM using these techniques is available from netlib (send mail to netlib@ornl.gov; in the mail message type: send dmr from misc).

Summary of BLAS performance

Figure 8 shows a graph of the speed of the three BLAS routines DDOT, DGERM, and DGEMM for increasing matrix dimensions. The operations performed by DGERM and DGEMM are chosen so that dot products are performed on contiguous elements, i.e., $y = y + A^T x$ for DGERM and $C = C + A^T B$ for DGEMM.

This graph clearly shows the benefit of increasing the ratio of floating-point operations to memory references achieved by using the Level 3 BLAS. For matrix-matrix multiply we are doing $O(n^3)$ operations on $O(n^2)$ data, representing a favorable surface-to-volume effect. Hence matrix-matrix multiply offers much greater opportunity for exploiting the memory hierarchy than the lower-level BLAS routines. All the experiments described here were performed on a IBM RISC System/6000 Model 530 running at 25 MHz, using the AIX XL compiler version 01.01.0000.0000 with the -O option. The BLAS shown in Figure 8 were implemented in standard Fortran 77.

Block algorithms and LAPACK

Experience with machines having a memory hierarchy [5, 6] indicates that it is often preferable to partition the matrix or matrices into blocks and to perform the computation by matrix-matrix operations on the blocks. By organizing the computation in this fashion, one can provide for full reuse of data while a given block is held in the cache or local memory. This approach avoids excessive movement of data to and from memory,
and its benefits on the RISC System/6000 in particular are clear from the previous section.

Many algorithms can be blocked. For example, researchers have used blocking to rewrite codes for the solution of partial differential equations. Such codes make efficient use of supercomputers with small main memory and large solid-state disks [7]. All experience with these techniques has shown them to be enormously effective at squeezing the best possible performance out of advanced architectures.

Recent work by numerical analysts has shown that the most important computations for dense matrices are also blockable. A major software development project dealing with blocked algorithms for linear algebra, called LAPACK (shorthand for Linear Algebra Package), is based on this idea [8].

The LAPACK library will provide routines for solving systems of simultaneous linear equations, least-squares solutions of overdetermined systems of equations, and eigenvalue problems. The library is intended to be efficient and transportable across a wide range of computing environments, with special emphasis on modern high-performance computers. To achieve high efficiency, LAPACK developers are restructuring most of the algorithms from LINPACK and EISPACK in terms of calls to a small number of extended BLAS, each of which implements a block matrix operation such as matrix multiplication, rank-k matrix updates, and the solution of triangular systems. These block operations can be optimized for each architecture, but the numerical algorithms that call them
will be portable.

Performance of blocked algorithms on the RISC System/6000

We used three blocked variants from LAPACK to compare the performance of LU factorization for a general matrix. These blocked variants are shown in Figure 9. The lightly shaded parts indicate the matrix elements accessed in forming a block row or column, and the darker shading indicates the block row or column being computed. The left-looking variant computes a block column at a time using previously computed columns. The right-looking variant (the familiar recursive algorithm) computes a block row and column at each step and uses them to update the trailing submatrix. The Crout variant is a hybrid algorithm in which a block row and column are computed at each step using previously computed rows and previously computed columns.

![Figure 9. Variants of LU factorization on the RISC System/6000.](image)

All of the computational work for the LU variants is contained in three routines: the matrix-matrix multiply DGEMM, the triangular solve with multiple right-hand sides DTRSM, and the unblocked LU factorization for operations within a block column.

Each variant calls its own unblocked variant, and the row interchanges use about 2% of the total time. The average speed of DGEMM is over 40 Mflop/s for all three variants, but the average speed of DTRSM depends on the size of the triangular matrices. For the left-looking variant, the triangular matrices at each step range in size from \(b \) to \(n - b \), where \(b \) is the blocksize and \(n \) the order of the original matrix, and the average performance is 38 Mflop/s. For the right-looking and Crout variants, on the other hand, the triangular matrices are always of order \(b \), and the average speed is only 29 Mflop/s. Clearly the average performance of the Level 3 BLAS routines in a blocked routine is as important as the percentage of Level 3 BLAS work.
Despite the differences in the performance rates of their components, the block variants of the LU factorization tend to show similar overall performance, with a slight advantage to the right-looking and Crout variants because more of the operations are in DGEMM. Figure 10 shows the performance rates in MFlop/s of these three variants for different matrix sizes on an IBM RS/6000-530, along with the performance of the LINPACK routine DGGEFA. The optimal blocksize on the RISC System/6000 computers is 32 for most matrix sizes, but the performance varies less than 10% over a wide range of block sizes.

![Graph showing performance rates of LU variants](image)

Figure 10. Speed of LU variants on the RISC System/6000-530.

Summary and conclusions
The aim of this work has been to examine the performance of block algorithms on the IBM RISC workstation. Based on our experiments, we draw the following conclusions.

1. Neither the memory bandwidth nor the cycle time for the IBM RISC System/6000 is at the level of current-generation vector supercomputers. There is, however, no technical reason why this situation could not be improved.

2. The IBM RISC processor is close to matching the performance level of vector processors with matched cycle times [9]. Because of the regularity of vector loops and the ability of the RISC architecture to issue one floating-point instructions every cycle and complete two
floating-point operations per cycle we expect that the RISC super-
scalar machines will perform at the same rates as the vector machines
for vector operations with similar cycle times. Moreover, the RISC
machines will exceed the performance of those vector processors on
non-vector problems.

