JOURRMAL OF FARALLEL ARD DISTRIBUTED OOMPUTING 9, LE5=202 { 1990

A Tool to Aid in the Design, Implementation, and Understanding of Matrix
Algorithms for Parallel Processors™

JACK DONGARRA

Lormprater Science Depariaeny, Daiversing of Tewiesaee, Keoxville, Tenresser 37906 1300 gnd
Marhemation! Sciences, Ok Bidee Narion! Laborarory, B0 Box ¥, Building 9207 A, Ogk Bidee, Tennestee 17531 -8083

ORLIE BEEWER

Muathematior end Corepieier Science Bivision, Argorne Navione! Laforarory, Arporne, Wlieois SO4I94501

JaMES ARTHUR KOHL

Deparioent of Eleciviogd Engineering, Box 42, Furdue Usiversioe, Wen Lafaperre, Indiana 47907

AN

SAMUEL FINEBERG

Departnaent of Electrical and Compurer Enpineecing, The University of Fowa, Fowe Citg, Towa 53242

This paper discusses a tool that aids in the design, develop-
mvent, and understanding of parallel algorichms for high-perfor-
manee computers. The tool provides o vehicle for studving mem-
ory access patterns, different cache strategies, and the efects of
multiprocessors on mateix algorithms in a Fortran setting. Such
a teol puls the user in g better position to understand where per-
Tormange problems may oceur and enhances the lkeliliood of
increasing the progeam”™s performance before actual excoution

on a high-performunce computer. © 199 Acadenic Frem, fee,

[, INTRODUCTIOM

The emergence of a wide variety of commercially avail-
able parallel computers has created a software dilemma.
Will it be possible to design general-purpose software that
is both efficient and porlable across a wide variety of these
new parallel computers? Morcover, will it be possible to
provide programming environments sophisticated enough
to make explicit parallel programming a viable means Lo
exploit the performance of these new machines? For many
compuiational problems, the design, implementation, and
understanding of efficient paralle] algorithms can be a for-
midable challenge. Efficient parallel programs are more
difficult to write and understand than efficient sequential
programs, because the hehavior of parallel programs can be
nondeterministic, Moreover, they are generally less porta-
ble than seral codes, hecause their structure may depend

* This work was suppartad by the Mational Science Fpundation Science
and Technolegy Center Cooperadive Agreement Mo, COR-320%51 5,

185

critically on specific architectural features on the underlying
hardware {such as the way in which data sharing, memory
acess, synchronization, and process creation are handled).

We have implemented a tool—called the Shared-Mem-
ory Access Pattern (SHMAFP) program—1to aid in the de-
velopment of high-performance algorithms that are porta-
ble across a range of high-performance computers. SHMAP
is uscful in understanding how various algorithms access
memary, the effects of muluprocessors sharing data, and
the interaction of cache in a more complicated memory hi-
erarchy, Thizs tool provides a graphical display of memaory
access patterns in algorithms. Such paticrns can be impor-
tant in understanding memory bottlenscks in computation-
ally intensive algorithms.

Section 2 discusses some of the mativation behind the
SHMAP ool Section 3 describes the preprocessor and
postprocessor components of SHMAT in general, and Sec-
tion 4 describes the actions of SHMAP in particular. Sec-
tion 5 describes in detail the implementation of SHMAP
windows, Jection 6 illusirates the parallel-processing capa-
bility of SHMAP. Section 7 bricily cutlines the tracing fung-
tions vied 1o control the tracing operations. Sechion B gives
information about how to obtain the new tools. Finally,
Section 9 summarizes our efforts in undecstanding parallel
alporithms,

2 MOTIVATION FOR THE SHMAP TOOL

Zeveral factors motivated our developing the ool de-
senbed here: the benefits of graphical representation, the

A5 15050 S 00
Cogrright © 1798 by Acadenad Fress, Tng
Al rghtz of reproduction im any Form sereod

L Hé

prohlems raised by memery hierarchy, and the success we
biad with eacher tool development.

2.1, Graplfica! Represeniation

In developing an algorithm, the initial dehnitions and
specilications are often done graphically on 2 Blackboard
or at a desk with paper, A human can visvalize the overall
structure of the algorthm far more easily from these graphi-
cal representations than from words and formulae, Unfor-
tumately, of course, the computer cannot. These drawings
and figures must eventually be translated 1o a camputer lan-
guage in order 1o wrile a computer program. After the pro-
gram 15 written, one doos not usually go back and view the
algorithm in execution in order to understand the flow af
the working program and data, Indeed, until recenily, such
a task would have been impossible,

With a modern workstation environment, however, one
can envision going far bevond the notion of numerical out-
put from an algorithm. Today's workstations make if possi-
ble to ebdain a picture of how the algerthm procesds and
enable the programmer to improve the implementation be-
fore it actually runs on high-performance compulers.

2.2 Memory Hierarchy

The notion of visual aids to programming is corfainly not
new, Indeed, the entire August 1985 issuc of TEEE Com-
puter was devoted 10 this topic, and several of the articles
appearing in (his issue are permane to this article. A number
of eforts are under way to provide parallel programming
tools[3,4,6,7,12].

Crur magor objective has been to provide a common inter-
face that will allow researchers o exploil existing hardware
in the near term. Initially, we developed a tool that traces
the flow of execution and processor uge within 4 uniproces-
sor envirenment [5]. However, we soon realized that for
sharcd-memory svslems involving memory hierarchy,
more detail was reguired.

2.3, Memory Hievarchy fssues

On maodern high-performance compulers, memaory is or-
ganized ina hierarchy according to access time. This higrar-
chy takes the form of main memory, cache, local memory,
and vector registers. The basic objective of this organization
15 to attemnpt to match the imbalance between the fst pro-
cessing speed of the Noating-point units and the slow la-
tency time of main memory, In order to be successlul, algo-
rithms must effectvely ulilize the memory hierarchy of the
underlying computer architecture on which they are imple-
mcnied,

The key 1& o avold unnecessary memory references, In
most computers, data fows from memory into and out of
registers and from registers into and out of functional units,
which perform the given instructions on the data. Algo-

DOMNGARRA ET AL,

rithm performance can be dominated by the amount of
memory traffic rather than by the number of leating-point
operations involved. This situstion provides considerablc
mdivation o restrociure existing alporithms and o devize
new algorithms that minimize data movement.

For computers with memory higrarchy or for troe paral-
lel-processing computers, if 15 often preferable to partition
the matrices inte blocks and to perform the computation
by matrix-matrix operations on the blocks. This approach
provides for full reuse of data while the hlock is held in
cache or local memory. [t avoids excessive movement of
data to and from memory and gives a surface-to-volume
effect for the catie of data movement W arithmetc opera-
tions, L., (4 #*) data movernent to £t) arithmetic oper-
ations, In additon, on architectures that provide for parallel
processing, parallelism can be explotted in two ways: (1)
operations on distinet blecks may be pecformed in pacallel;
and { 2] within the operations on cach block, scalar or veo-
tor aperations may ke performed in parallel,

The performance of these block algonthms depends on
the dimensions chosen for the blocks, Tt is beneficial 1o se-
lect the blocking strategy for each target machine, and then
develop a mechanism wherghy the routines can determing
pood block dimensions automatically.

Fince most memory acccsses for data in scientific pro-
grams are [or matrix elements, which are vsually stored in
two-dimensional arrays (column-major in Fortran), know-
ing the order of array references is imporiant indetermining
the amount of memory traffic. We plan to be able to take
an arbitrary linear algebra program, have its matrices
mapped o a graphics sereen, and have 3 matrix clement
flash on the screen whenever its corresponding array ele-
ment was accessed in memory.

The tool we developed 1o meet this olyjective is the pro-
gram SHMAP, which provides a visualization of the mem-
ory access patterns of a parallel program in @ multiprogess-
ing, shared-memory environment.

1L FUNCTIONMAL DESCRIPTION OF SHMAP

The program SHMAP invalves two distinet entites: (1)
preprocessor instromentation, accomplished by the Shared-
Memory Access Pattern Instrumentation { SHMAPL) pro-
gram; and [2) postprocesser display graphics, accomplished
by the Shared-Memory Access Pattern Animation
(SHMAPA proeram,

3. SHMAPI

The SHMAPT preproceszor analyzes an arbitrary Fortean
program and, for cach reference to g matrix clement, gener-
atesa Fortran statement that calls a SHMATT routine which
records the reference 10 the matrx element. Moreover,
since many programs dealing with matrices reference the
Bazic Linear Algebra Subprograms { BLAS)[3, 9, 11], SH-
MAFT translates those calls into calls to SHMAR] routines

MATEREIX ALGOREITHMS FOR PARALLEL PEOCESSORS

that understand the BLAS operations and records the ap-
propriale armay references. The replaced routing records the
memory 2ecess 1o be made, a5 well as the number of float-
ing-point operations o be performed, and then calls the
Level 1, 2, or 3 BLAS originally mntended. This approach
allows us 1o reduce the size of the trace file by recording a
range of values referenced per trace line, rather than a trace
ling per matnx element.

The output of SHMAPI is a Fortran module that, when
compiled and linked with a SHMAPI library, executes the
original code and generates a readable ASCII file that con-
tains an encoded desceiption of how the armays in the pro-
gram have been referenced. Three types of trace lines are

generated: array definition, read access, and write aceess, I

a call to one of the BLAS has been made, the trace file may
contzin information about a row or column access or both,
The name of the BLAS is recorded, and during plavback
the namc of the BLAS executed wall be displayed. We also

WEF ZAf Cenfar SRR,

CRPC —
Sepding the zcrssn lmpage te the default printer.

Fade spesd [541 o N | i
Ry

{ (Lead) %L |y) (T

Eaeda: LE2S 1325
Trites: 13135 1135
Flepe: 5375 3ATS
Epana
FEN Totals
Ml fm:] a
Hiczex: @ a

Amfle: R 4%

Shared Memory Access Patterns

Dlreclary: l:“.l'd:n;.lrrln'sl:"rl.l'iil.l.l?.ﬁ Trace Tile; fraco, Tul
Cackes: 1 Line wliza: 1 Cache mize; Falicy: LRM
FETEi 4 Active PE'S1 aF BEf Accesses: S DFf Dima Tlee: o DEf

187

record the amount of fleatng-ponl work that has taken
place for a given memaory reference,

32 SHMAPA

Onee a trace file is created, it may be wsed repeatedly in
different ways by SHMAPA to visualize the actions of algo-
rithms. [n addition to simple trace events, such as loads and
stores, SHMAPA also can project acoess patterns for vari-
ous parallel evenis, These parallel events may themselves
contain subproups of several sequential events that, al-
though executable in paralle] with other events, must be ex-
ecuted sequentially in order among themselves, Figure |
{l_is_nrr]a:rﬁ the output of SHMATA for a view of LU decompao-
sition.

4. FEATURES OF SHMAPA

SHMAPA can analyee a given algorithm by using several
different system configurations, thus providing insight into

FlG. 1.

LU decompsassas.

185

the operation of the algorithm on varous systems. The
speed of the animation is vanable to allow the user to closely
examine the more critical aspects of the algorithm, et
move quickly through the less interesting portions, The ani-
miation may be adjusted in other ways 1o emphasice locality
of reference and to reveal patterns of memory accesses, In
addition, SHMAPA displays a running tabulation of nu-
micrical statistics as well az animated histograms. Sce Fig, 2
for a display of three algorithms for performing LU decom-
position, [The graphical representations for Figs, | and 2
are explained later in the paper.)

4.1, Muliipde-Processor Configuration

The current SHMAPA (ool models shared-memory par-
allel machines of up to 16 separate processing elements
[FPEs). These PEs share one main memory of uncon-
sirained sze and up to 16 separate cache memories, A cache
memaory 15 a high-speed buffer inserted between the proces-

CRPC ——

Semding the soresn imege to the defaul® peintac,
Fude spoid (4] © N | i
Easc spend Cten] 1 S -

lm@

Tofal:

Famge: £3E5 4385
Writesl 1545 2545
Flogps: U155E9 L1564

EL]

PEF Tetal:
LIREH L] L]
Hldsws: # a

LET AR ok

Shared Memory Access Patterns
PireCtory? Ledfdosgirras ICHED/SHHARA

Cachids: 1
PFL ez 1

DOMNGARRA ET Al

sors and the main memory to capture those portions of the
contents of main memory that are currently in use. Since
cache memories are typically five to ten fimes faster than
main memory, they can reduce the effective memory access
time if carefully designed and implemented [2]. In the cur-
rent teol, only one laver of cache iz supported belween main
memaory and the PEs. Hence, a PE may have only a single
cache between it and main memory, Although each PE is
assigned 10 at most one cache, several PEs may share a sin-
gle cache. For consistency, each PE is assigned a specific
cache to use when the cache 15 lurned on.

The purpose of the tool 15 to display the patterns of ac-
cesses for alzgorithms. Thus the actual value of the datz in
memary is inconsequental; the only characterisic neces-
sary for analysis is the location in memory. Hence, the PEs
are not actually modeled but merely represent the arigin of
load and store events in a trace. A given PE mav load or
store a memory location, but the data themselves are not
taken mmto consderation.

Trace f1lm: trsca. Tusdl
Falicy: LRU
Time Tiae! os 0iF

Cwche miirm: 1

ACCORERER] A DET

Ling @liZe: 1
Active FE7m: CFOdv

READS:

iy

HRE

&

s SEE 5L

T

FlG. 2.

WHITES!

LB

FHEHEHHEHE

iEH

Huran
e
17

mid

Three algorithms perferming LU decompostison.

MATRIX ALGORITHMS FOR FARALLEL FROCESS0ORS

Each PE has a number and a distinguishable color 1o
identify it when a memaory access is made. The color is also
used in identifving a given PEs actions in the animated his-
tograms. It should be noted, however, that the PEs as well
a5 the caches are all considered (o be identical, and are dis-
tinguished only for consistency. A window is used to display
the varous sets of PE colors and their corresponding num-
berings. The colors vary depending on the number of PEs
configured for the system (see Fig, 3).

The number of PEs and (he number of caches are set with
separate pull-down menus. The number of PEs must be a
power of 2, but the number of caches needs anly 10 be an
integer less than or equal to the number of PEs, Upon
changing cither of these parameters, the cache-10-PE assign-
ments are recalculated, and the system is automatically re-
set and ready to continue where tracing was inlerrupted.
Mote that the tracing must be lemporarly stopped in order
te change the system configuration in any way,

89

4.2, Cache Cowfienration

A% previously stated, all caches for any given system con-
figuration are identical, The characteristics of the caches are
quite flexible, however. A number of parameters can be
maodified via pull-down menus, including cache size, ling
size within the cache, and cache replacement policy. Cache
can also be turned off, 20 that the memory accesses procead
directly 1o and from main memaory without the intermedi-
ate cache layer,

Cache size 1z defined here as the number of words of
memory available within a given cache, The cache size can
e varied from 1 word to 835,536 wornds in powers of 2,

Cache line size 1s the smallest number of words af mem-
ory that may be leaded from or stored to main memaory at
a piven Ume. The relztion of this parameter (o cache size
affects the efficiency of the cache [2]. The cache line size
can alse be vaned from 1 to $3,536 words by pawers of 2,
provided that the line size selected is less than the cache size,

CEPC == Shared Memory Access Patterns
El‘ﬂ.dil?lg' the screeE 1mdge Ee Lhe deafault peiptar, DiFestery: {eafdongerres/SCHERS SHMAPA Trace Ti1e; trace.Peraiieid
Faga aprad (G20 0 RN 00 | 1a¢ Cochis: 1 Line =irs: 1 Cacka sizer i Peliey: LT
Bzec aprad [103] 0 N 1 FE"er & Active PESe: S @ff Actesses: w324 Tims Mea: o 0ff
(&=} (Eazhn) (Tnio) Fgeseg) (i)
FEF: PEFI PESd Total:
Readsr 2335 1845 1145 178 c268 ™
Writes: BES 285 13 453 L7e@
Flops! EI5E @ [atE LEISE
& giman Lzacm
FLE Telal:
Hite: @ B
Higsan: B B
Eatio: BT KL
R N A WRITES: ||
s =
|
|
|
i
g“-““'
RLLLL Il a Il
|
[[A A FIT T d]]
| s |
} EEEEEEEEEEE |
Flis, 3. Multiple processors,

190

For simplicity, each cache in SHMAPA 15 imtiahized wath
a coohe replacement policy which consists of placing new
cache lines into the next free sequential location, When a
cache miss occurs (in ather words, when a desired cache
ling is not available within the cache), the new cache ling is
loaded into the next unuzed pesitien in the cache. In this
way the cache flls up scquentially starting from the first po-
sition and continues untl all pesitions are occupied, When
the cache becomes full, the sclected cache replacement pal-
ey takes effect, and normal cache operalion commences.