3. The LAPACK software based on blocked operations performs at near-
optimal performance with minimal effort. One should note, however,
that the workstation does not match the I/O performance and the
number of users accommodated on larger computers.

4. Essential to high performance is the use of optimized versions of
the Level 1, 2, and 3 BLAS. The techniques and ideas used here to
gain performance on the IBM RISC System/6000 should work on all
RISC-based machines. To a large extent, the success will depend on
the Fortran compiler’s ability to generate efficient code. (We believe
that this high performance is due, at least in part, to the fact that
compiler writers were involved in the early design stages, rather than
after the hardware designers had completed much of their work.)

Acknowledgements
We are grateful to Ron Bell of IBM (UK) Ltd for giving us access
to a draft of his guide to Fortran and C programming on the RISC
System/6000 [10].
We would also like to thank Ramesh Agarwal and Fred Gustavson of
the IBM Thomas J. Watson Research Center, Yorktown Heights, and
Stan Schmidt and Joan McComb of the IBM Kingston Laboratory. The
optimized BLAS on which our work is based were developed jointly by
Yorktown and Kingston, and early access to these routines was crucial.

References

1 Bakoglu, H.B., G.F. Grohoski and R.K. Montoye, The IBM RISC System/6000 process-
sor: Hardware overview, IBM Journal of Research and Development 34, 12–23, January
1990.

2 Lawson, C., R. Hanson, D. Kincaid and F. Krogh, Basic Linear Algebra Subprograms

3 Dongarra, J., J. Du Croz, S. Hammarling and R. Hanson, An Extended Set of FOR-
TRAN Basic Linear Algebra Subroutines, ACM Transactions on Mathematical Software

4 Dongarra, J., J. Du Croz, I. Duff and S. Hammarling, A Set of Level 3 Basic Linear

5 Dongarra, J.J. and D.C. Sorensen, Linear
algebra on high-performance computers, in:
Schendel, U. (ed.), Proceedings of Parallel
Computing ’85, North Holland, New York,

6 Gallivan, K., R. Plemons and A. Sameh,
Parallel Algorithms for Dense Linear Alge-
bra Computations, SIAM Review 32(1), 54–

<table>
<thead>
<tr>
<th>Type of memory access</th>
<th>DOT Predicted</th>
<th>DOT Measured</th>
<th>AXPY Predicted</th>
<th>AXPY Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>all data in cache</td>
<td>41.6</td>
<td>41.15</td>
<td>27.72</td>
<td>27.4</td>
</tr>
<tr>
<td>all data from memory:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x and y with unit stride</td>
<td>26.62</td>
<td>26.04</td>
<td>20.17</td>
<td>19.53</td>
</tr>
<tr>
<td>x with stride 16</td>
<td>7.20</td>
<td>5.90</td>
<td>6.62</td>
<td>5.29</td>
</tr>
<tr>
<td>x and y with stride 16</td>
<td>4.16</td>
<td>3.40</td>
<td>3.96</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Figure 11. Speed in Mflop/s of Level 1 BLAS on the RISC System/6000-550.

Appendix: The Model 550

Since this report was first prepared, IBM has announced a new model in the RISC System/6000 family – the Model 550. This model has exactly the same architecture as the Model 530 used in the experiments reported earlier, but has a faster CPU, running at 41.6 MHz (compared with 25 MHz for the Model 530), and a faster memory. In this appendix we reproduce versions of Figures 1, 4, 6 and 8, with data gathered from the Model 550. We also reproduce Figure 8, which demonstrates the performance attainable with the three levels of BLAS.

<table>
<thead>
<tr>
<th></th>
<th>Data in cache</th>
<th>Data in memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$y \leftarrow y + Ax$</td>
<td>$y \leftarrow y + A^T x$</td>
</tr>
<tr>
<td></td>
<td>DOT</td>
<td>AXPY</td>
</tr>
<tr>
<td>Depth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>38.0</td>
<td>26.2</td>
</tr>
<tr>
<td>2</td>
<td>51.0</td>
<td>39.2</td>
</tr>
<tr>
<td>3</td>
<td>57.5</td>
<td>40.0</td>
</tr>
<tr>
<td>4</td>
<td>61.0</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Figure 12. Speed in Mflop/s of Level 2 BLAS on the RISC System/6000-550.

Figure 11 (similar to Figure 1) shows the speed of various Level 1 BLAS operations. In this case the predictions are based on the clock speed of 41.6 MHz, and a time of 9 cycles to load a cache line from memory to cache. This value fits the observed data better than the 11 cycles used.
<table>
<thead>
<tr>
<th>Conditions before operation</th>
<th>Speed in Mflop/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>All arrays initially in cache</td>
<td>79.3</td>
</tr>
<tr>
<td>A or B initially in cache</td>
<td>75.6</td>
</tr>
<tr>
<td>C initially in cache</td>
<td>70.9</td>
</tr>
<tr>
<td>No arrays initially in cache</td>
<td>70.2</td>
</tr>
</tbody>
</table>

Figure 13. Speed of $C := C + AB$ on the RISC System/6000-550 for the Model 530. The other Figures correspond exactly to those in the text.

![Figure 14. Speed of Level 1, 2, and 3 BLAS on the RISC System/6000-550.](image)