The cache replacement policies currently supported by
the tool include Least Recently Used (LELU), Least Fre-
quently Used (LFU, First-In Fimst-Ouwt (FIFO), Clock,
Last-In First-Out { LIFG), and Random. The LFLT mecha-
nizm chooses the line that has been used the feaest number
af times since it was loaded into the cache, The FIFO mech-
amism simply keeps track of the order in which lines were
Ioaded into cache and replaces lines in the same order, The
Clock mechanizm iz an appreximation to LR wsing FIFO,
but @5 lines are wsed, 2 usage bit is 5ot 50 the line wall he
skipped over as the FIFO gueue is traversed. The LIFO
mechanism 15 similar to the FIFO except that instead of re-
placing the lines in the order they were loaded, the lines are
replaced in reverse order. The Random mechanism simply
generates 3 random ling number and replaces that line.
These are the more commonly used cache replacement pol-
icies, but SHMAPA has provisions for installation of 8 wide
vanely of other policies.

4.3, Memory Aceess Anivalion

SHMAPA displays the activity in memaory as a resull of
the acticns ol an algenthm. Specifically, SHMAPA graphi-
cally represents loads and stores dynamically over fime, Al-
though memory can logically be considered one-dimen-
sional, SHMAPA displays memory as being two-dimen-
sional, Among other reasons, the visual space available on
graphics devices encourages use of two dimensions, In addi-
tion, the algorithms of interest deal with two-dimensional
matrices,

To simplify the imaee displaved to the wser, two separale
windows or canvases are used 1o visuahize the single shared
main memory. On one canvas, 2l loads from main mem-
ory are shown; on the other canvas, all stores to main mem-
ory are shown. To further clanfy the meaning of the display,
the main memory canvases ars seclioned into separate rec-
tangular regions that represent the different matrices, These
regions are scaled and arcanged 1o fit into a given canvas.
Each of the “loads™ and “stores” canvases displavs the same
arrangement of malnx reglons o provide consistent obser-
vation of the activity 1n each matnx.

Within a given matrix region, an actual location or word
af memory 15 represented by a small square area. All squares
in all matrix regions in both main memary canvases are

DONGARRA ET AL

uniform in size, These squares are arranged in the two-di-
mensional regions in rows and columns corresponding o
those of the given matrices. Chosen arbitearly vel appropri-
ate to Fortran column-major convention, the rows of a ma-
trix are displaved from the top of a region 1o the botlom,
and colummns from left to nght.

An access oA particular location in memory, or matrix
element, 15 represented by the illumination of the corre-
spomding square on one of the canvases, This illumination
will occur approprately on either the load canvas or the
store canvas, in the appropriatec matnx region, and at the
row and column location of the matnx element accessed,
and will be drawn in the color of the PE that made the ac-
CESS,

These illuminstions ooour In SUCCession over time (o pro-
vide an animation of (he memory accesses o the vanous
matrices. The time stamps from the trace file provide an
ordering of memory accesses only: hence, the animation re-
flects memory accesses only, with no breaks for computa-
tion. The “exec speed™ determines the degree to which the
animation is paused between successive frace events. Thers
can he no pause at all, or a pause of up 10 3 few seconds
between evenis,

To avord having the canvas become a confusing blur of
color even at slow execution speeds, i1 18 necessary 1o do
more than simply color clements on and off as accessed.
To provide a moee Quid and continuous animation, each
memory access 15 gradually faded with time after its initial
illumination. The initial color fades through a number af
small discrete jumps which gradually approach black.
Eventually, the memary aceess will reach black and then
default back o the canvas background color. This approach
provides the user with enough visual information to see
when things have not been referenced i a while.,

Each individual memory acoess is faded separately in re-
lation o the amount of Gme that has expired since it was
illuminated, Mote that “time” here refers o trace time,
which i examined at each race event Ume stamp o deter-
muime whether a given access should be faded. The amount
of time hetween fade steps determinegs the fade speed. By
reducing the fade speed, accesses will be vizsible long enough
to be comparcd with subscguent acoesses, thus providing
miore understanding of the localivy of reference. Patlerns of
aooosses over large time periods can all be seen simulta-
neously and their ages identifed by color brightness, By ad-
justing the fade spoed properly, the memory access patterns
will show various charactenstics of the given algarithm.

Theerctically, some acoesses might ke hidden, For exam-
ple, il a PE were W access the same location a second time
hefore previous acoesses by itself or by a different PE) had
faded, the acoess could go undetected. To avoid this sitwa-
tion, if the color of the accessed location is stll fully dllum:-
nated from a previous access and bas not vet been faded,
accesses are flashed 1o black before illuminating.

MATRIX ALGORITHMS FOR PARALLEL PROCESSORS

4.4, Cache Awiration

The cache window is animated in the same way as main
memory, with similar fading of acoesses over ime. Cache
lines are displayed vertically from top to bottom as sets of
square clements, The cache canvases are sized 1o fit an inge-
ger number of cache lines vertically, sometimes resulting in
lefiover space in the last row. The cache canvases are also
shaped o have the overall cache window result in an aes-
thetically propartioned reclangle.

SHMAPA uses a main memory update policy called
wrilg-through-with-no-write-allocate (WTNWA)., This
policy requires no manipulation of the cache on a store,
Rather, the updated value is stored directly to the main
memory location independent of whether the affected
cache line 15 loaded into cache. Thus. there is only one can-
vas per cache memaory, since only loads are displaved. On a
load, the accessed element is illuminated individually ex-

N3F ST Cantor

CRPC
seanding the Ecrees image o the default printar.

Faga apiad [G5] L] I L)
EWie dpaad [18@] & Lan
() (o) () () i) ()
THl'I.
Reade; TR G15 -1!! E:IE F e
Writag; T4 5 1]] 408 BES
Flape; # B 17 xIAk FITE
L L L
Hn] Tatalz
Elda RIS AEY H =]
Himgws! %4 BEL L5
Aafier aE% 1% EE
READS: 1 2

Shared Memory Access Patterns

141

copt in the case of a miss, where the entire cache line is illy-
minated {as well as the corresponding locations on the main
memory load canvas). On a store, the cache canvas 5 not
illuminated; only the proper location on the main memary
store canvas 15 colored (zee Fig. 4.

4.5, Sanisiics Displayed

[n addition to the animated memory access canvases,
three other canvases animate several of the statistics gath-
ered while tracing, The remaining statistics are displayed
numecrically on the main pangl.

The first of the three animated canvases is a sliding araph
which illustrates the number of actively executing PEs at
any given time. Since work may not always be available in
the parallel pool, some PEs will remain inactive for periods
of time, The graph outlines a vertical histogram that sums
the number of active PEs. The graph slides with time pro-

Dirmstery: <asfdosgerr e SINIDSSHEAPA Trace f11a: Erace.Farallal
Cachags ¥ Ling aiim= 1 Cache mize: 256 Pollcy; LEM
PE“8: 4 Actfve PESer PO Accesees: S000F Time Disa: oF oot

WRITES:

|
[H e]
I bkt
|i|i‘|:l.;i:
IEE“I |
i |

FICr. 4,

BEAEY '

liEdinn
Lataketuky

{HELEH]

GERER

e e e A =y

Cnche animation

192

pocional o the ime elapsed according (o the frace event
time stamps. Hence, this tme reflects actual execution time
including calculation, as opposed o the memory canvas an-
imation which does not. The graph s appropriately deawn
with the colors of those PEs that are active (sec Fig. 3, the
canvas labeled “Number of active PE's").

The second amimated canvas displays the total number
of accesses made o each memory location or matrx ele-
ment in the different matrices, This canvas is 2 horizontal
histogram (hat builds from lefl te oghi as (he elemenis are
aecessed. These matrix elements are arranged sequentially
frem fop (o boltem in a one-dimensicnal sequence. Arbi-
trarily, this sequence 15 generated by concatenating one row
after another in the matrices. Each acoess added 1o a given
location 15 shown as a colored dot stacked to the right of the
provious aceess dots, The color of cach dot reflects which
PE made each reference to that particular location (see Fig.
{1, the canvas laheled *Number of references™).

MSF 55T Gender SHESA.

CRPC —

Ssnding the woresn imege to the default printer.
fage apesd (1] o N 1
taec apesd [108] o N |-

Aaiad

Awade; FIF SLTE 248 2352 JAER Tex iWE 2R

Writes; 8 BdE IETR HEA a5F 55F E L] e b1]

Flape: BIEF 36k 33 J¥e 3309 J9E FIEF 2R 230w
#firém ®iFéd @irie dalrdm dlram dlrdm @irim 29rsm 20lros
=5 Tatml:

LALEH E B

Hldsed: B B

Aetie! E% R

Shared Memory Access Fatterns
Cirsctizry: <anideagerrasSCHIDSSHHATA

Cachas: 1
FE“§! LE

IO IEE R O R R OO R T

25 FaL-Fd LFI2 2d 245 FaLH sz 4120 3
11] 1] Bl AdE Bl =l L 113458 i
136 FIGE axa EEL] 1364 TIER JIEN 52171

tlram sfrem xiros strem sbtres ckrem xfrem

DOGARRA ET AL

The third and hnal animated canvas shows a time-line
history of accesses similar to the access histogram. Unlike
the acoess histopram which 15 stacked tghtly against the left
edge, the time-line histogram is spread over the width of the
canwvas, Each access is marked in a similar fashion as on the
access histogram, with each dot’s color representing the PE
making the access, bul on the Ume-line histogram the hon-
zontal posiboning has meaning. The entirg width of the
canvas represents the entire length of ume of execution of
the given trace. Esch dot is placed between the left and right
edges of the canvas proportionate (o the relation of its time
stamp o the total execution time {see Fig, &, the canvas
labeled *“Time™).

Al af theze ammated canvases are turned on and off with
cyole santches on the main panel, To save system overhead,
the animated canvases are completely inactive when not
displayed. They are inibialized when furned on, and only
then are statistics gathered and displayved.

Traca d1la: trace, chaled
Felicy; LFS

Time Tima: o8 off

Line wize; £
e,
ACLIYE PET8: or D&

Cxche size; 1

AECERbANC 3 ate

Ietml!

m:a-ur of active PLTg:

[FTTETPEETIERY

PSR R

FI€. 5.

MMultipls processars.

Fade zpamd
|Exac spasd [184]

[l

MATRIX ALGORITHMSE FOR PARALLEL PROCESS0ORS

== Shared Memory fAccess Patterns
Zanding the soresn iesge to the default printer.
y =
" SR T AR L A

(529 (B=) GEep) (Eache) (Tols)
| PEFL

Direclery: (enfdargarra/SCHLDSSHEAPA
Licm mima: 1 Cacka wira: 1

active FE'S! a3 BFf Accesssss SF0n

Cachax: 1
PE &I &

Treta 110 Trate.Fafallals

Time Tine: SFin

HEE PER FEM Total:
|Meads! 51EE 4588 J5A 4818 1eiwE
.h'rll.li: -1 1148 495 LHEd 47Ea
Flcpx: 14373 7073 AT L4175 JOAE
EpaER IQEnA IQEAE EQEnE
CFL Tofal:

LAkt B a a

Hipzme: @ a

ILELIT T 1] LF

READ =

Himher af releroooge --2

AT .
iR :
'|=5 1 s
- LR s
o P 1L =
.;:Ellr % s
3 III:"'I"i =
£ | =

£ ‘.:P =

53 1=

e =

Timgp —=2

FlLi . Relererioss aver o,

I conirast, across the boltom of the main panel, various
slatistics for the PEs and caches are always displaved, Fun-
ming tofals are kept for each statistic and displayed dynami-
cally during tracing. Owverall running totals for cach statistic
across all PEs or all caches are alzo displaved dynamically.
The digplayvs are automatically adjusted to display statistics
for the proper number of PEs and caches,

The information displayed for the PEs consists of a tabu-
lation of loads, stores, and Aoating-point operations { Tops)
executed durng tracing. The Aops are determingd by spe-
cial frace evenis read in from the trace fles duning tracing.

The mformation displaved for the caches consists of a
tabulation of cache hits, cache misses, and the cache hit ra-
i Cache hits reflect the number of load accesses that were
satisficd through cache with previcusly loaded losaticns,
Cache misses reflect the number of load accesses in which
a cache Iime had o be loaded into the cache from main
mcmory o satisly the access, The cache hit catio 15 the per-

centape of all accesses that resulted in cache hits, This ratio
deseribes the efficiency of the cache in satisPving the mem-
OTY ACCES5ES,

5 IMPLEMENTATION AMD PORTABILITY
OF SHMAPA

The 5hared Memaory Access Patterns tool was enginecred
in C lanpguage [1] through the use of the SunView window-
ing svsicm,. The tool consisis of a number of windows, pan-
els, and canvases that together animate the memory ac-
cesses as described in the previous section. This section will
explain the operation of the more vital and unusual sofi-
ware for SHMAPA, The trace file format, as well as the
method of efficiently processing the trace files, will be dis-
cussed. The matnx region mapping, cache mechanism and
window mapping, the color maps, and the memory access
flashing and fading will also be covered.

144
5.1, Trace File Formut

As previously stated, the trace files are actually files con-
laining output dumped from modifier user applications.
The trace data consist mostly of numerical and some char-
acter information. These data represent various types of
trace events which are suhsequently interpreted by
SHMAPA. An event beging with an integer cvent tvpe
which determines the syntax of the remainder of the event.
All data are separated by white space, and new lines are not
interpreted, The currently defined event types include ma-
trix definition, load, store, information message, flops count
and subrouting name, parallel start, parallzl end, sequental
group start, and sequential group end,

The matrx definition event defines a new matrix to be
referenced by SHMAPA. The arguments to this evenl in-
clude a matrix [and the number of rows and number of
columns in the matrix. The matrix 1D is used by other
events to reference the given matrix. The 11 is a unique
integer from | o the maximum allowable number of matd-
g5, which 15 a predefined constant, The number of rows
and number of columns are intepers greater than 0,

The load and store events represent Memory access re-
quests for particular sets of matrix elements. Both events
have as arguments a matrix 112, a starting row and column,
an ending row and colummn, and 2 lime stamp. The matrix
13 must be in the valid range and for a matrix that has been
defined. Also the rows and columns referenced must exist
within the matrix size specified by the given matrix defini-
tion. The time stamp is a floating-point value representing
the program execulion Ume clapsed when the event was
lopped by the user application,

The information message event allows the user to specify
some comment about a parficular malrix or operation oc-
curring in the application. The arguments for this event are
a matrix [T and a character string, including white space,
concluded by a new line, The matrix [0 must be for a valid,
defined matrix. The information message is displaved as a
special text item on the main panel during tracing,

The Hops and subroutine name cvent provides informa-
tien concerning the number of flops that have occurred dur-
ing the previous memory accesses, as well as the name of
the subroutine currently executing, The arguments to this
event arc a matrix 1D, an integer representing the flops
count, and a character string subrouting name. The matrix
1Dy must be for a valid, defined matnx. The fops count is
added (o the running total kept for the particular PE exceut-
ing this event, and a special text item for that PE displays
the subroutine name, The subroutine name can contain no
white space,

The last four events (the parallel start, parallel end, group
start, and group end events) are related and are used only
to control the combining or separation of events as sequen-
tial or parallel groups. These events have no real arguments,

DOMGARREA ET AL

exce for character string labels that are discarded, These
labels serve only to clarify the trace for human observers.

3.2, Traee File Processing

Before a given trace file can be “loaded™ for tracing, cer-
tain statistics aboul the file must be oained. When the
LOAD button is clicked, the interactively selected file is ac-
tually preprocessed once completely before positioning at
the starl for tracing. All the evenis for the entire trace are
loaded i, and information is saved about all matrices, the
length of time of execution, and the minmum time be-
tween event time stamps,

All matrix definitions are processed in this initial step. In
this way, all information is known from the beginning
about how many matrices will be used, as well as their sizes,
This information will be used to map all matrix regions into
the available space on the main memory canvas in one
complete step. If is nof then necessary to repeat the lime-
consuming operation of rearranging the matrix regions he-
Ciause another matrnx is encountened.

By monitoring the time stamps of the trace events as they
are loaded in, the total trace execution time and the mini-
mum time belween Ume stamps can be delermined.
Fonowledge of the total execution time makes possible the
time-line histogram. This histogram displays accesses pro-
porticnate o the relation of elapsed Ume to tofal trace exe-
cution time. The minimum time hetween time stamps pro-
vides a granularty number for use with the active PEs slid-
ing graph. The graph vses this minimum time 1o scale the
distance that the graph slides with the passage of time, as
measured by the trace event Lme stamyps,

Once the preprocessing step has completed, the matrix
TEgIoN mapping operation is done, and all displavs are reset
and initialized. At this ime, the beginning of the trace file
i loaded in and converted to an internal representation,
There are several reasons for converting to this internal rep-
resentation,

The main reason is performance, considered Arsl as
throughput. In an animation oo, it is best to have fast cxe-
culion to provide fluid graphics. After converting 1o inter-
nal representation in one intensive 1/ OF operation, all sub-
sequent references to the trace information can be made
framn memory instead of secondary storage, thus increasing
the overall speed of processing the trace events, Rather than
repeatedly waiting for I/ O devices, information can simply
be fetched immediately from memory. For the same reagon,
response lime performance is also increased. Since wser in-
terface interrupts do have 1o wait for 170 operations 1o fin-
ish aside from the initial loading period, response time will
be decreased.

Another reason for loading the data into memory is flex-
ibility. The trace information in memory is randomly acces-
sible, a5 opposed 10 the trace file which provides sequential

MATRIX ALGORITHMS FOR PFARALLEL PROCESSORS

access only, Hence, having trace events in memaory allows
Jumping and reverse tracing. Although neither of these ap-
tions has been implemented, the capabilily exisls and 1=
valualde,

OF course, considering for a moment the potential size of
trace files, it becomes immediately obvious that it is infezsi-
ble to load the entire file. The time taken to load a large
trace would be substantal and annoving. The memory re-
qquired to store all of the trace event informaticn would alsa
be quite extensive, even il stored in a condensed format.
These drawbacks actually lead to a more desirable selution,
however,

By loading small portions of the trace file at a time, only
a few thousand trace evenis, the benefits are still gained
withoul an unacceplable amount of time or memary. In
fact, we have ohserved in testing the tool that when sets of
coly a few thousand events are used at a time, the gme delay
required (o load and convert the trace data 1s nearly imper-
ceptible. Rather, the break in animation to load the next
portion of (he trace data 15 lost in the midst of the graphic
activity on the screen.

5.3, Imternal Trace Information Represeniation

The trace information is converted internally inta a hier-
archal structure of the work to be done. On the top level of
this hicrarchy is the designation of powd entry, Poal entries
consisl of one or more fask entries, which are entries of the
next level down in the hierarchy, These task entries consist
of poe or more entnes of the lowest level, which are appro-
priately called fngce entries sinee they store the original trace
data. The purpose of this hierarchy 15 to provide a clear ab-
straction of the work and o expedite division of work be-
tween multiple PEs.

The relation of the trace, task, and pool levels is stored in
arravs of appropriate trace, task, and poel struclure entres,
The lowest trace level array 15 actually a seguential list of
ihe frace events, except for the parallel f group starls/ emds,
in the order read from the trace file. The trace entry strue-
ture holds data only, with ne poal bierarchy inlerconnec-
ton information. This structure includes an event type, or
opeode, and a matrix 10, The structure alsa has elements
that can be used to store the various different tyvpes of data
needed by trace events of all types. Several infeger values, a
fleating-point value for tme stamps, and a character buffer
fior sirings and messazes are all included,

The task and pool structures contain all the information
necessary for maintaining the pool hierarchy interconnecs
tons. This information is derved from the parallel f group
start fend trace events, The task and pocl structures contain
similar information. each structure referencing the struc-
tures in the level helow it,

The tazk structure contains a tvpe that identibes a partic-
ular task as consisting of a single trace event or a gronwg of

193

trace events, The structure also contains two index markers
which poind to the specific {race array elements contained
in the task. These markers are simply integers that store the
trace structure array indices of the first and lzst trace array
elements of the (ask, The task structure also stores one more
marker to keep track of which trace event is currently avwait-
ing processing in the task.

The arrangement of trace events into tasks 15 penerated
from the group start and end trace events. I a trace event
ocours by itself in the trace file and not between growp start
and end events, it is considered a single task, In this case,
Lthe task consists of just the one trace evenl. Otherwize, all
trace cvents that occur botween a particular group start
evenl and its matching group end event will be considered
members of a group task,

The pool structure 15 1dentical 1o the sk structure, bul
represents a picce of work rather than a task. The picce of
work, in fact, contains tasks. The pool structurs contains a
type value, bepin and end pointers, and 2 current task
marker, Here the type may be either parallel or sequential
tor designate whether the particular piece of work in the poal
can he processed by many or only one PE, respectively. The
begin and end pointers reference into the task structure ar-
ray to tdentify which specihe tasks are a part of the plece
of work, The marker points to the task currently awaiting
assignment.

The arrangement of task events into pieces of work 15 gen-
erated from the parallel start and end trace events. U a task
is generated from any number of trace events that exist in-
dependently outside a parallel starl and end events in the
trace file, then that anc task constituies a single sequential
piece of work 1n the pocl. Otherwise, any number of tasks
gencrated from trace events that occur between a parcalle]
start event and a parallel end event will be combined inta
ong parallel picce of work.

The method of depleting the pool of work amounts fo
processing pleces of work one by one in order. Each plece
of work is processed by assigning the tasks making up the
picce of work to PEs, which then execute the individual
trace evenis contained in those tasks, The tasks making up
4 particular plece of work may be execuled by several
different PEs, but all trace cvenis in a given task, single or
group, must be processed by a single PE. Hence, enly one
FE may process a scquential plece of work, which only con-
taims oni task.

From the PE perspective, a given PE requests work and
can then recerve a lask conlaining one or more [Face events,
The PE will execute these trace events in order until the task
is completed. When the task completes, the PE will request
another fask from the current picce of waork in the poal.
Meanwhile, other PEs are reguesting tasks from the current
picce of work. All PEs with assigned tasks execute their trace
events in parallel, When there are no moere fasks (o assign,
the unassigned PEs want for the PEs with task assignments

L5

remaining to finish the execution of their tasks. Only when
all tasks within a piven piece of work are completed can the
PE= receive tasks from the next piece of work. Hence, the
completion of a piece of work can be considered a type of
synchronization point, where all PEs must wait untl all are
ready 1o proceed,

To keep track of which tasks and trace events have been
processed, the markers in the pool and task structures are
used. Receipt of a task will increment the pool siruciure task
marker 1o the next available task. A PE increments the task
streciure trace marker through the trace cvenis as it pro-
ceeds,

With the hierarchy dehned in this way, all valid trace files
can be broken into picces of work which are easily processed
by SHMAPA, Parallel and sequential work can be assigned
Lo any number of PEs requesting work while preserving al-
gorithm function and efficiently explonting the parallelism
present.

540 Cache Mechanizm

The cache mechanizm for SHMAPA is internally repre-
sented by several data structures that store the currenl cache
states for each cache, An indexing structure provides quick
#ccess 10 the structure which stimulates mapping of the
cache locations to main memaory. The implementations of
cache replacement policics have been specially designed for
Hexibility so that many diverse policies may be added easily.

The main data structure in the cache mechanism main-
lains the mapping information between cache and main
memory, This array of cache elements containg references
o the particular matriz 1D and the address of the matrix
element’s data which 1t stores. Each cache element also
halds an index to the first cache element in each cache line
Lo expediie handling of cache misses,

To reduge searching time, an indexing array 15 arranged
o easily determine whether a desired matrix element is in
cache. Each index entry references the main cache structune
and points to the particular cache element that stores the
desired matris element. [the matrix element 15 not in
cache, the index will point nowhere.

The cache replacement policies that determine which
cache line is replaced on a cache miss are carcfully imple-
mented to allow flexibility and easy addition of more polic-
ies, Each cache ling is provided with a status word for use
i identifying the desired replacement characteristic. When
@ cache line is referenced, is status is updated as specified
by the paricular policy chosen. Also, when a miss ocours
and a cache line must be replaced, the replacement is done
under the conirol of that palicy.

Twi distinct methods are wsed. Manv of the standard
policies implemented by SHMAPA share similar charcter-
1stics and can be implemented by general routines that op-
erate slightly differently depending on the precise policy in

DOMGARRA ET Al

effiect. For these policies, the status updating is handled in
such a way as to allow replacement chodces to be made iden-
tically for all such pelicies. For example, LREU and LFU
policies may share the same replacement choice routine.
The status update rouline places a time stamp in the stafus
words for LRL and stores total references for LFU. Mow, a
single routing that searches for the status wornd of smallest
miagnitude can be used to choose the next cache line 1o be
replaced for Both palicies,

The ather possible method requires separate roulines for
each policy since they perform unusual and unigue opera-
tiens for cache replacement. To combing these two meth-
ods, global high-level status update and replacement choice
routines arg created. These master routines pair each policy
specilically with its appropriate routines, and then calls
these particular reulines depending on the currendly active
policy. Policies that share the same routines will all be
paired with the same set of statlus update and replacement
choice routines and can take advantage of this overlap.
Meanwhile, other more unuswal policies will use their spe-
cial unique routines. This method is implemented through
simple conditional blocks that choase which routines han-
dle the status and replacement manipulation for the current
policy. It is trivial to add a new palicy by including another
casg in the conditional block that refercnees the new
policy’s routines,

3.3 Matrix Region Mapping

During the preprocessing step in loading a trace file, all
infarmation regarding matnces is obtained, With this infor-
mation, regions can he defined on the main memory can-
vases for displaving accesses to the given matrices, The as-
signment of a matrix to & canvas region is consistent for
each of the of the two main memory canvases. In assigning
these regions, efficient use of the display space is the main
comeern, The goal is to scale and arrange the regions in such
4 way as o maximize the size of an individual matrx ele-
ment while minimizing vacant space between regions.

To avoid confusion and to simplify the mapping prob-
lem, the matnx regions are arranged in order by their matrix
[Tz, as declarsd by the user in the trace file definitions, To
minimize¢ vacant space, the rectangular regions are ar-
ranged side by side with adjacent sides parallel. The regions
are placed starting from the upper left corner of the canvas
and proceeding horizontally to the right. When the region
placement reaches the right edge of the canvas, it wraps
arcund and beging underneath, starting again from the lefi.,
The number of regions per row depends on the individual
mairix sizes as well as the size of a matnx element sguare,
The size of a matrix clement is specified by a rarrix fctor
which determines the number of pixels per side in each ele-
ment square displaved. This matrix factor is consislent
across all matrix regions, Setting the matnx factor deter-

MATRIS ALGORITHME FOR PARALLEL FROCESSORS

muincs the number of regicns that wiall 51 in a particular row
of repions on a canvas. Since the matrix sizes are static for
a given trace, and the number of regions per row depends on
the matnx factor, this matrix factor 15 the only independent
vartable parameter.

Hence, (o ind the most efficient armrangement given the
above constrainis and the size of the main memory can-
vases, The matrx factor is vaned. The imtial solution tried
is with a matrix factor of |, meaning that each matrix ele-
ment will be represented by a 1 % 1 pixel square. This s the
smallest possible matrix factor, 1Fthe matrix regions cannaot
be arranged o At when scaled by this factor, then no possi-
ble golution for matrnx region arrangement £xists, the matri-
ces cannot be mapped, and that particular trace fle cannot
be used. Otheraase, if a solution is found for the initial fae-
tor, then cther arrangements are ried with larger factors to
search for the most efficient solution. The positive integer
factors increase 1o approach the best factor, or the factor
that will provide the most efficient selution. The largest pos-
sible matrix factor is desired because it scales the matrix re-
pions 0 the largest dimensions, thus filling more of the
available space on the canvases, When a factor iz found that
scales the matrix regions 1o a size oo large to accommodate
a solution, then the previously tried factor is knows 1o be
the best possible factor. The matrix region mapping for that
factor 15 then used for the trace,

Once the most elicient mapping is found, the plecement
of the matnx regions 15 refined slightly 1o provide a mare
agsthetic display. The vacant regions around the matrix re-
wions are adjusted to leave even borders and spaces between
matrix regicns, This adjustment 12 done by separating and
cenlering the matnx regions evenly across the canvases both
vertically and horizantally,

5.0, Cache Window Mapping

Zome amount of region mapping 15 done for the cache
display. This problem is simpler than the matrix region
mappng for several reasons, Since every cache 15 of 1deni-
cal charactenistics, all individual cache regions should have
the same dimensions. The cache regions are displayed in
a dyvnamically created special window, so thero are fewer
restramnis on the overall canvas size, The regions are ar-
ranged in only one row, 5o the mapping actually roguires
no placement but only size adjusiment. The reglons need
only be scaled. stretched, or compressed to At into the de-
sircd eache window size,

Thiz fitling can be done in a similar way 1o the matnx
regions by gradually increasing a cache factor until the
cache window no longer fils on the display. The resulting
individual cache region dimensions for the given cache fac-
tor can be produced by a single calculation. This calculation
relates the number of cache elements, the cache ling size,
and the number of caches 1o the desired cache window pro-

127

portions and maximum size. These proportions are derived
fram the overall proportions of the pair of currently defined
SHMAPA main memory canvases. An acsthetic combina-
tion resulis when the cache window is placed over the main
SHMAPA windor.

5.7, Codor Map Manipilation

The colors used by SHMAPA to distinguish the actions
of different PEs are the result of extensive color map manip-
wlation, In fact, one of the more complex elements of the
SHMAPA software involves the generation of the color
map, A color map 15 a data structure containing the list of
colors available for use at any given time on a color display.
Thiz struciure is an array where each entry stores informa-
tion concerning & given color’s characteristics, specifically
the red, green, and Blue (EGB) mixlure which produces
that particular color on the display. The maximum color
map size is fixed by the window svstem, thus limiting the
number of colors avallable 3t any particular time, This also
restricts the number of allowable PE= conhgurable for SH-
MAPA, since many color entries are needed for the various
PE’s fading colors.

The complexity in generating the color map for SH-
MAPA exists because the colors used must be easily recog-
nized as distinect when mixed and displayed together. Gen-
crating & color map iz in general a simple problem; however,
generating large sets of distinguishable colors requires care-
ful planming. Especially with SHMAPA, the colors used are
automatically generated depending on the number of PEs
represented. The color maps could certainly be statically de-
fined with reasonable effort if enly a few small sets of PEs
were necded, but this would be infeasible for many large
e,

Eather than deal with repeated complete generation of
differeni-sized color maps by hand, we constructed an aulo-
mated method for color map generation. This automated
approach, given proper fine-tuning of parameters, creales
codor maps of any desired stze with a distinguishable set of
colars.,

The method consisis of combimng a set of numerical
funciions to generate the desired color map values, Since a
color is presented by its RGE mixture, these lunclions nesd
ooly 21 up the appropriate ratio between the red, green, and
bluc intensities for each color. These intensities are actually
maimntained as three discrete integer values which lie in the
possible range of intensities for the windaw svstem.

The Munctions used to generate these values are created
and combined in relation fo the colors they produece, Given
three different base component colors (red, green, and
blue], there are only four interesting combinations, Since a
color negd not be combined with iself, these combinations
are blue with red, red with green, green with blue, and the
combination of all three, For any given combination of col-

[RHES

ors, many shades can be generated by the varows inlensily
ratios. Before a distinguishable set of colors is chosen from
these possible shades, they are collected to form an assthetic
[ORIEESI00,

To produce this pleasing smaoth arrangement of calors,
the shades generated for each combination as well as the
order of the combinations themselves are considered, The
order is 221 by the order of the generating functions as well
as the charactenstics of those functions, In cach of the fwio-
color combinations, the shades generated by the funchions
start with one of the colors at maximum intensity and the
other at some low, but nol minimum, intensty (see Fg. 7).
(Colors tend to have an unnoticeable effect for most of the
lower indensity levels, so i is not necessary 1o sel the inlen-
sity 10 the absolute minimum.) To generate the first half of
the shades, the function graduvallv increases the second
color in intensity untl both colors are at maximum inden-
sity. The third unused color is turned off at minimum inten-

EHALAPA.

AL

CRPC ==
Exnding the screer image s the default printer,
Fagi spread [4] a T | 18E

txec apead [10a) 0 R
Slep| [Cacha] [Enda)
mﬂjl (Cacha) (Enta) (EESERCI) (TUTT)

Tetml;

Asade; 1413 1813
Writes; 656 3]
Flaps: o L}

=1 Tetml:
LI (3 1] (31
Hiddgam: Bl [5]
REtis! &T% &TE

Shared Memory Access Patterns

DOMGARRA ET AL,

sity for all of these shades. When both colors are at the maxi-
mwm, the first color s then gradually decreased to 8 mini-
mum intensity in gencrating the second hall of the shades.
In this way, the resulting starting and ending shades are ap-
proximately pure base component colors.

If the color combinations are ammanged properly with
matching pure component colors adjacent, the collection of
colors flows pleazingly rom one shade to the next without
a sharp contrast. The order used for SHMAPA 15 as lollows:
pure Hue (o purple {Blue and red) to pure red, pure red 1o
orange (red and green) to pure green, pure green 1o agua
(green and Blue), and then o while, Note that the agua
does not return back to pure blue, which was already used,
but instead adds red 1o produece white with all three colors
al maximwm intensity.

For cach of these color transitions, simple linear func-
tions are vsed o either inerease or decrease the intensity
levels through the necessary ranges, These lunclions can be

BiFEETary! {eudtangars aliCREDSSHHATA
Gachag: & Lies dlzad L
AcEive PEm; S odv

Irece file: irece.mas
Cwche wlim: 503 Falicy: LRU

accawpen; L O0F Tims Tiner i 0ff

FE'u: L

L e TP r P TP I TP T TTT=TTT T T rrTT =] = e e e

FI1G. 7.

Matrix multply example,

MATRIX ALGORITHMS FOR PARALLEL PROCESSORS

hne-tuned by adjusting the rate which intensity is increased
or decreased, Mot all possible shades are actually nesded, so
the [unctions only generate a particular number of shades
for a given color combination, By generating colors in even
spacing across the entire sel of all possible shades, a color
map 15 generated with as many distinet colors as desired.
The quality of distinetion between tavo colors s determined
by the space between the two shades, meaning the number
of other shades which could be generated between them.
Finally, once the number of desired colors has been cre-
ated, these colors are placed into a color map array, but
more than just these pure colors are necessary, All of the
colors need to be faded with time on the memory displavs.
To accomplish this, the desired number of faded shades for
each color are included with the pure colors and placed inle
the eolor map array in subsequent locations, These faded
shades are created by repeatedly lowering the intensities of
the base components that make up the pure color, This de-
credase occurs at a predefined constant decay rate. Mo at-
tempt to preserve the ratie of the three base components is
necessary, so Lthis decay rate only represents a constant
vilue to be suldracted from each base component intensity
value, The magnitude of this decay rate determines the ex-
tent to which the faded shades eventually approach black.

3.8 Memory dvoess Flashing and Fading

For each load and store access event animated by SH-
MAPA, the information for the event is processed by a spe-
cial routing thal appropriately illuminates the memaory dis-
plays and fades the previously iluminated accesses, This
rowting is alse respensible for updating the ammated graphs
and histograms, 1F activated.

The rowiing directs the drawing of the memory accesses
on one of the bwo main memory canvases, 25 determined
by the event opeode, Load accesses are drawn approprately
on the load canvas, stores on the store canvas, Since trace
events actually reference Mocks of several matnx elements,
all of these elements must be drawn at the same time in the
appropriate color of the PE making the access. When the
cache system is active, the elements are dravwn one at a gme
i order as they are scarched for in the cache, since each
given clement may be parl of a separate cache line requiring
imdividual attention. Each element may need to be deawn
not only on the cache windaw but also on the maim memory
load canvas depending on whether the element is found in
cache, If a cache miss occurs, all the elements in the cache
line must be drawn along with the anginally requested ele-
mcnt in hoth the cache window and the main memaory load
canvas, Thiz is to reflect the loading of the line into cache.
When the cache system is turned off, all accesses fora given
trace event are displaved as a single block access. Asan opti-
mization, the entire rectangular region is deawn all at once
0T ThE MAin memory CAnvas.

194

The fading of colors 15 accomplished by storing informa-
tion for cach matrix element while animating. Each ele-
ment has its own data structure which maintzins 3 time
stamp and a color map index, The time stamp is s21 1o that
of the frace evenl that last accessed that matrix element.
The color map index simply keeps track of which color was
last drawn o that element.

As the trace time passes, the current fime stamp is com-
parcd to that for cach matrix clement to decide when its
present color should be faded. With each new trace evenl,
cach imdividusl matrix element is considered separately for
fading. The fading occurs at a period determined by the fade
speed setting. 1 the matnx element tme stamp has aged by
at least this period since the last fade, then the element is
redrawn in the next faded shade. The color map index for
that clement is then adjusted (o point o the new shade. The
faded shades for each color are located together in the color
map to zllow a simple decrement for this adjustment.

Separate fading for each matnx element provides a more
accurate view to the user, Rather than fade all elements on
the display simultanesously, hence fading some elements too
soom or too late, cach clement s faded on its own time,
There iz no Muerring of the ardering of events by such a sim-
plification of the fading activity.

5.5, Portability

SHMAPA was implemented (o simplify 115 porting 1o
different window systems. Currently it operates under el-
ther SunView or X Version 11,

To facilitate portability, the amount of codes dependent
on the window svstem in wse was minimized. Specifically,
peneric routines were created for basic window system fune-
tions, The window system is specihed at compile time, Mac-
rog are included 1o make data type names equivalent (e,
Pancl_itcm in SunView is aliased o Widget when compil-
ing for X0); bo speaaly the program code to be compiled (eg.,
X or Sunview code); and to draw lines, rectangles, and
highlight Iabels. In additicn, seme of the more comphicated
routinegs were provided, such as those for copying pixels and
sliding window contents.

Separate files were created for the initialization and event
handling fenctions of SHMAPA, The initialization ron-
times include the routines 1o st up the screens, mitialize
windows, and install the color map, The event handlers are
the functions that process events penerated by the wser in-
terface. These are alse significantly different for X Version
11 and SunView, Because of their length and dissimilacity,
these programs were separated into different fles for each
of the window svslems provided.

6, PARALLEL PROCESSIMNG

Since our matnx algorithms use the BLAS, we simulate
the use of multiprocessors in the calls ta the BLAS. (This is

200

indecd the way the LAPACE project is exploiting parallel
processing on shared-memaory machines.) As an example,
we describe the additions that we made to the Level 3 BLAS
routine SGEMM.

SGEMM performs a matrix—matrix multiplication to up-
date a third matrix, C +«— ad8 + GC, If we look closely,
wi in see that each column of the resultant matrx can be
computed in parallel. In others words, cach of the following
malrx-vector operations, Caj = by + By, forj = 1,

. owhere & s the number of columns of B and C, can
be executed in parallel.

The main loop ol BGEMM 15

DOS0J=1, N
CALL 3GEMY (TEAMNS A, NEOW A, MCOLA,
g ALPHA, 4, LDA, 8(1,.0), 1,
5 BETA, (1,0, 1)
0 CONTIMNUE

which performs the matrx—vector operations described
above, To indicate the parallelism, we added calls to output
the desired information to the trace Ale. The main loop be-
came

call par(()
DO =1, N
call groupi)
call opslide, 2=k, weemy')
call i, o iat+rrowa— 1, ja, jo+ncola—1)
call r{édh,ib ib+mrawh—1 b+ j—1 b+ j=1)
call ide,ic fetm—1 ot j= 1, je+i— 1)
call wiide, fcictm—1,jc+ j—1 jc+j—1)
call group 1)
CALL SGEMY (TRANSA, NEOW.A, NCOLA,
5 ALPHA, A, LA, BOL Y, 1,
b BETA, C(1, .0, 1)
30 COMTIMNUE
call par(1)

The call to parf() indicates the beginning of a parallel
section. A parallel section isdivided into a set of groups cach
of which represents one unit of computation and is inde-
pendent of all other groups within that section. Thus, all
groups in a parallel section can be executed concurrently.
The call to growe() indicates the beginning of group. The
call 1o opy records the number of floating-point operations
performed during the computation and the name of the
subroutine performing the computation. The ealls to F and
wreeord the load and write memaory accesses of the subrou-
tine. The call to growp(1) ends the current growp, and the
call te pard §) ends the parallel section,

The resultant trace file, produced by the instrumented
Fortran program, has the same format as our original mem-
ory analysis tool, but with the following additions:

« Indicate the beginning of a paralle] section:
& Btart parallel

DOMNGARRA ET AL,

« Indicate the end of a paralle] section:
7 End parallel

+ Indicate the beginning of a unit of computation:
& Btart group

« Indicate the end of a unit of computation:
% End group

An cxample of the (race output is displayed below:

01 1000 100
6 Start parallel
& Start group

31 16sirsw
8 T |
Ll 1732 11
20132000]
9 End group

& Btart group

51 [bstrsw
0 T . A

11 17 32 2 2 095000
21 17 32 22 Q95000
0 End group

& Start group

51 1hstrsw

[1 11611 095000
LE 17 32 3 3 0.9500)
21 1732 33 095000
% End group

0.93333
93353
(RSSO0

7 End parallel

T. SHAMAPA 1IN OPERATION

A number of simple functions are vsed in controlling the
tracing operation of SHMAPA. A row of buttons on the
main panel of the tool constitutes the central peint of con-
trol. These buttons are labeled LOAD, GO, STOP,
CACHE, INFO, 3CREEN DUMP, and QUIT. There are
also two sliders that control characteristics of the anima-
o,

The LOAD, GO, and STOP buttons contral the actual
tracing. The LOAD button commences processing and
loading of the trace file to be uged to drve the tracing, The
file selected at the time the LOAD buiton is clicked is con-
sidered 10 be the fle to load, The GO and STOP buttons
start and stop the tracing animation, respectively, Afler
loading a trace file, clicking GO starts the tracing, which will
continue until the emtire file has been traced or until the

MATREIX ALGORITHMS FOR PARALLEL PROCESSORS

201

CRIMC == Shared Memory Access Patterns
Eq:ml_in,g the Ecreen image to the default printer. Piraclary: dasfdotqarfafiCHEDFSHAPA Trata 41718 tFta.Fareliod
Fade zpamd [1#0] P e Sl A T Sl . Cachee: 18 Linme zira: 32 Cacka elra; LE34 Palley: LEU
Feac spoad [Ed] 0 | S = =@ FE'4! 18 Active PE's! SFO0F Accessasr SO0 Tiss Tines 3 07
PEFL PEF2 FEFE PEFd PERS ™ L1 PEF FEF FEFE FEFLR FEFIL PEMZ PEFLR FEFI4 FEFLS FEFIE Tokals
Ribmdes 343 148 1376 W@ aig 1298 15 D 1548 &l g ia5E 1163 1838 AGF B 15395
HWirltid ! LEE 5 FAE] -] 2Lk H33 2HE 1B Er] 1] ELL] EEE 238 3835 AGE -] A535
Flzpez A LTS] L] a 4075 ¥] 1] a 1875 EE A5 J7am] o ABE2S
ekrem Egana EQERE EgeAN SQIAA EpeRE
[} (e] [H 4] [2] ¥ g e CFE [] EFa Gl CFLE CFF cfld CFE GlE Totals
Hit&: L]] L]]] H E 1 -] 1 L]] L | L] E H]
Hizzes: @ n L] (]]] 1] i n] n B] a B L]]
Anflp: @ (59 ok ax % "L (59 a5 (19 5 LT (3 9 ik k & [F T it
FIr. B, Controd pancl,

STOP button is clicked. To change the system configura-
tion during tracing, the STOP button may be clicked to
temporarily interrupt the trace, Then afler configuration
changes have been made, GO0 may be clicked again o con-
tinue tracing where interrupted. Depending on the config-
uration change, some trace information may be lost at the
point of interruption.

The CACHE bution turns the cache svstem on and off.
Cache 15 off by default when the tool is initiated, and with
cache off no cache window iz displayed. Upon chicking the
CACHE button, the cache will be turned on and the current
interactively set cache configuration will be intialized. The
special cache animation window will then be displayed.
This window consists of a rectangle divided inte the proper
number of identical smaller rectangles which cach represent
an individual cache memory, Repeated clicking of the

CACHE button will successively turn the cache svstem off

and on. Ceche configuration may be aliered with the cache
on or off, bul changes will take effect only 1 the cache is
furned on.

The INFO bution s used for producing text output from
SHMAPA. IFINFOD 15 clicked instead of GO when a file has
been leaded, then no animation will occur and only & text
deseription of the tracing will be produced. This description
can be controlled by various command line arguments Lo
SHMAPA which produce output of the desired length and
detail.

The SCEEEN DUMP bution 15 used to capiure the cur-
rent raster image of SHMAPA to be output to laser printers.
This feature works with color or black-and-white printers.

Ihe QUIT button exits the taol,

The twa sliders on the main panel control the two anima-
tion characteristics manipulated by the toal, The Update
speed slider contrals the length of ime the memory refer-
ence 15 held on the screen before fading away, The Execii-
tion speed shider controls the speed at which the trace fle is
processed; this slider expresses the event display speed as a
percentage of the fstest possible speed.

Figure & shows SHMAPA s main user contral imerface.

B. AVAILAEILITY OF OUR TOOLS

The software described in this report is available electron-
ically via merdil [10]. Ta retrieve a copy, one should send
electronic mail to netlib@ornl.gov. In the mail message, one
should type

send index from tools
send shmap from tools

UHIX shar files wall be sent back. To build the parts. one
necd only ship the mail file {afler removing the mail
header) into an empty directory and tvpe “make™,

4. COMCLLUSIONS

SHMAFP 15 intended to provide an animated view of a
program’s memory activily during execution. By playing
back a program’s execution, we are ahle to study how an
algorithm uses memory, 1o experiment with different nums-
bers of processors and different memaory hierarchy schemes,
and to observie their effects on the program”’s fow of data.
Uszing such tools thus provides msight into zlgorithm be-
havior and potential bettlenecks in com putationally inten-
sive parallel algorithms.

REFEREMNCES

. Bermghan, B, and Bichie, I, Te O Progrememiag Laspuege. Pren-
tice=Hall, Englewood Cliffs, M), 1948,

. Hwang, K., and Bripps, F. Cowpier Architectvre ana Paralle!d Process-
i, DG raw=Hill, Mew York, 19846,

. Ahgja, 5., Camriere, M., and Gelernter, D, Lindda and ftends. 185K
Carrpar, 1% 2 { Aup. 1986, I6H=54.

4. Dershad, B N, Lazgwska, E [, and Levy, H. M. FRESTO: A system
for abject-srienied parallel programming. Tech, Bep. §7-004201, De-
partment ol Campuler Scence, Liniversity of Washingion, Sept. 19487,

5, Brewer, O, Donparea. . and Sorensen, 12, Tools o aid in the analyss
al’ memoary aceess petterns for Fartran progmms, Paaslfed Compig, O,
CIORE 1680, 25-35,

]

el

202

G, Browne, 1T, Azam, M, and Sobek, 5. Architectural amd langunge
independent parallel propramming: A feasibility demenstration.
Tech. Kep, Department of Compuater Sciense, Universiy of Texas,
Austing Feb, 15, 1985,

T Carle, A, Cooper, B, Haood, 1, Kennedy, K., Terczoen, L., and War-
ren, %A practical envirenment for Forvran programming. FEEE
Cioenpur. 20, 11 { Moy, 1987}, 75-840.

g Drongarma, L1, DoCrow, 1, Thaff, L, aed Hamnsanliog, 5. A set ol level
3 Basic Linear Alpzhra Subprograms. Argonne Maticnal Laboraieny
Brepart, MOS-P 1588, Aug. 1985,

9. Dongarm, 1 1, DeCroz,). Hammarling, 5. amd Hanson, B An ex-
tended st of Fortman Basic Linear Algebra Subpregroms, 400 Trans,
Marh, Seftware 14, | {Mar, 1988), 1-17.

1 Drongarra,).). and Giresse, E. Distribution of mathemantical soffwane
i cloctronie mail. Comm, ACA M, 5 ¢ May 1987, $03-407,

11, Lawsen, O, Hanzon, B, Kincad, D, and Eragh, F. Tasic Linear Al-
gehr Subprograms for Forvean usage, 400 Trares, Wtk Saffware 5,
19749, 308-323,

12 Snyder, L. Pamllz]l pragmmming and the poker programming envi-
ranment, MEEE Coone, 17, 7 (uly 19845, 2736,

JACK THOMGARRA s a Distinpuished Scwentist specializing in nzmeri-
cal algarithmes in Hesar alpebea a1 the University of Tennesses's compuicr
sremee department ard Oak Rides Motional Laborators's mathemalieal
wienpes section, Dongara received a PR, i applied mathematics from
the Liniversity of Mew hexico in 1980, a M35, in computer science frem
Lhe lineas Instiluee of Technalogy in 1973, and a BS. in mathemalics
from Chicage State University in 1972, Prifessional aciivities includs
merniershap mthe Society for Indaserial and Apolicd Mathematics and

Beoceived June |, I989; revised Janaary 10, 1960

DOMGARRA ET AL,

alwa in the Association for Computing Machinery {ACM). He 15 alse an
aditor for Commamicanions o the ACM, ACM Fransaciion on Mathomali-
cal Sware, Joverrel of Divtribited and Paraliel Compuring, Internaional
Seurwal af Supercoaspmier Appiications, Sowraal o Supercosstiing, Faral-
e Coonpiiing, and Resedeok Monograpls on Parcliel aed Distribucted
Crovrrpuitieg. Flie s published numeraws ariicles, papers, reponz, and fech-
nical memarmnda and has given many pressnlations on kas research inters
=i 1

DRELIE BREWER is a3 scienlilic assistanl in the mathematics 2nd com-
paler sotence depariment 21 Argonne MNational Laborsory, His inerssis
include paralicl processing, praphss ineefaces, and visualizalion in scien-
Talic eompubirg. He meeeaved the 5.5 degree in mathematics from che Uni-
wversity af Oklzhomnin 1978 and 1he M5, degrec in coniputer seienos (rom
1hie University ol Oklahoma i 1988 and s 3 member ol ACKM, [EEE Come-
praler Saciety, aml SLAM.

TABIES ARTHLUR KOHL reeeived the BS.CEE. depres in 1958 and
the M5 E.E. degree in 1989 from the Schoal of Electrical Engineering of
Purdue University in West Lafayene, Indiana, He i currently enrolled in
the Fh, I, progmm in ihe electrical and compater engineering deparinsent
ol U Lpdversity of lowa, His reseanch interesis include graphic annlysis of
parallel systems, and parallel computer archileclun: and waltware develop-
mEme,

SAMUEL A FINERERG received 1he BS.CEE, degros in 1958 and
the MLAE.E. degres in 1989 from e School of Elecincl Engincering ol
Fardue Umversily in West Lafayette, Indiana. Fle 1s currently enralled in
the Ph.12, progmm in the slecirical and compater enginecring depanment
of the Universicy of lewa. His rescarel imterests imclude paralbel computer
architecture and performance evaluation,

